401
|
Jeong KY, Lee C, Cho JH, Kang JH, Na HS. New method of manganese-enhanced Magnetic Resonance Imaging (MEMRI) for rat brain research. Exp Anim 2012; 61:157-64. [PMID: 22531731 DOI: 10.1538/expanim.61.157] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Manganese (Mn(2+))-enhanced MRI (MEMRI) is known to provide insight into functional and anatomical biology. However, this method, which uses Mn(2+) as a MRI-detectable contrast agent, has drawbacks such as the toxicity to cells beyond a certain level of Mn(2+). In this study, we attempt to determine a new method of ICV administration, the optimal concentration of administered Mn(2+) and the optimal MEMRI acquisition time following administration. Male Sprague-Dawley rats were used in the following experimental sessions: (1) intracerebroventricular (ICV) cannula implantation in the region of the cisterna magna, (2) serial dilution of MnCl(2) (20-80 mM), (3) ICV administration of MnCl(2) through the cannula, and (4) T(1)-weighted MRI measurements. We confirmed that cannula implantation in the region of the cisterna magna was a new ICV injection method for the administration of a contrast agent. The optimal concentration for MEMRI was 20/50 mM/µl of MnCl(2). The MEMRI data acquired at different time points indicate that most signal enhancement is maintained during 14-48 h after contrast agent injection, and 24 h was the optimal time to acquire images of the rat brain. The present study offers optimized parameters for contrast agent injection that would be a good basis for studies using MEMRI to research the rat brain.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- Neuroscience Research Institute and Department of Biotechnology and Science, Korea University College of Medicine, Seoul 136-705, Republic of Korea
| | | | | | | | | |
Collapse
|
402
|
Jørgensen JT, Rief M, Brismar TB, Wagner M, Albiin N. A new manganese-based oral contrast agent (CMC-001) for liver MRI: pharmacological and pharmaceutical aspects. Acta Radiol 2012; 53:707-13. [PMID: 22821959 DOI: 10.1258/ar.2012.120034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Manganese is one of the most abundant metals on earth and is found as a component of more than 100 different minerals. Besides being an essential trace element in relation to the metabolic processes in the body, manganese is also a paramagnetic metal that possesses similar characteristics to gadolinium with regards to T1-weighted (T1-w) magnetic resonance imaging (MRI). Manganese, in the form of manganese (II) chloride tetrahydrate, is the active substance in a new targeted oral contrast agent, currently known as CMC-001, indicated for hepatobiliary MRI. Under physiological circumstances manganese is poorly absorbed from the intestine after oral intake, but by the use of specific absorption promoters, L-alanine and vitamin D(3), it is possible to obtain a sufficiently high concentration in the liver in order to achieve a significant signal enhancing effect. In the liver manganese is exposed to a very high first-pass effect, up to 98%, which prevents the metal from reaching the systemic circulation, thereby reducing the number of systemic side-effects. Manganese is one of the least toxic trace elements, and due to its favorable safety profile it may be an attractive alternative to gadolinium-based contrast agents for patients undergoing an MRI evaluation for liver metastases in the future. In this review the basic pharmacological and pharmaceutical aspects of this new targeted oral hepatobiliary specific contrast agent will be discussed.
Collapse
Affiliation(s)
| | - Matthias Rief
- Department of Radiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Torkel B Brismar
- Department of Radiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Moritz Wagner
- Department of Radiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Nils Albiin
- Department of Radiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
403
|
Golbabaei F, Seyedsomea M, Ghahri A, Shirkhanloo H, Khadem M, Hassani H, Sadeghi N, Dinari B. Assessment of welders exposure to carcinogen metals from manual metal arc welding in gas transmission pipelines, iran. IRANIAN JOURNAL OF PUBLIC HEALTH 2012; 41:61-70. [PMID: 23113226 PMCID: PMC3469034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 06/25/2012] [Indexed: 11/14/2022]
Abstract
BACKGROUND Welding can produce dangerous fumes containing various metals especially carcinogenic ones. Occupational exposure to welding fumes is associated with lung cancer. Therefore, welders in Gas Transmission Pipelines are known as a high-risk group. This study was designed to determinate the amounts of metals Cr, Ni, and Cd in breathing zone and urine of welders and to assess the possibility of introducing urinary metals as a biomarker due to occupational exposure. METHODS In this cross sectional study, 94 individuals from Gas Transmission Pipelines welders, Iran, Borujen in 2011 were selected and classified into 3 groups including Welders, Back Welders and Assistances. The sampling procedures were performed according to NIOSH 7300 for total chromium, nickel, and cadmium and NIOSH 7600 for Cr+6. For all participants urine samples were collected during the entire work shift and metals in urine were determined according to NIOSH 8310. RESULTS Back Welders and Assistances groups had maximum and minimum exposure to total fume and its elements, respectively. In addition, results showed that there are significant differences (P<0.05) between Welders and Back Welders with Assistances group in exposure with total fume and elements except Ni. Urinary concentrations of three metals including Cr, Cd and Ni among all welders were about 4.5, 12 and 14-fold greater than those detected in controls, respectively. Weak correlations were found between airborne and urinary metals concentrations (R2: Cr=0.45, Cd=0.298, Ni=0.362). CONCLUSION Urinary metals concentrations could not be considerate as a biomarker for welders' exposure assessment.
Collapse
Affiliation(s)
- F Golbabaei
- Dept. of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - M Seyedsomea
- Dept. of HSE, science and research branch, Islamic Azad University, Tehran, Iran
| | - A Ghahri
- Dept. of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - H Shirkhanloo
- Iranian Petroleum Industry Health Research Institute (IPIHRI), Tehran, Iran
| | - M Khadem
- Dept. of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - H Hassani
- Dept. of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - N Sadeghi
- Dept. of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - B Dinari
- HSEQ Department, Iranian Gas engineering and development Company, Tehran, Iran
| |
Collapse
|
404
|
|
405
|
Jacobs KE, Behera D, Rosenberg J, Gold G, Moseley M, Yeomans D, Biswal S. Oral manganese as an MRI contrast agent for the detection of nociceptive activity. NMR IN BIOMEDICINE 2012; 25:563-569. [PMID: 22447731 DOI: 10.1002/nbm.1773] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 06/20/2011] [Accepted: 06/22/2011] [Indexed: 05/31/2023]
Abstract
The ability of divalent manganese to enter neurons via calcium channels makes manganese an excellent MRI contrast agent for the imaging of nociception, the afferent neuronal encoding of pain perception. There is growing evidence that nociceptive neurons possess increased expression and activity of calcium channels, which would allow for the selective accumulation of manganese at these sites. In this study, we show that oral manganese chloride leads to increased enhancement of peripheral nerves involved in nociception on T(1)-weighted MRI. Oral rather than intravenous administration was chosen for its potentially better safety profile, making it a better candidate for clinical translation with important applications, such as pain diagnosis, therapy and research. The spared nerve injury (SNI) model of neuropathic pain was used for the purposes of this study. SNI rats were given, sequentially, increasing amounts of manganese chloride (lowest, 2.29 mg/100 g weight; highest, 20.6 mg/100 g weight) with alanine and vitamin D(3) by oral gavage. Compared with controls, SNI rats demonstrated increased signal-to-background ratios on T(1)-weighted fast spin echo MRI, which was confirmed by and correlated strongly with spectrometry measurements of nerve manganese concentration. We also found the difference between SNI and control rats to be greater at 48 h than at 24 h after dosing, indicating increased manganese retention in addition to increased manganese uptake in nociceptive nerves. This study demonstrates that oral manganese is a viable method for the imaging of nerves associated with increased nociceptive activity.
Collapse
Affiliation(s)
- Kathleen E Jacobs
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
406
|
Bornhorst J, Wehe CA, Hüwel S, Karst U, Galla HJ, Schwerdtle T. Impact of manganese on and transfer across blood-brain and blood-cerebrospinal fluid barrier in vitro. J Biol Chem 2012; 287:17140-17151. [PMID: 22457347 DOI: 10.1074/jbc.m112.344093] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Manganese occupational and dietary overexposure has been shown to result in specific clinical central nervous system syndromes, which are similar to those observed in Parkinson disease. To date, modes of neurotoxic action of Mn are still to be elucidated but are thought to be strongly related to Mn accumulation in brain and oxidative stress. However, the pathway and the exact process of Mn uptake in the brain are yet not fully understood. Here, two well characterized primary porcine in vitro models of the blood-brain and the blood-cerebrospinal fluid (CSF) barrier were applied to assess the transfer of Mn in the brain while monitoring its effect on the barrier properties. Thus, for the first time effects of MnCl(2) on the integrity of these two barriers as well as Mn transfer across the respective barriers are compared in one study. The data reveal a stronger Mn sensitivity of the in vitro blood-CSF barrier compared with the blood-brain barrier. Very interestingly, the negative effects of Mn on the structural and functional properties of the highly Mn-sensitive blood-CSF barrier were partly reversible after incubation with calcium. In summary, both the observed stronger Mn sensitivity of the in vitro blood-CSF barrier and the observed site-directed, most probably active, Mn transport toward the brain facing compartment, reveal that, in contrast to the general assumption in literature, after oral Mn intake the blood-CSF barrier might be the major route for Mn into the brain.
Collapse
Affiliation(s)
- Julia Bornhorst
- Graduate School of Chemistry, the University of Münster, 48149 Münster, Germany; Institute of Food Chemistry, the University of Münster, 48149 Münster, Germany
| | - Christoph A Wehe
- Institute of Inorganic and Analytical Chemistry, the University of Münster, 48149 Münster, Germany
| | - Sabine Hüwel
- Institute of Biochemistry, the University of Münster, 48149 Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, the University of Münster, 48149 Münster, Germany
| | - Hans-Joachim Galla
- Institute of Biochemistry, the University of Münster, 48149 Münster, Germany
| | - Tanja Schwerdtle
- Institute of Food Chemistry, the University of Münster, 48149 Münster, Germany.
| |
Collapse
|
407
|
Zheng G, Chen J, Zheng W. Relative contribution of CTR1 and DMT1 in copper transport by the blood-CSF barrier: implication in manganese-induced neurotoxicity. Toxicol Appl Pharmacol 2012; 260:285-93. [PMID: 22465424 DOI: 10.1016/j.taap.2012.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/07/2012] [Accepted: 03/12/2012] [Indexed: 12/14/2022]
Abstract
The homeostasis of copper (Cu) in the cerebrospinal fluid (CSF) is partially regulated by the Cu transporter-1 (CTR1) and divalent metal transporter-1 (DMT1) at the blood-CSF barrier (BCB) in the choroid plexus. Data from human and animal studies suggest an increased Cu concentration in blood, CSF, and brains following in vivo manganese (Mn) exposure. This study was designed to investigate the relative role of CTR1 and DMT1 in Cu transport under normal or Mn-exposed conditions using an immortalized choroidal Z310 cell line. Mn exposure in vitro resulted in an increased cellular 64Cu uptake and the up-regulation of both CTR1 and DMT1. Knocking down CTR1 by siRNA counteracted the Mn-induced increase of 64Cu uptake, while knocking down DMT1 siRNA resulted in an increased cellular 64Cu uptake in Mn-exposed cells. To distinguish the roles of CTR1 and DMT1 in Cu transport, the Z310 cell-based tetracycline (Tet)-inducible CTR1 and DMT1 expression cell lines were developed, namely iZCTR1 and iZDMT1 cells, respectively. In iZCTR1 cells, Tet induction led to a robust increase (25 fold) of 64Cu uptake with the time course corresponding to the increased CTR1. Induction of DMT1 by Tet in iZDMT1 cells, however, resulted in only a slight increase of 64Cu uptake in contrast to a substantial increase in DMT1 mRNA and protein expression. These data indicate that CTR1, but not DMT1, plays an essential role in transporting Cu by the BCB in the choroid plexus. Mn-induced cellular overload of Cu at the BCB is due, primarily, to Mn-induced over-expression of CTR1.
Collapse
Affiliation(s)
- Gang Zheng
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
408
|
Kueny-Stotz M, Garofalo A, Felder-Flesch D. Manganese-Enhanced MRI Contrast Agents: From Small Chelates to Nanosized Hybrids. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201101163] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
409
|
Tuschl K, Clayton P, Gospe S, Gulab S, Ibrahim S, Singhi P, Aulakh R, Ribeiro R, Barsottini O, Zaki M, Del Rosario M, Dyack S, Price V, Rideout A, Gordon K, Wevers R, “Kling” Chong W, Mills P. Syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia caused by mutations in SLC30A10, a manganese transporter in man. Am J Hum Genet 2012; 90:457-66. [PMID: 22341972 DOI: 10.1016/j.ajhg.2012.01.018] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/01/2012] [Accepted: 01/25/2012] [Indexed: 01/06/2023] Open
Abstract
Environmental manganese (Mn) toxicity causes an extrapyramidal, parkinsonian-type movement disorder with characteristic magnetic resonance images of Mn accumulation in the basal ganglia. We have recently reported a suspected autosomal recessively inherited syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia in cases without environmental Mn exposure. Whole-genome mapping of two consanguineous families identified SLC30A10 as the affected gene in this inherited type of hypermanganesemia. This gene was subsequently sequenced in eight families, and homozygous sequence changes were identified in all affected individuals. The function of the wild-type protein and the effect of sequence changes were studied in the manganese-sensitive yeast strain Δpmr1. Expressing human wild-type SLC30A10 in the Δpmr1 yeast strain rescued growth in high Mn conditions, confirming its role in Mn transport. The presence of missense (c.266T>C [p.Leu89Pro]) and nonsense (c.585del [p.Thr196Profs(∗)17]) mutations in SLC30A10 failed to restore Mn resistance. Previously, SLC30A10 had been presumed to be a zinc transporter. However, this work has confirmed that SLC30A10 functions as a Mn transporter in humans that, when defective, causes Mn accumulation in liver and brain. This is an important step toward understanding Mn transport and its role in neurodegenerative processes.
Collapse
|
410
|
Differential toxicity of Mn2+ and Mn3+ to rat liver tissues: Oxidative damage, membrane fluidity and histopathological changes. ACTA ACUST UNITED AC 2012; 64:197-203. [DOI: 10.1016/j.etp.2010.08.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/27/2010] [Accepted: 08/10/2010] [Indexed: 12/23/2022]
|
411
|
Drahoš B, Lukeš I, Tóth É. Manganese(II) Complexes as Potential Contrast Agents for MRI. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201101336] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
412
|
Protective effects of ebselen (Ebs) and para-aminosalicylic acid (PAS) against manganese (Mn)-induced neurotoxicity. Toxicol Appl Pharmacol 2012; 258:394-402. [DOI: 10.1016/j.taap.2011.12.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 11/28/2011] [Accepted: 12/01/2011] [Indexed: 11/23/2022]
|
413
|
Shazeeb MS, Sotak CH. Dose dependence and temporal evolution of the T1 relaxation time and MRI contrast in the rat brain after subcutaneous injection of manganese chloride. Magn Reson Med 2012; 68:1955-62. [PMID: 22294279 DOI: 10.1002/mrm.24184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 11/05/2011] [Accepted: 01/05/2012] [Indexed: 12/29/2022]
Abstract
Divalent manganese ion (Mn(2+)) is a widely used T(1) contrast agent in manganese-enhanced MRI studies to visualize functional neural tracts and anatomy in the brain in vivo. In animal studies, Mn(2+) is administered at a dose that will maximize the contrast, while minimizing its toxic effects. In rodents, systemic administration of Mn(2+) via intravenous injection has been shown to create unique MRI contrast in the brain at a maximum dose of 175 mg kg(-1). However, intravenous administration of Mn(2+) results in faster bioelimination of excess Mn(2+) from the plasma due to a steep concentration gradient between plasma and bile. By contrast, following subcutaneous injection (LD(50) value = 320 mg kg(-1)), Mn(2+) is released slowly into the bloodstream, thus avoiding immediate hepatic elimination resulting in prolonged accumulation of Mn(2+) in the brain via the choroid plexus than that obtained via intravenous administration. The goal of this study was to investigate MRI dose response of Mn(2+) in rat brain following subcutaneous administration of Mn(2+). Dose dependence and temporal dynamics of Mn(2+) after subcutaneous injection can prove useful for longitudinal in vivo studies that require brain enhancement to persist for a long period of time to visualize neuroarchitecture like in neurodegenerative disease studies.
Collapse
Affiliation(s)
- Mohammed Salman Shazeeb
- Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| | | |
Collapse
|
414
|
Silva AC. Using manganese-enhanced MRI to understand BOLD. Neuroimage 2012; 62:1009-13. [PMID: 22245640 DOI: 10.1016/j.neuroimage.2012.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 12/12/2011] [Accepted: 01/01/2012] [Indexed: 10/14/2022] Open
Abstract
The 1990s were designated "The Decade of the Brain" by U.S. Congress, perhaps in great anticipation of the impact that functional neuroimaging techniques would have on advancing our understanding of how the brain is functionally organized. While it is impossible to overestimate the impact of functional MRI in neuroscience, many aspects of the blood oxygenation level-dependent (BOLD) contrast remain poorly understood, in great part due to the complex relationship between neural activity and hemodynamic changes. To better understand such relationship, it is important to probe neural activity independently. Manganese-enhanced MRI (MEMRI), when used to monitor neural activity, is a technique that uses the divalent manganese ion, Mn(2+), as a surrogate measure of calcium influx. A major advantage of using Mn(2+) as a functional marker is that the contrast obtained is directly related to the accumulation of the ion in excitable cells in an activity dependent manner. As such, the contrast in MEMRI is more directly related to neural activity then hemodynamic-based fMRI techniques. In the present work, the early conceptualization of MEMRI is reviewed, and the comparative experiments that have helped provide a better understanding of the spatial specificity of BOLD signal changes in the cortex is discussed.
Collapse
Affiliation(s)
- Afonso C Silva
- Cerebral Microcirculation Unit, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1065, USA.
| |
Collapse
|
415
|
Lehallier B, Coureaud G, Maurin Y, Bonny JM. Effects of manganese injected into rat nostrils: implications for in vivo functional study of olfaction using MEMRI. Magn Reson Imaging 2012; 30:62-9. [DOI: 10.1016/j.mri.2011.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/05/2011] [Accepted: 08/13/2011] [Indexed: 10/15/2022]
|
416
|
Zhen Z, Xie J. Development of manganese-based nanoparticles as contrast probes for magnetic resonance imaging. Am J Cancer Res 2012; 2:45-54. [PMID: 22272218 PMCID: PMC3263515 DOI: 10.7150/thno.3448] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 10/02/2011] [Indexed: 12/17/2022] Open
Abstract
MRI is one of the most important imaging tools in clinics. It interrogates nuclei of atoms in a living subject, providing detailed delineation with high spatial and temporal resolutions. To compensate the innate low sensitivity, MRI contrast probes were developed and widely used. These are typically paramagnetic or superparamagnetic materials, functioning by reducing relaxation times of nearby protons. Previously, gadolinium(Gd)-based T1 contrast probes were dominantly used. However, it was found recently that their uses are occasionally associated with nephrogenic system fibrosis (NSF), which suggests a need of finding alternatives. Among the efforts, manganese-containing nanoparticles have attracted much attention. By careful engineering, manganese nanoparticles with comparable r1 relaxivities can be yielded. Moreover, other functionalities, be a targeting motif, a therapeutic agent or a second imaging component, can be loaded onto these nanoparticles, resulting in multifunctional nanoplatforms.
Collapse
|
417
|
|
418
|
Mok SI, Munasinghe JP, Young WS. Infusion-based manganese-enhanced MRI: a new imaging technique to visualize the mouse brain. Brain Struct Funct 2012; 217:107-14. [PMID: 21597966 PMCID: PMC3242156 DOI: 10.1007/s00429-011-0324-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 04/28/2011] [Indexed: 12/17/2022]
Abstract
Manganese-enhanced magnetic resonance imaging is a technique that employs the divalent ion of the paramagnetic metal manganese (Mn(2+)) as an effective contrast agent to visualize, in vivo, the mammalian brain. As total achievable contrast is directly proportional to the net amount of Mn(2+) accumulated in the brain, there is a great interest in optimizing administration protocols to increase the effective delivery of Mn(2+) to the brain while avoiding the toxic effects of Mn(2+) overexposure. In this study, we investigated outcomes following continuous slow systemic infusion of manganese chloride (MnCl(2)) into the mouse via mini-osmotic pump administration. The effects of increasing fractionated rates of Mn(2+) infusion on signal enhancement in regions of the brain were analyzed in a three-treatment study. We acquired whole-brain 3-D T1-weighted images and performed region of interest quantitative analysis to compare mean normalized signal in Mn(2+) treatments spanning 3, 7, or 14 days of infusion (rates of 1, 0.5, and 0.25 μL/h, respectively). Evidence of Mn(2+) transport at the conclusion of each infusion treatment was observed throughout the brains of normally behaving mice. Regions of particular Mn(2+) accumulation include the olfactory bulbs, cortex, infralimbic cortex, habenula, thalamus, hippocampal formation, amygdala, hypothalamus, inferior colliculus, and cerebellum. Signals measured at the completion of each infusion treatment indicate comparable means for all examined fractionated rates of Mn(2+) infusion. In this current study, we achieved a significantly higher dose of Mn(2+) (180 mg/kg) than that employed in previous studies without any observable toxic effects on animal physiology or behavior.
Collapse
Affiliation(s)
- Stephanie I Mok
- Section on Neural Gene Expression, National Institute of Mental Health, National Institutes of Health, DHHS, 9000 Rockville Pike, Building 49, Room 5A51, Bethesda, MD 20892-4483, USA
| | | | | |
Collapse
|
419
|
Xu W, Kattel K, Park JY, Chang Y, Kim TJ, Lee GH. Paramagnetic nanoparticle T1 and T2 MRI contrast agents. Phys Chem Chem Phys 2012; 14:12687-700. [DOI: 10.1039/c2cp41357d] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
420
|
Gaynor D, Griffith DM. The prevalence of metal-based drugs as therapeutic or diagnostic agents: beyond platinum. Dalton Trans 2012; 41:13239-57. [DOI: 10.1039/c2dt31601c] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
421
|
Lebda MA, El-Neweshy MS, El-Sayed YS. Neurohepatic toxicity of subacute manganese chloride exposure and potential chemoprotective effects of lycopene. Neurotoxicology 2012; 33:98-104. [DOI: 10.1016/j.neuro.2011.12.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 11/28/2011] [Accepted: 12/08/2011] [Indexed: 12/22/2022]
|
422
|
Madejczyk MS, Ballatori N. The iron transporter ferroportin can also function as a manganese exporter. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:651-7. [PMID: 22178646 DOI: 10.1016/j.bbamem.2011.12.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 11/28/2011] [Accepted: 12/02/2011] [Indexed: 01/13/2023]
Abstract
The present study examined the hypothesis that the iron exporter ferroportin (FPN1/SLC40A1) can also mediate cellular export of the essential trace element manganese, using Xenopus laevis oocytes expressing human FPN1. When compared to oocytes expressing only the divalent metal transporter-1 (DMT1/NRAMP2), (54)Mn accumulation was lower in oocytes also expressing FPN1. FPN1-expressing oocytes exported more (54)Mn than control oocytes (26.6±0.6% versus 7.1±0.5%, respectively, over 4h at pH 7.4 when preloaded with approximately 16μM (54)Mn); however, there was no difference in (54)Mn uptake between control and FPN1-expressing oocytes. FPN1-mediated Mn export was concentration dependent and could be partially cis-inhibited by 100μM Fe, Co, and Ni, but not by Rb. In addition, Mn export ability was significantly reduced when the extracellular pH was reduced from 7.4 to 5.5, and when Na(+) was substituted with K(+) in the incubation media. These results indicate that Mn is a substrate for FPN1, and that this export process is inhibited by a low extracellular pH and by incubation in a high K(+) medium, indicating the involvement of transmembrane ion gradients in FPN1-mediated transport.
Collapse
Affiliation(s)
- Michael S Madejczyk
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA.
| | | |
Collapse
|
423
|
Santos D, Milatovic D, Andrade V, Batoreu MC, Aschner M, Marreilha dos Santos AP. The inhibitory effect of manganese on acetylcholinesterase activity enhances oxidative stress and neuroinflammation in the rat brain. Toxicology 2011; 292:90-8. [PMID: 22154916 DOI: 10.1016/j.tox.2011.11.017] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/22/2011] [Accepted: 11/24/2011] [Indexed: 01/18/2023]
Abstract
BACKGROUND Manganese (Mn) is a naturally occurring element and an essential nutrient for humans and animals. However, exposure to high levels of Mn may cause neurotoxic effects. The pathological mechanisms associated with Mn neurotoxicity are poorly understood, but several reports have established it is mediated, at least in part, by oxidative stress. OBJECTIVES The present study was undertaken to test the hypothesis that a decrease in acetylcholinesterase (AChE) activity mediates Mn-induced neurotoxicity. METHODS Groups of 6 rats received 4 or 8 intraperitoneal (i.p.) injections of 25mg MnCl(2)/kg/day, every 48 h. Twenty-four hours after the last injection, brain AChE activity and the levels of F(2)-isoprostanes (F(2)-IsoPs) and F(4)-neuroprostanes (F(4)-NPs) (biomarkers of oxidative stress), as well as prostaglandin E(2) (PGE(2)) (biomarker of neuroinflammation) were analyzed. RESULTS The results showed that after either 4 or 8 Mn doses, brain AChE activity was significantly decreased (p<0.05), to 60 ± 16% and 55 ± 13% of control levels, respectively. Both treated groups exhibited clear signs of neurobehavioral toxicity, characterized by a significant (p<0.001) decrease in ambulation and rearings in open-field. Furthermore, Mn treatment caused a significant increase (p<0.05) in brain F(2)-IsoPs and PGE(2) levels, but only after 8 doses. In rats treated with 4 Mn doses, a significant increase (p<0.05) in brain F(4)-NPs levels was found. To evaluate cellular responses to oxidative stress, we assessed brain nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) and Mn-superoxide dismutase (Mn-SOD, SOD2) protein expression levels. A significant increase in Mn-SOD protein expression (p<0.05) and a trend towards increased Nrf2 protein expression was noted in rat brains after 4 Mn doses vs. the control group, but the expression of these proteins was decreased after 8 Mn doses. Taken together, these results suggest that the inhibitory effect of Mn on AChE activity promotes increased levels of neuronal oxidative stress and neuroinflammatory biomarkers.
Collapse
Affiliation(s)
- Dinamene Santos
- I-Med.UL, Department of Toxicology and Food Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
424
|
Regulation of brain iron and copper homeostasis by brain barrier systems: implication in neurodegenerative diseases. Pharmacol Ther 2011; 133:177-88. [PMID: 22115751 DOI: 10.1016/j.pharmthera.2011.10.006] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 10/27/2011] [Indexed: 12/21/2022]
Abstract
Iron (Fe) and copper (Cu) are essential to neuronal function; excess or deficiency of either is known to underlie the pathoetiology of several commonly known neurodegenerative disorders. This delicate balance of Fe and Cu in the central milieu is maintained by the brain barrier systems, i.e., the blood-brain barrier (BBB) between the blood and brain interstitial fluid and the blood-cerebrospinal fluid barrier (BCB) between the blood and cerebrospinal fluid (CSF). This review provides a concise description on the structural and functional characteristics of the brain barrier systems. Current understanding of Fe and Cu transport across the brain barriers is thoroughly examined, with major focuses on whether the BBB and BCB coordinate the direction of Fe and Cu fluxes between the blood and brain/CSF. In particular, the mechanism by which pertinent metal transporters in the barriers, such as the transferrin receptor (TfR), divalent metal transporter (DMT1), copper transporter (CTR1), ATP7A/B, and ferroportin (FPN), regulate metal movement across the barriers is explored. Finally, the detrimental consequences of dysfunctional metal transport by brain barriers, as a result of endogenous disorders or exogenous insults, are discussed. Understanding the regulation of Fe and Cu homeostasis in the central nervous system aids in the design of new drugs targeted on the regulatory proteins at the brain barriers for the treatment of metal's deficiency or overload-related neurological diseases.
Collapse
|
425
|
Fordahl S, Cooney P, Qiu Y, Xie G, Jia W, Erikson KM. Waterborne manganese exposure alters plasma, brain, and liver metabolites accompanied by changes in stereotypic behaviors. Neurotoxicol Teratol 2011; 34:27-36. [PMID: 22056924 DOI: 10.1016/j.ntt.2011.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 10/11/2011] [Accepted: 10/12/2011] [Indexed: 12/12/2022]
Abstract
Overexposure to waterborne manganese (Mn) is linked with cognitive impairment in children and neurochemical abnormalities in other experimental models. In order to characterize the threshold between Mn-exposure and altered neurochemistry, it is important to identify biomarkers that positively correspond with brain Mn-accumulation. The objective of this study was to identify Mn-induced alterations in plasma, liver, and brain metabolites using liquid/gas chromatography-time of flight-mass spectrometry metabolomic analyses; and to monitor corresponding Mn-induced behavior changes. Weanling Sprague-Dawley rats had access to deionized drinking water either Mn-free or containing 1g Mn/L for 6 weeks. Behaviors were monitored during the sixth week for a continuous 24h period while in a home cage environment using video surveillance. Mn-exposure significantly increased liver, plasma, and brain Mn concentrations compared to control, specifically targeting the globus pallidus (GP). Mn significantly altered 98 metabolites in the brain, liver, and plasma; notably shifting cholesterol and fatty acid metabolism in the brain (increased oleic and palmitic acid; 12.57 and 15.48 fold change (FC), respectively), and liver (increased oleic acid, 14.51 FC; decreased hydroxybutyric acid, -14.29 FC). Additionally, Mn-altered plasma metabolites homogentisic acid, chenodeoxycholic acid, and aspartic acid correlated significantly with GP and striatal Mn. Total distance traveled was significantly increased and positively correlated with Mn-exposure, while nocturnal stereotypic and exploratory behaviors were reduced with Mn-exposure and performed largely during the light cycle compared to unexposed rats. These data provide putative biomarkers for Mn-neurotoxicity and suggest that Mn disrupts the circadian cycle in rats.
Collapse
Affiliation(s)
- Steve Fordahl
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA
| | | | | | | | | | | |
Collapse
|
426
|
Intranasal administration of neurotoxicants in animals: support for the olfactory vector hypothesis of Parkinson's disease. Neurotox Res 2011; 21:90-116. [PMID: 22002807 DOI: 10.1007/s12640-011-9281-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/20/2011] [Accepted: 09/27/2011] [Indexed: 12/11/2022]
Abstract
The causes of Parkinson's disease (PD) are unknown, but there is evidence that exposure to environmental agents, including a number of viruses, toxins, agricultural chemicals, dietary nutrients, and metals, is associated with its development in some cases. The presence of smell loss and the pathological involvement of the olfactory pathways in the early stages of PD are in accord with the tenants of the olfactory vector hypothesis. This hypothesis postulates that some forms of PD may be caused or catalyzed by environmental agents that enter the brain via the olfactory mucosa. In this article, we provide an overview of evidence implicating xenobiotics agents in the etiology of PD and review animal, mostly rodent, studies in which toxicants have been introduced into the nose in an attempt to induce behavioral or neurochemical changes similar to those seen in PD. The available data suggest that this route of exposure results in highly variable outcomes, depending upon the involved xenobiotic, exposure history, and the age and species of the animals tested. Some compounds, such as rotenone, paraquat, and 6-hydroxydopamine, have limited capacity to reach and damage the nigrostriatal dopaminergic system via the intranasal route. Others, such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), readily enter the brain via this route in some species and influence the function of the nigrostriatal pathway. Intranasal infusion of MPTP in some rodents elicits a developmental sequence of behavioral and neurochemical changes that closely mimics that seen in PD. For this reason, such an MPTP rodent model appears to be an ecologically valid means for assessing novel palliative treatments for both the motor and non-motor symptoms of PD. More research is needed, however, on this and other ecologically valid models.
Collapse
|
427
|
Gou C, Wu H, Jiang S, Yi C, Luo J, Liu X. A Highly Selective Colorimetric Chemosensor for Mn2+Based on Bis(N-salicylidene)ethylenediamine in Pure Aqueous Solution. CHEM LETT 2011. [DOI: 10.1246/cl.2011.1082] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
428
|
Hernández RB, Farina M, Espósito BP, Souza-Pinto NC, Barbosa F, Suñol C. Mechanisms of Manganese-Induced Neurotoxicity in Primary Neuronal Cultures: The Role of Manganese Speciation and Cell Type. Toxicol Sci 2011; 124:414-23. [DOI: 10.1093/toxsci/kfr234] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
429
|
Leggett RW. A biokinetic model for manganese. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:4179-86. [PMID: 21802707 DOI: 10.1016/j.scitotenv.2011.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/29/2011] [Accepted: 07/01/2011] [Indexed: 05/07/2023]
Abstract
The International Commission on Radiological Protection (ICRP) is updating its biokinetic models used to derive dose coefficients and assess bioassay data for intake of radionuclides. This paper reviews biokinetic data for manganese and proposes a biokinetic model for systemic manganese in adult humans. The proposed model provides a more detailed and physiologically meaningful description of the behavior of absorbed manganese in the body than the current ICRP model. The proposed model and current ICRP model yield broadly similar estimates of dose per unit activity of inhaled or ingested radio-manganese but differ substantially with regard to interpretation of bioassay data. The model is intended primarily for use in radiation protection but can also serve as a baseline model for evaluation of potentially excessive intakes of stable manganese in occupational settings.
Collapse
Affiliation(s)
- R W Leggett
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
430
|
Abstract
BACKGROUND Manganese encephalopathy is a potential complication of parenteral nutrition. Lack of early recognition leads to unnecessary testing and to continued exposure to manganese. METHODS Case report and review of the literature. RESULTS We describe the clinical and imaging findings of a patient with manganese encephalopathy in whom the diagnosis was delayed due to lack of recognition of the characteristic imaging findings. CONCLUSION Manganese encephalopathy has protean clinical and imaging findings that can easily be overlooked.
Collapse
|
431
|
Martin DP, Anantharam V, Jin H, Witte T, Houk R, Kanthasamy A, Kanthasamy AG. Infectious prion protein alters manganese transport and neurotoxicity in a cell culture model of prion disease. Neurotoxicology 2011; 32:554-62. [PMID: 21871919 DOI: 10.1016/j.neuro.2011.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 01/26/2023]
Abstract
Protein misfolding and aggregation are considered key features of many neurodegenerative diseases, but biochemical mechanisms underlying protein misfolding and the propagation of protein aggregates are not well understood. Prion disease is a classical neurodegenerative disorder resulting from the misfolding of endogenously expressed normal cellular prion protein (PrP(C)). Although the exact function of PrP(C) has not been fully elucidated, studies have suggested that it can function as a metal binding protein. Interestingly, increased brain manganese (Mn) levels have been reported in various prion diseases indicating divalent metals also may play a role in the disease process. Recently, we reported that PrP(C) protects against Mn-induced cytotoxicity in a neural cell culture model. To further understand the role of Mn in prion diseases, we examined Mn neurotoxicity in an infectious cell culture model of prion disease. Our results show CAD5 scrapie-infected cells were more resistant to Mn neurotoxicity as compared to uninfected cells (EC(50)=428.8 μM for CAD5 infected cells vs. 211.6 μM for uninfected cells). Additionally, treatment with 300 μM Mn in persistently infected CAD5 cells showed a reduction in mitochondrial impairment, caspase-3 activation, and DNA fragmentation when compared to uninfected cells. Scrapie-infected cells also showed significantly reduced Mn uptake as measured by inductively coupled plasma-mass spectrometry (ICP-MS), and altered expression of metal transporting proteins DMT1 and transferrin. Together, our data indicate that conversion of PrP to the pathogenic isoform enhances its ability to regulate Mn homeostasis, and suggest that understanding the interaction of metals with disease-specific proteins may provide further insight to protein aggregation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Dustin P Martin
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicity, Ames, IA 50011, USA
| | | | | | | | | | | | | |
Collapse
|
432
|
Hong L, Jiang W, Pan H, Jiang Y, Zeng S, Zheng W. Brain regional pharmacokinetics of p-aminosalicylic acid and its N-acetylated metabolite: effectiveness in chelating brain manganese. Drug Metab Dispos 2011; 39:1904-9. [PMID: 21768272 DOI: 10.1124/dmd.111.040915] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
para-aminosalicylic acid (PAS; 4-amino-2-hydroxybenzoic acid), an antituberculosis drug in use since the 1950s, has recently been suggested to be an effective agent for treatment of manganese-induced parkinsonian disorders. However, the neuropharmacokinetics of PAS and its metabolite N-acetyl-para-aminosalicylic acid (AcPAS; N-acetyl-4-amino-2-hydroxybenzoic acid) are unknown. This study was designed to investigate the pharmacokinetics of PAS and its distribution in brain to help better design the dosing regimen for clinical trials. Male Sprague-Dawley rats received single femoral artery injections of PAS (200 mg/kg). Plasma, cerebrospinal fluid, and brain tissues were collected, and PAS and AcPAS concentrations were quantified by high-performance liquid chromatography. After administration, the concentrations of PAS declined rapidly in plasma with an elimination t(½) of 34 min; the metabolite AcPAS was detected in plasma and eliminated with a t(½) of 147 min. PAS and AcPAS were detected in brain tissues; AcPAS had a much higher tissue concentration and a longer t(½) than the parent PAS in most tissues examined. Although both were present in blood or tissues as free, unbound molecules, AcPAS appeared to have a higher tissue affinity than PAS. Taken together, our results suggest that a dosing regimen with continuous intravenous infusion of PAS is necessary to achieve therapeutic levels in targeted brain regions. Furthermore, PAS and AcPAS seem to be effective in reducing manganese levels in brain.
Collapse
Affiliation(s)
- Lan Hong
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | |
Collapse
|
433
|
Richman JD, Livi KJ, Geyh AS. A Scanning Transmission Electron Microscopy Method for Determining Manganese Composition in Welding Fume as a Function of Primary Particle Size. JOURNAL OF AEROSOL SCIENCE 2011; 42:408-418. [PMID: 21625364 PMCID: PMC3101895 DOI: 10.1016/j.jaerosci.2011.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Increasing evidence suggests that the physicochemical properties of inhaled nanoparticles influence the resulting toxicokinetics and toxicodynamics. This report presents a method using scanning transmission electron microscopy (STEM) to measure the Mn content throughout the primary particle size distribution of welding fume particle samples collected on filters for application in exposure and health research. Dark field images were collected to assess the primary particle size distribution and energy-dispersive X-ray and electron energy loss spectroscopy were performed for measurement of Mn composition as a function of primary particle size. A manual method incorporating imaging software was used to measure the primary particle diameter and to select an integration region for compositional analysis within primary particles throughout the size range. To explore the variation in the developed metric, the method was applied to 10 gas metal arc welding (GMAW) fume particle samples of mild steel that were collected under a variety of conditions. The range of Mn composition by particle size was -0.10 to 0.19 %/nm, where a positive estimate indicates greater relative abundance of Mn increasing with primary particle size and a negative estimate conversely indicates decreasing Mn content with size. However, the estimate was only statistically significant (p<0.05) in half of the samples (n=5), which all had a positive estimate. In the remaining samples, no significant trend was measured. Our findings indicate that the method is reproducible and that differences in the abundance of Mn by primary particle size among welding fume samples can be detected.
Collapse
Affiliation(s)
- Julie D. Richman
- Johns Hopkins Bloomberg School of Public Health, Department of Environmental Health Sciences, Baltimore, MD 21205 USA (work completed at this location)
| | - Kenneth J.T. Livi
- Johns Hopkins University, Integrated Imaging Center HRAEM Facility, Department of Earth and Planetary Sciences and Biology, Baltimore, MD 21218 USA
| | - Alison S. Geyh
- Johns Hopkins Bloomberg School of Public Health, Department of Environmental Health Sciences, Baltimore, MD 21205 USA (work completed at this location)
| |
Collapse
|
434
|
Huang P, Chen C, Wang H, Li G, Jing H, Han Y, Liu N, Xiao Y, Yu Q, Liu Y, Wang P, Shi Z, Sun Z. Manganese effects in the liver following subacute or subchronic manganese chloride exposure in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:615-622. [PMID: 20813406 DOI: 10.1016/j.ecoenv.2010.08.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 08/06/2010] [Accepted: 08/11/2010] [Indexed: 05/29/2023]
Abstract
Manganese (Mn) toxicity is most often found in mining and welding industry workers. Accumulation of manganese in the brain can result in a syndrome similar to that of Parkinson's disease. Observations on former Mn-alloy workers suggested that residual effects could last for years after exposure. The objective of this study was to assess effects of Mn in the liver of rats following subacute or subchronic exposure and after recovery. Male Sprague-Dawley rats were exposed to manganese chloride (MnCl(2)) for 30 days, 90 days, or for 90 days followed by a 30-day post-exposure recovery period. Results showed that MnCl(2) exposure resulted in liver injury in rats and the extent of injury correlated positively with exposure time. The effect in mitochondria was stronger than in the membrane or nucleus. Most of the changes in these biomarkers recovered when manganese exposure ceased.
Collapse
Affiliation(s)
- Peili Huang
- Department of Toxicology and Sanitary Chemistry, School of Public Health and Family Medicine, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
435
|
Seo Y, Takamata A, Ogino T, Morita H, Murakami M. Lateral diffusion of manganese in the rat brain determined by T(1) relaxation time measured by (1)H MRI. J Physiol Sci 2011; 61:259-66. [PMID: 21442388 PMCID: PMC10717909 DOI: 10.1007/s12576-011-0143-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 03/08/2011] [Indexed: 10/18/2022]
Abstract
In order to optimize manganese ion-enhanced MRI in thalamic and hypothalamic nuclei, we analyzed the diffusion of manganese in the brain followed by the intra-cerebroventricular application of manganese-bicine (Mn-bicine). T(1)-weighted MRI intensities, with 9-pixel ROIs in the hypothalamus perpendicular to the third ventricle, were measured during continuous infusion of Mn-bicine solution in the lateral cerebroventricle. Using a relationship between the image intensity of T(1)-weighted MRI and T(1) relaxation time, the image intensity was converted into the concentration of manganese. Assuming a simple diffusion process, the apparent diffusion coefficient (D (ap)) of manganese (4.2 × 10(-5) mm(2) s(-1)) is much lower than that of water (6 × 10(-4) mm(2) s(-1)), and the D (ap) tended to decrease when the distance from the third ventricle increased. These results suggest (1) the Mn(2+) ion is trapped by neural cells during diffusion and (2) the manganese efflux is discharged from the brain via veins.
Collapse
Affiliation(s)
- Yoshiteru Seo
- Department of Regulatory Physiology, Dokkyo Medical University School of Medicine, Tochigi, Japan.
| | | | | | | | | |
Collapse
|
436
|
Tan M, Ye Z, Jeong EK, Wu X, Parker DL, Lu ZR. Synthesis and evaluation of nanoglobular macrocyclic Mn(II) chelate conjugates as non-gadolinium(III) MRI contrast agents. Bioconjug Chem 2011; 22:931-7. [PMID: 21473650 DOI: 10.1021/bc100573t] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Because of the recent observation of the toxic side effects of Gd(III) based MRI contrast agents in patients with impaired renal function, there is strong interest on developing alternative contrast agents for MRI. In this study, macrocyclic Mn(II) chelates were conjugated to nanoglobular carriers, lysine dendrimers with a silsesquioxane core, to synthesize non-Gd(III) based MRI contrast agents. A generation 3 nanoglobular conjugate of Mn(II)-1,4,7-triaazacyclononane-1,4,7-triacetate-GA amide (G3-NOTA-Mn) was also synthesized and evaluated. The per ion T(1) and T(2) relaxivities of G2, G3, G4 nanoglobular Mn(II)-DOTA monoamide conjugates decreased with increasing generation of the carriers. The T(1) relaxivities of G2, G3, and G4 nanoglobular Mn(II)-DOTA conjugates were 3.3, 2.8, and 2.4 mM(-1) s(-1) per Mn(II) chelate at 3 T, respectively. The T(1) relaxivity of G3-NOTA-Mn was 3.80 mM(-1) s(-1) per Mn(II) chelate at 3 T. The nanoglobular macrocyclic Mn(II) chelate conjugates showed good in vivo stability and were readily excreted via renal filtration. The conjugates resulted in much less nonspecific liver enhancement than MnCl(2) and were effective for contrast-enhanced tumor imaging in nude mice bearing MDA-MB-231 breast tumor xenografts at a dose of 0.03 mmol Mn/kg. The nanoglobular macrocyclic Mn(II) chelate conjugates are promising nongadolinium based MRI contrast agents.
Collapse
Affiliation(s)
- Mingqian Tan
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | | | | | | | | | | |
Collapse
|
437
|
Verhoeven WM, Egger JI, Kuijpers HJ. Manganese and acute paranoid psychosis: a case report. J Med Case Rep 2011; 5:146. [PMID: 21486469 PMCID: PMC3090741 DOI: 10.1186/1752-1947-5-146] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 04/12/2011] [Indexed: 11/18/2022] Open
Abstract
Introduction Manganese regulates many enzymes and is essential for normal development and body function. Chronic manganese intoxication has an insidious and progressive course and usually starts with complaints of headache, fatigue, sleep disturbances, irritability and emotional instability. Later, several organ systems may be affected and, due to neurotoxicity, an atypical parkinsonian syndrome may emerge. With regard to neuropsychiatry, an array of symptoms may develop up to 30 years after intoxication, of which gait and speech abnormalities, cognitive and motor slowing, mood changes and hallucinations are the most common. Psychotic phenomena are rarely reported. Case presentation We describe the case of a 49-year-old Caucasian man working as a welder who was referred to our facility for evaluation of acute paranoid psychotic behavior. Our patient's medical history made no mention of any somatic complaints or psychiatric symptoms, and he had been involved in a professional career as a metalworker. On magnetic resonance imaging scanning of his brain, a bilateral hyperdensity of the globus pallidus, suggestive for manganese intoxication, was found. His manganese serum level was 52 to 97 nmol/L (range: 7 to 20 nmol/L). A diagnosis of organic psychotic disorder due to manganese overexposure was made. His psychotic symptoms disappeared within two weeks of treatment with low-dose risperidone. At three months later, serum manganese was decreased to slightly elevated levels and the magnetic resonance imaging T1 signal intensity was reduced. No signs of Parkinsonism were found and a definite diagnosis of manganese-induced apathy syndrome was made. Conclusion Although neuropsychiatric and neurological symptoms caused by (chronic) manganese exposure have been reported frequently in the past, in the present day the disorder is rarely diagnosed. In this report we stress that manganese intoxication can still occur, in our case in a confined-space welder, and may present clinically with a paranoid psychotic state that necessitates a rapid diagnostic procedure in order to avoid the permanent structural brain damage that may occur with chronic exposure.
Collapse
Affiliation(s)
- Willem M Verhoeven
- Vincent van Gogh Institute for Psychiatry, Centre of Excellence for Neuropsychiatry, Venray, The Netherlands.
| | | | | |
Collapse
|
438
|
Effects of magnetic resonance imaging contrast agents on human umbilical vein endothelial cells and evaluation of magnetic resonance imaging contrast media-triggered transforming growth factor-beta induction in dermal fibroblasts (HSF) as a model for nephrogenic systemic fibrosis. Invest Radiol 2011; 46:71-6. [PMID: 21139503 DOI: 10.1097/rli.0b013e31820218e9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RATIONALE AND OBJECTIVES The objective of this study was to evaluate effects of 6 commercially available magnetic resonance contrast media (CM) on human umbilical vein endothelial cells (HUVEC) and the induction of transforming growth factor-beta (TGF-β) in dermal fibroblasts (HSF) as a possible model for the pathogenesis of nephrogenic systemic fibrosis. METHODS HUVECs were incubated with 10× and 20× of the molar standard blood concentration achieved with CM applications for magnetic resonance imaging examinations (10× and 20× concentration) for 24 hours using gadolinium-based CM Gadovist, Magnevist, Multihance, and Omniscan, as well as Teslascan (Manganese-based), and Resovist (Iron-based). Proliferation kinetics (PK), colony formation, and viability assays were performed. Additionally, human dermal fibroblasts (HSF) were incubated for 24 hours with 1× and 20× concentration in all 6 CM, and TGF-β levels were assessed directly after the incubation period as well as on days 3 and 8 postincubation. RESULTS HUVEC PK data show similar gains in cell numbers for all 6 CM in both concentration groups over the 17-day assessment period. Only cells incubated with Omniscan and Teslascan differed from the other groups on days 3 and 7 postincubation (P < 0.05). After day 7, a cell regain occurred in the Omniscan and Teslascan groups reaching the numbers of the other groups in sequel. Differences in colony formation were consistent with PK results with a statistically significant reduction in clonogenic activity for Teslascan and Omniscan in HUVEC cells, P < 0.05. No reduction in viability was seen for all groups and conditions. TGF-β expression of HSF cells incubated with 1× concentration and all CM did not differ significantly from control cells for any point in time investigated. At 20× concentration directly after incubation, TGF-β was significantly reduced for the Teslascan and Resovist group as 3 compared with control and all other CM groups, P < 0.05. On day 3 postincubation, only Resovist-incubated HSF cells showed a significant reduction of TGF-β (1.614, standard deviations: 89) as compared with the control group (2.883, standard deviations: 30) and the other CM. TGF-β was slightly reduced for all CM groups 8 days after incubation (not statistically significant, P > 0.05). CONCLUSIONS After 24 hours of incubation with Omniscan and Teslascan (10× and 20× concentration), considerable short-term antiproliferative effects in HUVECs were observed. HSF cells (20× concentration) showed a reduction of TGF-β for Resovist and Teslascan directly after incubation, whereas TGF-β levels in HSF cells were slightly reduced for all CM 8 days after incubation. Therefore, TGF-β-mediated proliferative effects on fibroblasts or on collagen synthesis potentially leading to nephrogenic systemic fibrosis may mainly be triggered by tissue monocytes and macrophages in the peripheral blood instead of dermal fibroblasts.
Collapse
|
439
|
Herberholz J, Mishra SH, Uma D, Germann MW, Edwards DH, Potter K. Non-invasive imaging of neuroanatomical structures and neural activation with high-resolution MRI. Front Behav Neurosci 2011; 5:16. [PMID: 21503138 PMCID: PMC3071494 DOI: 10.3389/fnbeh.2011.00016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 03/18/2011] [Indexed: 11/13/2022] Open
Abstract
Several years ago, manganese-enhanced magnetic resonance imaging (MEMRI) was introduced as a new powerful tool to image active brain areas and to identify neural connections in living, non-human animals. Primarily restricted to studies in rodents and later adapted for bird species, MEMRI has recently been discovered as a useful technique for neuroimaging of invertebrate animals. Using crayfish as a model system, we highlight the advantages of MEMRI over conventional techniques for imaging of small nervous systems. MEMRI can be applied to image invertebrate nervous systems at relatively high spatial resolution, and permits identification of stimulus-evoked neural activation non-invasively. Since the selection of specific imaging parameters is critical for successful in vivo micro-imaging, we present an overview of different experimental conditions that are best suited for invertebrates. We also compare the effects of hardware and software specifications on image quality, and provide detailed descriptions of the steps necessary to prepare animals for successful imaging sessions. Careful consideration of hardware, software, experiments, and specimen preparation will promote a better understanding of this novel technique and facilitate future MEMRI studies in other laboratories.
Collapse
Affiliation(s)
- Jens Herberholz
- Department of Psychology, University of Maryland College Park, MD, USA
| | | | | | | | | | | |
Collapse
|
440
|
Prabhakaran K, Chapman GD, Gunasekar PG. α-Synuclein overexpression enhances manganese-induced neurotoxicity through the NF-κB-mediated pathway. Toxicol Mech Methods 2011; 21:435-43. [DOI: 10.3109/15376516.2011.560210] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
441
|
Sen S, Flynn MR, Du G, Tröster AI, An H, Huang X. Manganese accumulation in the olfactory bulbs and other brain regions of "asymptomatic" welders. Toxicol Sci 2011; 121:160-7. [PMID: 21307282 DOI: 10.1093/toxsci/kfr033] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Welding-generated metallic fumes contain a substantial amount of manganese (Mn), making welders susceptible to Mn toxicity. Although overt Mn toxicity manifests as a type of parkinsonism, the consequences of chronic, low-level Mn exposure are unknown. To explore region-specific Mn accumulation and its potential functional consequences at subclinical levels of Mn exposure, we studied seven welders without obvious neurological deficits and seven age- and gender-matched controls. Mn exposure for welders was estimated by an occupational questionnaire. High-resolution brain magnetic resonance imaging (MRI), Grooved Pegboard performance of both hands, Trail making, and olfactory function tests were obtained from all subjects. Compared with controls, the welders had a significantly higher T1 relaxation rate (R1) in the olfactory bulb (OB, p = 0.02), mean T1-weighted intensity at frontal white matter (FWM; p = 0.01), bilateral globus pallidus (GP; p = 0.03), and putamen (p = 0.03). The welders scored worse than the controls on the Grooved Pegboard test for both dominant (p = 0.06) and nondominant hand (p = 0.03). The dominant hand Grooved Pegboard scores correlated best with mean MRI intensity of FWM (R² = 0.51, p = 0.004), GP (R² = 0.51, p = 0.004), putamen (R² = 0.49, p= 0.006), and frontal gray matter (R² = 0.42, p = 0.01), whereas the nondominant hand scores correlated best with intensity of FWM (R² = 0.37, p = 0.02) and GP (R² = 0.28, p = 0.05). No statistical differences were observed in either the Trail-making test or the olfactory test between the two groups. This study suggests that Mn accumulates in OB and multiple other brain regions in "asymptomatic" welders and that MRI abnormalities correlate with fine motor but not cognitive deficits. Further investigations of subclinical Mn exposure are warranted.
Collapse
Affiliation(s)
- Suman Sen
- Department of Neurology, University of North Carolina at Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
442
|
Dydak U, Jiang YM, Long LL, Zhu H, Chen J, Li WM, Edden RAE, Hu S, Fu X, Long Z, Mo XA, Meier D, Harezlak J, Aschner M, Murdoch JB, Zheng W. In vivo measurement of brain GABA concentrations by magnetic resonance spectroscopy in smelters occupationally exposed to manganese. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:219-24. [PMID: 20876035 PMCID: PMC3040609 DOI: 10.1289/ehp.1002192] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Accepted: 09/28/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND Exposure to excessive levels of manganese (Mn) is known to induce psychiatric and motor disorders, including parkinsonian symptoms. Therefore, finding a reliable means for early detection of Mn neurotoxicity is desirable. OBJECTIVES Our goal was to determine whether in vivo brain levels of γ-aminobutyric acid (GABA), N-acetylaspartate (NAA), and other brain metabolites in male smelters were altered as a consequence of Mn exposure. METHODS We used T1-weighted magnetic resonance imaging (MRI) to visualize Mn deposition in the brain. Magnetic resonance spectroscopy (MRS) was used to quantify concentrations of NAA, glutamate, and other brain metabolites in globus pallidus, putamen, thalamus, and frontal cortex from a well-established cohort of 10 male Mn-exposed smelters and 10 male age-matched control subjects. We used the MEGA-PRESS MRS sequence to determine GABA levels in a region encompassing the thalamus and adjacent parts of the basal ganglia [GABA-VOI (volume of interest)]. RESULTS Seven of 10 exposed subjects showed clear T1-hyperintense signals in the globus pallidus indicating Mn accumulation. We found a significant increase (82%; p = 0.014) in the ratio of GABA to total creatine (GABA/tCr) in the GABA-VOI of Mn-exposed subjects, as well as a distinct decrease (9%; p = 0.04) of NAA/tCr in frontal cortex that strongly correlated with cumulative Mn exposure (R = -0.93; p < 0.001). CONCLUSIONS We demonstrated elevated GABA levels in the thalamus and adjacent basal ganglia and decreased NAA levels in the frontal cortex, indicating neuronal dysfunction in a brain area not primarily targeted by Mn. Therefore, the noninvasive in vivo MRS measurement of GABA and NAA may prove to be a powerful tool for detecting presymptomatic effects of Mn neurotoxicity.
Collapse
Affiliation(s)
- Ulrike Dydak
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
443
|
Seshadri M, Hoy A. Manganese-enhanced MRI of salivary glands and head and neck tumors in living subjects. Magn Reson Med 2011; 64:902-6. [PMID: 20806380 DOI: 10.1002/mrm.22452] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Manganese-enhanced MRI has previously been used for visualization of brain architecture and functional mapping of neural pathways. The present work investigated the potential of manganese-enhanced MRI for noninvasive imaging of salivary glands in living subjects. Marked shortening of T(1) was observed in salivary glands of naïve mice (n = 5) 24-48 h after systemic administration of MnCl(2) (0.4 mmol/kg, intraperitoneally). Three-dimensional MR microscopy confirmed selective contrast enhancement of salivary gland tissues post-MnCl(2) injection. Ectopic and orthotopic head and neck tumor xenografts also showed an increase in R(1) at 24 h following MnCl(2) injection (0.2 mmol/kg, intraperitoneally). However, tumor enhancement was minimal compared to salivary gland tissue. Salivary gland R(1) values were lower in mice bearing orthotopic head and neck tumors compared to naïve mice. These results demonstrate, for the first time, the usefulness of manganese-enhanced MRI in the visualization of salivary glands and head and neck tumors in vivo.
Collapse
Affiliation(s)
- Mukund Seshadri
- Preclinical Imaging Facility, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | | |
Collapse
|
444
|
Marreilha Dos Santos AP, Lopes Santos M, Batoréu MC, Aschner M. Prolactin is a peripheral marker of manganese neurotoxicity. Brain Res 2011; 1382:282-90. [PMID: 21262206 DOI: 10.1016/j.brainres.2011.01.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/12/2011] [Accepted: 01/14/2011] [Indexed: 12/21/2022]
Abstract
UNLABELLED Excessive exposure to Mn induces neurotoxicity, referred to as manganism. Exposure assessment relies on Mn blood and urine analyses, both of which show poor correlation to exposure. Accordingly, there is a critical need for better surrogate biomarkers of Mn exposure. The aim of this study was to examine the relationship between Mn exposure and early indicators of neurotoxicity, with particular emphasis on peripheral biomarkers. Male Wistar rats (180-200g) were injected intraperitoneally with 4 or 8 doses of Mn (10mg/kg). Mn exposure was evaluated by analysis of Mn levels in brain and blood along with biochemical end-points (see below). RESULTS Brain Mn levels were significantly increased both after 4 and 8 doses of Mn compared with controls (p<0.001). Blood levels failed to reflect a dose-dependent increase in brain Mn, with only the 8-dose-treated group showing significant differences (p<0.001). Brain glutathione (GSH) levels were significantly decreased in the 8-dose-treated animals (p<0.001). A significant and dose-dependent increase in prolactin levels was found for both treated groups (p<0.001) compared to controls. In addition, a decrease in motor activity was observed in the 8-dose-treated group compared to controls. CONCLUSIONS (1) The present study demonstrates that peripheral blood level is a poor indicator of Mn brain accumulation and exposure; (2) Mn reduces GSH brain levels, likely reflecting oxidative stress; (3) Mn increases blood prolactin levels, indicating changes in the integrity of the dopaminergic system. Taken together these results suggest that peripheral prolactin levels may serve as reliable predictive biomarkers of Mn neurotoxicity.
Collapse
|
445
|
Abstract
The use of manganese ions (Mn(2+)) as an MRI contrast agent was introduced over 20 years ago in studies of Mn(2+) toxicity in anesthetized rats (1). Manganese-enhanced MRI (MEMRI) evolved in the late nineties when Koretsky and associates pioneered the use of MEMRI for brain activity measurements (2) as well as neuronal tract tracing (3). Currently, MEMRI has three primary applications in biological systems: (1) contrast enhancement for anatomical detail, (2) activity-dependent assessment and (3) tracing of neuronal connections or tract tracing. MEMRI relies upon the following three main properties of Mn(2+): (1) it is a paramagnetic ion that shortens the spin lattice relaxation time constant (T(1)) of tissues, where it accumulates and hence functions as an excellent T(1) contrast agent; (2) it is a calcium (Ca(2+)) analog that can enter excitable cells, such as neurons and cardiac cells via voltage-gated Ca(2+) channels; and (3) once in the cells Mn(2+) can be transported along axons by microtubule-dependent axonal transport and can also cross synapses trans-synaptically to neighboring neurons. This chapter will emphasize the methodological approaches towards the use of MEMRI in biological systems.
Collapse
Affiliation(s)
- Cynthia A Massaad
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA.
| | | |
Collapse
|
446
|
Fagundes Soares Garcia AC, Marcon AE, Ferreira DDM, Barbosa dos Santos EA, do Amaral VS, Medeiros SRBD. Micronucleus study of the quality and mutagenicity of surface water from a semi-arid region. ACTA ACUST UNITED AC 2011; 13:3329-35. [DOI: 10.1039/c1em10582e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
447
|
Wehe CA, Bornhorst J, Holtkamp M, Sperling M, Galla HJ, Schwerdtle T, Karst U. Fast and low sample consuming quantification of manganese in cell nutrient solutions by flow injection ICP-QMS. Metallomics 2011; 3:1291-6. [DOI: 10.1039/c1mt00170a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
448
|
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) relies on contrasts that are due to the shortening of the T (1) relaxation time of tissue water protons that become exposed to paramagnetic manganese ions. In experimental animals, the technique combines the high spatial resolution achievable by MRI with the biological information gathered by tissue-specific or functionally induced accumulations of manganese. After in vivo administration, manganese ions may enter cells via voltage-gated calcium channels. In the nervous system, manganese ions are actively transported along the axon. Based on these properties, MEMRI is increasingly used to delineate neuroanatomical structures, assess differences in functional brain activity, and unravel neuronal connectivities in both healthy animals and models of neurological disorders. Because of the cellular toxicity of manganese, a major challenge for a successful MEMRI study is to achieve the lowest possible dose for a particular biological question. Moreover, the interpretation of MEMRI findings requires a profound knowledge of the behavior of manganese in complex organ systems under physiological and pathological conditions. Starting with an overview of manganese pharmacokinetics and mechanisms of toxicity, this chapter covers experimental methods and protocols for applications in neuroscience.
Collapse
Affiliation(s)
- Susann Boretius
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, 37077 Göttingen, Germany.
| | | |
Collapse
|
449
|
Michalke B, Nischwitz V. Review on metal speciation analysis in cerebrospinal fluid—current methods and results: A review. Anal Chim Acta 2010; 682:23-36. [DOI: 10.1016/j.aca.2010.09.054] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 08/16/2010] [Accepted: 09/30/2010] [Indexed: 11/30/2022]
|
450
|
Hong L, Jiang W, Zheng W, Zeng S. HPLC analysis of para-aminosalicylic acid and its metabolite in plasma, cerebrospinal fluid and brain tissues. J Pharm Biomed Anal 2010; 54:1101-9. [PMID: 21159459 DOI: 10.1016/j.jpba.2010.11.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/17/2010] [Accepted: 11/19/2010] [Indexed: 11/24/2022]
Abstract
Para-aminosalicylic acid (PAS), an approved drug for treatment of tuberculosis, is a promising therapeutic agent for treatment of manganese (Mn)-induced parkinsonian syndromes. Lack of a quantifying method, however, has hindered the clinical evaluation of its efficacy and there upon new drug development. This study was aimed at developing a simple and effective method to quantify PAS and its major metabolite, N-acetyl-para-aminosalicylic acid (AcPAS), in plasma, cerebrospinal fluid (CSF) and tissues. Biological samples underwent one-step protein precipitation. The supernatant was fractionated on a reversed-phase C18 column with a gradient mobile system, followed by on-line fluorescence detection. The lower limits of quantification for both PAS and AcPAS were 50 ng/ml of plasma and 17 ng/g of tissues. The intra-day and inter-day precision values did not exceed 5% and 8%, respectively, in all three matrices. The method was used to quantify PAS and AcPAS in rat plasma and brain following a single iv injection of PAS. Data showed a greater amount of PAS than AcPAS in plasma, while a greater amount of AcPAS than PAS was found in brain tissues. The method has been proven to be sensitive, reproducible, and practically useful for laboratory and clinical investigations of PAS in treatment of Mn Parkinsonism.
Collapse
Affiliation(s)
- Lan Hong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | | | | | | |
Collapse
|