401
|
Ripley B, Levin D, Kelil T, Hermsen JL, Kim S, Maki JH, Wilson GJ. 3D printing from MRI Data: Harnessing strengths and minimizing weaknesses. J Magn Reson Imaging 2016; 45:635-645. [PMID: 27875009 DOI: 10.1002/jmri.25526] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/27/2016] [Accepted: 09/27/2016] [Indexed: 01/17/2023] Open
Abstract
3D printing facilitates the creation of accurate physical models of patient-specific anatomy from medical imaging datasets. While the majority of models to date are created from computed tomography (CT) data, there is increasing interest in creating models from other datasets, such as ultrasound and magnetic resonance imaging (MRI). MRI, in particular, holds great potential for 3D printing, given its excellent tissue characterization and lack of ionizing radiation. There are, however, challenges to 3D printing from MRI data as well. Here we review the basics of 3D printing, explore the current strengths and weaknesses of printing from MRI data as they pertain to model accuracy, and discuss considerations in the design of MRI sequences for 3D printing. Finally, we explore the future of 3D printing and MRI, including creative applications and new materials. LEVEL OF EVIDENCE 5 J. Magn. Reson. Imaging 2017;45:635-645.
Collapse
Affiliation(s)
- Beth Ripley
- Department of Radiology, University of Washington, Seattle, Washington, USA.,Department of Radiology, VA Puget Sound Health Care System, Seattle WA 98108
| | - Dmitry Levin
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Tatiana Kelil
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joshua L Hermsen
- Division of Cardiothoracic Surgery, Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Sooah Kim
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Jeffrey H Maki
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Gregory J Wilson
- Department of Radiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
402
|
Guo Y, Lingala SG, Zhu Y, Lebel RM, Nayak KS. Direct estimation of tracer-kinetic parameter maps from highly undersampled brain dynamic contrast enhanced MRI. Magn Reson Med 2016; 78:1566-1578. [PMID: 27859563 DOI: 10.1002/mrm.26540] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 09/15/2016] [Accepted: 10/12/2016] [Indexed: 12/12/2022]
Abstract
PURPOSE The purpose of this work was to develop and evaluate a T1 -weighted dynamic contrast enhanced (DCE) MRI methodology where tracer-kinetic (TK) parameter maps are directly estimated from undersampled (k,t)-space data. THEORY AND METHODS The proposed reconstruction involves solving a nonlinear least squares optimization problem that includes explicit use of a full forward model to convert parameter maps to (k,t)-space, utilizing the Patlak TK model. The proposed scheme is compared against an indirect method that creates intermediate images by parallel imaging and compressed sensing before to TK modeling. Thirteen fully sampled brain tumor DCE-MRI scans with 5-second temporal resolution are retrospectively undersampled at rates R = 20, 40, 60, 80, and 100 for each dynamic frame. TK maps are quantitatively compared based on root mean-squared-error (rMSE) and Bland-Altman analysis. The approach is also applied to four prospectively R = 30 undersampled whole-brain DCE-MRI data sets. RESULTS In the retrospective study, the proposed method performed statistically better than indirect method at R ≥ 80 for all 13 cases. This approach provided restoration of TK parameter values with less errors in tumor regions of interest, an improvement compared to a state-of-the-art indirect method. Applied prospectively, the proposed method provided whole-brain, high-resolution TK maps with good image quality. CONCLUSION Model-based direct estimation of TK maps from k,t-space DCE-MRI data is feasible and is compatible up to 100-fold undersampling. Magn Reson Med 78:1566-1578, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Yi Guo
- Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Sajan Goud Lingala
- Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Yinghua Zhu
- Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | | | - Krishna S Nayak
- Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
403
|
Heacock L, Gao Y, Heller SL, Melsaether AN, Babb JS, Block TK, Otazo R, Kim SG, Moy L. Comparison of conventional DCE-MRI and a novel golden-angle radial multicoil compressed sensing method for the evaluation of breast lesion conspicuity. J Magn Reson Imaging 2016; 45:1746-1752. [PMID: 27859874 DOI: 10.1002/jmri.25530] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/10/2016] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To compare a novel multicoil compressed sensing technique with flexible temporal resolution, golden-angle radial sparse parallel (GRASP), to conventional fat-suppressed spoiled three-dimensional (3D) gradient-echo (volumetric interpolated breath-hold examination, VIBE) MRI in evaluating the conspicuity of benign and malignant breast lesions. MATERIALS AND METHODS Between March and August 2015, 121 women (24-84 years; mean, 49.7 years) with 180 biopsy-proven benign and malignant lesions were imaged consecutively at 3.0 Tesla in a dynamic contrast-enhanced (DCE) MRI exam using sagittal T1-weighted fat-suppressed 3D VIBE in this Health Insurance Portability and Accountability Act-compliant, retrospective study. Subjects underwent MRI-guided breast biopsy (mean, 13 days [1-95 days]) using GRASP DCE-MRI, a fat-suppressed radial "stack-of-stars" 3D FLASH sequence with golden-angle ordering. Three readers independently evaluated breast lesions on both sequences. Statistical analysis included mixed models with generalized estimating equations, kappa-weighted coefficients and Fisher's exact test. RESULTS All lesions demonstrated good conspicuity on VIBE and GRASP sequences (4.28 ± 0.81 versus 3.65 ± 1.22), with no significant difference in lesion detection (P = 0.248). VIBE had slightly higher lesion conspicuity than GRASP for all lesions, with VIBE 12.6% (0.63/5.0) more conspicuous (P < 0.001). Masses and nonmass enhancement (NME) were more conspicuous on VIBE (P < 0.001), with a larger difference for NME (14.2% versus 9.4% more conspicuous). Malignant lesions were more conspicuous than benign lesions (P < 0.001) on both sequences. CONCLUSION GRASP DCE-MRI, a multicoil compressed sensing technique with high spatial resolution and flexible temporal resolution, has near-comparable performance to conventional VIBE imaging for breast lesion evaluation. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 3 J. MAGN. RESON. IMAGING 2017;45:1746-1752.
Collapse
Affiliation(s)
- Laura Heacock
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Yiming Gao
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Samantha L Heller
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Amy N Melsaether
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, USA
| | - James S Babb
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Tobias K Block
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, USA
| | - Ricardo Otazo
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, USA
| | - Sungheon G Kim
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, USA
| | - Linda Moy
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, USA
| |
Collapse
|
404
|
Cao X, Liao C, Wang Z, Chen Y, Ye H, He H, Zhong J. Robust sliding-window reconstruction for Accelerating the acquisition of MR fingerprinting. Magn Reson Med 2016; 78:1579-1588. [PMID: 27851871 DOI: 10.1002/mrm.26521] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 11/12/2022]
Abstract
PURPOSE To develop a method for accelerated and robust MR fingerprinting (MRF) with improved image reconstruction and parameter matching processes. THEORY AND METHODS A sliding-window (SW) strategy was applied to MRF, in which signal and dictionary matching was conducted between fingerprints consisting of mixed-contrast image series reconstructed from consecutive data frames segmented by a sliding window, and a precalculated mixed-contrast dictionary. The effectiveness and performance of this new method, dubbed SW-MRF, was evaluated in both phantom and in vivo. Error quantifications were conducted on results obtained with various settings of SW reconstruction parameters. RESULTS Compared with the original MRF strategy, the results of both phantom and in vivo experiments demonstrate that the proposed SW-MRF strategy either provided similar accuracy with reduced acquisition time, or improved accuracy with equal acquisition time. Parametric maps of T1 , T2 , and proton density of comparable quality could be achieved with a two-fold or more reduction in acquisition time. The effect of sliding-window width on dictionary sensitivity was also estimated. CONCLUSION The novel SW-MRF recovers high quality image frames from highly undersampled MRF data, which enables more robust dictionary matching with reduced numbers of data frames. This time efficiency may facilitate MRF applications in time-critical clinical settings. Magn Reson Med 78:1579-1588, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Xiaozhi Cao
- Center for Brain Imaging Science and Technology, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Congyu Liao
- Center for Brain Imaging Science and Technology, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhixing Wang
- Center for Brain Imaging Science and Technology, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Chen
- Center for Brain Imaging Science and Technology, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huihui Ye
- Center for Brain Imaging Science and Technology, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianhui Zhong
- Center for Brain Imaging Science and Technology, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.,Center for Innovative and Collaborative Detection and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Imaging Sciences, University of Rochester, Rochester, New York, USA
| |
Collapse
|
405
|
Ning J, Yang Z, Xie S, Sun Y, Yuan C, Chen H. Hepatic function imaging using dynamic Gd-EOB-DTPA enhanced MRI and pharmacokinetic modeling. Magn Reson Med 2016; 78:1488-1495. [PMID: 27785826 DOI: 10.1002/mrm.26520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 09/17/2016] [Accepted: 09/28/2016] [Indexed: 12/18/2022]
Abstract
PURPOSE To determine whether pharmacokinetic modeling parameters with different output assumptions of dynamic contrast-enhanced MRI (DCE-MRI) using Gd-EOB-DTPA correlate with serum-based liver function tests, and compare the goodness of fit of the different output assumptions. METHODS A 6-min DCE-MRI protocol was performed in 38 patients. Four dual-input two-compartment models with different output assumptions and a published one-compartment model were used to calculate hepatic function parameters. The Akaike information criterion fitting error was used to evaluate the goodness of fit. Imaging-based hepatic function parameters were compared with blood chemistry using correlation with multiple comparison correction. RESULTS The dual-input two-compartment model assuming venous flow equals arterial flow plus portal venous flow and no bile duct output better described the liver tissue enhancement with low fitting error and high correlation with blood chemistry. The relative uptake rate Kir derived from this model was found to be significantly correlated with direct bilirubin (r = -0.52, P = 0.015), prealbumin concentration (r = 0.58, P = 0.015), and prothrombin time (r = -0.51, P = 0.026). CONCLUSION It is feasible to evaluate hepatic function by proper output assumptions. The relative uptake rate has the potential to serve as a biomarker of function. Magn Reson Med 78:1488-1495, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Jia Ning
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Zhiying Yang
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Sheng Xie
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Yongliang Sun
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Chun Yuan
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China.,Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Huijun Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
406
|
Ostenson J, Pujara AC, Mikheev A, Moy L, Kim SG, Melsaether AN, Jhaveri K, Adams S, Faul D, Glielmi C, Geppert C, Feiweier T, Jackson K, Cho GY, Boada FE, Sigmund EE. Voxelwise analysis of simultaneously acquired and spatially correlated 18 F-fluorodeoxyglucose (FDG)-PET and intravoxel incoherent motion metrics in breast cancer. Magn Reson Med 2016; 78:1147-1156. [PMID: 27779790 DOI: 10.1002/mrm.26505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 12/21/2022]
Abstract
PURPOSE Diffusion-weighted imaging (DWI) and 18 F-fluorodeoxyglucose-positron emission tomography (18 F-FDG-PET) independently correlate with malignancy in breast cancer, but the relationship between their structural and metabolic metrics is not completely understood. This study spatially correlates diffusion, perfusion, and glucose avidity in breast cancer with simultaneous PET/MR imaging and compares correlations with clinical prognostics. METHODS In this Health Insurance Portability and Accountability Act-compliant prospective study, with written informed consent and approval of the institutional review board and using simultaneously acquired FDG-PET and DWI, tissue diffusion (Dt ), and perfusion fraction (fp ) from intravoxel incoherent motion (IVIM) analysis were registered to FDG-PET within 14 locally advanced breast cancers. Lesions were analyzed using 2D histograms and correlation coefficients between Dt , fp , and standardized uptake value (SUV). Correlations were compared with prognostics from biopsy, metastatic burden from whole-body PET, and treatment history. RESULTS SUV||Dt correlation coefficient significantly distinguished treated (0.11 ± 0.24) from nontreated (-0.33 ± 0.26) patients (P = 0.005). SUV||fp correlations were on average negative for the whole cohort (-0.17 ± 0.13). CONCLUSION Simultaneously acquired and registered FDG-PET/DWI allowed quantifiable descriptions of breast cancer microenvironments that may provide a framework for monitoring and predicting response to treatment. Magn Reson Med 78:1147-1156, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Jason Ostenson
- Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research (CAI2R), NYU Langone Medical Center, New York, New York, USA.,Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, USA
| | - Akshat C Pujara
- Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research (CAI2R), NYU Langone Medical Center, New York, New York, USA
| | - Artem Mikheev
- Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research (CAI2R), NYU Langone Medical Center, New York, New York, USA
| | - Linda Moy
- Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research (CAI2R), NYU Langone Medical Center, New York, New York, USA
| | - Sungheon G Kim
- Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research (CAI2R), NYU Langone Medical Center, New York, New York, USA
| | - Amy N Melsaether
- Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research (CAI2R), NYU Langone Medical Center, New York, New York, USA
| | - Komal Jhaveri
- Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York, USA.,Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Sylvia Adams
- Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York, USA
| | - David Faul
- Siemens Healthcare, New York, New York, USA
| | | | - Christian Geppert
- Siemens Healthcare, New York, New York, USA.,Siemens Healthcare, Erlangen, Germany
| | | | - Kimberly Jackson
- Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research (CAI2R), NYU Langone Medical Center, New York, New York, USA
| | - Gene Y Cho
- Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research (CAI2R), NYU Langone Medical Center, New York, New York, USA
| | - Fernando E Boada
- Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research (CAI2R), NYU Langone Medical Center, New York, New York, USA
| | - Eric E Sigmund
- Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research (CAI2R), NYU Langone Medical Center, New York, New York, USA
| |
Collapse
|
407
|
Kim SG, Freed M, Leite APK, Zhang J, Seuss C, Moy L. Separation of benign and malignant breast lesions using dynamic contrast enhanced MRI in a biopsy cohort. J Magn Reson Imaging 2016; 45:1385-1393. [PMID: 27766710 DOI: 10.1002/jmri.25501] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/20/2016] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To assess the diagnostic utility of contrast kinetic analysis for breast lesions and background parenchyma of women undergoing MRI-guided biopsies, for whom standard clinical analysis had failed to separate benign and malignant lesions. MATERIALS AND METHODS This study included 115 women who had indeterminate lesions based on routine diagnostic breast MRI exams and underwent an MRI (3 Tesla) -guided biopsy of one or more lesions suspicious for breast cancer. Breast dynamic contrast-enhanced (DCE)-MRI was performed using a radial stack-of-stars three-dimensional spoiled gradient echo pulse sequence and modified k-space weighted image contrast image reconstruction. Contrast kinetic model analysis was conducted to characterize the contrast enhancement patterns measured in lesions and background parenchyma (BP). The transfer rate (Ktrans ), interstitial volume fraction (ve ), and vascular volume fraction (vp ) estimated from the lesion and BP were used to separate malignant from benign lesions. RESULTS The patients with malignant lesions had significantly (P < 0.05) higher median lesion-Ktrans (0.081 min-1 ), higher median BP-Ktrans (0.032 min-1 ), and BP-vp (0.020) than those without malignant lesions (0.056 min-1 , 0.017 min-1 and 0.012, respectively). The area under the receiver operating characteristic curve (AUC) of the BP-Ktrans (0.687) was highest among the single parameters and higher than that of the lesion-Ktrans (0.664). The combined logistic regression model of lesion-Ktrans , lesion-ve , BP-Ktrans , BP-ve , and BP-vp had the highest AUC of 0.730. CONCLUSION Our results suggest that the contrast kinetic analysis of DCE-MRI data can be used to differentiate the malignant lesions from the benign and high-risk lesions among the indeterminate breast lesions recommended for MRI-guided biopsy exams. LEVEL OF EVIDENCE 3 J. MAGN. RESON. IMAGING 2017;45:1385-1393.
Collapse
Affiliation(s)
- Sungheon Gene Kim
- Center for Advanced Imaging Innovation and Research (CAIR), New York, New York, USA.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Melanie Freed
- Center for Advanced Imaging Innovation and Research (CAIR), New York, New York, USA.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Ana Paula Klautau Leite
- Center for Advanced Imaging Innovation and Research (CAIR), New York, New York, USA.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Jin Zhang
- Center for Advanced Imaging Innovation and Research (CAIR), New York, New York, USA.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Claudia Seuss
- Center for Advanced Imaging Innovation and Research (CAIR), New York, New York, USA.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Linda Moy
- Center for Advanced Imaging Innovation and Research (CAIR), New York, New York, USA.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
408
|
Motion correction based reconstruction method for compressively sampled cardiac MR imaging. Magn Reson Imaging 2016; 36:159-166. [PMID: 27746392 DOI: 10.1016/j.mri.2016.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 09/26/2016] [Accepted: 10/05/2016] [Indexed: 11/22/2022]
Abstract
Respiratory motion during Magnetic Resonance (MR) acquisition causes strong blurring artifacts in the reconstructed images. These artifacts become more pronounced when used with the fast imaging reconstruction techniques like compressed sensing (CS). Recently, an MR reconstruction technique has been done with the help of compressed sensing (CS), to provide good quality sparse images from the highly under-sampled k-space data. In order to maximize the benefits of CS, it is obvious to use CS with the motion corrected samples. In this paper, we propose a novel CS based motion corrected image reconstruction technique. First, k-space data have been assigned to different respiratory state with the help of frequency domain phase correlation method. Then, multiple sparsity constraints has been used to provide good quality reconstructed cardiac cine images with the highly under-sampled k-space data. The proposed method exploits the multiple sparsity constraints, in combination with demon based registration technique and a novel reconstruction technique to provide the final motion free images. The proposed method is very simple to implement in clinical settings as compared to existing motion corrected methods. The performance of the proposed method is examined using simulated data and clinical data. Results show that this method performs better than the reconstruction of CS based method of cardiac cine images. Different acceleration rates have been used to show the performance of the proposed method.
Collapse
|
409
|
Self-navigated 4D cartesian imaging of periodic motion in the body trunk using partial k-space compressed sensing. Magn Reson Med 2016; 78:632-644. [DOI: 10.1002/mrm.26406] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 08/04/2016] [Accepted: 08/10/2016] [Indexed: 12/28/2022]
|
410
|
Tibiletti M, Bianchi A, Kjørstad Å, Wundrak S, Stiller D, Rasche V. Respiratory self-gated 3DUTE for lung imaging in small animal MRI. Magn Reson Med 2016; 78:739-745. [DOI: 10.1002/mrm.26463] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/25/2016] [Accepted: 08/23/2016] [Indexed: 01/02/2023]
Affiliation(s)
| | - Andrea Bianchi
- Boehringer Ingelheim Pharma GmbH & Co. KG, Target Discovery Research, In-Vivo Imaging Laboratory; Biberach an der Riss Germany
| | - Åsmund Kjørstad
- Department of Neuroradiology; University Hospital Hamburg-Eppendorf; Hamburg Germany
| | - Stefan Wundrak
- Department of Internal Medicine II; Ulm University; Ulm Germany
| | - Detlef Stiller
- Boehringer Ingelheim Pharma GmbH & Co. KG, Target Discovery Research, In-Vivo Imaging Laboratory; Biberach an der Riss Germany
| | - Volker Rasche
- Core Facility Small Animal MRI; Ulm University; Ulm Germany
- Department of Internal Medicine II; Ulm University; Ulm Germany
| |
Collapse
|
411
|
Ream JM, Doshi AM, Dunst D, Parikh N, Kong MX, Babb JS, Taneja SS, Rosenkrantz AB. Dynamic contrast-enhanced MRI of the prostate: An intraindividual assessment of the effect of temporal resolution on qualitative detection and quantitative analysis of histopathologically proven prostate cancer. J Magn Reson Imaging 2016; 45:1464-1475. [PMID: 27649481 DOI: 10.1002/jmri.25451] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/17/2016] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To assess the effects of temporal resolution (RT ) in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) on qualitative tumor detection and quantitative pharmacokinetic parameters in prostate cancer. MATERIALS AND METHODS This retrospective Institutional Review Board (IRB)-approved study included 58 men (64 ± 7 years). They underwent 3T prostate MRI showing dominant peripheral zone (PZ) tumors (24 with Gleason ≥ 4 + 3), prior to prostatectomy. Continuously acquired DCE utilizing GRASP (Golden-angle RAdial Sparse Parallel) was retrospectively reconstructed at RT of 1.4 sec, 3.7 sec, 6.0 sec, 9.7 sec, and 14.9 sec. A reader placed volumes-of-interest on dominant tumors and benign PZ, generating quantitative pharmacokinetic parameters (ktrans , ve ) at each RT . Two blinded readers assessed each RT for lesion presence, location, conspicuity, and reader confidence on a 5-point scale. Data were assessed by mixed-model analysis of variance (ANOVA), generalized estimating equation (GEE), and receiver operating characteristic (ROC) analysis. RESULTS RT did not affect sensitivity (R1all : 69.0%-72.4%, all Padj = 1.000; R1GS≥4 + 3 : 83.3-91.7%, all Padj = 1.000; R2all : 60.3-69.0%, all Padj = 1.000; R2GS≥4 + 3 : 58.3%-79.2%, all Padj = 1.000). R1 reported greater conspicuity of GS ≥ 4 + 3 tumors at RT of 1.4 sec vs. 14.9 sec (4.29 ± 1.23 vs. 3.46 ± 1.44; Padj = 0.029). No other tumor conspicuity pairwise comparison reached significance (R1all : 2.98-3.43, all Padj ≥ 0.205; R2all : 2.57-3.19, all Padj ≥ 0.059; R1GS≥4 + 3 : 3.46-4.29, all other Padj ≥ 0.156; R2GS≥4 + 3 : 2.92-3.71, all Padj ≥ 0.439). There was no effect of RT on reader confidence (R1all : 3.17-3.34, all Padj = 1.000; R2all : 2.83-3.19, all Padj ≥ 0.801; R1GS≥4 + 3 : 3.79-4.21, all Padj = 1.000; R2GS≥4 + 3 : 3.13-3.79, all Padj = 1.000). ktrans and ve of tumor and benign tissue did not differ across RT (all adjusted P values [Padj ] = 1.000). RT did not significantly affect area under the curve (AUC) of Ktrans or ve for differentiating tumor from benign (all Padj = 1.000). CONCLUSION Current PI-RADS recommendations for RT of 10 seconds may be sufficient, with further reduction to the stated PI-RADS preference of RT ≤ 7 seconds offering no benefit in tumor detection or quantitative analysis. LEVEL OF EVIDENCE 3 J. MAGN. RESON. IMAGING 2017;45:1464-1475.
Collapse
Affiliation(s)
- Justin M Ream
- Department of Radiology, NYU Langone Medical Center, New York, New York, USA
| | - Ankur M Doshi
- Department of Radiology, NYU Langone Medical Center, New York, New York, USA
| | - Diane Dunst
- Department of Radiology, NYU Langone Medical Center, New York, New York, USA
| | - Nainesh Parikh
- Department of Radiology, NYU Langone Medical Center, New York, New York, USA
| | - Max X Kong
- Department of Pathology, NYU Langone Medical Center, New York, New York, USA
| | - James S Babb
- Department of Radiology, NYU Langone Medical Center, New York, New York, USA
| | - Samir S Taneja
- Department of Urology, NYU Langone Medical Center, New York, New York, USA
| | | |
Collapse
|
412
|
Benkert T, Feng L, Sodickson DK, Chandarana H, Block KT. Free-breathing volumetric fat/water separation by combining radial sampling, compressed sensing, and parallel imaging. Magn Reson Med 2016; 78:565-576. [PMID: 27612300 DOI: 10.1002/mrm.26392] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/01/2016] [Accepted: 08/01/2016] [Indexed: 12/18/2022]
Abstract
PURPOSE Conventional fat/water separation techniques require that patients hold breath during abdominal acquisitions, which often fails and limits the achievable spatial resolution and anatomic coverage. This work presents a novel approach for free-breathing volumetric fat/water separation. METHODS Multiecho data are acquired using a motion-robust radial stack-of-stars three-dimensional GRE sequence with bipolar readout. To obtain fat/water maps, a model-based reconstruction is used that accounts for the off-resonant blurring of fat and integrates both compressed sensing and parallel imaging. The approach additionally enables generation of respiration-resolved fat/water maps by detecting motion from k-space data and reconstructing different respiration states. Furthermore, an extension is described for dynamic contrast-enhanced fat-water-separated measurements. RESULTS Uniform and robust fat/water separation is demonstrated in several clinical applications, including free-breathing noncontrast abdominal examination of adults and a pediatric subject with both motion-averaged and motion-resolved reconstructions, as well as in a noncontrast breast exam. Furthermore, dynamic contrast-enhanced fat/water imaging with high temporal resolution is demonstrated in the abdomen and breast. CONCLUSION The described framework provides a viable approach for motion-robust fat/water separation and promises particular value for clinical applications that are currently limited by the breath-holding capacity or cooperation of patients. Magn Reson Med 78:565-576, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Thomas Benkert
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Li Feng
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Daniel K Sodickson
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Hersh Chandarana
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Kai Tobias Block
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA.,Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
413
|
Chauffert N, Weiss P, Kahn J, Ciuciu P. A Projection Algorithm for Gradient Waveforms Design in Magnetic Resonance Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:2026-2039. [PMID: 27019479 DOI: 10.1109/tmi.2016.2544251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Collecting the maximal amount of information in a given scanning time is a major concern in magnetic resonance imaging (MRI) to speed up image acquisition. The hardware constraints (gradient magnitude, slew rate, etc.), physical distortions (e.g., off-resonance effects) and sampling theorems (Shannon, compressed sensing) must be taken into account simultaneously, which makes this problem extremely challenging. To date, the main approach to design gradient waveform has consisted of selecting an initial shape (e.g., spiral, radial lines, etc.) and then traversing it as fast as possible using optimal control. In this paper, we propose an alternative solution which first consists of defining a desired parameterization of the trajectory and then of optimizing for minimal deviation of the sampling points within gradient constraints. This method has various advantages. First, it better preserves the density of the input curve which is critical in sampling theory. Second, it allows to smooth high curvature areas making the acquisition time shorter in some cases. Third, it can be used both in the Shannon and CS sampling theories. Last, the optimized trajectory is computed as the solution of an efficient iterative algorithm based on convex programming. For piecewise linear trajectories, as compared to optimal control reparameterization, our approach generates a gain in scanning time of 10% in echo planar imaging while improving image quality in terms of signal-to-noise ratio (SNR) by more than 6 dB. We also investigate original trajectories relying on traveling salesman problem solutions. In this context, the sampling patterns obtained using the proposed projection algorithm are shown to provide significantly better reconstructions (more than 6 dB) while lasting the same scanning time.
Collapse
|
414
|
Contijoch F, Iyer SK, Pilla JJ, Yushkevich P, Gorman JH, Gorman RC, Litt H, Han Y, Witschey WRT. Self-gated MRI of multiple beat morphologies in the presence of arrhythmias. Magn Reson Med 2016; 78:678-688. [PMID: 27579717 DOI: 10.1002/mrm.26381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 07/01/2016] [Accepted: 07/22/2016] [Indexed: 01/17/2023]
Abstract
PURPOSE Develop self-gated MRI for distinct heartbeat morphologies in subjects with arrhythmias. METHODS Golden angle radial data was obtained in seven sinus and eight arrhythmias subjects. An image-based cardiac navigator was derived from single-shot images, distinct beat types were identified, and images were reconstructed for repeated morphologies. Image sharpness, contrast, and volume variation were quantified and compared with self-gated MRI. Images were scored for image quality and artifacts. Hemodynamic parameters were computed for each distinct beat morphology in bigeminy and trigeminy subjects and for sinus beats in patients with infrequent premature ventricular contractions. RESULTS Images of distinct beat types were reconstructed except for two patients with infrequent premature ventricular contractions. Image contrast and sharpness were similar to sinus self-gated images (contrast = 0.45 ± 0.13 and 0.43 ± 0.15; sharpness = 0.21 ± 0.11 and 0.20 ± 0.05). Visual scoring was highest in self-gated images (4.1 ± 0.3) compared with real-time (3.9 ± 0.4) and ECG-gated cine (3.4 ± 1.5). ECG-gated cine had less artifacts than self-gating (2.3 ± 0.7 and 2.1 ± 0.2), but was affected by misgating in two subjects. Among arrhythmia subjects, post-extrasystole/sinus (58.1 ± 8.6 mL) and interrupted sinus (61.4 ± 5.9 mL) stroke volume was higher than extrasystole (32.0 ± 16.5 mL; P < 0.02). CONCLUSION Self-gated imaging can reconstruct images during ectopy and allowed for quantification of hemodynamic function of different beat morphologies. Magn Reson Med 78:678-688, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Francisco Contijoch
- School of Medicine, University of California - San Diego, San Diego, California, USA
| | - Srikant Kamesh Iyer
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James J Pilla
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul Yushkevich
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph H Gorman
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert C Gorman
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Harold Litt
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuchi Han
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Walter R T Witschey
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
415
|
Han F, Zhou Z, Han E, Gao Y, Nguyen KL, Finn JP, Hu P. Self-gated 4D multiphase, steady-state imaging with contrast enhancement (MUSIC) using rotating cartesian K-space (ROCK): Validation in children with congenital heart disease. Magn Reson Med 2016; 78:472-483. [PMID: 27529745 DOI: 10.1002/mrm.26376] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/27/2016] [Accepted: 07/19/2016] [Indexed: 12/27/2022]
Abstract
PURPOSE To develop and validate a cardiac-respiratory self-gating strategy for the recently proposed multiphase steady-state imaging with contrast enhancement (MUSIC) technique. METHODS The proposed SG strategy uses the ROtating Cartesian K-space (ROCK) sampling, which allows for retrospective k-space binning based on motion surrogates derived from k-space center line. The k-space bins are reconstructed using a compressed sensing algorithm. Ten pediatric patients underwent cardiac MRI for clinical reasons. The original MUSIC and 2D-CINE images were acquired as a part of the clinical protocol, followed by the ROCK-MUSIC acquisition, all under steady-state intravascular distribution of ferumoxytol. Subjective scores and image sharpness were used to compare the images of ROCK-MUSIC and original MUSIC. RESULTS All scans were completed successfully without complications. The ROCK-MUSIC acquisition took 5 ± 1 min, compared to 8 ± 2 min for the original MUSIC. Image scores of ROCK-MUSIC were significantly better than original MUSIC at the ventricular outflow tracts (3.9 ± 0.3 vs. 3.3 ± 0.6, P < 0.05). There was a strong trend toward superior image scores for ROCK-MUSIC in the other anatomic locations. CONCLUSION ROCK-MUSIC provided images of equal or superior image quality compared to original MUSIC, and this was achievable with 40% savings in scan time and without the need for physiologic signal. Magn Reson Med 78:472-483, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Fei Han
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Ziwu Zhou
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Eric Han
- Harvard Westlake School, Los Angeles, California, USA
| | - Yu Gao
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Biomedical Physics Inter-Departmental Graduate Program, University of California, Los Angeles, California, USA
| | - Kim-Lien Nguyen
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Division of Cardiology, VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - J Paul Finn
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Peng Hu
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Biomedical Physics Inter-Departmental Graduate Program, University of California, Los Angeles, California, USA
| |
Collapse
|
416
|
Wang H, Adluru G, Chen L, Kholmovski EG, Bangerter NK, DiBella EVR. Radial simultaneous multi-slice CAIPI for ungated myocardial perfusion. Magn Reson Imaging 2016; 34:1329-1336. [PMID: 27502698 DOI: 10.1016/j.mri.2016.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/30/2016] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Simultaneous multi-slice (SMS) imaging is a slice acceleration technique that acquires multiple slices in the same time as a single slice. Radial controlled aliasing in parallel imaging results in higher acceleration (radial CAIPIRINHA or CAIPI) is a promising SMS method with less severe slice aliasing artifacts as compared to its Cartesian counterpart. Here we use radial CAIPI with data undersampling and constrained reconstruction to improve the utility of ungated cardiac perfusion acquisitions. We test the proposed framework with a traditional saturation recovery fast low-angle shot (turboFLASH) sequence and also without saturation recovery as a steady-state spoiled gradient echo (SPGR) sequence on animal and human studies. METHODS Simulations and phantom studies were performed for both the turboFLASH and the SPGR radial CAIPI methods. Ungated undersampled golden ratio radial CAIPI data with saturation recovery were acquired in 8 dogs and 2 human subjects. The CAIPI data without saturation pulses were acquired in 4 human subjects. For both methods, slice acceleration factors of two and three were used. A new spatio-temporal reconstruction using total variation and patch-based low rank constraints was used to jointly reconstruct the multi-slice multi-coil images. RESULTS Phantom scans and computer simulations showed that ungated SPGR generally provides better contrast to noise ratio (CNR) than the saturation recovery sequence if the saturation recovery time is less than 100ms. Both of the ungated radial CAIPI methods demonstrated promising image quality in terms of preserving dynamics of the contrast agent and maintaining anatomical structures, even with three slices acquired simultaneously. CONCLUSION Ungated simultaneous multi-slice acquisitions with either a saturation recovery turboFLASH sequence or a steady-state gradient echo SPGR sequence are feasible and provide increased slice coverage without loss of temporal resolution. Compared with a sensitivity encoding (SENSE) SMS reconstruction, the constrained reconstruction method provides better image quality for undersampled radial CAIPI data.
Collapse
Affiliation(s)
- Haonan Wang
- Department of Electrical & Computer Engineering, Brigham Young University, Provo, UT, USA
| | - Ganesh Adluru
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA.
| | - Liyong Chen
- Advanced MRI Technologies, Sebastopol, CA, United States
| | - Eugene G Kholmovski
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Neal K Bangerter
- Department of Electrical & Computer Engineering, Brigham Young University, Provo, UT, USA; Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Edward V R DiBella
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
417
|
AlObaidy M, Ramalho M, Busireddy KKR, Dale BM, Burke LM, Altun E, Liu B, Semelka RC. Surrogate arterial phase imaging using a long duration (≈1.5 min) radial acquisition T1-weighted sequence: an alternative in patients unable to breath-hold. Acta Radiol 2016; 57:955-63. [PMID: 26567963 DOI: 10.1177/0284185115616294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/17/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Pediatric and adult patients unable to suspend respiration generally undergo magnetic resonance (MR) examinations that lack arterial phase imaging, which is a phase that provides substantial information on disease processes. An MR strategy that provides this type of information may be of considerable value. PURPOSE To describe and assess the feasibility and enhancement quality of early-phase imaging utilizing long-duration radial 3D-GRE imaging by initiating the sequence prior to starting contrast injection. MATERIAL AND METHODS Thirty-three consecutive patients (10 men, 23 women; 50.7 ± 25.5 years) underwent free-breathing gadolinium-enhanced radial 3D-GRE, with sequence initiation 30 s prior to contrast injection. Late hepatic arterial (LHA) phase was chosen for comparison. Images were evaluated for enhancement and overall image quality. Organ enhancement was calculated. Sub-group analysis was performed. RESULTS Twenty-two examinations of radial 3D-GRE sequences were acquired during the LHA phase. Organ enhancement scores were of satisfactory to good quality (range, 3.32-3.82). There was a significant trend of superior overall enhancement quality scores in pediatrics and examinations performed at 3 T (P = 0.0225 and 0.0001, respectively). CONCLUSION Arterial phase abdominal MR imaging is feasible using conventional radial 3D-GRE by adopting this simplistic proposed approach, which may allow arterial-phase imaging in patients unable to breath-hold.
Collapse
Affiliation(s)
- Mamdoh AlObaidy
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Radiology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Miguel Ramalho
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kiran KR Busireddy
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brian M Dale
- Siemens Medical Solutions, Inc., Morrisville, NC, USA
| | - Lauren M Burke
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ersan Altun
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Baodong Liu
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Richard C Semelka
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
418
|
Respiratory Motion-Resolved Compressed Sensing Reconstruction of Free-Breathing Radial Acquisition for Dynamic Liver Magnetic Resonance Imaging. Invest Radiol 2016; 50:749-56. [PMID: 26146869 DOI: 10.1097/rli.0000000000000179] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE This study aimed to demonstrate feasibility of free-breathing radial acquisition with respiratory motion-resolved compressed sensing reconstruction [extra-dimensional golden-angle radial sparse parallel imaging (XD-GRASP)] for multiphase dynamic gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced liver imaging, and to compare image quality to compressed sensing reconstruction with respiratory motion-averaging (GRASP) and prior conventional breath-held Cartesian-sampled data sets [BH volume interpolated breath-hold examination (VIBE)] in same patients. SUBJECTS AND METHODS In this Health Insurance Portability and Accountability Act-compliant prospective study, 16 subjects underwent free-breathing continuous radial acquisition during Gd-EOB-DTPA injection and had prior BH-VIBE available. Acquired data were reconstructed using motion-averaging GRASP approach in which consecutive 84 spokes were grouped in each contrast-enhanced phase for a temporal resolution of approximately 14 seconds. Additionally, respiratory motion-resolved reconstruction was performed from the same k-space data by sorting each contrast-enhanced phase into multiple respiratory motion states using compressed sensing algorithm named XD-GRASP, which exploits sparsity along both the contrast-enhancement and respiratory-state dimensions.Contrast-enhanced dynamic multiphase XD-GRASP, GRASP, and BH-VIBE images were anonymized, pooled together in a random order, and presented to 2 board-certified radiologists for independent evaluation of image quality, with higher score indicating more optimal examination. RESULTS The XD-GRASP reconstructions had significantly (all P < 0.05) higher overall image quality scores compared to GRASP for early arterial (reader 1: 4.3 ± 0.6 vs 3.31 ± 0.6; reader 2: 3.81 ± 0.8 vs 3.38 ± 0.9) and late arterial (reader 1: 4.5 ± 0.6 vs 3.63 ± 0.6; reader 2: 3.56 ± 0.5 vs 2.88 ± 0.7) phases of enhancement for both readers. The XD-GRASP also had higher overall image quality score in portal venous phase, which was significant for reader 1 (4.44 ± 0.5 vs 3.75 ± 0.8; P = 0.002). In addition, the XD-GRASP had higher overall image quality score compared to BH-VIBE for early (reader 1: 4.3 ± 0.6 vs 3.88 ± 0.6; reader 2: 3.81 ± 0.8 vs 3.50 ± 1.0) and late (reader 1: 4.5 ± 0.6 vs 3.44 ± 0.6; reader 2: 3.56 ± 0.5 vs 2.94 ± 0.9) arterial phases. CONCLUSION Free-breathing motion-resolved XD-GRASP reconstructions provide diagnostic high-quality multiphase images in patients undergoing Gd-EOB-DTPA-enhanced liver examination.
Collapse
|
419
|
Wu Z, Chen W, Khoo MC, Ward SLD, Nayak KS. Evaluation of upper airway collapsibility using real-time MRI. J Magn Reson Imaging 2016; 44:158-67. [PMID: 26708099 PMCID: PMC6768084 DOI: 10.1002/jmri.25133] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/02/2015] [Indexed: 12/28/2022] Open
Abstract
PURPOSE To develop and demonstrate a real-time MRI method for assessing upper airway collapsibility in sleep apnea. MATERIALS AND METHODS Data were acquired on a clinical 3 Tesla scanner using a radial CAIPIRIHNA sequence with modified golden angle view ordering and reconstructed using parallel imaging and compressed sensing with temporal finite difference sparsity constraint. Segmented airway areas together with synchronized facemask pressure were used to calculate airway compliance and projected closing pressure, Pclose , at four axial locations along the upper airway. This technique was demonstrated in five adolescent obstructive sleep apnea (OSA) patients, three adult OSA patients and four healthy volunteers. Heart rate, oxygen saturation, facemask pressure, and abdominal/chest movements were monitored in real-time during the experiments to determine sleep/wakefulness. RESULTS Student's t-tests showed that both compliance and Pclose were significantly different between healthy controls and OSA patients (P < 0.001). The results also suggested that a narrower airway site does not always correspond to higher collapsibility. CONCLUSION With the proposed methods, both compliance and Pclose can be calculated and used to quantify airway collapsibility in OSA with an awake scan of 30 min total scan room time. J. Magn. Reson. Imaging 2016;44:158-167.
Collapse
Affiliation(s)
- Ziyue Wu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
- Alltech Medical Systems America, Solon, Ohio, USA
| | - Weiyi Chen
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California, USA
| | - Michael C.K. Khoo
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Sally L. Davidson Ward
- Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Krishna S. Nayak
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
420
|
Yang ACY, Kretzler M, Sudarski S, Gulani V, Seiberlich N. Sparse Reconstruction Techniques in Magnetic Resonance Imaging: Methods, Applications, and Challenges to Clinical Adoption. Invest Radiol 2016; 51:349-64. [PMID: 27003227 PMCID: PMC4948115 DOI: 10.1097/rli.0000000000000274] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The family of sparse reconstruction techniques, including the recently introduced compressed sensing framework, has been extensively explored to reduce scan times in magnetic resonance imaging (MRI). While there are many different methods that fall under the general umbrella of sparse reconstructions, they all rely on the idea that a priori information about the sparsity of MR images can be used to reconstruct full images from undersampled data. This review describes the basic ideas behind sparse reconstruction techniques, how they could be applied to improve MRI, and the open challenges to their general adoption in a clinical setting. The fundamental principles underlying different classes of sparse reconstructions techniques are examined, and the requirements that each make on the undersampled data outlined. Applications that could potentially benefit from the accelerations that sparse reconstructions could provide are described, and clinical studies using sparse reconstructions reviewed. Lastly, technical and clinical challenges to widespread implementation of sparse reconstruction techniques, including optimization, reconstruction times, artifact appearance, and comparison with current gold standards, are discussed.
Collapse
Affiliation(s)
- Alice Chieh-Yu Yang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
| | - Madison Kretzler
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
| | - Sonja Sudarski
- Institute for Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim - Heidelberg University, Heidelberg, Germany
| | - Vikas Gulani
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
- Department of Radiology, University Hospitals of Cleveland, Cleveland, USA
| | - Nicole Seiberlich
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
- Department of Radiology, University Hospitals of Cleveland, Cleveland, USA
| |
Collapse
|
421
|
Weizman L, Eldar YC, Ben Bashat D. Compressed sensing for longitudinal MRI: An adaptive-weighted approach. Med Phys 2016; 42:5195-208. [PMID: 26328970 DOI: 10.1118/1.4928148] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Repeated brain MRI scans are performed in many clinical scenarios, such as follow up of patients with tumors and therapy response assessment. In this paper, the authors show an approach to utilize former scans of the patient for the acceleration of repeated MRI scans. METHODS The proposed approach utilizes the possible similarity of the repeated scans in longitudinal MRI studies. Since similarity is not guaranteed, sampling and reconstruction are adjusted during acquisition to match the actual similarity between the scans. The baseline MR scan is utilized both in the sampling stage, via adaptive sampling, and in the reconstruction stage, with weighted reconstruction. In adaptive sampling, k-space sampling locations are optimized during acquisition. Weighted reconstruction uses the locations of the nonzero coefficients in the sparse domains as a prior in the recovery process. The approach was tested on 2D and 3D MRI scans of patients with brain tumors. RESULTS The longitudinal adaptive compressed sensing MRI (LACS-MRI) scheme provides reconstruction quality which outperforms other CS-based approaches for rapid MRI. Examples are shown on patients with brain tumors and demonstrate improved spatial resolution. Compared with data sampled at the Nyquist rate, LACS-MRI exhibits signal-to-error ratio (SER) of 24.8 dB with undersampling factor of 16.6 in 3D MRI. CONCLUSIONS The authors presented an adaptive method for image reconstruction utilizing similarity of scans in longitudinal MRI studies, where possible. The proposed approach can significantly reduce scanning time in many applications that consist of disease follow-up and monitoring of longitudinal changes in brain MRI.
Collapse
Affiliation(s)
- Lior Weizman
- Department of Electrical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Yonina C Eldar
- Department of Electrical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Dafna Ben Bashat
- Functional Brain Center, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 64239, Israel
| |
Collapse
|
422
|
Castets CR, Lefrançois W, Wecker D, Ribot EJ, Trotier AJ, Thiaudière E, Franconi JM, Miraux S. Fast 3D ultrashort echo-time spiral projection imaging using golden-angle: A flexible protocol for in vivo mouse imaging at high magnetic field. Magn Reson Med 2016; 77:1831-1840. [PMID: 27170060 DOI: 10.1002/mrm.26263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 12/21/2022]
Abstract
PURPOSE To develop a fast three-dimensional (3D) k-space encoding method based on spiral projection imaging (SPI) with an interleaved golden-angle approach and to validate this novel sequence on small animal models. METHODS A disk-like trajectory, in which each disk contained spirals, was developed. The 3D encoding was performed by tilting the disks with a golden angle. The sharpness was first calculated at different T2* values. Then, the sharpness was measured on phantom using variable undersampling ratios. Finally, the sampling method was validated by whole brain time-of-flight angiography and ultrasmall superparamagnetic iron oxide (USPIO) enhanced free-breathing liver angiography on mouse. RESULTS The in vitro results demonstrated the robustness of the method for short T2* and high undersampling ratios. In vivo experiments showed the ability to properly detect small vessels in the brain with an acquisition time shorter than 1 min. Free-breathing mice liver angiography showed the insensitivity of this protocol toward motions and flow artifacts, and enabled the visualization of liver motion during breathing. CONCLUSIONS The method implemented here allowed fast 3D k-space sampling with a high undersampling ratio. Combining the advantages of center-out spirals with the flexibility of the golden angle approach could have major implications for real-time imaging. Magn Reson Med 77:1831-1840, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Charles R Castets
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| | - William Lefrançois
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| | | | - Emeline J Ribot
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| | - Aurélien J Trotier
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| | - Eric Thiaudière
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| | - Jean-Michel Franconi
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| | - Sylvain Miraux
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 Université de Bordeaux, Bordeaux, France
| |
Collapse
|
423
|
Wu Z, Chen W, Nayak KS. Minimum Field Strength Simulator for Proton Density Weighted MRI. PLoS One 2016; 11:e0154711. [PMID: 27136334 PMCID: PMC4852924 DOI: 10.1371/journal.pone.0154711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 04/18/2016] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To develop and evaluate a framework for simulating low-field proton-density weighted MRI acquisitions based on high-field acquisitions, which could be used to predict the minimum B0 field strength requirements for MRI techniques. This framework would be particularly useful in the evaluation of de-noising and constrained reconstruction techniques. MATERIALS AND METHODS Given MRI raw data, lower field MRI acquisitions can be simulated based on the signal and noise scaling with field strength. Certain assumptions are imposed for the simulation and their validity is discussed. A validation experiment was performed using a standard resolution phantom imaged at 0.35 T, 1.5 T, 3 T, and 7 T. This framework was then applied to two sample proton-density weighted MRI applications that demonstrated estimation of minimum field strength requirements: real-time upper airway imaging and liver proton-density fat fraction measurement. RESULTS The phantom experiment showed good agreement between simulated and measured images. The SNR difference between simulated and measured was ≤ 8% for the 1.5T, 3T, and 7T cases which utilized scanners with the same geometry and from the same vendor. The measured SNR at 0.35T was 1.8- to 2.5-fold less than predicted likely due to unaccounted differences in the RF receive chain. The predicted minimum field strength requirements for the two sample applications were 0.2 T and 0.3 T, respectively. CONCLUSIONS Under certain assumptions, low-field MRI acquisitions can be simulated from high-field MRI data. This enables prediction of the minimum field strength requirements for a broad range of MRI techniques.
Collapse
Affiliation(s)
- Ziyue Wu
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California, United States of America
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| | - Weiyi Chen
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California, United States of America
| | - Krishna S. Nayak
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
424
|
Abstract
Heart disease is a worldwide public health problem; assessment of cardiac function is an important part of the diagnosis and management of heart disease. MRI of the heart can provide clinically useful information on cardiac function, although it is still not routinely used in clinical practice, in part because of limited imaging speed. New accelerated methods for performing cardiovascular MRI (CMR) have the potential to provide both increased imaging speed and robustness to CMR, as well as access to increased functional information. In this review, we will briefly discuss the main methods currently employed to accelerate CMR methods, such as parallel imaging, k-t undersampling and compressed sensing, as well as new approaches that extend the idea of compressed sensing and exploit sparsity to provide richer information of potential use in clinical practice.
Collapse
Affiliation(s)
- Leon Axel
- Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Ricardo Otazo
- Department of Radiology, NYU School of Medicine, New York, NY, USA
| |
Collapse
|
425
|
Paul J, Wundrak S, Hombach V, Rottbauer W, Rasche V. On the influence of respiratory motion in radial tissue phase mapping cardiac MRI. J Magn Reson Imaging 2016; 44:1218-1228. [PMID: 27086896 DOI: 10.1002/jmri.25286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/31/2016] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To investigate the impact of respiratory motion on radial tissue phase mapping (TPM) measurements, and to improve image quality and scan efficiency without compromising velocity fidelity by increasing the respiratory acceptance window with and without motion correction. MATERIALS AND METHODS A radial golden angle TPM sequence was measured in 10 healthy volunteers in three short axis slices at 3T. Ungated ( CFREE), self-gated with a single acceptance window ( CREF), motion-corrected averaging using all ( CMCall), or selected ( CMC) data reconstructions were compared by means of various image quality measures and resulting velocities. RESULTS Using all data ( CFREE) resulted in significantly higher perceived signal-to-noise ratio (SNR) (P < 0.001), but significantly reduced sharpness (P < 0.001) and contrast (P = 0.02), when compared to CREF. Coefficient of variation (CV) and perceived sharpness were not significantly different (P > 0.05). With motion-correction, perceived sharpness could be significantly improved ( CMC: P = 0.002; CMCall: P = 0.002) in comparison to CFREE. Velocity peaks of CFREE were significantly reduced compared to CREF (all peaks: P < 0.001; except the longitudinal "E" peak: P = 0.03). The peak velocities in CMC and CMCall were not significantly different from CREF (all peaks: P > 0.08; except longitudinal "E"/"A" peaks: P > 0.01). CONCLUSION Free-breathing reconstruction results in good perceived image sharpness and velocity information with slightly, but significantly, reduced peak velocities. For achieving velocities and image quality comparable to data from a single acceptance window, but higher gating efficiency, selected motion-corrected TPM (CMC) can be applied. J. Magn. Reson. Imaging 2016;44:1218-1228.
Collapse
Affiliation(s)
- Jan Paul
- Department of Internal Medicine II, University Hospital of Ulm, Germany.
| | - Stefan Wundrak
- Department of Internal Medicine II, University Hospital of Ulm, Germany
| | - Vinzenz Hombach
- Department of Internal Medicine II, University Hospital of Ulm, Germany
| | | | - Volker Rasche
- Department of Internal Medicine II, University Hospital of Ulm, Germany
| |
Collapse
|
426
|
|
427
|
Contijoch F, Rogers K, Rears H, Shahid M, Kellman P, Gorman J, Gorman RC, Yushkevich P, Zado ES, Supple GE, Marchlinski FE, Witschey WRT, Han Y. Quantification of Left Ventricular Function With Premature Ventricular Complexes Reveals Variable Hemodynamics. Circ Arrhythm Electrophysiol 2016; 9:e003520. [PMID: 27009416 PMCID: PMC4807630 DOI: 10.1161/circep.115.003520] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/19/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Premature ventricular complexes (PVCs) are prevalent in the general population and are sometimes associated with reduced ventricular function. Current echocardiographic and cardiovascular magnetic resonance imaging techniques do not adequately address the effect of PVCs on left ventricular function. METHODS AND RESULTS Fifteen subjects with a history of frequent PVCs undergoing cardiovascular magnetic resonance imaging had real-time slice volume quantification performed using a 2-dimensional (2D) real-time cardiovascular magnetic resonance imaging technique. Synchronization of 2D real-time imaging with patient ECG allowed for different beats to be categorized by the loading beat RR duration and beat RR duration. For each beat type, global volumes were quantified via summation over all slices covering the entire ventricle. Different patterns of ectopy, including isolated PVCs, bigeminy, trigeminy, and interpolated PVCs, were observed. Global functional measurement of the different beat types based on timing demonstrated differences in preload, stroke volume, and ejection fraction. An average of hemodynamic function was quantified for each subject depending on the frequency of each observed beat type. CONCLUSIONS Application of real-time cardiovascular magnetic resonance imaging in patients with PVCs revealed differential contribution of PVCs to hemodynamics.
Collapse
Affiliation(s)
- Francisco Contijoch
- From the Department of Bioengineering (F.C.), Cardiovascular Division, Department of Medicine (K.R., E.S.Z., G.E.S., F.E.M., Y.H.), Department of Radiology (H.R., M.S., P.Y., W.R.T.W.), and Department of Surgery (J.G., R.C.G.), University of Pennsylvania, Philadelphia; and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.).
| | - Kelly Rogers
- From the Department of Bioengineering (F.C.), Cardiovascular Division, Department of Medicine (K.R., E.S.Z., G.E.S., F.E.M., Y.H.), Department of Radiology (H.R., M.S., P.Y., W.R.T.W.), and Department of Surgery (J.G., R.C.G.), University of Pennsylvania, Philadelphia; and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Hannah Rears
- From the Department of Bioengineering (F.C.), Cardiovascular Division, Department of Medicine (K.R., E.S.Z., G.E.S., F.E.M., Y.H.), Department of Radiology (H.R., M.S., P.Y., W.R.T.W.), and Department of Surgery (J.G., R.C.G.), University of Pennsylvania, Philadelphia; and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Mohammed Shahid
- From the Department of Bioengineering (F.C.), Cardiovascular Division, Department of Medicine (K.R., E.S.Z., G.E.S., F.E.M., Y.H.), Department of Radiology (H.R., M.S., P.Y., W.R.T.W.), and Department of Surgery (J.G., R.C.G.), University of Pennsylvania, Philadelphia; and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Peter Kellman
- From the Department of Bioengineering (F.C.), Cardiovascular Division, Department of Medicine (K.R., E.S.Z., G.E.S., F.E.M., Y.H.), Department of Radiology (H.R., M.S., P.Y., W.R.T.W.), and Department of Surgery (J.G., R.C.G.), University of Pennsylvania, Philadelphia; and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Joseph Gorman
- From the Department of Bioengineering (F.C.), Cardiovascular Division, Department of Medicine (K.R., E.S.Z., G.E.S., F.E.M., Y.H.), Department of Radiology (H.R., M.S., P.Y., W.R.T.W.), and Department of Surgery (J.G., R.C.G.), University of Pennsylvania, Philadelphia; and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Robert C Gorman
- From the Department of Bioengineering (F.C.), Cardiovascular Division, Department of Medicine (K.R., E.S.Z., G.E.S., F.E.M., Y.H.), Department of Radiology (H.R., M.S., P.Y., W.R.T.W.), and Department of Surgery (J.G., R.C.G.), University of Pennsylvania, Philadelphia; and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Paul Yushkevich
- From the Department of Bioengineering (F.C.), Cardiovascular Division, Department of Medicine (K.R., E.S.Z., G.E.S., F.E.M., Y.H.), Department of Radiology (H.R., M.S., P.Y., W.R.T.W.), and Department of Surgery (J.G., R.C.G.), University of Pennsylvania, Philadelphia; and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Erica S Zado
- From the Department of Bioengineering (F.C.), Cardiovascular Division, Department of Medicine (K.R., E.S.Z., G.E.S., F.E.M., Y.H.), Department of Radiology (H.R., M.S., P.Y., W.R.T.W.), and Department of Surgery (J.G., R.C.G.), University of Pennsylvania, Philadelphia; and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Gregory E Supple
- From the Department of Bioengineering (F.C.), Cardiovascular Division, Department of Medicine (K.R., E.S.Z., G.E.S., F.E.M., Y.H.), Department of Radiology (H.R., M.S., P.Y., W.R.T.W.), and Department of Surgery (J.G., R.C.G.), University of Pennsylvania, Philadelphia; and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Francis E Marchlinski
- From the Department of Bioengineering (F.C.), Cardiovascular Division, Department of Medicine (K.R., E.S.Z., G.E.S., F.E.M., Y.H.), Department of Radiology (H.R., M.S., P.Y., W.R.T.W.), and Department of Surgery (J.G., R.C.G.), University of Pennsylvania, Philadelphia; and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Walter R T Witschey
- From the Department of Bioengineering (F.C.), Cardiovascular Division, Department of Medicine (K.R., E.S.Z., G.E.S., F.E.M., Y.H.), Department of Radiology (H.R., M.S., P.Y., W.R.T.W.), and Department of Surgery (J.G., R.C.G.), University of Pennsylvania, Philadelphia; and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Yuchi Han
- From the Department of Bioengineering (F.C.), Cardiovascular Division, Department of Medicine (K.R., E.S.Z., G.E.S., F.E.M., Y.H.), Department of Radiology (H.R., M.S., P.Y., W.R.T.W.), and Department of Surgery (J.G., R.C.G.), University of Pennsylvania, Philadelphia; and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| |
Collapse
|
428
|
Dutta J, Huang C, Li Q, El Fakhri G. Pulmonary imaging using respiratory motion compensated simultaneous PET/MR. Med Phys 2016; 42:4227-40. [PMID: 26133621 DOI: 10.1118/1.4921616] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Pulmonary positron emission tomography (PET) imaging is confounded by blurring artifacts caused by respiratory motion. These artifacts degrade both image quality and quantitative accuracy. In this paper, the authors present a complete data acquisition and processing framework for respiratory motion compensated image reconstruction (MCIR) using simultaneous whole body PET/magnetic resonance (MR) and validate it through simulation and clinical patient studies. METHODS The authors have developed an MCIR framework based on maximum a posteriori or MAP estimation. For fast acquisition of high quality 4D MR images, the authors developed a novel Golden-angle RAdial Navigated Gradient Echo (GRANGE) pulse sequence and used it in conjunction with sparsity-enforcing k-t FOCUSS reconstruction. The authors use a 1D slice-projection navigator signal encapsulated within this pulse sequence along with a histogram-based gate assignment technique to retrospectively sort the MR and PET data into individual gates. The authors compute deformation fields for each gate via nonrigid registration. The deformation fields are incorporated into the PET data model as well as utilized for generating dynamic attenuation maps. The framework was validated using simulation studies on the 4D XCAT phantom and three clinical patient studies that were performed on the Biograph mMR, a simultaneous whole body PET/MR scanner. RESULTS The authors compared MCIR (MC) results with ungated (UG) and one-gate (OG) reconstruction results. The XCAT study revealed contrast-to-noise ratio (CNR) improvements for MC relative to UG in the range of 21%-107% for 14 mm diameter lung lesions and 39%-120% for 10 mm diameter lung lesions. A strategy for regularization parameter selection was proposed, validated using XCAT simulations, and applied to the clinical studies. The authors' results show that the MC image yields 19%-190% increase in the CNR of high-intensity features of interest affected by respiratory motion relative to UG and a 6%-51% increase relative to OG. CONCLUSIONS Standalone MR is not the traditional choice for lung scans due to the low proton density, high magnetic susceptibility, and low T2 (∗) relaxation time in the lungs. By developing and validating this PET/MR pulmonary imaging framework, the authors show that simultaneous PET/MR, unique in its capability of combining structural information from MR with functional information from PET, shows promise in pulmonary imaging.
Collapse
Affiliation(s)
- Joyita Dutta
- Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114 and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Chuan Huang
- Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114; Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115; and Departments of Radiology and Psychiatry, Stony Brook Medicine, Stony Brook, New York 11794
| | - Quanzheng Li
- Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114 and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Georges El Fakhri
- Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114 and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
429
|
Rank CM, Heußer T, Buzan MTA, Wetscherek A, Freitag MT, Dinkel J, Kachelrieß M. 4D respiratory motion-compensated image reconstruction of free-breathing radial MR data with very high undersampling. Magn Reson Med 2016; 77:1170-1183. [PMID: 26991911 DOI: 10.1002/mrm.26206] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 11/10/2022]
Abstract
PURPOSE To develop four-dimensional (4D) respiratory time-resolved MRI based on free-breathing acquisition of radial MR data with very high undersampling. METHODS We propose the 4D joint motion-compensated high-dimensional total variation (4D joint MoCo-HDTV) algorithm, which alternates between motion-compensated image reconstruction and artifact-robust motion estimation at multiple resolution levels. The algorithm is applied to radial MR data of the thorax and upper abdomen of 12 free-breathing subjects with acquisition times between 37 and 41 s and undersampling factors of 16.8. Resulting images are compared with compressed sensing-based 4D motion-adaptive spatio-temporal regularization (MASTeR) and 4D high-dimensional total variation (HDTV) reconstructions. RESULTS For all subjects, 4D joint MoCo-HDTV achieves higher similarity in terms of normalized mutual information and cross-correlation than 4D MASTeR and 4D HDTV when compared with reference 4D gated gridding reconstructions with 8.4 ± 1.1 times longer acquisition times. In a qualitative assessment of artifact level and image sharpness by two radiologists, 4D joint MoCo-HDTV reveals higher scores (P < 0.05) than 4D HDTV and 4D MASTeR at the same undersampling factor and the reference 4D gated gridding reconstructions, respectively. CONCLUSIONS 4D joint MoCo-HDTV enables time-resolved image reconstruction of free-breathing radial MR data with undersampling factors of 16.8 while achieving low-streak artifact levels and high image sharpness. Magn Reson Med 77:1170-1183, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Christopher M Rank
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Thorsten Heußer
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Maria T A Buzan
- Department of Pneumology, Iuliu Hatieganu University of Medicine and Pharmacy, Hasdeu Str. 6, 400371, Cluj-Napoca, Romania.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Amalienstr. 5, 69126, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Andreas Wetscherek
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Martin T Freitag
- Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Julien Dinkel
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Amalienstr. 5, 69126, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.,Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Marc Kachelrieß
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
430
|
Chandarana H, Doshi AM, Shanbhogue A, Babb JS, Bruno MT, Zhao T, Raithel E, Zenge MO, Li G, Otazo R. Three-dimensional MR Cholangiopancreatography in a Breath Hold with Sparsity-based Reconstruction of Highly Undersampled Data. Radiology 2016; 280:585-94. [PMID: 26982678 DOI: 10.1148/radiol.2016151935] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose To develop a three-dimensional breath-hold (BH) magnetic resonance (MR) cholangiopancreatographic protocol with sampling perfection with application-optimized contrast using different flip-angle evolutions (SPACE) acquisition and sparsity-based iterative reconstruction (SPARSE) of prospectively sampled 5% k-space data and to compare the results with conventional respiratory-triggered (RT) acquisition. Materials and Methods This HIPAA-compliant prospective study was institutional review board approved. Twenty-nine patients underwent conventional RT SPACE and BH-accelerated SPACE acquisition with 5% k-space sampling at 3 T. Spatial resolution and other parameters were matched when possible. BH SPACE images were reconstructed by enforcing joint multicoil sparsity in the wavelet domain (SPARSE-SPACE). Two board-certified radiologists independently evaluated BH SPARSE-SPACE and RT SPACE images for image quality parameters in the pancreatic duct and common bile duct by using a five-point scale. The Wilcoxon signed-rank test was used to compare BH SPARSE-SPACE and RT SPACE images. Results Acquisition time for BH SPARSE-SPACE was 20 seconds, which was significantly (P < .001) shorter than that for RT SPACE (mean ± standard deviation, 338.8 sec ± 69.1). Overall image quality scores were higher for BH SPARSE-SPACE than for RT SPACE images for both readers for the proximal, middle, and distal pancreatic duct, but the difference was not statistically significant (P > .05). For reader 1, distal common bile duct scores were significantly higher with BH SPARSE-SPACE acquisition (P = .036). More patients had acceptable or better overall image quality (scores ≥ 3) with BH SPARSE-SPACE than with RT SPACE acquisition, respectively, for the proximal (23 of 29 [79%] vs 22 of 29 [76%]), middle (22 of 29 [76%] vs 18 of 29 [62%]), and distal (20 of 29 [69%] vs 13 of 29 [45%]) pancreatic duct and the proximal (25 of 28 [89%] vs 22 of 28 [79%]) and distal (25 of 28 [89%] vs 24 of 28 [86%]) common bile duct. Conclusion BH SPARSE-SPACE showed similar or superior image quality for the pancreatic and common duct compared with that of RT SPACE despite 17-fold shorter acquisition time. (©) RSNA, 2016.
Collapse
Affiliation(s)
- Hersh Chandarana
- From the Center for Advanced Imaging Innovation and Research (CAI2R) (H.C., J.S.B., R.O.) and Bernard and Irene Schwartz Center for Biomedical Imaging (H.C., A.M.D., A.S., J.S.B., M.T.B., R.O.), Department of Radiology, New York University School of Medicine, 660 First Ave, New York, NY 10016; Siemens Healthcare, New York, NY (T.Z., M.O.Z.); Siemens Healthcare, Erlangen, Germany (E.R.); and Department of Radiology, Section of Medical Physics, Freiburg University Medical Center, Freiburg, Germany (G.L.)
| | - Ankur M Doshi
- From the Center for Advanced Imaging Innovation and Research (CAI2R) (H.C., J.S.B., R.O.) and Bernard and Irene Schwartz Center for Biomedical Imaging (H.C., A.M.D., A.S., J.S.B., M.T.B., R.O.), Department of Radiology, New York University School of Medicine, 660 First Ave, New York, NY 10016; Siemens Healthcare, New York, NY (T.Z., M.O.Z.); Siemens Healthcare, Erlangen, Germany (E.R.); and Department of Radiology, Section of Medical Physics, Freiburg University Medical Center, Freiburg, Germany (G.L.)
| | - Alampady Shanbhogue
- From the Center for Advanced Imaging Innovation and Research (CAI2R) (H.C., J.S.B., R.O.) and Bernard and Irene Schwartz Center for Biomedical Imaging (H.C., A.M.D., A.S., J.S.B., M.T.B., R.O.), Department of Radiology, New York University School of Medicine, 660 First Ave, New York, NY 10016; Siemens Healthcare, New York, NY (T.Z., M.O.Z.); Siemens Healthcare, Erlangen, Germany (E.R.); and Department of Radiology, Section of Medical Physics, Freiburg University Medical Center, Freiburg, Germany (G.L.)
| | - James S Babb
- From the Center for Advanced Imaging Innovation and Research (CAI2R) (H.C., J.S.B., R.O.) and Bernard and Irene Schwartz Center for Biomedical Imaging (H.C., A.M.D., A.S., J.S.B., M.T.B., R.O.), Department of Radiology, New York University School of Medicine, 660 First Ave, New York, NY 10016; Siemens Healthcare, New York, NY (T.Z., M.O.Z.); Siemens Healthcare, Erlangen, Germany (E.R.); and Department of Radiology, Section of Medical Physics, Freiburg University Medical Center, Freiburg, Germany (G.L.)
| | - Mary T Bruno
- From the Center for Advanced Imaging Innovation and Research (CAI2R) (H.C., J.S.B., R.O.) and Bernard and Irene Schwartz Center for Biomedical Imaging (H.C., A.M.D., A.S., J.S.B., M.T.B., R.O.), Department of Radiology, New York University School of Medicine, 660 First Ave, New York, NY 10016; Siemens Healthcare, New York, NY (T.Z., M.O.Z.); Siemens Healthcare, Erlangen, Germany (E.R.); and Department of Radiology, Section of Medical Physics, Freiburg University Medical Center, Freiburg, Germany (G.L.)
| | - Tiejun Zhao
- From the Center for Advanced Imaging Innovation and Research (CAI2R) (H.C., J.S.B., R.O.) and Bernard and Irene Schwartz Center for Biomedical Imaging (H.C., A.M.D., A.S., J.S.B., M.T.B., R.O.), Department of Radiology, New York University School of Medicine, 660 First Ave, New York, NY 10016; Siemens Healthcare, New York, NY (T.Z., M.O.Z.); Siemens Healthcare, Erlangen, Germany (E.R.); and Department of Radiology, Section of Medical Physics, Freiburg University Medical Center, Freiburg, Germany (G.L.)
| | - Esther Raithel
- From the Center for Advanced Imaging Innovation and Research (CAI2R) (H.C., J.S.B., R.O.) and Bernard and Irene Schwartz Center for Biomedical Imaging (H.C., A.M.D., A.S., J.S.B., M.T.B., R.O.), Department of Radiology, New York University School of Medicine, 660 First Ave, New York, NY 10016; Siemens Healthcare, New York, NY (T.Z., M.O.Z.); Siemens Healthcare, Erlangen, Germany (E.R.); and Department of Radiology, Section of Medical Physics, Freiburg University Medical Center, Freiburg, Germany (G.L.)
| | - Michael O Zenge
- From the Center for Advanced Imaging Innovation and Research (CAI2R) (H.C., J.S.B., R.O.) and Bernard and Irene Schwartz Center for Biomedical Imaging (H.C., A.M.D., A.S., J.S.B., M.T.B., R.O.), Department of Radiology, New York University School of Medicine, 660 First Ave, New York, NY 10016; Siemens Healthcare, New York, NY (T.Z., M.O.Z.); Siemens Healthcare, Erlangen, Germany (E.R.); and Department of Radiology, Section of Medical Physics, Freiburg University Medical Center, Freiburg, Germany (G.L.)
| | - Guobin Li
- From the Center for Advanced Imaging Innovation and Research (CAI2R) (H.C., J.S.B., R.O.) and Bernard and Irene Schwartz Center for Biomedical Imaging (H.C., A.M.D., A.S., J.S.B., M.T.B., R.O.), Department of Radiology, New York University School of Medicine, 660 First Ave, New York, NY 10016; Siemens Healthcare, New York, NY (T.Z., M.O.Z.); Siemens Healthcare, Erlangen, Germany (E.R.); and Department of Radiology, Section of Medical Physics, Freiburg University Medical Center, Freiburg, Germany (G.L.)
| | - Ricardo Otazo
- From the Center for Advanced Imaging Innovation and Research (CAI2R) (H.C., J.S.B., R.O.) and Bernard and Irene Schwartz Center for Biomedical Imaging (H.C., A.M.D., A.S., J.S.B., M.T.B., R.O.), Department of Radiology, New York University School of Medicine, 660 First Ave, New York, NY 10016; Siemens Healthcare, New York, NY (T.Z., M.O.Z.); Siemens Healthcare, Erlangen, Germany (E.R.); and Department of Radiology, Section of Medical Physics, Freiburg University Medical Center, Freiburg, Germany (G.L.)
| |
Collapse
|
431
|
Royuela-del-Val J, Cordero-Grande L, Simmross-Wattenberg F, Martín-Fernández M, Alberola-López C. Jacobian weighted temporal total variation for motion compensated compressed sensing reconstruction of dynamic MRI. Magn Reson Med 2016; 77:1208-1215. [DOI: 10.1002/mrm.26198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/10/2016] [Accepted: 02/12/2016] [Indexed: 11/11/2022]
Affiliation(s)
| | - Lucilio Cordero-Grande
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain; King's College London; London UK
| | | | | | | |
Collapse
|
432
|
Wech T, Seiberlich N, Schindele A, Grau V, Diffley L, Gyngell ML, Borzì A, Köstler H, Schneider JE. Development of Real-Time Magnetic Resonance Imaging of Mouse Hearts at 9.4 Tesla--Simulations and First Application. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:912-920. [PMID: 26595913 PMCID: PMC4948122 DOI: 10.1109/tmi.2015.2501832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A novel method for real-time magnetic resonance imaging for the assessment of cardiac function in mice at 9.4 T is proposed. The technique combines a highly undersampled radial gradient echo acquisition with an image reconstruction utilizing both parallel imaging and compressed sensing. Simulations on an in silico phantom were performed to determine the achievable acceleration factor and to optimize regularization parameters. Several parameters characterizing the quality of the reconstructed images (such as spatial and temporal image sharpness or compartment areas) were calculated for this purpose. Subsequently, double-gated segmented cine data as well as non-gated undersampled real-time data using only six projections per timeframe (temporal resolution ∼ 10 ms) were acquired in a mid-ventricular slice of four normal mouse hearts in vivo. The highly accelerated data sets were then subjected to the introduced reconstruction technique and results were validated against the fully sampled references. Functional parameters obtained from real-time and fully sampled data agreed well with a comparable accuracy for left-ventricular volumes and a slightly larger scatter for mass. This study introduces and validates a real-time cine-MRI technique, which significantly reduces scan time in preclinical cardiac functional imaging and has the potential to investigate mouse models with abnormal heart rhythm.
Collapse
Affiliation(s)
- Tobias Wech
- Department of Diagnostic and Interventional Radiology, University of Würzburg, Würzburg, Germany, and with the Comprehensive Heart Failure Center, University of Würzburg, Würzburg
| | - Nicole Seiberlich
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | | | - Vicente Grau
- Department of Engineering Science, University of Oxford, UK
| | - Leonie Diffley
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, UK
| | | | - Alfio Borzì
- Institute of Mathematics, University of Würzburg, Würzburg, Germany
| | - Herbert Köstler
- Department of Diagnostic and Interventional Radiology, University of Würzburg, Würzburg, Germany, and with the Comprehensive Heart Failure Center, University of Würzburg, Würzburg
| | - Jürgen E. Schneider
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, UK
| |
Collapse
|
433
|
Heo HY, Zhang Y, Lee DH, Jiang S, Zhao X, Zhou J. Accelerating chemical exchange saturation transfer (CEST) MRI by combining compressed sensing and sensitivity encoding techniques. Magn Reson Med 2016; 77:779-786. [PMID: 26888295 DOI: 10.1002/mrm.26141] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/02/2016] [Accepted: 01/04/2016] [Indexed: 12/16/2022]
Abstract
PURPOSE To evaluate the feasibility of accelerated chemical-exchange-saturation-transfer (CEST) imaging using a combination of compressed sensing (CS) and sensitivity encoding (SENSE) at 3 Tesla. THEORY AND METHODS Two healthy volunteers and six high-grade glioma patients were recruited. Raw CEST image k-space data were acquired (with varied radiofrequency saturation power levels for the healthy volunteer study), and a sequential CS and SENSE reconstruction (CS-SENSE) was assessed. The MTRasym (3.5 ppm) signals were compared with varied CS-SENSE acceleration factors. RESULTS In the healthy volunteer study, a CS-SENSE acceleration factor of R = 2 × 2 (CS × SENSE) was achieved without compromising the reconstructed MTRasym (3.5 ppm) image quality. The MTRasym (3.5 ppm) signals obtained from the CS-SENSE reconstruction with R = 2 × 2 were well preserved compared with the reference image (R = 2 for only SENSE). In the glioma patient study, the MTRasym (3.5 ppm) signals were significantly higher in the tumor region (Gd-enhancing tumor core) than in the normal-appearing white matter (P < 0.001). There was no significant MTRasym (3.5 ppm) difference between the reference image and CS-SENSE-reconstructed image in the acceleration factor of R = 2 × 2. CONCLUSION Combining the SENSE technique with CS (R = 2 × 2) enables considerable acceleration of CEST image acquisition and potentially has a wide range of clinical applications. Magn Reson Med 77:779-786, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Hye-Young Heo
- Divison of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Yi Zhang
- Divison of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dong-Hoon Lee
- Divison of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shanshan Jiang
- Divison of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xuna Zhao
- Divison of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jinyuan Zhou
- Divison of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
434
|
Free-breathing liver perfusion imaging using 3-dimensional through-time spiral generalized autocalibrating partially parallel acquisition acceleration. Invest Radiol 2016; 50:367-75. [PMID: 25946703 DOI: 10.1097/rli.0000000000000135] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The goal of this study was to develop free-breathing high-spatiotemporal resolution dynamic contrast-enhanced liver magnetic resonance imaging using non-Cartesian parallel imaging acceleration, and quantitative liver perfusion mapping. MATERIALS AND METHODS This study was approved by the local institutional review board and written informed consent was obtained from all participants. Ten healthy subjects and 5 patients were scanned on a Siemens 3-T Skyra scanner. A stack-of-spirals trajectory was undersampled in-plane with a reduction factor of 6 and reconstructed using 3-dimensional (3D) through-time non-Cartesian generalized autocalibrating partially parallel acquisition. High-resolution 3D images were acquired with a true temporal resolution of 1.6 to 1.9 seconds while the subjects were breathing freely. A dual-input single-compartment model was used to retrieve liver perfusion parameters from dynamic contrast-enhanced magnetic resonance imaging data, which were coregistered using an algorithm designed to reduce the effects of dynamic contrast changes on registration. Image quality evaluation was performed on spiral images and conventional images from 5 healthy subjects. RESULTS Images with a spatial resolution of 1.9 × 1.9 × 3 mm3 were obtained with whole-liver coverage. With an imaging speed of better than 2 s/vol, free-breathing scans were achieved and dynamic changes in enhancement were captured. The overall image quality of free-breathing spiral images was slightly lower than that of conventional long breath-hold Cartesian images, but it provided clinically acceptable or better image quality. The free-breathing 3D images were registered with almost no residual motion in liver tissue. After the registration, quantitative whole-liver 3D perfusion maps were obtained and the perfusion parameters are all in good agreement with the literature. CONCLUSIONS This high-spatiotemporal resolution free-breathing 3D liver imaging technique allows voxelwise quantification of liver perfusion.
Collapse
|
435
|
Feng L, Axel L, Chandarana H, Block KT, Sodickson DK, Otazo R. XD-GRASP: Golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing. Magn Reson Med 2016; 75:775-88. [PMID: 25809847 PMCID: PMC4583338 DOI: 10.1002/mrm.25665] [Citation(s) in RCA: 395] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/15/2015] [Accepted: 02/01/2015] [Indexed: 11/11/2022]
Abstract
PURPOSE To develop a novel framework for free-breathing MRI called XD-GRASP, which sorts dynamic data into extra motion-state dimensions using the self-navigation properties of radial imaging and reconstructs the multidimensional dataset using compressed sensing. METHODS Radial k-space data are continuously acquired using the golden-angle sampling scheme and sorted into multiple motion-states based on respiratory and/or cardiac motion signals derived directly from the data. The resulting undersampled multidimensional dataset is reconstructed using a compressed sensing approach that exploits sparsity along the new dynamic dimensions. The performance of XD-GRASP is demonstrated for free-breathing three-dimensional (3D) abdominal imaging, two-dimensional (2D) cardiac cine imaging and 3D dynamic contrast-enhanced (DCE) MRI of the liver, comparing against reconstructions without motion sorting in both healthy volunteers and patients. RESULTS XD-GRASP separates respiratory motion from cardiac motion in cardiac imaging, and respiratory motion from contrast enhancement in liver DCE-MRI, which improves image quality and reduces motion-blurring artifacts. CONCLUSION XD-GRASP represents a new use of sparsity for motion compensation and a novel way to handle motions in the context of a continuous acquisition paradigm. Instead of removing or correcting motion, extra motion-state dimensions are reconstructed, which improves image quality and also offers new physiological information of potential clinical value.
Collapse
Affiliation(s)
- Li Feng
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, New York, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
- Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| | - Leon Axel
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, New York, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
- Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| | - Hersh Chandarana
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, New York, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Kai Tobias Block
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, New York, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Daniel K. Sodickson
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, New York, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
- Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| | - Ricardo Otazo
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, New York, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
- Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
436
|
Luna A, Pahwa S, Bonini C, Alcalá-Mata L, Wright KL, Gulani V. Multiparametric MR Imaging in Abdominal Malignancies. Magn Reson Imaging Clin N Am 2016; 24:157-186. [PMID: 26613880 PMCID: PMC4974463 DOI: 10.1016/j.mric.2015.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Modern MR imaging protocols can yield both anatomic and functional information for the assessment of hepatobiliary and pancreatic malignancies. Diffusion-weighted imaging is fully integrated into state-of-the-art protocols for tumor detection, characterization, and therapy monitoring. Hepatobiliary contrast agents have gained ground in the evaluation of focal liver lesions during the last years. Perfusion MR imaging is expected to have a central role for monitoring therapy in body tumors treated with antivascular drugs. Approaches such as Magnetic resonance (MR) elastography and (1)H-MR spectroscopy are still confined to research centers, but with the potential to grow in a short time frame.
Collapse
Affiliation(s)
- Antonio Luna
- Department of Radiology, Health Time, Carmelo Torres 2, Jaén 23006, Spain; Department of Radiology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH, USA.
| | - Shivani Pahwa
- Department of Radiology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH, USA
| | | | - Lidia Alcalá-Mata
- Department of Radiology, Health Time, Carmelo Torres 2, Jaén 23006, Spain
| | - Katherine L Wright
- Department of Radiology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH, USA
| | - Vikas Gulani
- Department of Radiology, Case Comprehensive Cancer Center, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH, USA; Department of Urology, Case Comprehensive Cancer Center, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, Case Comprehensive Cancer Center, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
437
|
Lingala SG, Zhu Y, Kim YC, Toutios A, Narayanan S, Nayak KS. A fast and flexible MRI system for the study of dynamic vocal tract shaping. Magn Reson Med 2016; 77:112-125. [PMID: 26778178 DOI: 10.1002/mrm.26090] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/06/2015] [Accepted: 11/24/2015] [Indexed: 11/07/2022]
Abstract
PURPOSE The aim of this work was to develop and evaluate an MRI-based system for study of dynamic vocal tract shaping during speech production, which provides high spatial and temporal resolution. METHODS The proposed system utilizes (a) custom eight-channel upper airway coils that have high sensitivity to upper airway regions of interest, (b) two-dimensional golden angle spiral gradient echo acquisition, (c) on-the-fly view-sharing reconstruction, and (d) off-line temporal finite difference constrained reconstruction. The system also provides simultaneous noise-cancelled and temporally aligned audio. The system is evaluated in 3 healthy volunteers, and 1 tongue cancer patient, with a broad range of speech tasks. RESULTS We report spatiotemporal resolutions of 2.4 × 2.4 mm2 every 12 ms for single-slice imaging, and 2.4 × 2.4 mm2 every 36 ms for three-slice imaging, which reflects roughly 7-fold acceleration over Nyquist sampling. This system demonstrates improved temporal fidelity in capturing rapid vocal tract shaping for tasks, such as producing consonant clusters in speech, and beat-boxing sounds. Novel acoustic-articulatory analysis was also demonstrated. CONCLUSION A synergistic combination of custom coils, spiral acquisitions, and constrained reconstruction enables visualization of rapid speech with high spatiotemporal resolution in multiple planes. Magn Reson Med 77:112-125, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sajan Goud Lingala
- Electrical Engineering, University of Southern California, Los Angeles, CA
| | - Yinghua Zhu
- Electrical Engineering, University of Southern California, Los Angeles, CA
| | | | - Asterios Toutios
- Electrical Engineering, University of Southern California, Los Angeles, CA
| | | | - Krishna S Nayak
- Electrical Engineering, University of Southern California, Los Angeles, CA
| |
Collapse
|
438
|
Lingala SG, Sutton BP, Miquel ME, Nayak KS. Recommendations for real-time speech MRI. J Magn Reson Imaging 2016; 43:28-44. [PMID: 26174802 PMCID: PMC5079859 DOI: 10.1002/jmri.24997] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/23/2015] [Indexed: 11/11/2022] Open
Abstract
Real-time magnetic resonance imaging (RT-MRI) is being increasingly used for speech and vocal production research studies. Several imaging protocols have emerged based on advances in RT-MRI acquisition, reconstruction, and audio-processing methods. This review summarizes the state-of-the-art, discusses technical considerations, and provides specific guidance for new groups entering this field. We provide recommendations for performing RT-MRI of the upper airway. This is a consensus statement stemming from the ISMRM-endorsed Speech MRI summit held in Los Angeles, February 2014. A major unmet need identified at the summit was the need for consensus on protocols that can be easily adapted by researchers equipped with conventional MRI systems. To this end, we provide a discussion of tradeoffs in RT-MRI in terms of acquisition requirements, a priori assumptions, artifacts, computational load, and performance for different speech tasks. We provide four recommended protocols and identify appropriate acquisition and reconstruction tools. We list pointers to open-source software that facilitate implementation. We conclude by discussing current open challenges in the methodological aspects of RT-MRI of speech.
Collapse
Affiliation(s)
| | - Brad P. Sutton
- University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois, USA
| | | | | |
Collapse
|
439
|
Parikh N, Ream JM, Zhang HC, Block KT, Chandarana H, Rosenkrantz AB. Performance of simultaneous high temporal resolution quantitative perfusion imaging of bladder tumors and conventional multi-phase urography using a novel free-breathing continuously acquired radial compressed-sensing MRI sequence. Magn Reson Imaging 2015; 34:694-8. [PMID: 26740058 DOI: 10.1016/j.mri.2015.12.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/18/2015] [Indexed: 11/18/2022]
Abstract
PURPOSE To investigate the feasibility of high temporal resolution quantitative perfusion imaging of bladder tumors performed simultaneously with conventional multi-phase MR urography (MRU) using a novel free-breathing continuously acquired radial MRI sequence with compressed-sensing reconstruction. METHODS 22 patients with bladder lesions underwent MRU using GRASP (Golden-angle RAdial Sparse Parallel) acquisition. Multi-phase contrast-enhanced abdominopelvic GRASP was performed during free-breathing (1.4×1.4×3.0mm(3) voxel size; 3:44min acquisition). Two dynamic datasets were retrospectively reconstructed by combining different numbers of sequentially acquired spokes into each dynamic frame: 110 spokes per frame for 25-s temporal resolution (serving as conventional MRU for clinical interpretation) and 8 spokes per frame for 1.7-s resolution. Using 1.7-s resolution images, ROIs were placed within bladder lesions and normal bladder wall, a femoral artery arterial input function was generated, and the Generalized Kinetic Model was applied. RESULTS Biopsy/cystectomy demonstrated 16 bladder tumors (13 stage≥T2, 3 stage≤T1) and 6 benign lesions. All lesions were well visualized using 25-s clinical multi-phase images. Using 1.7-s resolution images, K(trans) was significantly higher in tumors (0.38±0.24) than normal bladder (0.12±0.02=8, p<0.001) or benign lesions (0.15±0.04, p=0.033). Ratio between K(trans) of lesions and normal bladder was nearly double for tumors than benign lesions (4.3±3.4 vs. 2.2±1.6), and K(trans) was nearly double in stage≥T2 than stage≤T1 tumors (0.44±0.24 vs. 0.24±0.24), although these did not approach significance (p=0.180-0.209), possibly related to small sample size. CONCLUSION GRASP allows simultaneous quantitative high temporal resolution perfusion of bladder lesions during clinical MRU examinations using only one contrast injection and without additional scan time.
Collapse
Affiliation(s)
- Nainesh Parikh
- Department of Radiology, NYU School of Medicine, NYU Langone Medical Center, 550 First Avenue, New York, NY 10016.
| | - Justin M Ream
- Department of Radiology, NYU School of Medicine, NYU Langone Medical Center, 550 First Avenue, New York, NY 10016.
| | - Hoi Cheung Zhang
- Department of Radiology, NYU School of Medicine, NYU Langone Medical Center, 550 First Avenue, New York, NY 10016.
| | - Kai Tobias Block
- Department of Radiology, NYU School of Medicine, NYU Langone Medical Center, 550 First Avenue, New York, NY 10016.
| | - Hersh Chandarana
- Department of Radiology, NYU School of Medicine, NYU Langone Medical Center, 550 First Avenue, New York, NY 10016.
| | - Andrew B Rosenkrantz
- Department of Radiology, NYU School of Medicine, NYU Langone Medical Center, 550 First Avenue, New York, NY 10016.
| |
Collapse
|
440
|
Zhu Y, Guo Y, Lingala SG, Lebel RM, Law M, Nayak KS. GOCART: GOlden-angle CArtesian randomized time-resolved 3D MRI. Magn Reson Imaging 2015; 34:940-50. [PMID: 26707849 DOI: 10.1016/j.mri.2015.12.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE To develop and evaluate a novel 3D Cartesian sampling scheme which is well suited for time-resolved 3D MRI using parallel imaging and compressed sensing. METHODS The proposed sampling scheme, termed GOlden-angle CArtesian Randomized Time-resolved (GOCART) 3D MRI, is based on golden angle (GA) Cartesian sampling, with random sampling of the ky-kz phase encode locations along each Cartesian radial spoke. This method was evaluated in conjunction with constrained reconstruction of retrospectively and prospectively undersampled in-vivo dynamic contrast enhanced (DCE) MRI data and simulated phantom data. RESULTS In in-vivo retrospective studies and phantom simulations, images reconstructed from phase encodes defined by GOCART were equal to or superior to those with Poisson disc or GA sampling schemes. Typical GOCART sampling tables were generated in <100ms. GOCART has also been successfully utilized prospectively to produce clinically valuable whole-brain DCE-MRI images. CONCLUSION GOCART is a practical and efficient sampling scheme for time-resolved 3D MRI. It shows great potential for highly accelerated DCE-MRI and is well suited to modern reconstruction methods such as parallel imaging and compressed sensing.
Collapse
Affiliation(s)
- Yinghua Zhu
- Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, USA.
| | - Yi Guo
- Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, USA
| | - Sajan Goud Lingala
- Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, USA
| | - R Marc Lebel
- Applied Science Laboratory, GE Healthcare, AB, Calgary, Canada; Foothills Medical Center, Calgary, Canada
| | - Meng Law
- Department of Radiology, Keck School of Medicine, University of Southern California Medical Center, Los Angeles, USA
| | - Krishna S Nayak
- Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, USA
| |
Collapse
|
441
|
Abstract
Image blurring due to off-resonance and fast T 2* signal decay is a common issue in radial ultrashort echo time MRI sequences. One solution is to use a higher readout bandwidth, but this may be impractical for some techniques like pointwise encoding time reduction with radial acquisition (PETRA), which is a hybrid method of zero echo time and single point imaging techniques. Specifically, PETRA has severe specific absorption rate (SAR) and radiofrequency (RF) pulse peak power limitations when using higher bandwidths in human measurements. In this study, we introduce gradient modulation (GM) to PETRA to reduce image blurring artifacts while keeping SAR and RF peak power low. Tolerance of GM-PETRA to image blurring was evaluated in simulations and experiments by comparing with the conventional PETRA technique. We performed inner ear imaging of a healthy subject at 7T. GM-PETRA showed significantly less image blurring due to off-resonance and fast T2* signal decay compared to PETRA. In in vivo imaging, GM-PETRA nicely captured complex structures of the inner ear such as the cochlea and semicircular canals. Gradient modulation can improve the PETRA image quality and mitigate SAR and RF peak power limitations without special hardware modification in clinical scanners.
Collapse
Affiliation(s)
- Naoharu Kobayashi
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, MN, USA
| | - Ute Goerke
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, MN, USA
| | - Luning Wang
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, MN, USA
| | - Jutta Ellermann
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, MN, USA
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, MN, USA
| | - Michael Garwood
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, MN, USA
| |
Collapse
|
442
|
Yerly J, Ginami G, Nordio G, Coristine AJ, Coppo S, Monney P, Stuber M. Coronary endothelial function assessment using self-gated cardiac cine MRI andk-tsparse SENSE. Magn Reson Med 2015; 76:1443-1454. [DOI: 10.1002/mrm.26050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/30/2015] [Accepted: 10/23/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Jérôme Yerly
- Department of Radiology; University Hospital and University of Lausanne; Lausanne Switzerland
- Center for Biomedical Imaging; Lausanne Switzerland
| | - Giulia Ginami
- Department of Radiology; University Hospital and University of Lausanne; Lausanne Switzerland
- Center for Biomedical Imaging; Lausanne Switzerland
| | - Giovanna Nordio
- Department of Radiology; University Hospital and University of Lausanne; Lausanne Switzerland
- Center for Biomedical Imaging; Lausanne Switzerland
| | - Andrew J. Coristine
- Department of Radiology; University Hospital and University of Lausanne; Lausanne Switzerland
- Center for Biomedical Imaging; Lausanne Switzerland
| | - Simone Coppo
- Department of Radiology; University Hospital and University of Lausanne; Lausanne Switzerland
- Center for Biomedical Imaging; Lausanne Switzerland
| | - Pierre Monney
- Cardiac MR Center, Service of Cardiology; University Hospital of Lausanne; Lausanne Switzerland
| | - Matthias Stuber
- Department of Radiology; University Hospital and University of Lausanne; Lausanne Switzerland
- Center for Biomedical Imaging; Lausanne Switzerland
| |
Collapse
|
443
|
Tolouee A, Alirezaie J, Babyn P. Compressed sensing reconstruction of cardiac cine MRI using golden angle spiral trajectories. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 260:10-19. [PMID: 26397216 DOI: 10.1016/j.jmr.2015.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
In dynamic cardiac cine Magnetic Resonance Imaging (MRI), the spatiotemporal resolution is limited by the low imaging speed. Compressed sensing (CS) theory has been applied to improve the imaging speed and thus the spatiotemporal resolution. The purpose of this paper is to improve CS reconstruction of under sampled data by exploiting spatiotemporal sparsity and efficient spiral trajectories. We extend k-t sparse algorithm to spiral trajectories to achieve high spatio temporal resolutions in cardiac cine imaging. We have exploited spatiotemporal sparsity of cardiac cine MRI by applying a 2D+time wavelet-Fourier transform. For efficient coverage of k-space, we have used a modified version of multi shot (interleaved) spirals trajectories. In order to reduce incoherent aliasing artifact, we use different random undersampling pattern for each temporal frame. Finally, we have used nonuniform fast Fourier transform (NUFFT) algorithm to reconstruct the image from the non-uniformly acquired samples. The proposed approach was tested in simulated and cardiac cine MRI data. Results show that higher acceleration factors with improved image quality can be obtained with the proposed approach in comparison to the existing state-of-the-art method. The flexibility of the introduced method should allow it to be used not only for the challenging case of cardiac imaging, but also for other patient motion where the patient moves or breathes during acquisition.
Collapse
Affiliation(s)
- Azar Tolouee
- Department of Electrical and Computer Engineering, Ryerson University, Toronto, Ontario, Canada
| | - Javad Alirezaie
- Department of Electrical and Computer Engineering, Ryerson University, Toronto, Ontario, Canada.
| | - Paul Babyn
- Department of Medical Imaging, University of Saskatoon Health Region, Royal University Hospital, Saskatoon, Canada
| |
Collapse
|
444
|
Bickell M, Koesters T, Boada F, Nuyts J. PET motion correction using MR-derived motion parameters. EJNMMI Phys 2015; 1:A53. [PMID: 26501642 PMCID: PMC4546068 DOI: 10.1186/2197-7364-1-s1-a53] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Matthew Bickell
- Department of Nuclear Medicine, Medical Imaging Research Center, KU Leuven, Belgium
| | - Thomas Koesters
- Center for Advanced Imaging Innovation and Research, New York University, Kragujevac, USA.,Department of Radiology, NYU School of Medicine, New York, Bernard & Irene Schwartz Center for Biomedical Imaging, New York, USA
| | - Fernando Boada
- Center for Advanced Imaging Innovation and Research, New York University, Kragujevac, USA.,Department of Radiology, NYU School of Medicine, New York, Bernard & Irene Schwartz Center for Biomedical Imaging, New York, USA
| | - Johan Nuyts
- Department of Nuclear Medicine, Medical Imaging Research Center, KU Leuven, Belgium
| |
Collapse
|
445
|
Wundrak S, Paul J, Ulrici J, Hell E, Geibel MA, Bernhardt P, Rottbauer W, Rasche V. A self-gating method for time-resolved imaging of nonuniform motion. Magn Reson Med 2015; 76:919-25. [DOI: 10.1002/mrm.26000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/01/2015] [Accepted: 09/01/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Stefan Wundrak
- Department of Internal Medicine II; University Hospital of Ulm; Germany
- Sirona Dental Systems, Imaging Systems; Bensheim Germany
| | - Jan Paul
- Department of Internal Medicine II; University Hospital of Ulm; Germany
| | | | - Erich Hell
- Sirona Dental Systems, Imaging Systems; Bensheim Germany
| | - Margrit-Ann Geibel
- Department of Oral and Maxillofacial Surgery; University of Ulm; Germany
| | - Peter Bernhardt
- Department of Internal Medicine II; University Hospital of Ulm; Germany
| | | | - Volker Rasche
- Department of Internal Medicine II; University Hospital of Ulm; Germany
| |
Collapse
|
446
|
Fowkes LA, Koh DM, Collins DJ, Jerome NP, MacVicar D, Chua SC, Pearson ADJ. Childhood extracranial neoplasms: the role of imaging in drug development and clinical trials. Pediatr Radiol 2015; 45:1600-15. [PMID: 26045035 DOI: 10.1007/s00247-015-3342-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/16/2015] [Accepted: 03/16/2015] [Indexed: 12/25/2022]
Abstract
Cancer is the leading cause of death in children older than 1 year of age and new drugs are necessary to improve outcomes. Imaging is crucial to the drug development process and assessment of therapeutic response. In adults, tumours are often assessed with CT using size criteria. Unfortunately, techniques established in adults are not necessarily applicable in children due to differing pathophysiology, ability to cooperate and increased susceptibility to ionising radiation. MRI, in particular quantitative MRI, has to date not been fully utilised in children with extracranial neoplasms. The specific challenges of imaging in children, the potential for functional imaging techniques to inform upon and their inclusion in clinical trials are discussed.
Collapse
Affiliation(s)
- Lucy A Fowkes
- Department of Radiology, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, SM2 5PT, Surrey, UK.
| | - Dow-Mu Koh
- Department of Radiology, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, SM2 5PT, Surrey, UK
| | - David J Collins
- Cancer Research UK and EPSRC Cancer Imaging Centre, Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, Surrey, UK
| | - Neil P Jerome
- Cancer Research UK and EPSRC Cancer Imaging Centre, Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, Surrey, UK
| | - David MacVicar
- Department of Radiology, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, SM2 5PT, Surrey, UK
| | - Sue C Chua
- Nuclear Medicine & PET Department, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, SM2 5PT, Surrey, UK
| | - Andrew D J Pearson
- Paediatric Drug Development Unit, Children and Young People's Unit, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, SM2 5PT, Surrey, UK
| |
Collapse
|
447
|
Estimating liver perfusion from free-breathing continuously acquired dynamic gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced acquisition with compressed sensing reconstruction. Invest Radiol 2015; 50:88-94. [PMID: 25333309 DOI: 10.1097/rli.0000000000000105] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The purpose of this study was to estimate perfusion metrics in healthy and cirrhotic liver with pharmacokinetic modeling of high-temporal resolution reconstruction of continuously acquired free-breathing gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced acquisition in patients undergoing clinically indicated liver magnetic resonance imaging. SUBJECTS AND METHODS In this Health Insurance Portability and Accountability Act-compliant prospective study, 9 cirrhotic and 10 noncirrhotic patients underwent clinical magnetic resonance imaging, which included continuously acquired radial stack-of-stars 3-dimensional gradient recalled echo sequence with golden-angle ordering scheme in free breathing during contrast injection. A total of 1904 radial spokes were acquired continuously in 318 to 340 seconds. High-temporal resolution data sets were formed by grouping 13 spokes per frame for temporal resolution of 2.2 to 2.4 seconds, which were reconstructed using the golden-angle radial sparse parallel technique that combines compressed sensing and parallel imaging. High-temporal resolution reconstructions were evaluated by a board-certified radiologist to generate gadolinium concentration-time curves in the aorta (arterial input function), portal vein (venous input function), and liver, which were fitted to dual-input dual-compartment model to estimate liver perfusion metrics that were compared between cirrhotic and noncirrhotic livers. RESULTS The cirrhotic livers had significantly lower total plasma flow (70.1 ± 10.1 versus 103.1 ± 24.3 mL/min per 100 mL; P < 0.05), lower portal venous flow (33.4 ± 17.7 versus 89.9 ± 20.8 mL/min per 100 mL; P < 0.05), and higher arterial perfusion fraction (52.0% ± 23.4% versus 12.4% ± 7.1%; P < 0.05). The mean transit time was higher in the cirrhotic livers (24.4 ± 4.7 versus 15.7 ± 3.4 seconds; P < 0.05), and the hepatocellular uptake rate was lower (3.03 ± 2.1 versus 6.53 ± 2.4 100/min; P < 0.05). CONCLUSIONS Liver perfusion metrics can be estimated from free-breathing dynamic acquisition performed for every clinical examination without additional contrast injection or time. This is a novel paradigm for dynamic liver imaging.
Collapse
|
448
|
Lin JM, Patterson AJ, Chang HC, Gillard JH, Graves MJ. An iterative reduced field-of-view reconstruction for periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) MRI. Med Phys 2015; 42:5757-67. [DOI: 10.1118/1.4929560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
449
|
Yang Y, Liu F, Jin Z, Crozier S. Aliasing Artefact Suppression in Compressed Sensing MRI for Random Phase-Encode Undersampling. IEEE Trans Biomed Eng 2015; 62:2215-23. [DOI: 10.1109/tbme.2015.2419372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
450
|
Wu Z, Han F, Hu P, Nayak KS. Anisotropic field-of-view support for golden angle radial imaging. Magn Reson Med 2015; 76:229-36. [PMID: 26301363 DOI: 10.1002/mrm.25898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 07/26/2015] [Accepted: 07/27/2015] [Indexed: 12/15/2022]
Abstract
PURPOSE To provide anisotropic field-of-view (FOV) support for golden angle radial imaging. THEORY AND METHODS In radial imaging, uniform spoke density leads to a circular FOV, which is excessive for objects with anisotropic dimensions. Larson et al previously showed that the angular k-space spoke density can be determined by the desired anisotropic FOV. We show that conventional golden angle sampling can be deployed in an angle-normalized space and transformed back to k-space such that the desired nonuniform spoke density is preserved for arbitrary temporal window length. Elliptical FOVs were used to illustrate this generalized mapping approach. Point-spread-function and spoke density analysis was performed. Phantom and in vivo cardiac images were acquired. RESULTS Simulations, phantom, and in vivo experiments confirmed that the proposed method is able to achieve anisotropic FOV while still maintaining the benefits of golden angle sampling. This approach requires 50% less spokes for elliptical FOV with major-to-minor-axis ratio of 1:0.3, when compared with isotropic FOV with the same undersampling factor. CONCLUSION We demonstrate a simple method for applying golden angle view ordering to anisotropic FOV radial imaging. This can reduce imaging time for objects with anisotropic dimensions while still allowing arbitrary temporal window selection. Magn Reson Med 76:229-236, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ziyue Wu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA.,Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California, USA
| | - Fei Han
- Department of Radiological Sciences, University of California, Los Angeles, California, USA
| | - Peng Hu
- Department of Radiological Sciences, University of California, Los Angeles, California, USA
| | - Krishna S Nayak
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|