401
|
Kali SK, Dröge P, Murugan P. Interferon β, an enhancer of the innate immune response against SARS-CoV-2 infection. Microb Pathog 2021; 158:105105. [PMID: 34311016 PMCID: PMC8302486 DOI: 10.1016/j.micpath.2021.105105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
COVID-19 exhibits a global health threat among the elderly and the population with underlying health conditions. During infection, the host's innate immune response acts as a frontline of defense by releasing cytokines such as type I interferon (IFN α and β) thereby initiating antiviral activity. However, this particular interferon response is interrupted by factors such as SARS-CoV-2 non-structural proteins, aging, diabetes, and germ-line errors eventually making the host more susceptible to illness. Therefore, enhancing the host's innate immune response by administering type I IFN could be an effective treatment against COVID-19. Here, we highlight the importance of innate immune response and the role of IFN β monotherapy against COVID-19.
Collapse
Affiliation(s)
| | - Peter Dröge
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | |
Collapse
|
402
|
Magalhães NS, Savino W, Silva PMR, Martins MA, Carvalho VF. Gut Microbiota Dysbiosis Is a Crucial Player for the Poor Outcomes for COVID-19 in Elderly, Diabetic and Hypertensive Patients. Front Med (Lausanne) 2021; 8:644751. [PMID: 34458281 PMCID: PMC8385716 DOI: 10.3389/fmed.2021.644751] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
A new infectious disease, named COVID-19, caused by the coronavirus associated to severe acute respiratory syndrome (SARS-CoV-2) has become pandemic in 2020. The three most common pre-existing comorbidities associated with COVID-19-related death are elderly, diabetic, and hypertensive people. A common factor among these risk groups for the outcome of death in patients infected with SARS-CoV-2 is dysbiosis, with an increase in the proportion of bacteria with a pro-inflammatory profile. Due to this dysbiosis, elderly, diabetic, and hypertensive people present a higher propensity to mount an inflammatory environment in the gut with poor immune editing, culminating in a weakness of the intestinal permeability barrier and high bacterial product translocation to the bloodstream. This scenario culminates in a low-grade, persistent, and systemic inflammation. In this context, we propose here that high circulating levels of bacterial products, like lipopolysaccharide (LPS), can potentiate the SARS-CoV-2-induced cytokines, including IL-6, being crucial for development of the cytokine storm in the severe form of the disease. A better understanding on the possible correlation between gut dysbiosis and poor outcomes observed in elderly, diabetic, and hypertensive people can be useful for the development of new therapeutic strategies based on modulation of the gut microbiota.
Collapse
Affiliation(s)
- Nathalia Santos Magalhães
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil.,Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Patrícia Machado Rodrigues Silva
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil.,Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Marco Aurélio Martins
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil.,Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Vinicius Frias Carvalho
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil.,Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
403
|
ACE2, the Counter-Regulatory Renin-Angiotensin System Axis and COVID-19 Severity. J Clin Med 2021; 10:jcm10173885. [PMID: 34501332 PMCID: PMC8432177 DOI: 10.3390/jcm10173885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
Angiotensin (ANG)-converting enzyme (ACE2) is an entry receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19). ACE2 also contributes to a deviation of the lung renin-angiotensin system (RAS) towards its counter-regulatory axis, thus transforming harmful ANG II to protective ANG (1-7). Based on this purported ACE2 double function, it has been put forward that the benefit from ACE2 upregulation with renin-angiotensin-aldosterone system inhibitors (RAASi) counterbalances COVID-19 risks due to counter-regulatory RAS axis amplification. In this manuscript we discuss the relationship between ACE2 expression and function in the lungs and other organs and COVID-19 severity. Recent data suggested that the involvement of ACE2 in the lung counter-regulatory RAS axis is limited. In this setting, an augmentation of ACE2 expression and/or a dissociation of ACE2 from the ANG (1-7)/Mas pathways that leaves unopposed the ACE2 function, the SARS-CoV-2 entry receptor, predisposes to more severe disease and it appears to often occur in the relevant risk factors. Further, the effect of RAASi on ACE2 expression and on COVID-19 severity and the overall clinical implications are discussed.
Collapse
|
404
|
O'Donnell JS, Chappell KJ. Chronic SARS-CoV-2, a Cause of Post-acute COVID-19 Sequelae (Long-COVID)? Front Microbiol 2021; 12:724654. [PMID: 34408742 PMCID: PMC8365243 DOI: 10.3389/fmicb.2021.724654] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/15/2021] [Indexed: 01/14/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause coronavirus disease 2019 (COVID-19). Most individuals recover from SARS-CoV-2 infection, however, many continue to experience a cluster of persistent symptoms for months following resolution of acute disease; a syndrome that has been named Long-COVID. While the biological cause, or causes, of Long-COVID have not yet been confirmed, the main proposals have centred around either virus-induced autoimmunity or virus-induced tissue dysfunction. However, an alternative suggestion that a latent chronic infection could be responsible for the symptoms of Long-COVID has received minimal attention despite recent findings that SARS-CoV-2 genetic material and infections are detected in some individuals months following resolution of respiratory disease. Here we discuss literature supporting the possibility that Long-COVID occurs as a result of chronic SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Jake S O'Donnell
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.,The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Keith J Chappell
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.,The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
405
|
Bolay H, Karadas Ö, Oztürk B, Sonkaya R, Tasdelen B, Bulut TDS, Gülbahar Ö, Özge A, Baykan B. HMGB1, NLRP3, IL-6 and ACE2 levels are elevated in COVID-19 with headache: a window to the infection-related headache mechanism. J Headache Pain 2021; 22:94. [PMID: 34384355 PMCID: PMC8358545 DOI: 10.1186/s10194-021-01306-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Background and aim Pathogenesis of COVID-19 -related headache is unknown, though the induction of the trigeminal neurons through inflammation is proposed. We aimed to investigate key systemic circulating inflammatory molecules and their clinical relations in COVID-19 patients with headache. Methods This cross-sectional study enrolled 88 COVID-19 patients, hospitalized on a regular ward during the second wave of the pandemic. Clinical characteristics of COVID-19 patients were recorded, and laboratory tests were studied. Results The mean ages of 48 COVID-19 patients with headache (47.71 ± 10.8) and 40 COVID-19 patients without headache (45.70 ± 12.72) were comparable. COVID-19 patients suffered from headache had significantly higher serum levels of HMGB1, NLRP3, ACE2, and IL-6 than COVID-19 patients without headache, whereas CGRP and IL-10 levels were similar in the groups. Angiotensin II level was significantly decreased in the headache group. COVID-19 patients with headache showed an increased frequency of pulmonary involvement and increased D- dimer levels. Furthermore, COVID-19 was more frequently associated with weight loss, nausea, and diarrhea in patients with headache. Serum NLRP3 levels were correlated with headache duration and hospital stay, while headache response to paracetamol was negatively correlated with HMGB1 and positively associated with IL-10 levels. Conclusion Stronger inflammatory response is associated with headache in hospitalized COVID-19 patients with moderate disease severity. Increased levels of the circulating inflammatory and/or nociceptive molecules like HMGB1, NLRP3, and IL-6 may play a role in the potential induction of the trigeminal system and manifestation of headache secondary to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Hayrunnisa Bolay
- Department of Neurology and Algology, Neuropsychiatry Center, Neuroscience and Neurotechnology Center (NÖROM), Gazi University Hospital, Medical Faculty, Besevler, 06510, Ankara, Turkey.
| | - Ömer Karadas
- Neurology Department, University of Health Science, Gülhane School of Medicine, Ankara, Turkey
| | - Bilgin Oztürk
- Neurology Department, University of Health Science, Gülhane School of Medicine, Ankara, Turkey
| | - Riza Sonkaya
- Neurology Department, University of Health Science, Gülhane School of Medicine, Ankara, Turkey
| | - Bahar Tasdelen
- Department of Biostatistics and Medical Informatics, Mersin University, Medical Faculty, Mersin, Turkey
| | - Tuba D S Bulut
- Department of Medical Biochemistry, Gazi University, Medical Faculty, Ankara, Turkey
| | - Özlem Gülbahar
- Department of Medical Biochemistry, Gazi University, Medical Faculty, Ankara, Turkey
| | - Aynur Özge
- Department of Neurology and Algology, Mersin University, Medical Faculty, Mersin, Turkey
| | - Betül Baykan
- Istanbul Faculty of Medicine, Department of Neurology, Headache Center, Istanbul University, Istanbul, Turkey
| |
Collapse
|
406
|
Narożna M, Rubiś B. Anti-SARS-CoV-2 Strategies and the Potential Role of miRNA in the Assessment of COVID-19 Morbidity, Recurrence, and Therapy. Int J Mol Sci 2021; 22:8663. [PMID: 34445368 PMCID: PMC8395427 DOI: 10.3390/ijms22168663] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/07/2021] [Accepted: 08/08/2021] [Indexed: 02/06/2023] Open
Abstract
Recently, we have experienced a serious pandemic. Despite significant technological advances in molecular technologies, it is very challenging to slow down the infection spread. It appeared that due to globalization, SARS-CoV-2 spread easily and adapted to new environments or geographical or weather zones. Additionally, new variants are emerging that show different infection potential and clinical outcomes. On the other hand, we have some experience with other pandemics and some solutions in virus elimination that could be adapted. This is of high importance since, as the latest reports demonstrate, vaccine technology might not follow the new, mutated virus outbreaks. Thus, identification of novel strategies and markers or diagnostic methods is highly necessary. For this reason, we present some of the latest views on SARS-CoV-2/COVID-19 therapeutic strategies and raise a solution based on miRNA. We believe that in the face of the rapidly increasing global situation and based on analogical studies of other viruses, the possibility of using the biological potential of miRNA technology is very promising. It could be used as a promising diagnostic and prognostic factor, as well as a therapeutic target and tool.
Collapse
Affiliation(s)
- Maria Narożna
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4 Święcickiego St., 60-781 Poznan, Poland;
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland
| |
Collapse
|
407
|
Berrichi S, Bouayed Z, Jebar K, Zaid I, Nasri S, Bkiyar H, Skiker I, Housni B. Acute pancreatitis as an atypical manifestation of COVID-19: A report of 2 cases. Ann Med Surg (Lond) 2021; 68:102693. [PMID: 34377453 PMCID: PMC8340554 DOI: 10.1016/j.amsu.2021.102693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Respiratory signs are the main revealing symptoms of the COVID-19 infection, however extra respiratory symptoms might as well occur, including digestive manifestations. CASE REPORT In this paper, we report two cases of acute pancreatitis at the front line of the patient's symptomatology revealing a COVID-19 infection. Both patients had respiratory symptoms suggestive of COVID-19 and abdominal symptoms consistent with acute pancreatitis later-on confirmed through laboratory and CT findings. Our conservative management led to an improvement of the pancreatitis, though the first patient suffered from a severe form of COVID-19 justifying the using of mechanical ventilation and ECMO, while the second patient exhibited a milder form of COVID-19. Although both patients improved in terms of pancreatitis, the overall evolution was very different due to the extent of the respiratory involvement of COVID-19, as one patient exhibited a spectacular improvement of her respiratory state leading to a full recovery, the other patient suffered a rapid worsening of her acute respiratory distress leading to death following ECMO complications. Our two cases join only few cases of COVID-19-induced pancreatitis that have been reported in the literature. DISCUSSION in our discussion we highlight the association of COVID-19 and acute pancreatitis as it has been reported throughout literature, we then dive into the suggested physiopathological mechanisms that lay grounds for that association, before discussing our two cases, and emphasizing on the need of further studies to fully apprehend the scale of COVID-19's extra-pulmonary involvement in general, and pancreatic in particular. CONCLUSION Acute pancreatitis is a sever condition involving potentially severe complications, COVID-19 is an emergent rare etiology recently identified as a causality.
Collapse
Affiliation(s)
- Samia Berrichi
- Department of Intensive Care Unit, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed 1st University, Oujda, Morocco
| | - Zakaria Bouayed
- Radiology Department, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed 1st University, Oujda, Morocco
| | - Khaoula Jebar
- Department of Intensive Care Unit, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed 1st University, Oujda, Morocco
| | - Ikram Zaid
- Department of Intensive Care Unit, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed 1st University, Oujda, Morocco
| | - Siham Nasri
- Radiology Department, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed 1st University, Oujda, Morocco
| | - Houssam Bkiyar
- Department of Intensive Care Unit, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed 1st University, Oujda, Morocco
| | - Imane Skiker
- Radiology Department, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed 1st University, Oujda, Morocco
| | - Brahim Housni
- Department of Intensive Care Unit, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed 1st University, Oujda, Morocco
- Medical Simulation Training Center, Faculty of medicine and pharmacy, Oujda, Morocco
| |
Collapse
|
408
|
Almutlaq M, Alamro AA, Alroqi F, Barhoumi T. Classical and Counter-Regulatory Renin-Angiotensin System: Potential Key Roles in COVID-19 Pathophysiology. CJC Open 2021; 3:1060-1074. [PMID: 33875979 PMCID: PMC8046706 DOI: 10.1016/j.cjco.2021.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023] Open
Abstract
In the current COVID-19 pandemic, severe acute respiratory syndrome coronavirus 2 uses angiotensin-converting enzyme-2 (ACE-2) receptors for cell entry, leading to ACE-2 dysfunction and downregulation, which disturb the balance between the classical and counter-regulatory renin-angiotensin system (RAS) in favor of the classical RAS. RAS dysregulation is one of the major characteristics of several cardiovascular diseases; thus, adjustment of this system is the main therapeutic target. RAS inhibitors-particularly angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II type 1 receptor blockers (ARBs)-are commonly used for treatment of hypertension and cardiovascular disease. Patients with cardiovascular diseases are the group most commonly seen among those with COVID-19 comorbidity. At the beginning of this pandemic, a dilemma occurred regarding the use of ACEIs and ARBs, potentially aggravating cardiovascular and pulmonary dysfunction in COVID-19 patients. Urgent clinical trials from different countries and hospitals reported that there is no association between RAS inhibitor treatment and COVID-19 infection or comorbidity complication. Nevertheless, the disturbance of the RAS that is associated with COVID-19 infection and the potential treatment targeting this area have yet to be resolved. In this review, the link between the dysregulation of classical RAS and counter-regulatory RAS activities in COVID-19 patients with cardiovascular metabolic diseases is investigated. In addition, the latest findings based on ACEI and ARB administration and ACE-2 availability in relation to COVID-19, which may provide a better understanding of the RAS contribution to COVID-19 pathology, are discussed, as they are of the utmost importance amid the current pandemic.
Collapse
Affiliation(s)
- Moudhi Almutlaq
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- Moudhi Almutlaq, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh 11461, Saudi Arabia. Tel.: +1-966-543-159145.
| | - Abir Abdullah Alamro
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fayhan Alroqi
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Pediatrics, King Abdulaziz Medical City, King Abdullah Specialized Children's Hospital, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Tlili Barhoumi
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Corresponding authors: Dr Tlili Barhoumi, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh 11461, Saudi Arabia. Tel.: +1-966-543-159145.
| |
Collapse
|
409
|
Motavalli R, Abdelbasset WK, Rahman HS, Achmad MH, Sergeevna NK, Zekiy AO, Adili A, Khiavi FM, Marofi F, Yousefi M, Ghoreishizadeh S, Shomali N, Etemadi J, Jarahian M. The lethal internal face of the coronaviruses: Kidney tropism of the SARS, MERS, and COVID19 viruses. IUBMB Life 2021; 73:1005-1015. [PMID: 34118117 PMCID: PMC8426673 DOI: 10.1002/iub.2516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 01/08/2023]
Abstract
The kidney is one of the main targets attacked by viruses in patients with a coronavirus infection. Until now, SARS-CoV-2 has been identified as the seventh member of the coronavirus family capable of infecting humans. In the past two decades, humankind has experienced outbreaks triggered by two other extremely infective members of the coronavirus family; the MERS-CoV and the SARS-CoV. According to several investigations, SARS-CoV causes proteinuria and renal impairment or failure. The SARS-CoV was identified in the distal convoluted tubules of the kidney of infected patients. Also, renal dysfunction was observed in numerous cases of MERS-CoV infection. And recently, during the 2019-nCoV pandemic, it was found that the novel coronavirus not only induces acute respiratory distress syndrome (ARDS) but also can induce damages in various organs including the liver, heart, and kidney. The kidney tissue and its cells are targeted massively by the coronaviruses due to the abundant presence of ACE2 and Dpp4 receptors on kidney cells. These receptors are characterized as the main route of coronavirus entry to the victim cells. Renal failure due to massive viral invasion can lead to undesirable complications and enhanced mortality rate, thus more attention should be paid to the pathology of coronaviruses in the kidney. Here, we have provided the most recent knowledge on the coronaviruses (SARS, MERS, and COVID19) pathology and the mechanisms of their impact on the kidney tissue and functions.
Collapse
Affiliation(s)
- Roza Motavalli
- Stem Cell Research Center, Tabriz University of Medical SciencesTabrizIran
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation SciencesCollege of Applied Medical Sciences, Prince Sattam bin Abdulaziz UniversityAl KharjSaudi Arabia
- Department of Physical TherapyKasr Al‐Aini Hospital, Cairo UniversityGizaEgypt
| | | | - Muhammad Harun Achmad
- Department of Pediatric DentistryFaculty of Dentistry, Hasanuddin UniversityMakassarIndonesia
| | | | | | - Ali Adili
- Department of oncologyTabriz University of Medical SciencesTabrizIran
| | | | - Faroogh Marofi
- Department of Immunology, Division of Hematology, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mehdi Yousefi
- Department of Immunology, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| | | | - Navid Shomali
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Immunology, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Jalal Etemadi
- Kidney Research Center, Tabriz University of Medical SciencesTabrizIran
| | - Mostafa Jarahian
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center (DKFZ)HeidelbergGermany
| |
Collapse
|
410
|
Cui H, Su S, Cao Y, Ma C, Qiu W. The Altered Anatomical Distribution of ACE2 in the Brain With Alzheimer's Disease Pathology. Front Cell Dev Biol 2021; 9:684874. [PMID: 34249938 PMCID: PMC8267059 DOI: 10.3389/fcell.2021.684874] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/26/2021] [Indexed: 01/08/2023] Open
Abstract
The whole world is suffering from the coronavirus disease 2019 (COVID-19) pandemic, induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through angiotensin-converting enzyme 2 (ACE2). Neurological manifestations in COVID-19 patients suggested the invasion of SARS-CoV-2 into the central nervous system. The present study mapped the expression level of ACE2 in 12 brain regions through immunohistochemistry and detected ACE2 in endothelial cells and non-vascular cells. The comparison among brain regions found that pons, visual cortex, and amygdala presented a relatively high level of ACE2. In addition, this study demonstrates that the protein level of ACE2 was downregulated in the basal nucleus, hippocampus and entorhinal cortex, middle frontal gyrus, visual cortex, and amygdala of the brain with Alzheimer’s disease (AD) pathology. Collectively, our results suggested that ACE2 was expressed discriminatorily at different human brain regions, which was downregulated in the brain with AD pathology. This may contribute to a comprehensive understanding of the neurological symptoms caused by SARS-CoV-2 and provide clues for further research on the relationship between COVID-19 and AD.
Collapse
Affiliation(s)
- Huan Cui
- Department of Human Anatomy, Histology, and Embryology, Neuroscience Center, School of Basic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Si Su
- Department of Human Anatomy, Histology, and Embryology, Neuroscience Center, School of Basic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yan Cao
- Department of Human Anatomy, Histology, and Embryology, Neuroscience Center, School of Basic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chao Ma
- Department of Human Anatomy, Histology, and Embryology, Neuroscience Center, School of Basic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| | - Wenying Qiu
- Department of Human Anatomy, Histology, and Embryology, Neuroscience Center, School of Basic Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
411
|
Exploring the Mystery of Angiotensin-Converting Enzyme II (ACE2) in the Battle against SARS-CoV-2. J Renin Angiotensin Aldosterone Syst 2021; 2021:9939929. [PMID: 34285711 PMCID: PMC8265022 DOI: 10.1155/2021/9939929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/20/2021] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is the newly born pandemic caused by the SARS-CoV-2 virus, which is the recently emerged betacoronavirus that crosses the species barrier. It predominantly infects pneumocytes of the respiratory tract, but due to the presence of angiotensin-converting enzyme II (ACE2) on other cells like surface enterocytes of the upper esophagus and colon, these are also considered as the primary sites of infection. ACE2 receptor served as a cellular entry point for SARS-CoV-2. The expression of the ACE2 receptors is regulated by several factors such as age, tobacco smoking, inflammatory signaling, ACE inhibitors, angiotensin receptor blockers, and comorbidities (chronic obstructive pulmonary disease (COPD), tuberculosis, cerebrovascular disease, coronary heart disease, hypertension, and diabetes). Therefore, scientists are trying to explore the in-depth knowledge of ACE2 and considered it as a potential indirect target for COVID-19 therapeutics. In this focused review, we discussed in detail ACE2 expressions and regulation by different factors in the primary or vulnerable sites of SARS-CoV-2 infections. Clinical trials of rhACE2 in COVID-19 patients are ongoing, and if the outcome of the trials proves positive, it will be a breakthrough for the management of COVID-19. Finally, we suggest that targeting the ACE2 (a master regulator) in a balanced way could serve as a potential option against the management of COVID-19.
Collapse
|
412
|
Stasi A, Franzin R, Fiorentino M, Squiccimarro E, Castellano G, Gesualdo L. Multifaced Roles of HDL in Sepsis and SARS-CoV-2 Infection: Renal Implications. Int J Mol Sci 2021; 22:5980. [PMID: 34205975 PMCID: PMC8197836 DOI: 10.3390/ijms22115980] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
High-density lipoproteins (HDLs) are a class of blood particles, principally involved in mediating reverse cholesterol transport from peripheral tissue to liver. Omics approaches have identified crucial mediators in the HDL proteomic and lipidomic profile, which are involved in distinct pleiotropic functions. Besides their role as cholesterol transporter, HDLs display anti-inflammatory, anti-apoptotic, anti-thrombotic, and anti-infection properties. Experimental and clinical studies have unveiled significant changes in both HDL serum amount and composition that lead to dysregulated host immune response and endothelial dysfunction in the course of sepsis. Most SARS-Coronavirus-2-infected patients admitted to the intensive care unit showed common features of sepsis disease, such as the overwhelmed systemic inflammatory response and the alterations in serum lipid profile. Despite relevant advances, episodes of mild to moderate acute kidney injury (AKI), occurring during systemic inflammatory diseases, are associated with long-term complications, and high risk of mortality. The multi-faceted relationship of kidney dysfunction with dyslipidemia and inflammation encourages to deepen the clarification of the mechanisms connecting these elements. This review analyzes the multifaced roles of HDL in inflammatory diseases, the renal involvement in lipid metabolism, and the novel potential HDL-based therapies.
Collapse
Affiliation(s)
- Alessandra Stasi
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.F.); (M.F.)
| | - Rossana Franzin
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.F.); (M.F.)
| | - Marco Fiorentino
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.F.); (M.F.)
| | - Enrico Squiccimarro
- Department of Emergency and Organ Transplant (DETO), University of Bari, 70124 Bari, Italy;
- Cardio-Thoracic Surgery Department, Heart & Vascular Centre, Maastricht University Medical Centre (MUMC), 6229HX Maastricht, The Netherlands
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy;
| | - Loreto Gesualdo
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.F.); (M.F.)
| |
Collapse
|
413
|
SeyedAlinaghi S, Mehrtak M, MohsseniPour M, Mirzapour P, Barzegary A, Habibi P, Moradmand-Badie B, Afsahi AM, Karimi A, Heydari M, Mehraeen E, Dadras O, Sabatier JM, Voltarelli F. Genetic susceptibility of COVID-19: a systematic review of current evidence. Eur J Med Res 2021; 26:46. [PMID: 34016183 PMCID: PMC8135169 DOI: 10.1186/s40001-021-00516-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/06/2021] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION While COVID-19 pandemic continues to spread worldwide, researchers have linked patterns of traits to poor disease outcomes. Risk factors for COVID-19 include asthma, elderly age, being pregnant, having any underlying diseases such as cardiovascular disease, diabetes, obesity, and experiencing lifelong systemic racism. Recently, connections to certain genes have also been found, although the susceptibility has not yet been established. We aimed to investigate the available evidence for the genetic susceptibility to COVID-19. METHODS This study was a systematic review of current evidence to investigate the genetic susceptibility of COVID-19. By systematic search and utilizing the keywords in the online databases including Scopus, PubMed, Web of Science, and Science Direct, we retrieved all the related papers and reports published in English from December 2019 to September 2020. RESULTS According to the findings, COVID-19 uses the angiotensin-converting enzyme 2 (ACE2) receptor for cell entry. Previous studies have shown that people with ACE2 polymorphism who have type 2 transmembrane serine proteases (TMPRSS2) are at high risk of SARS-CoV-2 infection. Also, two studies have shown that males are more likely to become infected with SARS-CoV-2 than females. Besides, research has also shown that patients possessing HLA-B*15:03 genotype may become immune to the infection. CONCLUSION Combing through the genome, several genes related to immune system's response were related to the severity and susceptibility to the COVID-19. In conclusion, a correlation was found between the ACE2 levels and the susceptibility to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- SeyedAhmad SeyedAlinaghi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehrtak
- Healthcare Services Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mehrzad MohsseniPour
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Pegah Mirzapour
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Pedram Habibi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amir Masoud Afsahi
- Department of Radiology, School of Medicine, University of California, San Diego (UCSD), San Diego, CA USA
| | - Amirali Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Heydari
- Department of Health Information Technology, Khalkhal University of Medical Sciences, 1419733141 Khalkhal, Iran
| | - Esmaeil Mehraeen
- Department of Health Information Technology, Khalkhal University of Medical Sciences, 1419733141 Khalkhal, Iran
| | - Omid Dadras
- Department of Global Health and Socioepidemiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jean-Marc Sabatier
- Institut deNeuro-Physiopathologie (INP), UMR 7051, Faculté de Pharmacie, Université Aix-Marseille, 27 Bd Jean Moulin, 13385 Marseille Cedex, France
| | - Fabricio Voltarelli
- Graduation Program of Health Sciences, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, Brazil
| |
Collapse
|
414
|
Ahmad MZ, Ahmad J, Aslam M, Khan MA, Alasmary MY, Abdel-Wahab BA. Repurposed drug against COVID-19: nanomedicine as an approach for finding new hope in old medicines. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abffed] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
The coronavirus disease 2019 (COVID-19) has become a threat to global public health. It is caused by the novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) and has triggered over 17 lakh causalities worldwide. Regrettably, no drug or vaccine has been validated for the treatment of COVID-19 and standard treatment for COVID-19 is currently unavailable. Most of the therapeutics moieties which were originally intended for the other disease are now being evaluated for the potential to be effective against COVID-19 (re-purpose). Nanomedicine has emerged as one of the most promising technologies in the field of drug delivery with the potential to deal with various diseases efficiently. It has addressed the limitations of traditional repurposed antiviral drugs including solubility and toxicity. It has also imparted enhanced potency and selectivity to antivirals towards viral cells. This review emphasizes the scope of repositioning of traditional therapeutic approaches, in addition to the fruitfulness of nanomedicine against COVID-19.
Collapse
|
415
|
Overview of COVID-19 Disease: Virology, Epidemiology, Prevention Diagnosis, Treatment, and Vaccines. Biologics 2021. [DOI: 10.3390/biologics1010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Coronaviruses belong to the “Coronaviridae family”, which causes various diseases, from the common cold to SARS and MERS. The coronavirus is naturally prevalent in mammals and birds. So far, six human-transmitted coronaviruses have been discovered. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in December 2019 in Wuhan, China. Common symptoms include fever, dry cough, and fatigue, but in acute cases, the disease can lead to severe shortness of breath, hypoxia, and death. According to the World Health Organization (WHO), the three main transmission routes, such as droplet and contact routes, airborne transmission and fecal and oral for COVID-19, have been identified. So far, no definitive curative treatment has been discovered for COVID-19, and the available treatments are only to reduce the complications of the disease. According to the World Health Organization, preventive measures at the public health level such as quarantine of the infected person, identification and monitoring of contacts, disinfection of the environment, and personal protective equipment can significantly prevent the outbreak COVID-19. Currently, based on the urgent needs of the community to control this pandemic, the BNT162b2 (Pfizer), mRNA-1273 (Moderna), CoronaVac (Sinovac), Sputnik V (Gamaleya Research Institute, Acellena Contract Drug Research, and Development), BBIBP-CorV (Sinofarm), and AZD1222 (The University of Oxford; AstraZeneca) vaccines have received emergency vaccination licenses from health organizations in vaccine-producing countries. Vasso Apostolopoulos, Majid Hassanzadeganroudsari
Collapse
|
416
|
Neurological Sequelae in Patients with COVID-19: A Histopathological Perspective. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021. [PMID: 33546463 DOI: 10.3390/ijerph18041415.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Neuroinvasive properties of SARS-CoV-2 have allowed the hypothesis of several pathogenic mechanisms related to acute and chronic neurological sequelae. However, neuropathological correlates have been poorly systematically investigated, being retrieved from reports of single case or limited case series still. METHODS A PubMed search was carried out to review all publications on autopsy in subjects with "COronaVIrus Disease-19" (COVID-19). Among them, we focused on histological findings of the brain, which were compared with those from the authors' autoptic studies performed in some COVID-19 patients. RESULTS Only seven studies reported histological evidence of brain pathology in patients deceased for COVID-19, including three with reverse transcription-quantitative polymerase chain reaction evidence of viral infection. All these studies, in line with our experience, showed vascular-related and infection-related secondary inflammatory tissue damage due to an abnormal immune response. It is still unclear, however, whether these findings are the effect of a direct viral pathology or rather reflect a non-specific consequence of cardiovascular and pulmonary disease on the brain. CONCLUSIONS Notwithstanding the limited evidence available and the heterogeneity of the studies, we provide a preliminary description of the relationship between SARS-CoV-2 and brain sequelae. Systematic autoptic investigations are needed for accurate detection and adequate management of these patients.
Collapse
|
417
|
Fisicaro F, Di Napoli M, Liberto A, Fanella M, Di Stasio F, Pennisi M, Bella R, Lanza G, Mansueto G. Neurological Sequelae in Patients with COVID-19: A Histopathological Perspective. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041415. [PMID: 33546463 PMCID: PMC7913756 DOI: 10.3390/ijerph18041415] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Neuroinvasive properties of SARS-CoV-2 have allowed the hypothesis of several pathogenic mechanisms related to acute and chronic neurological sequelae. However, neuropathological correlates have been poorly systematically investigated, being retrieved from reports of single case or limited case series still. METHODS A PubMed search was carried out to review all publications on autopsy in subjects with "COronaVIrus Disease-19" (COVID-19). Among them, we focused on histological findings of the brain, which were compared with those from the authors' autoptic studies performed in some COVID-19 patients. RESULTS Only seven studies reported histological evidence of brain pathology in patients deceased for COVID-19, including three with reverse transcription-quantitative polymerase chain reaction evidence of viral infection. All these studies, in line with our experience, showed vascular-related and infection-related secondary inflammatory tissue damage due to an abnormal immune response. It is still unclear, however, whether these findings are the effect of a direct viral pathology or rather reflect a non-specific consequence of cardiovascular and pulmonary disease on the brain. CONCLUSIONS Notwithstanding the limited evidence available and the heterogeneity of the studies, we provide a preliminary description of the relationship between SARS-CoV-2 and brain sequelae. Systematic autoptic investigations are needed for accurate detection and adequate management of these patients.
Collapse
Affiliation(s)
- Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (F.F.); (A.L.); (M.P.)
| | - Mario Di Napoli
- Department of Neurology and Stroke Unit, San Camillo de’ Lellis General Hospital, Viale Kennedy 1, 02100 Rieti, Italy; (M.D.N.); (M.F.)
| | - Aldo Liberto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (F.F.); (A.L.); (M.P.)
| | - Martina Fanella
- Department of Neurology and Stroke Unit, San Camillo de’ Lellis General Hospital, Viale Kennedy 1, 02100 Rieti, Italy; (M.D.N.); (M.F.)
| | - Flavio Di Stasio
- Department of Neurology and Stroke Unit Cesena-Forlì, Bufalini Hospital, AUSL Romagna, Viale Ghirotti 286, 47521 Cesena, Italy;
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (F.F.); (A.L.); (M.P.)
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy;
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy
- Department of Neurology IC, Oasi Research Institute-IRCCS, Via Conte Ruggero 78, 94018 Troina, Italy
- Correspondence: ; Tel.: +39-095-3782448
| | - Gelsomina Mansueto
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania “Luigi Vanvitelli”, Piazza L. Miraglia 2, 80138 Naples, Italy;
| |
Collapse
|
418
|
Chen C, Cao W, Wang X. Investigation of the factors potentially responsible for the significant different prevalence of COVID-19 between African-Africans and African-Americans. AIMS ALLERGY AND IMMUNOLOGY 2021. [DOI: 10.3934/allergy.2021014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|