401
|
Chan KL, Puts NAJ, Schär M, Barker PB, Edden RAE. HERMES: Hadamard encoding and reconstruction of MEGA-edited spectroscopy. Magn Reson Med 2016; 76:11-9. [PMID: 27089868 DOI: 10.1002/mrm.26233] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/01/2016] [Accepted: 03/10/2016] [Indexed: 12/25/2022]
Abstract
PURPOSE To investigate a novel Hadamard-encoded spectral editing scheme and evaluate its performance in simultaneously quantifying N-acetyl aspartate (NAA) and N-acetyl aspartyl glutamate (NAAG) at 3 Tesla. METHODS Editing pulses applied according to a Hadamard encoding scheme allow the simultaneous acquisition of multiple metabolites. The method, called HERMES (Hadamard Encoding and Reconstruction of MEGA-Edited Spectroscopy), was optimized to detect NAA and NAAG simultaneously using density-matrix simulations and validated in phantoms at 3T. In vivo data were acquired in the centrum semiovale of 12 normal subjects. The NAA:NAAG concentration ratio was determined by modeling in vivo data using simulated basis functions. Simulations were also performed for potentially coedited molecules with signals within the detected NAA/NAAG region. RESULTS Simulations and phantom experiments show excellent segregation of NAA and NAAG signals into the intended spectra, with minimal crosstalk. Multiplet patterns show good agreement between simulations and phantom and in vivo data. In vivo measurements show that the relative peak intensities of the NAA and NAAG spectra are consistent with a NAA:NAAG concentration ratio of 4.22:1 in good agreement with literature. Simulations indicate some coediting of aspartate and glutathione near the detected region (editing efficiency: 4.5% and 78.2%, respectively, for the NAAG reconstruction and 5.1% and 19.5%, respectively, for the NAA reconstruction). CONCLUSION The simultaneous and separable detection of two otherwise overlapping metabolites using HERMES is possible at 3T. Magn Reson Med 76:11-19, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kimberly L Chan
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicolaas A J Puts
- F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Schär
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peter B Barker
- F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard A E Edden
- F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
402
|
Tsai SY, Fang CH, Wu TY, Lin YR. Effects of Frequency Drift on the Quantification of Gamma-Aminobutyric Acid Using MEGA-PRESS. Sci Rep 2016; 6:24564. [PMID: 27079873 PMCID: PMC4832206 DOI: 10.1038/srep24564] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 03/31/2016] [Indexed: 01/04/2023] Open
Abstract
The MEGA-PRESS method is the most common method used to measure γ-aminobutyric acid (GABA) in the brain at 3T. It has been shown that the underestimation of the GABA signal due to B0 drift up to 1.22 Hz/min can be reduced by post-frequency alignment. In this study, we show that the underestimation of GABA can still occur even with post frequency alignment when the B0 drift is up to 3.93 Hz/min. The underestimation can be reduced by applying a frequency shift threshold. A total of 23 subjects were scanned twice to assess the short-term reproducibility, and 14 of them were scanned again after 2–8 weeks to evaluate the long-term reproducibility. A linear regression analysis of the quantified GABA versus the frequency shift showed a negative correlation (P < 0.01). Underestimation of the GABA signal was found. When a frequency shift threshold of 0.125 ppm (15.5 Hz or 1.79 Hz/min) was applied, the linear regression showed no statistically significant difference (P > 0.05). Therefore, a frequency shift threshold at 0.125 ppm (15.5 Hz) can be used to reduce underestimation during GABA quantification. For data with a B0 drift up to 3.93 Hz/min, the coefficients of variance of short-term and long-term reproducibility for the GABA quantification were less than 10% when the frequency threshold was applied.
Collapse
Affiliation(s)
- Shang-Yueh Tsai
- Graduate Institute of Applied Physics, National Chengchi University, Taipei, Taiwan.,Research Center for Mind, Brain and Learning, National Chengchi University, Taipei, Taiwan
| | - Chun-Hao Fang
- Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Thai-Yu Wu
- Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Yi-Ru Lin
- Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| |
Collapse
|
403
|
Leal A, Vieira JP, Lopes R, Nunes RG, Gonçalves SI, Lopes da Silva F, Figueiredo P. Dynamics of epileptic activity in a peculiar case of childhood absence epilepsy and correlation with thalamic levels of GABA. EPILEPSY & BEHAVIOR CASE REPORTS 2016; 5:57-65. [PMID: 27144122 PMCID: PMC4840417 DOI: 10.1016/j.ebcr.2016.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/14/2016] [Accepted: 03/25/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Childhood absence epilepsy (CAE) is a syndrome with well-defined electroclinical features but unknown pathological basis. An increased thalamic tonic GABA inhibition has recently been discovered on animal models (Cope et al., 2009), but its relevance for human CAE is unproven. METHODS We studied an 11-year-old boy, presenting the typical clinical features of CAE, but spike-wave discharges (SWD) restricted to one hemisphere. RESULTS High-resolution EEG failed to demonstrate independent contralateral hemisphere epileptic activity. Consistently, simultaneous EEG-fMRI revealed the typical thalamic BOLD activation, associated with caudate and default mode network deactivation, but restricted to the hemisphere with SWD. Cortical BOLD activations were localized on the ipsilateral pars transverse. Magnetic resonance spectroscopy, using MEGA-PRESS, showed that the GABA/creatine ratio was 2.6 times higher in the hemisphere with SWD than in the unaffected one, reflecting a higher GABA concentration. Similar comparisons for the patient's occipital cortex and thalamus of a healthy volunteer yielded asymmetries below 25%. SIGNIFICANCE In a clinical case of CAE with EEG and fMRI-BOLD manifestations restricted to one hemisphere, we found an associated increase in thalamic GABA concentration consistent with a role for this abnormality in human CAE.
Collapse
Affiliation(s)
- Alberto Leal
- Department of Neurophysiology, Centro Hospitalar Psiquiátrico de Lisboa, Lisbon, Portugal`
| | - José P Vieira
- Department of Pediatric Neurology, Hospital Dona Estefânia, Lisbon, Portugal
| | - Ricardo Lopes
- Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
| | - Rita G Nunes
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Sónia I Gonçalves
- Institute of Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Fernando Lopes da Silva
- Center of Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands; Department of Bioengineering and Institute for Systems and Robotics (ISR/IST), LARSyS, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - Patrícia Figueiredo
- Department of Bioengineering and Institute for Systems and Robotics (ISR/IST), LARSyS, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| |
Collapse
|
404
|
Ford TC, Crewther DP. A Comprehensive Review of the (1)H-MRS Metabolite Spectrum in Autism Spectrum Disorder. Front Mol Neurosci 2016; 9:14. [PMID: 27013964 PMCID: PMC4783404 DOI: 10.3389/fnmol.2016.00014] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/16/2016] [Indexed: 01/11/2023] Open
Abstract
Neuroimaging studies of neuropsychiatric behavior biomarkers across spectrum disorders are typically based on diagnosis, thus failing to account for the heterogeneity of multi-dimensional spectrum disorders such as autism (ASD). Control group trait phenotypes are also seldom reported. Proton magnetic resonance spectroscopy (1H-MRS) measures the abundance of neurochemicals such as neurotransmitters and metabolites and hence can probe disorder phenotypes at clinical and sub-clinical levels. This detailed review summarizes and critiques the current 1H-MRS research in ASD. The literature reports reduced N-acetylaspartate (NAA), glutamate and glutamine (Glx), γ-aminobutyric acid (GABA), creatine and choline, and increased glutamate for children with ASD. Adult studies are few and results are inconclusive. Overall, the literature has several limitations arising from differences in 1H-MRS methodology and sample demographics. We argue that more consistent methods and greater emphasis on phenotype studies will advance understanding of underlying cortical metabolite disturbance in ASD, and the detection, diagnosis, and treatment of ASD and other multi-dimensional psychiatric disorders.
Collapse
Affiliation(s)
- Talitha C Ford
- Faculty of Health, Arts and Design, Centre for Human Psychopharmacology, Swinburne University of Technology Melbourne, VIC, Australia
| | - David P Crewther
- Faculty of Health, Arts and Design, Centre for Human Psychopharmacology, Swinburne University of Technology Melbourne, VIC, Australia
| |
Collapse
|
405
|
Saleh MG, Alhamud A, Near J, van der Kouwe AJW, Meintjes EM. Volumetric navigated MEGA-SPECIAL for real-time motion and shim corrected GABA editing. NMR IN BIOMEDICINE 2016; 29:248-55. [PMID: 26663075 DOI: 10.1002/nbm.3454] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 05/28/2023]
Abstract
Mescher-Garwood (MEGA) editing with spin echo full intensity acquired localization (MEGA-SPECIAL, MSpc) is a technique to acquire γ-aminobutyric acid (GABA) without macromolecule (MM) contamination at a TE of 68 ms. However, due to the requirement of multiple shot-localization, it is often susceptible to subject motion and B0 inhomogeneity. A method is presented for real-time shim and motion correction (ShMoCo) using volumetric navigators to correct for motion and motion-related B0 inhomogeneity during MSpc acquisition. A phantom experiment demonstrates that ShMoCo restores the GABA peak and improves spectral quality in the presence of motion and zero- and first-order shim changes. The ShMoCo scans were validated in three subjects who performed up-down and left-right head rotations. Qualitative assessment of these scans indicates effective reduction of subtraction artefacts and well edited GABA peaks, while quantitative analysis indicates superior fitting and spectral quality relative to scans with no correction. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Muhammad G Saleh
- Department of Human Biology, MRC/UCT Medical Imaging Research Unit, University of Cape Town, Cape Town, Western Cape, South Africa
| | - A Alhamud
- Department of Human Biology, MRC/UCT Medical Imaging Research Unit, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Jamie Near
- Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, Canada
| | - André J W van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
| | - Ernesta M Meintjes
- Department of Human Biology, MRC/UCT Medical Imaging Research Unit, University of Cape Town, Cape Town, Western Cape, South Africa
| |
Collapse
|
406
|
Chan KL, Puts NAJ, Snoussi K, Harris AD, Barker PB, Edden RAE. Echo time optimization for J-difference editing of glutathione at 3T. Magn Reson Med 2016; 77:498-504. [PMID: 26918659 DOI: 10.1002/mrm.26122] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/01/2015] [Accepted: 12/22/2015] [Indexed: 12/12/2022]
Abstract
PURPOSE To investigate the echo time (TE) dependence of J-difference editing of glutathione and to determine the optimal TE for in vivo measurements at 3T. METHODS Spatially resolved density-matrix simulations and phantom experiments were performed at a range of TEs to establish the spatial and TE modulation of glutathione signals in editing-on, editing-off, and difference spectra at 3T. In vivo data were acquired in five healthy subjects to compare a TE of 68 ms and a TE of 120 ms. At the longer TE, high-bandwidth, frequency-modulated, slice-selective refocusing pulses were also compared with conventional amplitude-modulated pulses. RESULTS Simulations and relaxation-corrected phantom experiments suggest that the maximum edited signal occurs at TE 160 ms, ignoring transverse relaxation. Considering in vivo T2 relaxation times of 67-89 ms, the optimal in vivo TE is estimated to be 120 ms. In vivo measurements showed that this TE yielded 15% more signal than TE 68 ms. A further gain of 57% resulted from using improved slice-selective refocusing pulses. CONCLUSION J-difference editing of glutathione using TE 120 ms delivers increased signal due to improved editing efficiency that more than offsets T2 losses. The additional TE also allows for use of improved slice-selective refocusing pulses, which results in additional signal gains. Magn Reson Med 77:498-504, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Kimberly L Chan
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Nicolaas A J Puts
- F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Karim Snoussi
- F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ashley D Harris
- F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peter B Barker
- F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard A E Edden
- F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
407
|
Mischley LK, Conley KE, Shankland EG, Kavanagh TJ, Rosenfeld ME, Duda JE, White CC, Wilbur TK, De La Torre PU, Padowski JM. Central nervous system uptake of intranasal glutathione in Parkinson's disease. NPJ Parkinsons Dis 2016; 2:16002. [PMID: 28725693 PMCID: PMC5516583 DOI: 10.1038/npjparkd.2016.2] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/03/2015] [Accepted: 12/10/2015] [Indexed: 11/16/2022] Open
Abstract
Glutathione (GSH) is depleted early in the course of Parkinson's disease (PD), and deficiency has been shown to perpetuate oxidative stress, mitochondrial dysfunction, impaired autophagy, and cell death. GSH repletion has been proposed as a therapeutic intervention. The objective of this study was to evaluate whether intranasally administered reduced GSH, (in)GSH, is capable of augmenting central nervous system GSH concentrations, as determined by magnetic resonance spectroscopy in 15 participants with mid-stage PD. After baseline GSH measurement, 200 mg (in)GSH was self-administered inside the scanner without repositioning, then serial GSH levels were obtained over ~1 h. Statistical significance was determined by one-way repeated measures analysis of variance. Overall, (in)GSH increased brain GSH relative to baseline (P<0.001). There was no increase in GSH 8 min after administration, although it was significantly higher than baseline at all of the remaining time points (P<0.01). This study is the first to demonstrate that intranasal administration of GSH elevates brain GSH levels. This increase persists at least 1 h in subjects with PD. Further dose-response and steady-state administration studies will be required to optimize the dosing schedule for future trials to evaluate therapeutic efficacy.
Collapse
Affiliation(s)
- Laurie K Mischley
- Department of Radiology, University of Washington (UW), Seattle, WA, USA
- Graduate Program in Nutritional Sciences, School of Public Health, University of Washington, Seattle, WA, USA
- School of Naturopathic Medicine, Bastyr University Research Institute, Kenmore, WA, USA
| | - Kevin E Conley
- Department of Radiology, University of Washington (UW), Seattle, WA, USA
| | - Eric G Shankland
- Department of Radiology, University of Washington (UW), Seattle, WA, USA
| | - Terrance J Kavanagh
- Department of Environmental & Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Michael E Rosenfeld
- Graduate Program in Nutritional Sciences, School of Public Health, University of Washington, Seattle, WA, USA
- Department of Environmental & Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - John E Duda
- Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Collin C White
- Department of Environmental & Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Timothy K Wilbur
- Department of Radiology, University of Washington (UW), Seattle, WA, USA
| | - Prysilla U De La Torre
- Department of Radiology, University of Washington (UW), Seattle, WA, USA
- School of Naturopathic Medicine, Bastyr University Research Institute, Kenmore, WA, USA
| | - Jeannie M Padowski
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
- Department of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, WA, USA
| |
Collapse
|
408
|
Abstract
UNLABELLED It is not known why tinnitus occurs in some cases of hearing damage but not others. Abnormalities of excitation-inhibition balance could influence whether tinnitus develops and its severity if it does. Animal models of hearing damage, which also produce tinnitus based on behavioral evidence, have identified abnormalities of GABAergic inhibition, both cortically and subcortically. However, the precise relationships of GABA inhibitory changes to tinnitus itself, as opposed to other consequences of hearing damage, remain uncertain. Here, we used magnetic resonance spectroscopy to non-invasively quantify GABA in the left (LAC) and right (RAC) auditory cortices of a group of 14 patients with lateralized tinnitus (eight left ear) and 14 controls matched for age, sex, and hearing. We also explored the potential relationships with other brain metabolites (i.e., choline, N-acetylaspartate, and creatine). The presence of tinnitus was associated with a reduction in auditory cortex GABA concentration. Regardless of tinnitus laterality, post hoc testing indicated reductions that were significant in RAC and nonsignificant in LAC. Tinnitus severity and hearing loss were correlated positively with RAC choline but not GABA. We discuss the results in the context of current models of tinnitus and methodological constraints. SIGNIFICANCE STATEMENT Permanently affecting one in seven adults, tinnitus lacks both widely effective treatments and adequate understanding of its brain mechanisms. Existing animal models represent tinnitus that may not be distinguishable from homeostatic responses to the auditory insults used to induce it. Human studies can be well controlled in this regard but are usually not (with few even matching control subjects for hearing loss) and are limited in scope as a result of relying solely on non-invasive recording techniques. Here, we exploit recent advances in non-invasive spectroscopic techniques to establish, in a human study tightly controlled for hearing loss and hyperacusis, that tinnitus is associated with a significant reduction in auditory cortex GABA concentration, which has implications for understanding and treatment of the condition.
Collapse
|
409
|
Rowland LM, Summerfelt A, Wijtenburg SA, Du X, Chiappelli JJ, Krishna N, West J, Muellerklein F, Kochunov P, Hong LE. Frontal Glutamate and γ-Aminobutyric Acid Levels and Their Associations With Mismatch Negativity and Digit Sequencing Task Performance in Schizophrenia. JAMA Psychiatry 2016; 73:166-74. [PMID: 26720179 PMCID: PMC4740214 DOI: 10.1001/jamapsychiatry.2015.2680] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
IMPORTANCE Auditory mismatch negativity (MMN) is a biomarker for schizophrenia thought to reflect glutamatergic N-methyl-d-aspartate receptor function and excitatory-inhibitory neurotransmission balance. However, the association of glutamate level with MMN has not been directly examined in patients with schizophrenia, to our knowledge. OBJECTIVE To investigate the contributions of glutamate and γ-aminobutyric acid (GABA) to MMN and digit sequencing task (DST) performance, an assessment of verbal working memory, in schizophrenia. DESIGN, SETTING, AND PARTICIPANTS Fifty-three control participants from the community and 45 persons with schizophrenia from outpatient clinics completed an electroencephalographic session for MMN, magnetic resonance spectroscopy for glutamate and GABA, and a DST. The study dates were July 2011 to May 2014, and the dates of our analysis were May 2014 to August 2015. MAIN OUTCOMES AND MEASURES Glutamate, GABA, the ratio of glutamine to glutamate, MMN amplitude, and DST. Structural equation modeling was used to test the effects of neurochemistry and MMN amplitude on DST performance. RESULTS The 45 persons with schizophrenia were a mean (SD) of 37.7 (12.8) years and the control participants were 37.1 (13.1) years. The schizophrenia group had a mean (SD) of 14.7 (12.1) years of illness. Mismatch negativity amplitude (F = 4.39, P = .04) and glutamate (F = 9.69, P = .002) were reduced in the schizophrenia group. Smaller MMN amplitude was significantly associated with lower GABA level (P = .008), lower glutamate level (P = .05), and higher ratio of glutamine to glutamate (P = .003). Reduced MMN amplitude was linked to poor verbal working memory in schizophrenia (P = .002). Modeling revealed that a proxy of glutamatergic function, indexed by the ratio of glutamine to glutamate, influenced a path from the ratio of glutamine to glutamate to MMN to verbal working memory (P = .38 [root-mean-square error of approximation, P < .001] by χ2 test), supporting the contention that MMN serves as an intermediate biomarker linking glutamatergic function to DST performance in schizophrenia. CONCLUSIONS AND RELEVANCE The role of glutamate and GABA in MMN and verbal working memory deficits in schizophrenia has been frequently debated. These data provide in vivo evidence that support glutamatergic and GABAergic regulation of MMN and verbal working memory function in schizophrenia.
Collapse
Affiliation(s)
- Laura M. Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore2Department of Radiology and Radiological Sciences, the Johns Hopkins University School of Medicine, Baltimore, Maryland3Department of Psyc
| | - Ann Summerfelt
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore
| | - S. Andrea Wijtenburg
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore
| | - Xiaoming Du
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore
| | - Joshua J. Chiappelli
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore
| | - Nithin Krishna
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore
| | - Jeffrey West
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore
| | - Florian Muellerklein
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore3Department of Psychology, University of Maryland, Baltimore County, Baltimore4Department of Physics, University of Maryland, Baltimore Cou
| | - L. Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore
| |
Collapse
|
410
|
Rowland LM, Krause BW, Wijtenburg SA, McMahon RP, Chiappelli J, Nugent KL, Nisonger SJ, Korenic SA, Kochunov P, Hong LE. Medial frontal GABA is lower in older schizophrenia: a MEGA-PRESS with macromolecule suppression study. Mol Psychiatry 2016; 21:198-204. [PMID: 25824298 PMCID: PMC4591074 DOI: 10.1038/mp.2015.34] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 02/17/2015] [Accepted: 02/24/2015] [Indexed: 01/09/2023]
Abstract
Gamma-butyric acid (GABA) dysfunction has been implicated in the pathophysiology of schizophrenia and its cognitive deficits. Proton magnetic resonance spectroscopy (MRS) was used to test the hypothesis that older participants with schizophrenia have lower anterior cingulate GABA levels compared with older control participants. One-hundred forty-five participants completed this study. For detection of GABA, spectra were acquired from the medial frontal/anterior cingulate cortex using a macromolecule-suppressed MEGA-PRESS sequence. Patients were evaluated for psychopathology and all participants completed neuropsychological tests of working memory, processing speed and functional capacity. GABA levels were significantly lower in the older participants with schizophrenia (n=31) compared with the older control (n=37) group (P=0.003) but not between the younger control (n=40) and schizophrenia (n=29) groups (P=0.994). Age strongly predicted GABA levels in the schizophrenia group accounting for 42% of the variance, but the effect of age was less in the control group accounting for 5.7% of the variance. GABA levels were specifically related to working memory but not processing speed performance, functional capacity, or positive or negative symptom severity. This is the largest MRS study of GABA in schizophrenia and the first to examine GABA without macromolecule contamination, a potentially significant issue in previous studies. GABA levels more rapidly declined with advancing age in the schizophrenia compared with the control group. Interventions targeted at halting the decline or increasing GABA levels may improve functional outcomes and quality of life as patients with schizophrenia age.
Collapse
Affiliation(s)
- Laura M Rowland
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine,Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine,Department of Psychology, University of Maryland Baltimore County,Corresponding Author. Maryland Psychiatric Research Center, P.O. Box 21247, Baltimore, MD 21228, 410-402-6803,
| | - Benjamin W. Krause
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine
| | - S. Andrea Wijtenburg
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine
| | - Robert P. McMahon
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine
| | - Joshua Chiappelli
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine
| | - Katie L. Nugent
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine
| | - Sarah J. Nisonger
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine
| | - Stephanie A. Korenic
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine
| | - Peter Kochunov
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine,Department of Physics, University of Maryland Baltimore County
| | - L. Elliot Hong
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine
| |
Collapse
|
411
|
Chiapponi C, Piras F, Piras F, Caltagirone C, Spalletta G. GABA System in Schizophrenia and Mood Disorders: A Mini Review on Third-Generation Imaging Studies. Front Psychiatry 2016; 7:61. [PMID: 27148090 PMCID: PMC4835487 DOI: 10.3389/fpsyt.2016.00061] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/29/2016] [Indexed: 11/18/2022] Open
Abstract
Third-generation neuroimaging research has been enriched by advances in magnetic resonance spectroscopy (MRS) measuring the concentration of important neurotrasmitters, such as the inhibitory amino acid GABA. Here, we performed a systematic mini-review on brain MRS studies measuring GABA concentration in patients affected by schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD). We wondered whether multimodal investigations could overcome intrinsic technical limits of MRS giving a broader view of mental disorders pathogenesis. In SZ, unimodal studies gave mixed results, as increased, decreased, or unaltered GABA levels were reported depending on region, disease phase, and treatment. Conversely, multimodal results showed reduced level of glutamate, but not of GABA, in patients mirrored by in vitro biochemical findings revealing hippocampal reduction in glutamate signaling in SZ, and no deficits in GABA synthesis. Moreover, a mouse model confirmed the unique pathological characteristic of glutamate function in SZ. Unimodal studies in BD revealed again, inconsistent results, while no multimodal investigations including MRS on GABA exist. In MDD, unimodal studies could not differentiate patients from controls nor characterize high-risk subjects and remitted patients. However, a multimodal study combining functional magnetic resonance imaging and MRS revealed that cingulate cortex activity is related to glutamate, N-acetylaspartate levels and anhedonia in patients, and to GABA concentration in healthy subjects, improving the distinction between MDD and physiology. Overall, our results show that unimodal studies do not indicate GABA as a biomarker for the psychiatric disorders considered. Conversely, multimodal studies can widen the understanding of the link between psychopathology, genetics, neuroanatomy, and functional-biochemical brain activity in mental disorders. Although scarce, multimodal approaches seem promising for moving from GABA MRS unimodal-descriptive to causal level, and for integrating GABA results into a more comprehensive interpretation of mental disorder pathophysiology.
Collapse
Affiliation(s)
- Chiara Chiapponi
- Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Federica Piras
- Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation , Rome , Italy
| | - Fabrizio Piras
- Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy; Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
| | - Carlo Caltagirone
- Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Gianfranco Spalletta
- Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy; Menninger Department of Psychiatry and Behavioral Sciences, Beth K. and Stuart C. Yudofsky Division of Neuropsychiatry, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
412
|
Delli Pizzi S, Padulo C, Brancucci A, Bubbico G, Edden RA, Ferretti A, Franciotti R, Manippa V, Marzoli D, Onofrj M, Sepede G, Tartaro A, Tommasi L, Puglisi-Allegra S, Bonanni L. GABA content within the ventromedial prefrontal cortex is related to trait anxiety. Soc Cogn Affect Neurosci 2015; 11:758-66. [PMID: 26722018 DOI: 10.1093/scan/nsv155] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/16/2015] [Indexed: 11/13/2022] Open
Abstract
The ventromedial prefrontal cortex (vmPFC) plays a key role in emotion processing and regulation. vmPFC dysfunction may lead to disinhibition of amygdala causing high anxiety levels. γ-Aminobutyric acid (GABA) inter-neurons within vmPFC shape the information flow to amygdala. Thus, we hypothesize that GABA content within vmPFC could be relevant to trait anxiety. Forty-three healthy volunteers aged between 20 and 88 years were assessed for trait anxiety with the Subscale-2 of the State-Trait-Anxiety Inventory (STAI-Y2) and were studied with proton magnetic resonance spectroscopy to investigate GABA and Glx (glutamate+glutamine) contents within vmPFC. Total creatine (tCr) was used as internal reference. Partial correlations assessed the association between metabolite levels and STAI-Y2 scores, removing the effect of possible nuisance factors including age, educational level, volumes of gray matter and white matter within magnetic resonance spectroscopy voxel. We observed a positive relationship between GABA/tCr and STAI-Y2 scores. No significant relationships were found between Glx/tCr and STAI-Y2 and between tCr/water and STAI-Y2. No differences were found between males and females as regards to age, STAI-Y2, GABA/tCr, Glx/tCr, tCr/water, gray matter and white matter volumes. We suggest a close relationship between GABA content within vmPFC and trait anxiety providing new insights in the physiology of emotional brain.
Collapse
Affiliation(s)
- Stefano Delli Pizzi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy, Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti, Italy, Aging Research Centre, Ce.S.I., University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Caterina Padulo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy, Department of Psychological Sciences, Health, and the Territory, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Alfredo Brancucci
- Department of Psychological Sciences, Health, and the Territory, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Giovanna Bubbico
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy, Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti, Italy
| | - Richard A Edden
- Russell H. Morgan Department of Radiology, "The Johns Hopkins University" School of Medicine, Baltimore, MD, USA, F.M. Kirby Center for Functional MRI, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Antonio Ferretti
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy, Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti, Italy
| | - Raffaella Franciotti
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy, Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti, Italy, Aging Research Centre, Ce.S.I., University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Valerio Manippa
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy, Department of Psychological Sciences, Health, and the Territory, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Daniele Marzoli
- Department of Psychological Sciences, Health, and the Territory, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Marco Onofrj
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy, Aging Research Centre, Ce.S.I., University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Gianna Sepede
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy, Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti, Italy, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University "A. Moro" of Bari, Italy
| | - Armando Tartaro
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy, Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti, Italy
| | - Luca Tommasi
- Department of Psychological Sciences, Health, and the Territory, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Stefano Puglisi-Allegra
- Department of Psychology, University "La Sapienza" of Roma, Italy, and Foundation Santa Lucia, IRCCS, Rome, Italy
| | - Laura Bonanni
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy, Aging Research Centre, Ce.S.I., University "G. d'Annunzio" of Chieti-Pescara, Italy,
| |
Collapse
|
413
|
Simpson R, Devenyi GA, Jezzard P, Hennessy TJ, Near J. Advanced processing and simulation of
MRS
data using the
FID
appliance (
FID‐A
)—An open source,
MATLAB
‐based toolkit. Magn Reson Med 2015; 77:23-33. [DOI: 10.1002/mrm.26091] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/24/2015] [Accepted: 11/24/2015] [Indexed: 02/04/2023]
Affiliation(s)
- Robin Simpson
- Department of Radiology, Medical PhysicsFreiburg UniversityFreiburg Germany
| | - Gabriel A. Devenyi
- Centre d'Imagerie CérébraleDouglas Mental Health University InstituteMontreal Canada
| | - Peter Jezzard
- FMRIB Centre, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxford UK
| | - T. Jay Hennessy
- Centre d'Imagerie CérébraleDouglas Mental Health University InstituteMontreal Canada
- Department of Biomedical EngineeringMcGill UniversityMontreal Canada
| | - Jamie Near
- Centre d'Imagerie CérébraleDouglas Mental Health University InstituteMontreal Canada
- Department of Biomedical EngineeringMcGill UniversityMontreal Canada
- Department of PsychiatryMcGill UniversityMontreal Canada
| |
Collapse
|
414
|
Robertson CE, Ratai EM, Kanwisher N. Reduced GABAergic Action in the Autistic Brain. Curr Biol 2015; 26:80-5. [PMID: 26711497 DOI: 10.1016/j.cub.2015.11.019] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/19/2015] [Accepted: 11/05/2015] [Indexed: 10/22/2022]
Abstract
An imbalance between excitatory/inhibitory neurotransmission has been posited as a central characteristic of the neurobiology of autism [1], inspired in part by the striking prevalence of seizures among individuals with the disorder [2]. Evidence supporting this hypothesis has specifically implicated the signaling pathway of the inhibitory neurotransmitter, γ-aminobutyric acid (GABA), in this putative imbalance: GABA receptor genes have been associated with autism in linkage and copy number variation studies [3-7], fewer GABA receptor subunits have been observed in the post-mortem tissue of autistic individuals [8, 9], and GABAergic signaling is disrupted across heterogeneous mouse models of autism [10]. Yet, empirical evidence supporting this hypothesis in humans is lacking, leaving a gulf between animal and human studies of the condition. Here, we present a direct link between GABA signaling and autistic perceptual symptomatology. We first demonstrate a robust, replicated autistic deficit in binocular rivalry [11], a basic visual function that is thought to rely on the balance of excitation/inhibition in visual cortex [12-15]. Then, using magnetic resonance spectroscopy, we demonstrate a tight linkage between binocular rivalry dynamics in typical participants and both GABA and glutamate levels in the visual cortex. Finally, we show that the link between GABA and binocular rivalry dynamics is completely and specifically absent in autism. These results suggest a disruption in inhibitory signaling in the autistic brain and forge a translational path between animal and human models of the condition.
Collapse
Affiliation(s)
- Caroline E Robertson
- Harvard Society of Fellows, Harvard University, Cambridge, MA 02138, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02138, USA.
| | - Eva-Maria Ratai
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Nancy Kanwisher
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02138, USA
| |
Collapse
|
415
|
Heba S, Puts NAJ, Kalisch T, Glaubitz B, Haag LM, Lenz M, Dinse HR, Edden RAE, Tegenthoff M, Schmidt-Wilcke T. Local GABA Concentration Predicts Perceptual Improvements After Repetitive Sensory Stimulation in Humans. Cereb Cortex 2015; 26:1295-301. [PMID: 26637451 PMCID: PMC4737612 DOI: 10.1093/cercor/bhv296] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Learning mechanisms are based on synaptic plasticity processes. Numerous studies on synaptic plasticity suggest that the regulation of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) plays a central role maintaining the delicate balance of inhibition and excitation. However, in humans, a link between learning outcome and GABA levels has not been shown so far. Using magnetic resonance spectroscopy of GABA prior to and after repetitive tactile stimulation, we show here that baseline GABA+ levels predict changes in perceptual outcome. Although no net changes in GABA+ are observed, the GABA+ concentration prior to intervention explains almost 60% of the variance in learning outcome. Our data suggest that behavioral effects can be predicted by baseline GABA+ levels, which provide new insights into the role of inhibitory mechanisms during perceptual learning.
Collapse
Affiliation(s)
- Stefanie Heba
- Department of Neurology, BG University Hospital Bergmannsheil, 44789 Bochum, Germany
| | - Nicolaas A J Puts
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287-0006, USA F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Tobias Kalisch
- Department of Neurology, BG University Hospital Bergmannsheil, 44789 Bochum, Germany Institute for Neuroinformatics, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Benjamin Glaubitz
- Department of Neurology, BG University Hospital Bergmannsheil, 44789 Bochum, Germany
| | - Lauren M Haag
- Department of Neurology, BG University Hospital Bergmannsheil, 44789 Bochum, Germany
| | - Melanie Lenz
- Department of Neurology, BG University Hospital Bergmannsheil, 44789 Bochum, Germany
| | - Hubert R Dinse
- Department of Neurology, BG University Hospital Bergmannsheil, 44789 Bochum, Germany Institute for Neuroinformatics, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287-0006, USA F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Martin Tegenthoff
- Department of Neurology, BG University Hospital Bergmannsheil, 44789 Bochum, Germany
| | - Tobias Schmidt-Wilcke
- Department of Neurology, BG University Hospital Bergmannsheil, 44789 Bochum, Germany
| |
Collapse
|
416
|
Oeltzschner G, Butz M, Baumgarten TJ, Hoogenboom N, Wittsack HJ, Schnitzler A. Low visual cortex GABA levels in hepatic encephalopathy: links to blood ammonia, critical flicker frequency, and brain osmolytes. Metab Brain Dis 2015; 30:1429-38. [PMID: 26359122 DOI: 10.1007/s11011-015-9729-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/03/2015] [Indexed: 12/22/2022]
Abstract
The pathogenesis of hepatic encephalopathy (HE) is not fully understood yet. Hyperammonemia due to liver failure and subsequent disturbance of cerebral osmolytic balance is thought to play a pivotal role in the emergence of HE. The aim of this in-vivo MR spectroscopy study was to investigate the levels of γ-aminobutyric acid (GABA) and its correlations with clinical symptoms of HE, blood ammonia, critical flicker frequency, and osmolytic levels. Thirty patients with minimal HE or HE1 and 16 age-matched healthy controls underwent graduation of HE according to the West-Haven criteria and including the critical flicker frequency (CFF), neuropsychometric testing and blood testing. Edited proton magnetic resonance spectroscopy ((1)H MRS) was used to non-invasively measure the concentrations of GABA, glutamate (Glu), glutamine (Gln), and myo-inositol (mI) - all normalized to creatine (Cr) - in visual and sensorimotor cortex. GABA/Cr in the visual area was significantly decreased in mHE and HE1 patients and correlated both to the CFF (r = 0.401, P = 0.013) and blood ammonia levels (r = -0.434, P = 0.006). Visual GABA/Cr was also strongly linked to mI/Cr (r = 0.720, P < 0.001) and Gln/Cr (r = -0.699, P < 0.001). No group differences or correlations were found for GABA/Cr in the sensorimotor area. Hepatic encephalopathy is associated with a regional specific decrease of GABA levels in the visual cortex, while no changes were revealed for the sensorimotor cortex. Correlations of visual GABA/Cr with CFF, blood ammonia, and osmolytic regulators mI and Gln indicate that decreased visual GABA levels might contribute to HE symptoms, most likely as a consequence of hyperammonemia.
Collapse
Affiliation(s)
- Georg Oeltzschner
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, D-40225, Düsseldorf, Germany.
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Düsseldorf, D-40225, Düsseldorf, Germany.
| | - Markus Butz
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, D-40225, Düsseldorf, Germany
| | - Thomas J Baumgarten
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, D-40225, Düsseldorf, Germany
| | - Nienke Hoogenboom
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, D-40225, Düsseldorf, Germany
| | - Hans-Jörg Wittsack
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
417
|
Puts NAJ, Harris AD, Crocetti D, Nettles C, Singer HS, Tommerdahl M, Edden RAE, Mostofsky SH. Reduced GABAergic inhibition and abnormal sensory symptoms in children with Tourette syndrome. J Neurophysiol 2015; 114:808-17. [PMID: 26041822 PMCID: PMC4533064 DOI: 10.1152/jn.00060.2015] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/28/2015] [Indexed: 11/22/2022] Open
Abstract
Tourette Syndrome (TS) is characterized by the presence of chronic tics. Individuals with TS often report difficulty with ignoring (habituating to) tactile sensations, and some patients perceive that this contributes to a "premonitory urge" to tic. While common, the physiological basis of impaired tactile processing in TS, and indeed tics themselves, remain poorly understood. It has been well established that GABAergic processing plays an important role in shaping the neurophysiological response to tactile stimulation. Furthermore, there are multiple lines of evidence suggesting that a deficit in GABAergic transmission may contribute to symptoms found in TS. In this study, GABA-edited magnetic resonance spectroscopy (MRS) was combined with a battery of vibrotactile tasks to investigate the role of GABA and atypical sensory processing in children with TS. Our results show reduced primary sensorimotor cortex (SM1) GABA concentration in children with TS compared with healthy control subjects (HC), as well as patterns of impaired performance on tactile detection and adaptation tasks, consistent with altered GABAergic function. Moreover, in children with TS SM1 GABA concentration correlated with motor tic severity, linking the core feature of TS directly to in vivo brain neurochemistry. There was an absence of the typical correlation between GABA and frequency discrimination performance in TS as was seen in HC. These data show that reduced GABA concentration in TS may contribute to both motor tics and sensory impairments in children with TS. Understanding the mechanisms of altered sensory processing in TS may provide a foundation for novel interventions to alleviate these symptoms.
Collapse
Affiliation(s)
- Nicolaas A J Puts
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland; F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland;
| | - Ashley D Harris
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland; F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Deana Crocetti
- Center for Neurodevelopment and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland
| | - Carrie Nettles
- Center for Neurodevelopment and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland
| | - Harvey S Singer
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mark Tommerdahl
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland; F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Stewart H Mostofsky
- Center for Neurodevelopment and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
418
|
Harris AD, Puts NAJ, Edden RAE. Tissue correction for GABA-edited MRS: Considerations of voxel composition, tissue segmentation, and tissue relaxations. J Magn Reson Imaging 2015; 42:1431-40. [PMID: 26172043 DOI: 10.1002/jmri.24903] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/18/2015] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To develop a tissue correction for GABA-edited magnetic resonance spectroscopy (MRS) that appropriately addresses differences in voxel gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) fractions. MATERIALS AND METHODS Simulations compared the performance of tissue correction approaches. Corrections were then applied to in vivo data from 16 healthy volunteers, acquired at 3T. GM, WM, and CSF fractions were determined from T1 -weighted images. Corrections for CSF content, GM/WM GABA content, and water relaxation of the three compartments are combined into a single, fully corrected measurement. RESULTS Simulations show that CSF correction increases the dependence of GABA measurements on GM/WM fraction, by an amount equal to the fraction of CSF. Furthermore, GM correction substantially (and nonlinearly) increases the dependence of GABA measurements on GM/WM fraction, for example, by a factor of over four when the voxel GM tissue fraction is 50%. At this tissue fraction, GABA is overestimated by a factor of 1.5. For the in vivo data, correcting for voxel composition increased measured GABA values (P < 0.001 for all regions), but did not reduce intersubject variance (P > 0.5 for all regions). Corrected GABA values differ significantly based on the segmentation procedure used (P < 0.0001) and tissue parameter assumptions made (P < 0.0001). CONCLUSION We introduce a comprehensive tissue correction factor that adjusts GABA measurements to correct for different voxel compositions of GM, WM, and CSF.
Collapse
Affiliation(s)
- Ashley D Harris
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA.,F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Nicolaas A J Puts
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA.,F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA.,F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
419
|
Aguila MER, Lagopoulos J, Leaver AM, Rebbeck T, Hübscher M, Brennan PC, Refshauge KM. Elevated levels of GABA+ in migraine detected using (1) H-MRS. NMR IN BIOMEDICINE 2015; 28:890-897. [PMID: 25997981 DOI: 10.1002/nbm.3321] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 04/09/2015] [Accepted: 04/09/2015] [Indexed: 06/04/2023]
Abstract
γ-Aminobutyric acid (GABA) has been implicated in several pain conditions, yet no study has systematically evaluated GABA levels in migraine using (1) H-MRS. The accurate detection, separation and quantification of GABA in individuals with migraine could elucidate the role of this neurotransmitter in migraine pathophysiology. Such information may eventually be useful in the diagnosis and development of more effective treatments for migraine. The aims of this study were therefore to compare the concentration of GABA+ in individuals with migraine with that in asymptomatic individuals, and to determine the diagnostic potential of GABA+ in the classification of those with or without migraine. In this case-control study, GABA+ levels in the brain were determined in 19 participants with migraine and 19 matched controls by (1) H-MRS using Mescher-Garwood point-resolved spectroscopy (MEGA-PRESS) sequence. The diagnostic accuracy of GABA+ for the detection of migraine and the optimal cut-off value were determined by receiver operating characteristic analysis. GABA+ levels were significantly higher (p = 0.002) in those with migraine [median, 1.41 institutional units (IU); interquartile range, 1.31-1.50 IU] than in controls (median, 1.18 IU; interquartile range, 1.12-1.35 IU). The GABA+ concentration appears to have good accuracy for the classification of individuals with or without migraine [area under the curve (95% confidence interval), 0.837 (0.71-0.96); p < 0.001]. The optimal GABA+ cut-off value for migraine was 1.30 IU, with a sensitivity of 84.2%, specificity of 68.4% and positive likelihood ratio of +2.67. The outcomes of this study suggest altered GABA metabolism in migraine. These results add to the scarce evidence on the putative role of GABA in migraine and provide a basis to further explore the causal relationship between GABA+ and the pathophysiology of migraine. This study also demonstrates that GABA+ concentration has good diagnostic accuracy for migraine. These findings offer new research and practice directions for migraine diagnosis.
Collapse
Affiliation(s)
- Maria-Eliza R Aguila
- The University of Sydney Faculty of Health Sciences, Lidcombe, NSW, Australia
- University of the Philippines College of Allied Medical Professions, Manila, Philippines
| | - Jim Lagopoulos
- Brain and Mind Research Institute, Sydney Medical School, Camperdown, NSW, Australia
| | - Andrew M Leaver
- The University of Sydney Faculty of Health Sciences, Lidcombe, NSW, Australia
| | - Trudy Rebbeck
- The University of Sydney Faculty of Health Sciences, Lidcombe, NSW, Australia
| | - Markus Hübscher
- The University of Sydney Faculty of Health Sciences, Lidcombe, NSW, Australia
- Neuroscience Research Australia and The University of New South Wales, Randwick, NSW, Australia
| | - Patrick C Brennan
- The University of Sydney Faculty of Health Sciences, Lidcombe, NSW, Australia
| | - Kathryn M Refshauge
- The University of Sydney Faculty of Health Sciences, Lidcombe, NSW, Australia
| |
Collapse
|
420
|
Sikoglu EM, Navarro AAL, Starr D, Dvir Y, Nwosu BU, Czerniak SM, Rogan RC, Castro MC, Edden RAE, Frazier JA, Moore CM. Vitamin D3 Supplemental Treatment for Mania in Youth with Bipolar Spectrum Disorders. J Child Adolesc Psychopharmacol 2015; 25:415-24. [PMID: 26091195 PMCID: PMC4491165 DOI: 10.1089/cap.2014.0110] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE We aimed to determine the effect of an open-label 8 week Vitamin D3 supplementation on manic symptoms, anterior cingulate cortex (ACC) glutamate, and γ-aminobutyric acid (GABA) in youth exhibiting symptoms of mania; that is, patients with bipolar spectrum disorders (BSD). We hypothesized that an 8 week Vitamin D3 supplementation would improve symptoms of mania, decrease ACC glutamate, and increase ACC GABA in BSD patients. Single time point metabolite levels were also evaluated in typically developing children (TD). METHODS The BSD group included patients not only diagnosed with BD but also those exhibiting bipolar symptomology, including BD not otherwise specified (BD-NOS) and subthreshold mood ratings (Young Mania Rating Scale [YMRS] ≥8 and Clinical Global Impressions - Severity [CGI-S] ≥3). Inclusion criteria were: male or female participants, 6-17 years old. Sixteen youth with BSD exhibiting manic symptoms and 19 TD were included. BSD patients were asked to a take daily dose (2000 IU) of Vitamin D3 (for 8 weeks) as a supplement. Neuroimaging data were acquired in both groups at baseline, and also for the BSD group at the end of 8 week Vitamin D3 supplementation. RESULTS Baseline ACC GABA/creatine (Cr) was lower in BSD than in TD (F[1,31]=8.91, p=0.007). Following an 8 week Vitamin D3 supplementation, in BSD patients, there was a significant decrease in YMRS scores (t=-3.66, p=0.002, df=15) and Children's Depression Rating Scale (CDRS) scores (t=-2.93, p=0.01, df=15); and a significant increase in ACC GABA (t=3.18, p=0.007, df=14). CONCLUSIONS Following an 8 week open label trial with Vitamin D3, BSD patients exhibited improvement in their mood symptoms in conjunction with their brain neurochemistry.
Collapse
Affiliation(s)
- Elif M. Sikoglu
- Center for Comparative NeuroImaging, University of Massachusetts Medical School, Worcester, Massachusetts.,Child and Adolescent NeuroDevelopment Initiative, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Ana A. Liso Navarro
- Center for Comparative NeuroImaging, University of Massachusetts Medical School, Worcester, Massachusetts.,Child and Adolescent NeuroDevelopment Initiative, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts.,Office Médico-Pédagogique, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland
| | - Debra Starr
- Child and Adolescent NeuroDevelopment Initiative, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Yael Dvir
- Child and Adolescent NeuroDevelopment Initiative, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Benjamin Udoka Nwosu
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Suzanne M. Czerniak
- Center for Comparative NeuroImaging, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Ryan C. Rogan
- Center for Comparative NeuroImaging, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Martha C. Castro
- Child and Adolescent NeuroDevelopment Initiative, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Richard A. E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Jean A. Frazier
- Child and Adolescent NeuroDevelopment Initiative, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Constance M. Moore
- Center for Comparative NeuroImaging, University of Massachusetts Medical School, Worcester, Massachusetts.,Child and Adolescent NeuroDevelopment Initiative, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
421
|
Cochran DM, Sikoglu EM, Hodge SM, Edden RA, Foley A, Kennedy DN, Moore CM, Frazier JA. Relationship among Glutamine, γ-Aminobutyric Acid, and Social Cognition in Autism Spectrum Disorders. J Child Adolesc Psychopharmacol 2015; 25:314-22. [PMID: 25919578 PMCID: PMC4442578 DOI: 10.1089/cap.2014.0112] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE An imbalance of excitatory and inhibitory neurotransmission in autism spectrum disorder (ASD) has been proposed. We compared glutamate (Glu), glutamine (Gln), and γ-aminobutyric acid (GABA) levels in the anterior cingulate cortex (ACC) of 13 males with ASD and 14 typically developing (TD) males (ages 13-17), and correlated these levels with intelligence quotient (IQ) and measures of social cognition. METHODS Social cognition was evaluated by administration of the Social Responsiveness Scale (SRS) and the Reading the Mind in the Eyes Test (RMET). We acquired proton magnetic resonance spectroscopy ((1)H-MRS) data from the bilateral ACC using the single voxel point resolved spectroscopy sequence (PRESS) to quantify Glu and Gln, and Mescher-Garwood point-resolved spectroscopy sequence (MEGA-PRESS) to quantify GABA levels referenced to creatine (Cr). RESULTS There were higher Gln levels (p=0.04), and lower GABA/Cre levels (p=0.09) in the ASD group than in the TD group. There was no difference in Glu levels between groups. Gln was negatively correlated with RMET score (rho=-0.62, p=0.001) and IQ (rho=-0.56, p=0.003), and positively correlated with SRS scores (rho=0.53, p=0.007). GABA/Cre levels were positively correlated with RMET score (rho=0.34, p=0.09) and IQ (rho=0.36, p=0.07), and negatively correlated with SRS score (rho=-0.34, p=0.09). CONCLUSIONS These data suggest an imbalance between glutamatergic neurotransmission and GABA-ergic neurotransmission in ASD. Higher Gln levels and lower GABA/Cre levels were associated with lower IQ and greater impairments in social cognition across groups.
Collapse
Affiliation(s)
- David M. Cochran
- Child and Adolescent NeuroDevelopment Initiative, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Elif M. Sikoglu
- Child and Adolescent NeuroDevelopment Initiative, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts.,Center for Comparative NeuroImaging, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Steven M. Hodge
- Child and Adolescent NeuroDevelopment Initiative, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Richard A.E. Edden
- The John Hopkins University School of Medicine, Baltimore, Maryland.,M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Ann Foley
- Child and Adolescent NeuroDevelopment Initiative, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts
| | - David N. Kennedy
- Child and Adolescent NeuroDevelopment Initiative, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Constance M. Moore
- Child and Adolescent NeuroDevelopment Initiative, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts.,Center for Comparative NeuroImaging, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jean A. Frazier
- Child and Adolescent NeuroDevelopment Initiative, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
422
|
Mikkelsen M, Singh KD, Sumner P, Evans CJ. Comparison of the repeatability of GABA-edited magnetic resonance spectroscopy with and without macromolecule suppression. Magn Reson Med 2015; 75:946-53. [PMID: 25920455 DOI: 10.1002/mrm.25699] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/16/2015] [Accepted: 02/24/2015] [Indexed: 12/26/2022]
Abstract
PURPOSE The inhibitory neurotransmitter γ-aminobutyric acid (GABA) can be measured in vivo using edited magnetic resonance spectroscopy (MRS), but quantification suffers from contamination by macromolecules (MM). It is possible to suppress this contamination using symmetric editing, but this procedure potentially compromises reliability of the GABA measurement. The aim of this study was to compare the repeatability of GABA-edited MRS with and without MM suppression. METHODS GABA' (non-MM contaminated) and GABA'+MM (MM-contaminated) concentration was measured in the occipital lobe (OCC) and anterior cingulate (AC) using symmetric and standard editing (n = 15). Each method was performed twice in each region. RESULTS Within-participant coefficients of variation for each technique were 4.0% (GABA'+MM) and 8.6% (GABA') in the OCC and 14.8% (GABA'+MM) and 12.6% (GABA') in the AC. Intraclass correlation coefficients were better for the suppression method than standard editing in both the OCC (0.72 versus 0.67) and AC (0.41 versus 0.16). These findings were replicated in the OCC of a second cohort (n = 15). CONCLUSION Symmetric suppression is shown to be comparable in repeatability to standard GABA-editing. Measuring a purer quantification of GABA becomes increasingly important as more research is conducted on links between GABA concentration, pathology and healthy behavior.
Collapse
Affiliation(s)
- Mark Mikkelsen
- CUBRIC, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Krish D Singh
- CUBRIC, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Petroc Sumner
- CUBRIC, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - C John Evans
- CUBRIC, School of Psychology, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
423
|
Lipp I, Evans CJ, Lewis C, Murphy K, Wise RG, Caseras X. The relationship between fearfulness, GABA+, and fear-related BOLD responses in the insula. PLoS One 2015; 10:e0120101. [PMID: 25811453 PMCID: PMC4374765 DOI: 10.1371/journal.pone.0120101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/19/2015] [Indexed: 12/18/2022] Open
Abstract
The inhibitory neurotransmitter GABA plays a crucial role in anxiety and fear, but its relationship to brain activation during fear reactions is not clear. Previous studies suggest that GABA agonists lead to an attenuation of emotion-processing related BOLD signals in the insula. The aim of this study was to investigate the relationship between GABA concentration and fear-related BOLD responses in this region. In 44 female participants with different levels of fearfulness, GABA concentration in the left insula was measured using a GABA+ MRS acquisition during rest; additionally, BOLD signals were obtained during performance of a fear provocation paradigm. Fearfulness was not associated with GABA+ in the left insula, but could predict fear-related BOLD responses in a cluster in the left anterior insula. The BOLD signal change in this cluster did not correlate with GABA+ concentration. However, we found a significant positive correlation between GABA+ concentration and fear-related BOLD responses in a different cluster that included parts of the left insula, amygdala and putamen. Our findings indicate that low insular GABA concentration is not a predisposition for fearfulness, and that several factors influence whether a correlation between GABA and BOLD can be found.
Collapse
Affiliation(s)
- Ilona Lipp
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - C. John Evans
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Caroline Lewis
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Kevin Murphy
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Richard G. Wise
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Xavier Caseras
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
- * E-mail:
| |
Collapse
|
424
|
Ribeiro MJ, Violante IR, Bernardino I, Edden RAE, Castelo-Branco M. Abnormal relationship between GABA, neurophysiology and impulsive behavior in neurofibromatosis type 1. Cortex 2015; 64:194-208. [PMID: 25437375 PMCID: PMC4777301 DOI: 10.1016/j.cortex.2014.10.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 08/04/2014] [Accepted: 10/27/2014] [Indexed: 01/04/2023]
Abstract
Neurofibromatosis type 1 (NF1) is a neurodevelopmental disorder characterized by a broad spectrum of cognitive deficits. In particular, executive dysfunction is recognized as a core deficit of NF1, including impairments in executive attention and inhibitory control. Yet, the neural mechanisms behind these important deficits are still unknown. Here, we studied inhibitory control in a visual go/no-go task in children and adolescents with NF1 and age- and gender-matched controls (n = 16 per group). We applied a multimodal approach using high-density electroencephalography (EEG), to study the evoked brain responses, and magnetic resonance spectroscopy (MRS) to measure the levels of GABA and glutamate + glutamine in the medial frontal cortex, a brain region that plays a pivotal role in inhibitory control, and also in a control region, the occipital cortex. Finally, we run correlation analyses to identify the relationship between inhibitory control, levels of neurotransmitters, and EEG markers of neural function. Individuals with NF1 showed impaired impulse control and reduced EEG correlates of early visual processing (parieto-occipital P1) and inhibitory control (frontal P3). MRS data revealed a reduction in medial frontal GABA+/tCr (total Creatine) levels in the NF1 group, in parallel with the already reported reduced occipital GABA levels. In contrast, glutamate + glutamine/tCr levels were normal, suggesting the existence of abnormal inhibition/excitation balance in this disorder. Notably, medial frontal but not occipital GABA levels correlated with general intellectual abilities (IQ) in NF1, and inhibitory control in both groups. Surprisingly, the relationship between inhibitory control and medial frontal GABA was reversed in NF1: higher GABA was associated with a faster response style whereas in controls it was related to a cautious strategy. Abnormal GABAergic physiology appears, thus, as an important factor underlying impaired cognition in NF1, in a level and region dependent manner.
Collapse
Affiliation(s)
- Maria J Ribeiro
- IBILI - Faculty of Medicine, University of Coimbra, Portugal.
| | - Inês R Violante
- IBILI - Faculty of Medicine, University of Coimbra, Portugal.
| | - Inês Bernardino
- IBILI - Faculty of Medicine, University of Coimbra, Portugal
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| | | |
Collapse
|
425
|
Harris AD, Puts NAJ, Anderson BA, Yantis S, Pekar JJ, Barker PB, Edden RAE. Multi-regional investigation of the relationship between functional MRI blood oxygenation level dependent (BOLD) activation and GABA concentration. PLoS One 2015; 10:e0117531. [PMID: 25699994 PMCID: PMC4336183 DOI: 10.1371/journal.pone.0117531] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 12/06/2014] [Indexed: 11/19/2022] Open
Abstract
Several recent studies have reported an inter-individual correlation between regional GABA concentration, as measured by MRS, and the amplitude of the functional blood oxygenation level dependent (BOLD) response in the same region. In this study, we set out to investigate whether this coupling generalizes across cortex. In 18 healthy participants, we performed edited MRS measurements of GABA and BOLD-fMRI experiments using regionally related activation paradigms. Regions and tasks were the: occipital cortex with a visual grating stimulus; auditory cortex with a white noise stimulus; sensorimotor cortex with a finger-tapping task; frontal eye field with a saccade task; and dorsolateral prefrontal cortex with a working memory task. In contrast to the prior literature, no correlation between GABA concentration and BOLD activation was detected in any region. The origin of this discrepancy is not clear. Subtle differences in study design or insufficient power may cause differing results; these and other potential reasons for the discrepant results are discussed. This negative result, although it should be interpreted with caution, has a larger sample size than prior positive results, and suggests that the relationship between GABA and the BOLD response may be more complex than previously thought.
Collapse
Affiliation(s)
- Ashley D. Harris
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, Baltimore, Maryland, United States of America
- F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States of America
- * E-mail:
| | - Nicolaas A. J. Puts
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, Baltimore, Maryland, United States of America
- F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States of America
| | - Brian A. Anderson
- Department of Psychological and Brain Sciences, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Steven Yantis
- Department of Psychological and Brain Sciences, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - James J. Pekar
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, Baltimore, Maryland, United States of America
- F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States of America
| | - Peter B. Barker
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, Baltimore, Maryland, United States of America
- F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States of America
| | - Richard A. E. Edden
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, Baltimore, Maryland, United States of America
- F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States of America
| |
Collapse
|
426
|
Harris AD, Puts NAJ, Barker PB, Edden RAE. Spectral-editing measurements of GABA in the human brain with and without macromolecule suppression. Magn Reson Med 2014; 74:1523-9. [PMID: 25521836 DOI: 10.1002/mrm.25549] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/09/2014] [Accepted: 11/03/2014] [Indexed: 12/24/2022]
Abstract
PURPOSE The conventional spectral-editing experiment used to measure GABA in the human brain also contains a contribution from macromolecules (MM), and the combined GABA plus MM signal is often referred to as "GABA+". More recently, methods have been developed to estimate GABA free from MM contamination. In this study, the relationship between GABA acquired with MM suppression and conventional GABA+ measurements was examined. METHODS GABA-edited MEGA-PRESS experiments with and without MM suppression were performed in the sensorimotor and occipital cortex of 12 healthy subjects at 3 Tesla. The correlation between GABA+ and MM-suppressed GABA measures was then determined. RESULTS Across all data, a significant correlation between GABA+ and MM-suppressed GABA was found (r = 0.48; P = 0.02). Regionally, the sensorimotor voxel showed a trend toward a correlation of r = 0.53, P = 0.07 and the occipital voxel did not show a correlation, r = 0.058, P = 0.9. CONCLUSION GABA+ and MM-suppressed GABA are moderately correlated, but statistical power to reveal this relationship may vary regionally. The MM signal, while often assumed to be functionally irrelevant, appears to show inter-individual and inter-regional variance that impacts the correlation of GABA+ and MM-suppressed GABA.
Collapse
Affiliation(s)
- Ashley D Harris
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, Baltimore, Maryland, USA.,F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Nicolaas A J Puts
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, Baltimore, Maryland, USA.,F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Peter B Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, Baltimore, Maryland, USA.,F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, Baltimore, Maryland, USA.,F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
427
|
Gao F, Wang G, Ma W, Ren F, Li M, Dong Y, Liu C, Liu B, Bai X, Zhao B, Edden RAE. Decreased auditory GABA+ concentrations in presbycusis demonstrated by edited magnetic resonance spectroscopy. Neuroimage 2014; 106:311-6. [PMID: 25463460 DOI: 10.1016/j.neuroimage.2014.11.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/02/2014] [Accepted: 11/11/2014] [Indexed: 12/14/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the central auditory system. Altered GABAergic neurotransmission has been found in both the inferior colliculus and the auditory cortex in animal models of presbycusis. Edited magnetic resonance spectroscopy (MRS), using the MEGA-PRESS sequence, is the most widely used technique for detecting GABA in the human brain. However, to date there has been a paucity of studies exploring changes to the GABA concentrations in the auditory region of patients with presbycusis. In this study, sixteen patients with presbycusis (5 males/11 females, mean age 63.1 ± 2.6 years) and twenty healthy controls (6 males/14 females, mean age 62.5 ± 2.3 years) underwent audiological and MRS examinations. Pure tone audiometry from 0.125 to 8 kHz and tympanometry were used to assess the hearing abilities of all subjects. The pure tone average (PTA; the average of hearing thresholds at 0.5, 1, 2 and 4 kHz) was calculated. The MEGA-PRESS sequence was used to measure GABA+ concentrations in 4 × 3 × 3 cm(3) volumes centered on the left and right Heschl's gyri. GABA+ concentrations were significantly lower in the presbycusis group compared to the control group (left auditory regions: p = 0.002, right auditory regions: p = 0.008). Significant negative correlations were observed between PTA and GABA+ concentrations in the presbycusis group (r = -0.57, p = 0.02), while a similar trend was found in the control group (r = -0.40, p = 0.08). These results are consistent with a hypothesis of dysfunctional GABAergic neurotransmission in the central auditory system in presbycusis and suggest a potential treatment target for presbycusis.
Collapse
Affiliation(s)
- Fei Gao
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, China
| | - Guangbin Wang
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, China
| | - Wen Ma
- The Central Hospital of Jinan City, Shandong University, Jinan, China
| | - Fuxin Ren
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, China
| | - Muwei Li
- College of Electronics and Information Engineering, Sichuan University, Chengdu, China
| | - Yuling Dong
- The Central Hospital of Jinan City, Shandong University, Jinan, China
| | - Cheng Liu
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, China
| | - Bo Liu
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, China
| | - Xue Bai
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, China
| | - Bin Zhao
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, China.
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; FM Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
428
|
Enhanced awareness followed reversible inhibition of human visual cortex: a combined TMS, MRS and MEG study. PLoS One 2014; 9:e100350. [PMID: 24956195 PMCID: PMC4067303 DOI: 10.1371/journal.pone.0100350] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/23/2014] [Indexed: 11/19/2022] Open
Abstract
This series of experiments investigated the neural basis of conscious vision in humans using a form of transcranial magnetic stimulation (TMS) known as continuous theta burst stimulation (cTBS). Previous studies have shown that occipital TMS, when time-locked to the onset of visual stimuli, can induce a phenomenon analogous to blindsight in which conscious detection is impaired while the ability to discriminate ‘unseen’ stimuli is preserved above chance. Here we sought to reproduce this phenomenon using offline occipital cTBS, which has been shown to induce an inhibitory cortical aftereffect lasting 45–60 minutes. Contrary to expectations, our first experiment revealed the opposite effect: cTBS enhanced conscious vision relative to a sham control. We then sought to replicate this cTBS-induced potentiation of consciousness in conjunction with magnetoencephalography (MEG) and undertook additional experiments to assess its relationship to visual cortical excitability and levels of the inhibitory neurotransmitter γ-aminobutyric acid (GABA; via magnetic resonance spectroscopy, MRS). Occipital cTBS decreased cortical excitability and increased regional GABA concentration. No significant effects of cTBS on MEG measures were observed, although the results provided weak evidence for potentiation of event related desynchronisation in the β band. Collectively these experiments suggest that, through the suppression of noise, cTBS can increase the signal-to-noise ratio of neural activity underlying conscious vision. We speculate that gating-by-inhibition in the visual cortex may provide a key foundation of consciousness.
Collapse
|
429
|
Bai X, Edden RAE, Gao F, Wang G, Wu L, Zhao B, Wang M, Chan Q, Chen W, Barker PB. Decreased γ-aminobutyric acid levels in the parietal region of patients with Alzheimer's disease. J Magn Reson Imaging 2014; 41:1326-31. [PMID: 24863149 DOI: 10.1002/jmri.24665] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/06/2014] [Indexed: 01/28/2023] Open
Abstract
PURPOSE To determine whether there are in vivo differences of γ-aminobutyric acid (GABA) levels in frontal and parietal regions of Alzheimer's disease (AD) patients, compared with healthy controls using magnetic resonance spectroscopy ((1) H-MRS). MATERIALS AND METHODS Fifteen AD patients and fifteen age- and gender-matched healthy controls underwent (1) H-MRS of the frontal and parietal lobes using the "MEGA-Point Resolved Spectroscopy Sequence" (MEGA-PRESS) technique, and cognitive levels of subjects were evaluated using Mini-Mental State Examination (MMSE) tests. MRS data were processed using the Gannet program. Because the signal detected by MEGA-PRESS includes contributions from GABA, macromolecules and homocarnosine, it is labeled as "GABA+" rather than GABA. Differences of GABA+/Cr ratios between AD patients and controls were tested using covariance analysis, adjusting for gray matter fraction. The relationship between GABA+/Cr and MMSE scores was also analyzed. RESULTS Significant lower GABA+/Cr ratios were found in the parietal region of AD patients compared with controls (P = 0.041). In AD patients, no significant correlations between GABA+/Cr and MMSE scores were found in either the frontal (r = -0.164; P = 0.558) or parietal regions (r = 0.025; P = 0.929). CONCLUSION Decreased GABA+/Cr levels were present in the parietal region of patients with AD in vivo, suggesting that abnormalities of the GABAergic system may be present in the pathogenesis of AD.
Collapse
Affiliation(s)
- Xue Bai
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, Shandong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|