401
|
Clermont PL, Lin D, Crea F, Wu R, Xue H, Wang Y, Thu KL, Lam WL, Collins CC, Wang Y, Helgason CD. Polycomb-mediated silencing in neuroendocrine prostate cancer. Clin Epigenetics 2015; 7:40. [PMID: 25859291 PMCID: PMC4391120 DOI: 10.1186/s13148-015-0074-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/13/2015] [Indexed: 02/06/2023] Open
Abstract
Background Neuroendocrine prostate cancer (NEPC) is a highly aggressive subtype of prostate cancer (PCa) for which the median survival remains less than a year. Current treatments are only palliative in nature, and the lack of suitable pre-clinical models has hampered previous efforts to develop novel therapeutic strategies. Addressing this need, we have recently established the first in vivo model of complete neuroendocrine transdifferentiation using patient-derived xenografts. Few genetic differences were observed between parental PCa and relapsed NEPC, suggesting that NEPC likely results from alterations that are epigenetic in nature. Thus, we sought to identify targetable epigenetic regulators whose expression was elevated in NEPC using genome-wide profiling of patient-derived xenografts and clinical samples. Results Our data indicate that multiple members of the polycomb group (PcG) family of transcriptional repressors were selectively upregulated in NEPC. Notably, CBX2 and EZH2 were consistently the most highly overexpressed epigenetic regulators across multiple datasets from clinical and xenograft tumor tissues. Given the striking upregulation of PcG genes and other transcriptional repressors, we derived a 185-gene list termed ‘neuroendocrine-associated repression signature’ (NEARS) by overlapping transcripts downregulated across multiple in vivo NEPC models. In line with the striking upregulation of PcG family members, NEARS was preferentially enriched with PcG target genes, suggesting a driving role for PcG silencing in NEPC. Importantly, NEARS was significantly associated with high-grade tumors, metastatic progression, and poor outcome in multiple clinical datasets, consistent with extensive literature linking PcG genes and aggressive disease progression. Conclusions We have explored the epigenetic landscape of NEPC and provided evidence of increased PcG-mediated silencing associated with aberrant transcriptional regulation of key differentiation genes. Our results position CBX2 and EZH2 as potential therapeutic targets in NEPC, providing opportunities to explore novel strategies aimed at reversing epigenetic alterations driving this lethal disease. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0074-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pier-Luc Clermont
- Department of Experimental Therapeutics, British Columbia Cancer Research Centre, 675 W 10th Avenue, Vancouver, BC V5Z 1 L3 Canada ; Interdisciplinary Oncology Program, Faculty of Medicine, University of British Columbia, 675 W 10th Avenue, Vancouver, BC V5Z 1 L3 Canada
| | - Dong Lin
- Department of Experimental Therapeutics, British Columbia Cancer Research Centre, 675 W 10th Avenue, Vancouver, BC V5Z 1 L3 Canada ; Vancouver Prostate Centre, 899 West 12th Avenue, Vancouver, BC V5Z 1 M9 Canada
| | - Francesco Crea
- Department of Experimental Therapeutics, British Columbia Cancer Research Centre, 675 W 10th Avenue, Vancouver, BC V5Z 1 L3 Canada ; Vancouver Prostate Centre, 899 West 12th Avenue, Vancouver, BC V5Z 1 M9 Canada ; Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, Vancouver, BC V5Z 1 M9 Canada
| | - Rebecca Wu
- Department of Experimental Therapeutics, British Columbia Cancer Research Centre, 675 W 10th Avenue, Vancouver, BC V5Z 1 L3 Canada
| | - Hui Xue
- Department of Experimental Therapeutics, British Columbia Cancer Research Centre, 675 W 10th Avenue, Vancouver, BC V5Z 1 L3 Canada
| | - Yuwei Wang
- Department of Experimental Therapeutics, British Columbia Cancer Research Centre, 675 W 10th Avenue, Vancouver, BC V5Z 1 L3 Canada
| | - Kelsie L Thu
- Department of Integrative Oncology, Genetics Unit, British Columbia Cancer Research Centre, 675 W 10th Avenue, Vancouver, BC V5Z 1 L3 Canada
| | - Wan L Lam
- Interdisciplinary Oncology Program, Faculty of Medicine, University of British Columbia, 675 W 10th Avenue, Vancouver, BC V5Z 1 L3 Canada ; Department of Integrative Oncology, Genetics Unit, British Columbia Cancer Research Centre, 675 W 10th Avenue, Vancouver, BC V5Z 1 L3 Canada
| | - Colin C Collins
- Vancouver Prostate Centre, 899 West 12th Avenue, Vancouver, BC V5Z 1 M9 Canada ; Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, Vancouver, BC V5Z 1 M9 Canada
| | - Yuzhuo Wang
- Department of Experimental Therapeutics, British Columbia Cancer Research Centre, 675 W 10th Avenue, Vancouver, BC V5Z 1 L3 Canada ; Interdisciplinary Oncology Program, Faculty of Medicine, University of British Columbia, 675 W 10th Avenue, Vancouver, BC V5Z 1 L3 Canada ; Vancouver Prostate Centre, 899 West 12th Avenue, Vancouver, BC V5Z 1 M9 Canada ; Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, Vancouver, BC V5Z 1 M9 Canada
| | - Cheryl D Helgason
- Department of Experimental Therapeutics, British Columbia Cancer Research Centre, 675 W 10th Avenue, Vancouver, BC V5Z 1 L3 Canada ; Interdisciplinary Oncology Program, Faculty of Medicine, University of British Columbia, 675 W 10th Avenue, Vancouver, BC V5Z 1 L3 Canada ; Department of Surgery, University of British Columbia, 910 W 10th Avenue, Vancouver, BC V5Z 4E3 Canada
| |
Collapse
|
402
|
Giménez-Cassina A, Danial NN. Regulation of mitochondrial nutrient and energy metabolism by BCL-2 family proteins. Trends Endocrinol Metab 2015; 26:165-75. [PMID: 25748272 PMCID: PMC4380665 DOI: 10.1016/j.tem.2015.02.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/07/2015] [Accepted: 02/08/2015] [Indexed: 12/21/2022]
Abstract
Cells have evolved a highly integrated network of mechanisms to coordinate cellular survival/death, proliferation, differentiation, and repair with metabolic states. It is therefore not surprising that proteins with canonical roles in cell death/survival also modulate nutrient and energy metabolism and vice versa. The finding that many BCL-2 (B cell lymphoma 2) proteins reside at mitochondria or can translocate to this organelle has long motivated investigation into their involvement in normal mitochondrial physiology and metabolism. These endeavors have led to the discovery of homeostatic roles for BCL-2 proteins beyond apoptosis. We predominantly focus on recent findings that link select BCL-2 proteins to carbon substrate utilization at the level of mitochondrial fuel choice, electron transport, and metabolite import independent of their cell death regulatory function.
Collapse
Affiliation(s)
- Alfredo Giménez-Cassina
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Nika N Danial
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
403
|
Lee JV, Shah S, Carrer A, Wellen KE. A cancerous web: signaling, metabolism, and the epigenome. Mol Cell Oncol 2015; 2:e965620. [PMID: 27308412 PMCID: PMC4904988 DOI: 10.4161/23723548.2014.965620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/08/2014] [Accepted: 08/12/2014] [Indexed: 11/19/2022]
Abstract
Histone acetylation is sensitive to the availability of acetyl-CoA. However, the extent to which metabolic alterations in cancer cells impact tumor histone acetylation has been unclear. Here, we discuss our recent findings that oncogenic AKT1 activation regulates histone acetylation levels in tumors through regulation of acetyl-CoA metabolism.
Collapse
Affiliation(s)
- Joyce V. Lee
- Department of Cancer Biology and Abramson Family Cancer Research Institute; University of Pennsylvania Perelman School of Medicine; Philadelphia, PA USA
| | - Supriya Shah
- Department of Cancer Biology and Abramson Family Cancer Research Institute; University of Pennsylvania Perelman School of Medicine; Philadelphia, PA USA
| | - Alessandro Carrer
- Department of Cancer Biology and Abramson Family Cancer Research Institute; University of Pennsylvania Perelman School of Medicine; Philadelphia, PA USA
| | - Kathryn E. Wellen
- Department of Cancer Biology and Abramson Family Cancer Research Institute; University of Pennsylvania Perelman School of Medicine; Philadelphia, PA USA
| |
Collapse
|
404
|
Vriet C, Hennig L, Laloi C. Stress-induced chromatin changes in plants: of memories, metabolites and crop improvement. Cell Mol Life Sci 2015; 72:1261-73. [PMID: 25578097 PMCID: PMC11113909 DOI: 10.1007/s00018-014-1792-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 01/18/2023]
Abstract
Exposure of plants to adverse environmental conditions leads to extensive transcriptional changes. Genome-wide approaches and gene function studies have revealed the importance of chromatin-level control in the regulation of stress-responsive gene expression. Advances in understanding chromatin modifications implicated in plant stress response and identifying proteins involved in chromatin-mediated transcriptional responses to stress are briefly presented in this review. We then highlight how chromatin-mediated gene expression changes can be coupled to the metabolic status of the cell, since many of the chromatin-modifying proteins involved in transcriptional regulation depend on cofactors and metabolites that are shared with enzymes in basic metabolism. Lastly, we discuss the stability and heritability of stress-induced chromatin changes and the potential of chromatin-based strategies for increasing stress tolerance of crops.
Collapse
Affiliation(s)
- Cécile Vriet
- BVME UMR 7265, Lab Genet Biophys Plantes, Aix Marseille Université, Marseille, 13284, France,
| | | | | |
Collapse
|
405
|
Szarc vel Szic K, Declerck K, Vidaković M, Vanden Berghe W. From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition? Clin Epigenetics 2015; 7:33. [PMID: 25861393 PMCID: PMC4389409 DOI: 10.1186/s13148-015-0068-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 03/09/2015] [Indexed: 01/12/2023] Open
Abstract
The progressively older population in developed countries is reflected in an increase in the number of people suffering from age-related chronic inflammatory diseases such as metabolic syndrome, diabetes, heart and lung diseases, cancer, osteoporosis, arthritis, and dementia. The heterogeneity in biological aging, chronological age, and aging-associated disorders in humans have been ascribed to different genetic and environmental factors (i.e., diet, pollution, stress) that are closely linked to socioeconomic factors. The common denominator of these factors is the inflammatory response. Chronic low-grade systemic inflammation during physiological aging and immunosenescence are intertwined in the pathogenesis of premature aging also defined as ‘inflammaging.’ The latter has been associated with frailty, morbidity, and mortality in elderly subjects. However, it is unknown to what extent inflammaging or longevity is controlled by epigenetic events in early life. Today, human diet is believed to have a major influence on both the development and prevention of age-related diseases. Most plant-derived dietary phytochemicals and macro- and micronutrients modulate oxidative stress and inflammatory signaling and regulate metabolic pathways and bioenergetics that can be translated into stable epigenetic patterns of gene expression. Therefore, diet interventions designed for healthy aging have become a hot topic in nutritional epigenomic research. Increasing evidence has revealed that complex interactions between food components and histone modifications, DNA methylation, non-coding RNA expression, and chromatin remodeling factors influence the inflammaging phenotype and as such may protect or predispose an individual to many age-related diseases. Remarkably, humans present a broad range of responses to similar dietary challenges due to both genetic and epigenetic modulations of the expression of target proteins and key genes involved in the metabolism and distribution of the dietary constituents. Here, we will summarize the epigenetic actions of dietary components, including phytochemicals, and macro- and micronutrients as well as metabolites, that can attenuate inflammaging. We will discuss the challenges facing personalized nutrition to translate highly variable interindividual epigenetic diet responses to potential individual health benefits/risks related to aging disease.
Collapse
Affiliation(s)
- Katarzyna Szarc vel Szic
- Lab Protein Science, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Ken Declerck
- Lab Protein Science, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Melita Vidaković
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Wim Vanden Berghe
- Lab Protein Science, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
406
|
Aguilar-Arnal L, Katada S, Orozco-Solis R, Sassone-Corsi P. NAD(+)-SIRT1 control of H3K4 trimethylation through circadian deacetylation of MLL1. Nat Struct Mol Biol 2015; 22:312-8. [PMID: 25751424 PMCID: PMC4732879 DOI: 10.1038/nsmb.2990] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/11/2015] [Indexed: 12/17/2022]
Abstract
The circadian clock controls the transcription of hundred genes through specific chromatin remodeling events. The histone methyltransferase Mixed-Lineage Leukemia 1 (MLL1) coordinates recruitment of CLOCK–BMAL1 activator complexes to chromatin, an event associated to cyclic H3K4 tri-methylation at circadian promoters. Remarkably, in mouse liver circadian H3K4me3 is modulated by SIRT1, a NAD+ dependent deacetylase involved in clock control. We show that mammalian MLL1 is acetylated at two conserved residues, K1130 and K1133. Notably, MLL1 acetylation is cyclic, controlled by the clock and by SIRT1, and impacts the methyltransferase activity of MLL1. Moreover, H3K4 methylation at clock-controlled gene promoters is influenced by pharmacological or genetic inactivation of SIRT1. Finally, MLL1 acetylation and H3K4me3 levels at circadian gene promoters depend on NAD+ circadian levels. These findings reveal a previously unappreciated regulatory pathway between energy metabolism and histone methylation.
Collapse
Affiliation(s)
- Lorena Aguilar-Arnal
- Center for Epigenetics and Metabolism, U904 INSERM, Department of Biological Chemistry, School of Medicine University of California, Irvine, Irvine, California, USA
| | - Sayako Katada
- Center for Epigenetics and Metabolism, U904 INSERM, Department of Biological Chemistry, School of Medicine University of California, Irvine, Irvine, California, USA
| | - Ricardo Orozco-Solis
- Center for Epigenetics and Metabolism, U904 INSERM, Department of Biological Chemistry, School of Medicine University of California, Irvine, Irvine, California, USA
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, U904 INSERM, Department of Biological Chemistry, School of Medicine University of California, Irvine, Irvine, California, USA
| |
Collapse
|
407
|
Matsuhashi T, Hishiki T, Zhou H, Ono T, Kaneda R, Iso T, Yamaguchi A, Endo J, Katsumata Y, Atsushi A, Yamamoto T, Shirakawa K, Yan X, Shinmura K, Suematsu M, Fukuda K, Sano M. Activation of pyruvate dehydrogenase by dichloroacetate has the potential to induce epigenetic remodeling in the heart. J Mol Cell Cardiol 2015; 82:116-24. [PMID: 25744081 DOI: 10.1016/j.yjmcc.2015.02.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 02/02/2015] [Accepted: 02/23/2015] [Indexed: 12/16/2022]
Abstract
Dichloroacetate (DCA) promotes pyruvate entry into the Krebs cycle by inhibiting pyruvate dehydrogenase (PDH) kinase and thereby maintaining PDH in the active dephosphorylated state. DCA has recently gained attention as a potential metabolic-targeting therapy for heart failure but the molecular basis of the therapeutic effect of DCA in the heart remains a mystery. Once-daily oral administration of DCA alleviates pressure overload-induced left ventricular remodeling. We examined changes in the metabolic fate of pyruvate carbon (derived from glucose) entering the Krebs cycle by metabolic interventions of DCA. (13)C6-glucose pathway tracing analysis revealed that instead of being completely oxidized in the mitochondria for ATP production, DCA-mediated PDH dephosphorylation results in an increased acetyl-CoA pool both in control and pressure-overloaded hearts. DCA induces hyperacetylation of histone H3K9 and H4 in a dose-dependent manner in parallel to the dephosphorylation of PDH in cultured cardiomyocytes. DCA administration increases histone H3K9 acetylation in in vivo mouse heart. Interestingly, DCA-dependent histone acetylation was associated with an up-regulation of 2.3% of genes (545 out of 23,474 examined). Gene ontology analysis revealed that these genes are highly enriched in transcription-related categories. This evidence suggests that sustained activation of PDH by DCA results in an overproduction of acetyl-CoA, which exceeds oxidation in the Krebs cycle and results in histone acetylation. We propose that DCA-mediated PDH activation has the potential to induce epigenetic remodeling in the heart, which, at least in part, forms the molecular basis for the therapeutic effect of DCA in the heart.
Collapse
Affiliation(s)
| | - Takako Hishiki
- Department of Biochemistry, Keio University, School of Medicine, Tokyo, Japan; Japan Science and Technology Agency, Exploratory Research for Advanced Technology, Suematsu Gas Biology Project, Tokyo, Japan
| | - Heping Zhou
- Department of Cardiovascular Surgery, First affiliated Hospital, Fourth Military Medical University, Xi'an, China
| | - Tomohiko Ono
- Department of Cardiology, Keio University, School of Medicine, Tokyo, Japan
| | - Ruri Kaneda
- Department of Cardiology, Keio University, School of Medicine, Tokyo, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Tokyo, Japan
| | - Tatsuya Iso
- Department of Medicine and Biological Science, Gunma University, Graduate School of Medicine, Gunma, Japan; Education and Research Support Center, Gunma University, Graduate School of Medicine, Gunma, Japan
| | - Aiko Yamaguchi
- Department of Bioimaging Information Analysis, Gunma University, Graduate School of Medicine, Gunma, Japan
| | - Jin Endo
- Department of Cardiology, Keio University, School of Medicine, Tokyo, Japan
| | | | - Anzai Atsushi
- Department of Cardiology, Keio University, School of Medicine, Tokyo, Japan
| | - Tsunehisa Yamamoto
- Department of Cardiology, Keio University, School of Medicine, Tokyo, Japan
| | - Kohsuke Shirakawa
- Department of Cardiology, Keio University, School of Medicine, Tokyo, Japan
| | - Xiaoxiang Yan
- Department of Cardiology, Keio University, School of Medicine, Tokyo, Japan
| | - Ken Shinmura
- Department of Cardiology, Keio University, School of Medicine, Tokyo, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University, School of Medicine, Tokyo, Japan; Japan Science and Technology Agency, Exploratory Research for Advanced Technology, Suematsu Gas Biology Project, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University, School of Medicine, Tokyo, Japan
| | - Motoaki Sano
- Department of Cardiology, Keio University, School of Medicine, Tokyo, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Tokyo, Japan.
| |
Collapse
|
408
|
Abstract
Low-grade gliomas (LGG) constitute grades I and II tumors of astrocytic and grade II tumors of oligodendroglial lineage. Although these tumors are typically slow growing, they may be associated with significant morbidity and mortality because of recurrence and malignant progression, even in the setting of optimal resection. LGG in pediatric and adult age groups are currently classified by morphologic criteria. Recent years have heralded a molecular revolution in understanding brain tumors, including LGG. Next-generation sequencing has definitively demonstrated that pediatric and adult LGG fundamentally differ in their underlying molecular characteristics, despite being histologically similar. Pediatric LGG show alterations in FGFR1 and BRAF in pilocytic astrocytomas and FGFR1 alterations in diffuse astrocytomas, each converging on the mitogen-activated protein kinase signaling pathway. Adult LGG are characterized by IDH1/2 mutations and ATRX mutations in astrocytic tumors and IDH1/2 mutations and 1p/19q codeletions in oligodendroglial tumors. TERT promoter mutations are also noted in LGG and are mainly associated with oligodendrogliomas. These findings have considerably refined approaches to classifying these tumors. Moreover, many of the molecular alterations identified in LGG directly impact on prognosis, tumor biology, and the development of novel therapies.
Collapse
|
409
|
Nishikawa K, Iwamoto Y, Kobayashi Y, Katsuoka F, Kawaguchi SI, Tsujita T, Nakamura T, Kato S, Yamamoto M, Takayanagi H, Ishii M. DNA methyltransferase 3a regulates osteoclast differentiation by coupling to an S-adenosylmethionine-producing metabolic pathway. Nat Med 2015; 21:281-7. [PMID: 25706873 DOI: 10.1038/nm.3774] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 11/20/2014] [Indexed: 12/13/2022]
Abstract
Metabolic reprogramming occurs in response to the cellular environment to mediate differentiation, but the fundamental mechanisms linking metabolic processes to differentiation programs remain to be elucidated. During osteoclast differentiation, a shift toward more oxidative metabolic processes occurs. In this study we identified the de novo DNA methyltransferase 3a (Dnmt3a) as a transcription factor that couples these metabolic changes to osteoclast differentiation. We also found that receptor activator of nuclear factor-κB ligand (RANKL), an essential cytokine for osteoclastogenesis, induces this metabolic shift towards oxidative metabolism, which is accompanied by an increase in S-adenosylmethionine (SAM) production. We found that SAM-mediated DNA methylation by Dnmt3a regulates osteoclastogenesis via epigenetic repression of anti-osteoclastogenic genes. The importance of Dnmt3a in bone homeostasis was underscored by the observations that Dnmt3a-deficient osteoclast precursor cells do not differentiate efficiently into osteoclasts and that mice with an osteoclast-specific deficiency in Dnmt3a have elevated bone mass due to a smaller number of osteoclasts. Furthermore, inhibition of DNA methylation by theaflavin-3,3'-digallate abrogated bone loss in models of osteoporosis. Thus, this study reveals the role of epigenetic processes in the regulation of cellular metabolism and differentiation, which may provide the molecular basis for a new therapeutic strategy for a variety of bone disorders.
Collapse
Affiliation(s)
- Keizo Nishikawa
- 1] Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan. [2] WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan. [3] Japan Science and Technology Agency, CREST, Tokyo, Japan
| | - Yoriko Iwamoto
- 1] Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan. [2] WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan. [3] Japan Science and Technology Agency, CREST, Tokyo, Japan. [4] Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | - Fumiki Katsuoka
- 1] Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan. [2] Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shin-ichi Kawaguchi
- Department of Molecular Medicine and Therapy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tadayuki Tsujita
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Nakamura
- Department of Biochemistry, School of Medicine, Keio University, Tokyo, Japan
| | | | - Masayuki Yamamoto
- 1] Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan. [2] Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Takayanagi
- 1] Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan. [2] Japan Science and Technology Agency, ERATO, Takayanagi Osteonetwork Project, Tokyo, Japan
| | - Masaru Ishii
- 1] Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan. [2] WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan. [3] Japan Science and Technology Agency, CREST, Tokyo, Japan
| |
Collapse
|
410
|
Abstract
Skeletal and cardiac muscles play key roles in the regulation of systemic energy homeostasis and display remarkable plasticity in their metabolic responses to caloric availability and physical activity. In this Perspective we discuss recent studies highlighting transcriptional mechanisms that govern systemic metabolism by striated muscles. We focus on the participation of the Mediator complex in this process, and suggest that tissue-specific regulation of Mediator subunits impacts metabolic homeostasis.
Collapse
Affiliation(s)
- Kedryn K Baskin
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Benjamin R Winders
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA; Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA.
| |
Collapse
|
411
|
Obre E, Rossignol R. Emerging concepts in bioenergetics and cancer research: Metabolic flexibility, coupling, symbiosis, switch, oxidative tumors, metabolic remodeling, signaling and bioenergetic therapy. Int J Biochem Cell Biol 2015; 59:167-81. [DOI: 10.1016/j.biocel.2014.12.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 12/13/2014] [Accepted: 12/15/2014] [Indexed: 01/09/2023]
|
412
|
Chandra V, Hong KM. Effects of deranged metabolism on epigenetic changes in cancer. Arch Pharm Res 2015; 38:321-37. [PMID: 25628247 DOI: 10.1007/s12272-015-0561-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/09/2015] [Indexed: 12/17/2022]
Abstract
The concept of epigenetics is now providing the mechanisms by which cells transfer their new environmental-change-induced phenotypes to their daughter cells. However, how extracellular or cytoplasmic environmental cues are connected to the nuclear epigenome remains incompletely understood. Recently emerging evidence suggests that epigenetic changes are correlated with metabolic changes via chromatin remodeling. As many human complex diseases including cancer harbor both epigenetic changes and metabolic dysregulation, understanding the molecular processes linking them has huge implications for disease pathogenesis and therapeutic intervention. In this review, the impacts of metabolic changes on cancer epigenetics are discussed, along with the current knowledge on cancer metabolism and epigenetics.
Collapse
Affiliation(s)
- Vishal Chandra
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, 410-769, Korea
| | | |
Collapse
|
413
|
Scourzic L, Mouly E, Bernard OA. TET proteins and the control of cytosine demethylation in cancer. Genome Med 2015; 7:9. [PMID: 25632305 PMCID: PMC4308928 DOI: 10.1186/s13073-015-0134-6] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The discovery that ten-eleven translocation (TET) proteins are α-ketoglutarate-dependent dioxygenases involved in the conversion of 5-methylcytosines (5-mC) to 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine and 5-carboxycytosine has revealed new pathways in the cytosine methylation and demethylation process. The description of inactivating mutations in TET2 suggests that cellular transformation is in part caused by the deregulation of this 5-mC conversion. The direct and indirect deregulation of methylation control through mutations in DNA methyltransferase and isocitrate dehydrogenase (IDH) genes, respectively, along with the importance of cytosine methylation in the control of normal and malignant cellular differentiation have provided a conceptual framework for understanding the early steps in cancer development. Here, we review recent advances in our understanding of the cytosine methylation cycle and its implication in cellular transformation, with an emphasis on TET enzymes and 5-hmC. Ongoing clinical trials targeting the activity of mutated IDH enzymes provide a proof of principle that DNA methylation is targetable, and will trigger further therapeutic applications aimed at controlling both early and late stages of cancer development.
Collapse
Affiliation(s)
- Laurianne Scourzic
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1170, équipe labellisée Ligue Contre le Cancer, 94805 Villejuif, France ; Institut Gustave Roussy, 94805 Villejuif, France ; University Paris 11 Sud, 91405 Orsay, France
| | - Enguerran Mouly
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1170, équipe labellisée Ligue Contre le Cancer, 94805 Villejuif, France ; Institut Gustave Roussy, 94805 Villejuif, France ; University Paris 11 Sud, 91405 Orsay, France
| | - Olivier A Bernard
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1170, équipe labellisée Ligue Contre le Cancer, 94805 Villejuif, France ; Institut Gustave Roussy, 94805 Villejuif, France ; University Paris 11 Sud, 91405 Orsay, France
| |
Collapse
|
414
|
Jang H, Yang J, Lee E, Cheong JH. Metabolism in embryonic and cancer stemness. Arch Pharm Res 2015; 38:381-8. [PMID: 25598509 DOI: 10.1007/s12272-015-0558-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/07/2015] [Indexed: 12/18/2022]
Abstract
Cells constantly adjust their metabolic state in response to extracellular signals and nutrient availability to meet their demand for energy and building blocks. Recently, there has been significant research into the metabolic aspects of embryonic stem cells/pluripotent stem cells (ESCs/PSCs) and cancer stem cells (CSCs), which has revealed the unique metabolic status of different stem cell lineages. While ESCs and CSCs were largely thought to harbor similar metabolic states, recent evidence demonstrates that their metabolic dependency is distinctly different. The glucose metabolism of ESCs largely depends on glycolysis, including a one-carbon pathway during differentiation. While proliferating cancer cells share the glycolytic phenotype of ESCs, the mitochondria-centric oxidative phosphorylation constitutes an important metabolic circuit of CSCs under metabolic stress, indicating the dynamic nature of metabolic plasticity. In this review, we catalogued metabolic signatures of cellular "stemness" to provide insights into the therapeutic potential of ESCs and CSCs.
Collapse
Affiliation(s)
- Hyonchol Jang
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, 410-769, Republic of Korea,
| | | | | | | |
Collapse
|
415
|
Fan J, Krautkramer KA, Feldman JL, Denu JM. Metabolic regulation of histone post-translational modifications. ACS Chem Biol 2015; 10:95-108. [PMID: 25562692 DOI: 10.1021/cb500846u] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Histone post-translational modifications regulate transcription and other DNA-templated functions. This process is dynamically regulated by specific modifying enzymes whose activities require metabolites that either serve as cosubstrates or act as activators/inhibitors. Therefore, metabolism can influence histone modification by changing local concentrations of key metabolites. Physiologically, the epigenetic response to metabolism is important for nutrient sensing and environment adaption. In pathologic states, the connection between metabolism and histone modification mediates epigenetic abnormality in complex disease. In this review, we summarize recent studies of the molecular mechanisms involved in metabolic regulation of histone modifications and discuss their biological significance.
Collapse
Affiliation(s)
- Jing Fan
- Department of Biomolecular Chemistry and the Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
| | - Kimberly A. Krautkramer
- Department of Biomolecular Chemistry and the Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
| | - Jessica L. Feldman
- Department of Biomolecular Chemistry and the Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
| | - John M. Denu
- Department of Biomolecular Chemistry and the Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
| |
Collapse
|
416
|
Ryall JG, Dell'Orso S, Derfoul A, Juan A, Zare H, Feng X, Clermont D, Koulnis M, Gutierrez-Cruz G, Fulco M, Sartorelli V. The NAD(+)-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell 2015; 16:171-83. [PMID: 25600643 DOI: 10.1016/j.stem.2014.12.004] [Citation(s) in RCA: 396] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 08/27/2014] [Accepted: 12/16/2014] [Indexed: 01/30/2023]
Abstract
Stem cells undergo a shift in metabolic substrate utilization during specification and/or differentiation, a process that has been termed metabolic reprogramming. Here, we report that during the transition from quiescence to proliferation, skeletal muscle stem cells experience a metabolic switch from fatty acid oxidation to glycolysis. This reprogramming of cellular metabolism decreases intracellular NAD(+) levels and the activity of the histone deacetylase SIRT1, leading to elevated H4K16 acetylation and activation of muscle gene transcription. Selective genetic ablation of the SIRT1 deacetylase domain in skeletal muscle results in increased H4K16 acetylation and deregulated activation of the myogenic program in SCs. Moreover, mice with muscle-specific inactivation of the SIRT1 deacetylase domain display reduced myofiber size, impaired muscle regeneration, and derepression of muscle developmental genes. Overall, these findings reveal how metabolic cues can be mechanistically translated into epigenetic modifications that regulate skeletal muscle stem cell biology.
Collapse
Affiliation(s)
- James G Ryall
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20829, USA
| | - Stefania Dell'Orso
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20829, USA
| | - Assia Derfoul
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20829, USA
| | - Aster Juan
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20829, USA
| | - Hossein Zare
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20829, USA
| | - Xuesong Feng
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20829, USA
| | - Daphney Clermont
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20829, USA
| | - Miroslav Koulnis
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20829, USA
| | - Gustavo Gutierrez-Cruz
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20829, USA
| | - Marcella Fulco
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20829, USA
| | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20829, USA.
| |
Collapse
|
417
|
Gomes AP, Blenis J. A nexus for cellular homeostasis: the interplay between metabolic and signal transduction pathways. Curr Opin Biotechnol 2015; 34:110-7. [PMID: 25562138 DOI: 10.1016/j.copbio.2014.12.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/08/2014] [Accepted: 12/10/2014] [Indexed: 12/21/2022]
Abstract
In multicellular organisms, individual cells have evolved to sense external and internal cues in order to maintain cellular homeostasis and survive under different environmental conditions. Cells efficiently adjust their metabolism to reflect the abundance of nutrients, energy and growth factors. The ability to rewire cellular metabolism between anabolic and catabolic processes is crucial for cells to thrive. Thus, cells have developed, through evolution, metabolic networks that are highly plastic and tightly regulated to meet the requirements necessary to maintain cellular homeostasis. The plasticity of these cellular systems is tightly regulated by complex signaling networks that integrate the intracellular and extracellular information. The coordination of signal transduction and metabolic pathways is essential in maintaining a healthy and rapidly responsive cellular state.
Collapse
Affiliation(s)
- Ana P Gomes
- Meyer Cancer Center, Weill Cornell Medical College, New York, NY, USA; Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medical College, New York, NY, USA; Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
418
|
Abstract
PURPOSE OF REVIEW Proline metabolism impacts a number of regulatory targets in both animals and plants and is especially important in cancer. Glutamine, a related amino acid, is considered second in importance only to glucose as a substrate for tumors. But proline and glutamine are interconvertible and linked in their metabolism. In animals, proline and glutamine have specific regulatory functions and their respective physiologic sources. A comparison of the metabolism of proline and glutamine would help us understand the importance of these two nonessential amino acids in cancer metabolism. RECENT FINDINGS The regulatory functions of proline metabolism proposed 3 decades ago have found relevance in many areas. For cancer, these functions play a role in apoptosis, autophagy and in response to nutrient and oxygen deprivation. Importantly, proline-derived reactive oxygen species served as a driving signal for reprogramming. This model has been applied by others to metabolic regulation for the insulin-prosurvival axis, induction of adipose triglyceride lipase for lipid metabolism and regulation of embryonic stem cell development. Of special interest, modulatory proteins such as parkinson protein 7 and oral cancer overexpressed 1 interact with pyrroline-5-carboxylate reductase, a critical component of the proline regulatory axis. Although the interconvertibility of proline and glutamine has been long established, recent findings showed that the proto-oncogene, cellular myelocytomatosis oncogene, upregulates glutamine utilization (glutaminase) and routes glutamate to proline biosynthesis (pyrroline-5-carboxylate synthase, pyrroline-5-carboxylate reductases). Additionally, collagen, which contains large amounts of proline, may be metabolized to serve as a reservoir for proline. This metabolic relationship as well as the new regulatory targets of proline metabolism invites an elucidation of the differential effects of these nonessential amino acids and their production, storage and mobilization. SUMMARY Mechanisms by which the proline regulatory axis modulates the cancer phenotype are being revealed. Proline can be synthesized from glutamine as well as derived from collagen degradation. The metabolism of proline serves as a source of energy during stress, provides signaling reactive oxygen species for epigenetic reprogramming and regulates redox homeostasis.
Collapse
Affiliation(s)
- James M Phang
- Metabolism and Cancer Susceptibility Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | | | | | | |
Collapse
|
419
|
Ferreira CR, Jarmusch AK, Pirro V, Alfaro CM, González-Serrano AF, Niemann H, Wheeler MB, Rabel RAC, Hallett JE, Houser R, Kaufman A, Cooks RG. Ambient ionisation mass spectrometry for lipid profiling and structural analysis of mammalian oocytes, preimplantation embryos and stem cells. Reprod Fertil Dev 2015; 27:621-37. [DOI: 10.1071/rd14310] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 01/13/2015] [Indexed: 12/14/2022] Open
Abstract
Lipids play fundamental roles in mammalian embryo preimplantation development and cell fate. Triacylglycerol accumulates in oocytes and blastomeres as lipid droplets, phospholipids influence membrane functional properties, and essential fatty acid metabolism is important for maintaining the stemness of cells cultured in vitro. The growing impact that lipids have in the field of developmental biology makes analytical approaches to analyse structural information of great interest. This paper describes the concept and presents the results of lipid profiling by mass spectrometry (MS) of oocytes and preimplantation embryos, with special focus on ambient ionisation. Based on our previous experience with oocytes and embryos, we aim to convey that ambient MS is also valuable for stem cell differentiation analysis. Ambient ionisation MS allows the detection of a wide range of lipid classes (e.g. free fatty acids, cholesterol esters, phospholipids) in single oocytes, embryos and cell pellets, which are informative of in vitro culture impact, developmental and differentiation stages. Background on MS principles, the importance of underused MS scan modes for structural analysis of lipids, and statistical approaches used for data analysis are covered. We envisage that MS alone or in combination with other techniques will have a profound impact on the understanding of lipid metabolism, particularly in early embryo development and cell differentiation research.
Collapse
|
420
|
Inagaki T. Research Perspectives on the Regulation and Physiological Functions of FGF21 and its Association with NAFLD. Front Endocrinol (Lausanne) 2015; 6:147. [PMID: 26441837 PMCID: PMC4585294 DOI: 10.3389/fendo.2015.00147] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/03/2015] [Indexed: 12/11/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a metabolic hormone primarily secreted from the liver and functions in multiple tissues. Various transcription factors induce FGF21 expression in the liver, which indicates that FGF21 is a mediator of multiple environmental cues. FGF21 alters metabolism under starvation conditions, protects the body from energy depletion, and extends life span. Pharmacological administration of FGF21 alleviates dyslipidemia and induces weight loss in obese animals. In addition to the well-studied functions of FG21, several lines of recent evidence indicate a possible link between FGF21 and non-alcoholic fatty liver disease (NAFLD). High serum levels of FGF21 are associated with NAFLD and its risk factors, such as endoplasmic reticulum stress and chronic inflammation. In addition, FGF21 alleviates the major risk factors of NAFLD, including obesity, dyslipidemia, and insulin insensitivity. Thus, FGF21 is a potential drug candidate for diseases, such as NAFLD, dyslipidemia, and type 2 diabetes. In this review, the research perspectives of FGF21 and therapeutic potencies of FGF21 as a modulator of NAFLD are summarized.
Collapse
Affiliation(s)
- Takeshi Inagaki
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
- *Correspondence: Takeshi Inagaki, Division of Metabolic Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan,
| |
Collapse
|
421
|
Menendez JA, Corominas-Faja B, Cuyàs E, Alarcón T. Metabostemness: Metaboloepigenetic reprogramming of cancer stem-cell functions. Oncoscience 2014; 1:803-6. [PMID: 25621295 PMCID: PMC4303888 DOI: 10.18632/oncoscience.113] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 12/22/2014] [Indexed: 01/07/2023] Open
Abstract
Cancer researchers are currently embarking on one of their field's biggest challenges, namely the understanding of how cellular metabolism or certain classes of elite metabolites (e.g., oncometabolites) can directly influence chromatin structure and the functioning of epi-transcriptional circuits to causally drive tumour formation. We here propose that refining the inherent cell attractor nature of nuclear reprogramming phenomena by adding the under-appreciated capacity of metabolism to naturally reshape the Waddingtonian landscape's topography provides a new integrative metabolo-epigenetic model of the cancer stem cell (CSC) theory.
Collapse
Affiliation(s)
- Javier A Menendez
- Metabolism & Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology (ICO), Girona, Catalonia, Spain ; Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain
| | - Bruna Corominas-Faja
- Metabolism & Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology (ICO), Girona, Catalonia, Spain ; Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain
| | - Elisabet Cuyàs
- Metabolism & Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology (ICO), Girona, Catalonia, Spain ; Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain
| | - Tomás Alarcón
- Computational & Mathematical Biology Research Group, Centre de Recerca Matemàtica (CRM), Barcelona, Catalonia, Spain ; Departament de Matemàtiques, Universitat Autònoma de Barcelona (UAB), Barcelona, Catalonia, Spain
| |
Collapse
|
422
|
Shaughnessy DT, McAllister K, Worth L, Haugen AC, Meyer JN, Domann FE, Van Houten B, Mostoslavsky R, Bultman SJ, Baccarelli AA, Begley TJ, Sobol RW, Hirschey MD, Ideker T, Santos JH, Copeland WC, Tice RR, Balshaw DM, Tyson FL. Mitochondria, energetics, epigenetics, and cellular responses to stress. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:1271-8. [PMID: 25127496 PMCID: PMC4256704 DOI: 10.1289/ehp.1408418] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/14/2014] [Indexed: 05/17/2023]
Abstract
BACKGROUND Cells respond to environmental stressors through several key pathways, including response to reactive oxygen species (ROS), nutrient and ATP sensing, DNA damage response (DDR), and epigenetic alterations. Mitochondria play a central role in these pathways not only through energetics and ATP production but also through metabolites generated in the tricarboxylic acid cycle, as well as mitochondria-nuclear signaling related to mitochondria morphology, biogenesis, fission/fusion, mitophagy, apoptosis, and epigenetic regulation. OBJECTIVES We investigated the concept of bidirectional interactions between mitochondria and cellular pathways in response to environmental stress with a focus on epigenetic regulation, and we examined DNA repair and DDR pathways as examples of biological processes that respond to exogenous insults through changes in homeostasis and altered mitochondrial function. METHODS The National Institute of Environmental Health Sciences sponsored the Workshop on Mitochondria, Energetics, Epigenetics, Environment, and DNA Damage Response on 25-26 March 2013. Here, we summarize key points and ideas emerging from this meeting. DISCUSSION A more comprehensive understanding of signaling mechanisms (cross-talk) between the mitochondria and nucleus is central to elucidating the integration of mitochondrial functions with other cellular response pathways in modulating the effects of environmental agents. Recent studies have highlighted the importance of mitochondrial functions in epigenetic regulation and DDR with environmental stress. Development and application of novel technologies, enhanced experimental models, and a systems-type research approach will help to discern how environmentally induced mitochondrial dysfunction affects key mechanistic pathways. CONCLUSIONS Understanding mitochondria-cell signaling will provide insight into individual responses to environmental hazards, improving prediction of hazard and susceptibility to environmental stressors.
Collapse
Affiliation(s)
- Daniel T Shaughnessy
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
423
|
Cheng SC, Joosten LA, Netea MG. The interplay between central metabolism and innate immune responses. Cytokine Growth Factor Rev 2014; 25:707-13. [DOI: 10.1016/j.cytogfr.2014.06.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 06/16/2014] [Indexed: 11/25/2022]
|
424
|
Carrer A, Wellen KE. Metabolism and epigenetics: a link cancer cells exploit. Curr Opin Biotechnol 2014; 34:23-9. [PMID: 25461508 DOI: 10.1016/j.copbio.2014.11.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 12/24/2022]
Abstract
Both cellular nutrient metabolism and chromatin organization are remodeled in cancer cells, and these alterations play key roles in tumor development and growth. Many chromatin modifying-enzymes utilize metabolic intermediates as cofactors or substrates, and recent studies have demonstrated that the epigenome is sensitive to cellular metabolism. The contribution of metabolic alterations to epigenetic deregulation in cancer cells is just beginning to emerge, as are the roles of the metabolism-epigenetics link in tumorigenesis. Here we review the roles of acetyl-CoA and S-adenosylmethionine (SAM), donor substrates for acetylation and methylation reactions, respectively, in regulating chromatin modifications in response to nutrient metabolism. We further discuss how oncogenic signaling, cell metabolism, and histone modifications are interconnected and how their relationship might impact tumor growth.
Collapse
Affiliation(s)
- Alessandro Carrer
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
425
|
Motonishi S, Nangaku M, Wada T, Ishimoto Y, Ohse T, Matsusaka T, Kubota N, Shimizu A, Kadowaki T, Tobe K, Inagi R. Sirtuin1 Maintains Actin Cytoskeleton by Deacetylation of Cortactin in Injured Podocytes. J Am Soc Nephrol 2014; 26:1939-59. [PMID: 25424328 DOI: 10.1681/asn.2014030289] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 10/03/2014] [Indexed: 12/30/2022] Open
Abstract
Recent studies have highlighted the renoprotective effect of sirtuin1 (SIRT1), a deacetylase that contributes to cellular regulation. However, the pathophysiologic role of SIRT1 in podocytes remains unclear. Here, we investigated the function of SIRT1 in podocytes. We first established podocyte-specific Sirt1 knockout (SIRT1(pod-/-)) mice. We then induced glomerular disease by nephrotoxic serum injection. The increase in urinary albumin excretion and BUN and the severity of glomerular injury were all significantly greater in SIRT1(pod-/-) mice than in wild-type mice. Western blot analysis and immunofluorescence showed a significant decrease in podocyte-specific proteins in SIRT1(pod-/-) mice, and electron microscopy showed marked exacerbation of podocyte injury, including actin cytoskeleton derangement in SIRT1(pod-/-) mice compared with wild-type mice. Protamine sulfate-induced podocyte injury was also exacerbated by podocyte-specific SIRT1 deficiency. In vitro, actin cytoskeleton derangement in H2O2-treated podocytes became prominent when the cells were pretreated with SIRT1 inhibitors. Conversely, this H2O2-induced derangement was ameliorated by SIRT1 activation. Furthermore, SIRT1 activation deacetylated the actin-binding and -polymerizing protein cortactin in the nucleus and facilitated deacetylated cortactin localization in the cytoplasm. Cortactin knockdown or inhibition of the nuclear export of cortactin induced actin cytoskeleton derangement and dissociation of cortactin from F-actin, suggesting the necessity of cytoplasmic cortactin for maintenance of the actin cytoskeleton. Taken together, these findings indicate that SIRT1 protects podocytes and prevents glomerular injury by deacetylating cortactin and thereby, maintaining actin cytoskeleton integrity.
Collapse
Affiliation(s)
| | | | | | - Yu Ishimoto
- Divisions of Nephrology and Endocrinology and
| | | | - Taiji Matsusaka
- Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan; and
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Kazuyuki Tobe
- The First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Reiko Inagi
- Divisions of Nephrology and Endocrinology and CKD Pathophysiology and
| |
Collapse
|
426
|
Orlandi I, Coppola DP, Vai M. Rewiring yeast acetate metabolism through MPC1 loss of function leads to mitochondrial damage and decreases chronological lifespan. ACTA ACUST UNITED AC 2014; 1:393-405. [PMID: 28357219 PMCID: PMC5349135 DOI: 10.15698/mic2014.12.178] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During growth on fermentable substrates, such as glucose, pyruvate, which is the
end-product of glycolysis, can be used to generate acetyl-CoA in the cytosol via
acetaldehyde and acetate, or in mitochondria by direct oxidative
decarboxylation. In the latter case, the mitochondrial pyruvate carrier (MPC) is
responsible for pyruvate transport into mitochondrial matrix space. During
chronological aging, yeast cells which lack the major structural subunit Mpc1
display a reduced lifespan accompanied by an age-dependent loss of autophagy.
Here, we show that the impairment of pyruvate import into mitochondria linked to
Mpc1 loss is compensated by a flux redirection of TCA cycle intermediates
through the malic enzyme-dependent alternative route. In such a way, the TCA
cycle operates in a “branched” fashion to generate pyruvate and is depleted of
intermediates. Mutant cells cope with this depletion by increasing the activity
of glyoxylate cycle and of the pathway which provides the nucleocytosolic
acetyl-CoA. Moreover, cellular respiration decreases and ROS accumulate in the
mitochondria which, in turn, undergo severe damage. These acquired traits in
concert with the reduced autophagy restrict cell survival of the mpc1∆ mutant
during chronological aging. Conversely, the activation of the carnitine shuttle
by supplying acetyl-CoA to the mitochondria is sufficient to abrogate the
short-lived phenotype of the mutant.
Collapse
Affiliation(s)
- Ivan Orlandi
- SYSBIO Centre for Systems Biology Milano, Italy. ; Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Damiano Pellegrino Coppola
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Marina Vai
- SYSBIO Centre for Systems Biology Milano, Italy. ; Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
427
|
Chromatin landscape and circadian dynamics: Spatial and temporal organization of clock transcription. Proc Natl Acad Sci U S A 2014; 112:6863-70. [PMID: 25378702 DOI: 10.1073/pnas.1411264111] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Circadian rhythms drive the temporal organization of a wide variety of physiological and behavioral functions in ∼24-h cycles. This control is achieved through a complex program of gene expression. In mammals, the molecular clock machinery consists of interconnected transcriptional-translational feedback loops that ultimately ensure the proper oscillation of thousands of genes in a tissue-specific manner. To achieve circadian transcriptional control, chromatin remodelers serve the clock machinery by providing appropriate oscillations to the epigenome. Recent findings have revealed the presence of circadian interactomes, nuclear "hubs" of genome topology where coordinately expressed circadian genes physically interact in a spatial and temporal-specific manner. Thus, a circadian nuclear landscape seems to exist, whose interplay with metabolic pathways and clock regulators translates into specific transcriptional programs. Deciphering the molecular mechanisms that connect the circadian clock machinery with the nuclear landscape will reveal yet unexplored pathways that link cellular metabolism to epigenetic control.
Collapse
|
428
|
Salehzadeh-Yazdi A, Asgari Y, Saboury AA, Masoudi-Nejad A. Computational analysis of reciprocal association of metabolism and epigenetics in the budding yeast: a genome-scale metabolic model (GSMM) approach. PLoS One 2014; 9:e111686. [PMID: 25365344 PMCID: PMC4218804 DOI: 10.1371/journal.pone.0111686] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 10/07/2014] [Indexed: 12/13/2022] Open
Abstract
Metaboloepigenetics is a newly coined term in biological sciences that investigates the crosstalk between epigenetic modifications and metabolism. The reciprocal relation between biochemical transformations and gene expression regulation has been experimentally demonstrated in cancers and metabolic syndromes. In this study, we explored the metabolism-histone modifications crosstalk by topological analysis and constraint-based modeling approaches in the budding yeast. We constructed nine models through the integration of gene expression data of four mutated histone tails into a genome-scale metabolic model of yeast. Accordingly, we defined the centrality indices of the lowly expressed enzymes in the undirected enzyme-centric network of yeast by CytoHubba plug-in in Cytoscape. To determine the global effects of histone modifications on the yeast metabolism, the growth rate and the range of possible flux values of reactions, we used constraint-based modeling approach. Centrality analysis shows that the lowly expressed enzymes could affect and control the yeast metabolic network. Besides, constraint-based modeling results are in a good agreement with the experimental findings, confirming that the mutations in histone tails lead to non-lethal alterations in the yeast, but have diverse effects on the growth rate and reveal the functional redundancy.
Collapse
Affiliation(s)
- Ali Salehzadeh-Yazdi
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Yazdan Asgari
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Akbar Saboury
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- * E-mail:
| |
Collapse
|
429
|
Kebede AF, Schneider R, Daujat S. Novel types and sites of histone modifications emerge as players in the transcriptional regulation contest. FEBS J 2014; 282:1658-74. [DOI: 10.1111/febs.13047] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/03/2014] [Accepted: 09/09/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Adam F. Kebede
- Institut de Génétique et de Biologie Moléculaire et Cellulaire; CNRS UMR 7104 - Inserm U964; Université de Strasbourg; Illkirch France
| | - Robert Schneider
- Institut de Génétique et de Biologie Moléculaire et Cellulaire; CNRS UMR 7104 - Inserm U964; Université de Strasbourg; Illkirch France
| | - Sylvain Daujat
- Institut de Génétique et de Biologie Moléculaire et Cellulaire; CNRS UMR 7104 - Inserm U964; Université de Strasbourg; Illkirch France
| |
Collapse
|
430
|
Gu L, Liu H, Gu X, Boots C, Moley KH, Wang Q. Metabolic control of oocyte development: linking maternal nutrition and reproductive outcomes. Cell Mol Life Sci 2014; 72:251-71. [PMID: 25280482 DOI: 10.1007/s00018-014-1739-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 09/12/2014] [Accepted: 09/22/2014] [Indexed: 02/01/2023]
Abstract
Obesity, diabetes, and related metabolic disorders are major health issues worldwide. As the epidemic of metabolic disorders continues, the associated medical co-morbidities, including the detrimental impact on reproduction, increase as well. Emerging evidence suggests that the effects of maternal nutrition on reproductive outcomes are likely to be mediated, at least in part, by oocyte metabolism. Well-balanced and timed energy metabolism is critical for optimal development of oocytes. To date, much of our understanding of oocyte metabolism comes from the effects of extrinsic nutrients on oocyte maturation. In contrast, intrinsic regulation of oocyte development by metabolic enzymes, intracellular mediators, and transport systems is less characterized. Specifically, decreased acid transport proteins levels, increased glucose/lipid content and elevated reactive oxygen species in oocytes have been implicated in meiotic defects, organelle dysfunction and epigenetic alteration. Therefore, metabolic disturbances in oocytes may contribute to the diminished reproductive potential experienced by women with metabolic disorders. In-depth research is needed to further explore the underlying mechanisms. This review also discusses several approaches for metabolic analysis. Metabolomic profiling of oocytes, the surrounding granulosa cells, and follicular fluid will uncover the metabolic networks regulating oocyte development, potentially leading to the identification of oocyte quality markers and prevention of reproductive disease and poor outcomes in offspring.
Collapse
Affiliation(s)
- Ling Gu
- College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China,
| | | | | | | | | | | |
Collapse
|
431
|
Menendez JA, Alarcón T. Metabostemness: a new cancer hallmark. Front Oncol 2014; 4:262. [PMID: 25325014 PMCID: PMC4179679 DOI: 10.3389/fonc.2014.00262] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 09/07/2014] [Indexed: 12/12/2022] Open
Abstract
The acquisition of and departure from stemness in cancer tissues might not only be hardwired by genetic controllers, but also by the pivotal regulatory role of the cellular metabotype, which may act as a "starter dough" for cancer stemness traits. We have coined the term metabostemness to refer to the metabolic parameters causally controlling or functionally substituting the epitranscriptional orchestration of the genetic reprograming that redirects normal and tumor cells toward less-differentiated cancer stem cell (CSC) cellular states. Certain metabotypic alterations might operate as pivotal molecular events rendering a cell of origin susceptible to epigenetic rewiring required for the acquisition of aberrant stemness and, concurrently, of refractoriness to differentiation. The metabostemness attribute can remove, diminish, or modify the nature of molecular barriers present in Waddington's epigenetic landscapes, thus allowing differentiated cells to more easily (re)-enter into CSC cellular macrostates. Activation of the metabostemness trait can poise cells with chromatin states competent for rapid dedifferentiation while concomitantly setting the idoneous metabolic stage for later reprograming stimuli to finish the journey from non-cancerous into tumor-initiating cells. Because only a few permitted metabotypes will be compatible with the operational properties owned by CSC cellular states, the metabostemness property provides a new framework through which to pharmacologically resolve the apparently impossible problem of discovering drugs aimed to target the molecular biology of the cancer stemness itself. The metabostemness cancer hallmark generates a shifting oncology theory that should guide a new era of metabolo-epigenetic cancer precision medicine.
Collapse
Affiliation(s)
- Javier A Menendez
- Metabolism and Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology-Girona (ICO-Girona) , Girona , Spain ; Girona Biomedical Research Institute (IDIBGI) , Girona , Spain
| | - Tomás Alarcón
- Computational and Mathematical Biology Research Group, Centre de Recerca Matemàtica (CRM) , Barcelona , Spain
| |
Collapse
|
432
|
Thorens B. Neural regulation of pancreatic islet cell mass and function. Diabetes Obes Metab 2014; 16 Suppl 1:87-95. [PMID: 25200301 DOI: 10.1111/dom.12346] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 05/15/2014] [Indexed: 12/24/2022]
Abstract
Intracellular glucose signalling pathways control the secretion of glucagon and insulin by pancreatic islet α- and β-cells, respectively. However, glucose also indirectly controls the secretion of these hormones through regulation of the autonomic nervous system that richly innervates this endocrine organ. Both parasympathetic and sympathetic nervous systems also impact endocrine pancreas postnatal development and plasticity in adult animals. Defects in these autonomic regulations impair β-cell mass expansion during the weaning period and β-cell mass adaptation in adult life. Both branches of the autonomic nervous system also regulate glucagon secretion. In type 2 diabetes, impaired glucose-dependent autonomic activity causes the loss of cephalic and first phases of insulin secretion, and impaired suppression of glucagon secretion in the postabsorptive phase; in diabetic patients treated with insulin, it causes a progressive failure of hypoglycaemia to trigger the secretion of glucagon and other counterregulatory hormones. Therefore, identification of the glucose-sensing cells that control the autonomic innervation of the endocrine pancreatic and insulin and glucagon secretion is an important goal of research. This is required for a better understanding of the physiological control of glucose homeostasis and its deregulation in diabetes. This review will discuss recent advances in this field of investigation.
Collapse
Affiliation(s)
- B Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
433
|
Jarosz DF, Lancaster AK, Brown JCS, Lindquist S. An evolutionarily conserved prion-like element converts wild fungi from metabolic specialists to generalists. Cell 2014; 158:1072-1082. [PMID: 25171408 PMCID: PMC4424049 DOI: 10.1016/j.cell.2014.07.024] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 04/29/2014] [Accepted: 07/10/2014] [Indexed: 11/25/2022]
Abstract
[GAR(+)] is a protein-based element of inheritance that allows yeast (Saccharomyces cerevisiae) to circumvent a hallmark of their biology: extreme metabolic specialization for glucose fermentation. When glucose is present, yeast will not use other carbon sources. [GAR(+)] allows cells to circumvent this "glucose repression." [GAR(+)] is induced in yeast by a factor secreted by bacteria inhabiting their environment. We report that de novo rates of [GAR(+)] appearance correlate with the yeast's ecological niche. Evolutionarily distant fungi possess similar epigenetic elements that are also induced by bacteria. As expected for a mechanism whose adaptive value originates from the selective pressures of life in biological communities, the ability of bacteria to induce [GAR(+)] and the ability of yeast to respond to bacterial signals have been extinguished repeatedly during the extended monoculture of domestication. Thus, [GAR(+)] is a broadly conserved adaptive strategy that links environmental and social cues to heritable changes in metabolism.
Collapse
Affiliation(s)
- Daniel F Jarosz
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Departments of Chemical and Systems Biology and of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alex K Lancaster
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica C S Brown
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
434
|
Histone methylation has dynamics distinct from those of histone acetylation in cell cycle reentry from quiescence. Mol Cell Biol 2014; 34:3968-80. [PMID: 25154414 DOI: 10.1128/mcb.00763-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell growth is attuned to nutrient availability to sustain homeostatic biosynthetic processes. In unfavorable environments, cells enter a nonproliferative state termed quiescence but rapidly return to the cell cycle once conditions support energetic needs. Changing cellular metabolite pools are proposed to directly alter the epigenome via histone acetylation. Here we studied the relationship between histone modification dynamics and the dramatic transcriptional changes that occur during nutrient-induced cell cycle reentry from quiescence in the yeast Saccharomyces cerevisiae. SILAC (stable isotope labeling by amino acids in cell culture)-based mass spectrometry showed that histone methylation-in contrast to histone acetylation-is surprisingly static during quiescence exit. Chromatin immunoprecipitation followed by massive parallel sequencing (ChIP-seq) revealed genome-wide shifts in histone acetylation at growth and stress genes as cells exit quiescence and transcription dramatically changes. Strikingly, however, the patterns of histone methylation remain intact. We conclude that the functions of histone methylation and acetylation are remarkably distinct during quiescence exit: acetylation rapidly responds to metabolic state, while methylation is independent. Thus, the initial burst of growth gene reactivation emerging from quiescence involves dramatic increases of histone acetylation but not of histone methylation.
Collapse
|
435
|
Wu C, Sui G, Archer SN, Sassone-Corsi P, Aitken K, Bagli D, Chen Y. Local receptors as novel regulators for peripheral clock expression. FASEB J 2014; 28:4610-6. [PMID: 25145629 PMCID: PMC4200324 DOI: 10.1096/fj.13-243295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mammalian circadian control is determined by a central clock in the brain suprachiasmatic nucleus (SCN) and synchronized peripheral clocks in other tissues. Increasing evidence suggests that SCN-independent regulation of peripheral clocks also occurs. We examined how activation of excitatory receptors influences the clock protein PERIOD 2 (PER2) in a contractile organ, the urinary bladder. PERIOD2::LUCIFERASE-knock-in mice were used to report real-time PER2 circadian dynamics in the bladder tissue. Rhythmic PER2 activities occurred in the bladder wall with a cycle of ∼24 h and peak at ∼12 h. Activation of the muscarinic and purinergic receptors by agonists shifted the peak to an earlier time (7.2±2.0 and 7.2±0.9 h, respectively). PER2 expression was also sensitive to mechanical stimulation. Aging significantly dampened PER2 expression and its response to the agonists. Finally, muscarinic agonist-induced smooth muscle contraction also exhibited circadian rhythm. These data identified novel regulators, endogenous receptors, in determining local clock activity, in addition to mediating the central control. Furthermore, the local clock appears to reciprocally align receptor activity to circadian rhythm for muscle contraction. The interaction between receptors and peripheral clock represents an important mechanism for maintaining physiological functions and its dysregulation may contribute to age-related organ disorders.—Wu, C., Sui, G., Archer, S. N., Sassone-Corsi, P., Aitken, K., Bagli, D., Chen, Y. Local receptors as novel regulators for peripheral clock expression.
Collapse
Affiliation(s)
- Changhao Wu
- Department of Biochemistry and Physiology, University of Surrey, Surrey, UK;
| | - Guiping Sui
- Oesophageal Laboratory, Guy's and St. Thomas Hospitals National Health Service Trust, London, UK
| | - Simon N Archer
- Department of Biochemistry and Physiology, University of Surrey, Surrey, UK
| | - Paolo Sassone-Corsi
- Department of Biological Chemistry, University of California, Irvine, California, USA; and
| | - Karen Aitken
- Department of Urology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Darius Bagli
- Department of Urology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Ying Chen
- Department of Biochemistry and Physiology, University of Surrey, Surrey, UK
| |
Collapse
|
436
|
Mechanistic perspectives of calorie restriction on vascular homeostasis. SCIENCE CHINA-LIFE SCIENCES 2014; 57:742-54. [DOI: 10.1007/s11427-014-4709-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/04/2014] [Indexed: 02/06/2023]
|
437
|
Lee JV, Carrer A, Shah S, Snyder NW, Wei S, Venneti S, Worth AJ, Yuan ZF, Lim HW, Liu S, Jackson E, Aiello NM, Haas NB, Rebbeck TR, Judkins A, Won KJ, Chodosh LA, Garcia BA, Stanger BZ, Feldman MD, Blair IA, Wellen KE. Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab 2014; 20:306-319. [PMID: 24998913 PMCID: PMC4151270 DOI: 10.1016/j.cmet.2014.06.004] [Citation(s) in RCA: 424] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 05/05/2014] [Accepted: 05/22/2014] [Indexed: 12/21/2022]
Abstract
Histone acetylation plays important roles in gene regulation, DNA replication, and the response to DNA damage, and it is frequently deregulated in tumors. We postulated that tumor cell histone acetylation levels are determined in part by changes in acetyl coenzyme A (acetyl-CoA) availability mediated by oncogenic metabolic reprogramming. Here, we demonstrate that acetyl-CoA is dynamically regulated by glucose availability in cancer cells and that the ratio of acetyl-CoA:coenzyme A within the nucleus modulates global histone acetylation levels. In vivo, expression of oncogenic Kras or Akt stimulates histone acetylation changes that precede tumor development. Furthermore, we show that Akt's effects on histone acetylation are mediated through the metabolic enzyme ATP-citrate lyase and that pAkt(Ser473) levels correlate significantly with histone acetylation marks in human gliomas and prostate tumors. The data implicate acetyl-CoA metabolism as a key determinant of histone acetylation levels in cancer cells.
Collapse
Affiliation(s)
- Joyce V. Lee
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA 19104
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA 19104
| | - Alessandro Carrer
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA 19104
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA 19104
| | - Supriya Shah
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA 19104
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA 19104
| | - Nathaniel W. Snyder
- Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA 19104
| | - Shuanzeng Wei
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA 19104
| | - Sriram Venneti
- Memorial Sloan Kettering Cancer Center, New York, NY, USA 10065
| | - Andrew J. Worth
- Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA 19104
| | - Zuo-Fei Yuan
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA 19104
| | - Hee-Woong Lim
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA 19104
| | - Shichong Liu
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA 19104
| | - Ellen Jackson
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA 19104
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA 19104
| | - Nicole M. Aiello
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA 19104
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA 19104
| | - Naomi B. Haas
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA 19104
| | - Timothy R. Rebbeck
- Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA 19104
| | - Alexander Judkins
- Department of Pathology and Laboratory Medicine, Keck School of Medicine of University of Southern California and Children's Hospital Los Angeles, Los Angeles, CA, USA 90027
| | - Kyoung-Jae Won
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA 19104
| | - Lewis A. Chodosh
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA 19104
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA 19104
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA 19104
| | - Ben Z. Stanger
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA 19104
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA 19104
| | - Michael D. Feldman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA 19104
| | - Ian A. Blair
- Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA 19104
| | - Kathryn E. Wellen
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA 19104
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA 19104
| |
Collapse
|
438
|
Abstract
The ability of stem cells to self-renew and generate different lineages during development and organogenesis is a fundamental, tightly controlled, and generally unidirectional process, whereas the 'immortality' of cancer cells could be regarded as pathological self-renewal. The molecular mechanisms that underpin the generation of induced pluripotent stem cells are remarkably similar to those that are deregulated in cancer - so much so that aberrant reprogramming is tumorigenic. The similarities also suggest that mutations in genes implicated in DNA methylation dynamics might represent a hallmark of cancers with a stem cell origin, and they highlight an alternative view of cancer that may be of clinical benefit.
Collapse
Affiliation(s)
- Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Old Road Campus, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Duanqing Pei
- South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 China
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Old Road Campus, University of Oxford, Headington, Oxford OX3 7DQ, UK
| |
Collapse
|
439
|
Abstract
The core aspect of the senescent phenotype is a stable state of cell cycle arrest. However, this is a disguise that conceals a highly active metabolic cell state with diverse functionality. Both the cell-autonomous and the non-cell-autonomous activities of senescent cells create spatiotemporally dynamic and context-dependent tissue reactions. For example, the senescence-associated secretory phenotype (SASP) provokes not only tumour-suppressive but also tumour-promoting responses. Senescence is now increasingly considered to be an integrated and widespread component that is potentially important for tumour development, tumour suppression and the response to therapy.
Collapse
Affiliation(s)
- Pedro A Pérez-Mancera
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Andrew R J Young
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| |
Collapse
|
440
|
Vallois D, Niederhäuser G, Ibberson M, Nagaray V, Marselli L, Marchetti P, Chatton JY, Thorens B. Gluco-incretins regulate beta-cell glucose competence by epigenetic silencing of Fxyd3 expression. PLoS One 2014; 9:e103277. [PMID: 25058609 PMCID: PMC4110016 DOI: 10.1371/journal.pone.0103277] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/28/2014] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND/AIMS Gluco-incretin hormones increase the glucose competence of pancreatic beta-cells by incompletely characterized mechanisms. METHODS We searched for genes that were differentially expressed in islets from control and Glp1r-/-; Gipr-/- (dKO) mice, which show reduced glucose competence. Overexpression and knockdown studies; insulin secretion analysis; analysis of gene expression in islets from control and diabetic mice and humans as well as gene methylation and transcriptional analysis were performed. RESULTS Fxyd3 was the most up-regulated gene in glucose incompetent islets from dKO mice. When overexpressed in beta-cells Fxyd3 reduced glucose-induced insulin secretion by acting downstream of plasma membrane depolarization and Ca++ influx. Fxyd3 expression was not acutely regulated by cAMP raising agents in either control or dKO adult islets. Instead, expression of Fxyd3 was controlled by methylation of CpGs present in its proximal promoter region. Increased promoter methylation reduced Fxyd3 transcription as assessed by lower abundance of H3K4me3 at the transcriptional start site and in transcription reporter assays. This epigenetic imprinting was initiated perinatally and fully established in adult islets. Glucose incompetent islets from diabetic mice and humans showed increased expression of Fxyd3 and reduced promoter methylation. CONCLUSIONS/INTERPRETATION Because gluco-incretin secretion depends on feeding the epigenetic regulation of Fxyd3 expression may link nutrition in early life to establishment of adult beta-cell glucose competence; this epigenetic control is, however, lost in diabetes possibly as a result of gluco-incretin resistance and/or de-differentiation of beta-cells that are associated with the development of type 2 diabetes.
Collapse
Affiliation(s)
- David Vallois
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Guy Niederhäuser
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Mark Ibberson
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Vital-IT group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Lorella Marselli
- Department of Endocrinology and Metabolism, Ospedale di Cisanello, Pisa, Italy
| | - Piero Marchetti
- Department of Endocrinology and Metabolism, Ospedale di Cisanello, Pisa, Italy
| | - Jean-Yves Chatton
- Department of Cell Biology and Morphology, University of Lausanne, Lausanne, Switzerland
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
441
|
Masui K, Cavenee WK, Mischel PS. mTORC2 in the center of cancer metabolic reprogramming. Trends Endocrinol Metab 2014; 25:364-73. [PMID: 24856037 PMCID: PMC4077930 DOI: 10.1016/j.tem.2014.04.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/24/2014] [Accepted: 04/27/2014] [Indexed: 10/25/2022]
Abstract
Metabolic reprogramming is a central hallmark of cancer, enabling tumor cells to obtain the macromolecular precursors and energy needed for rapid tumor growth. Understanding how oncogenes coordinate altered signaling with metabolic reprogramming and global transcription may yield new insights into tumor pathogenesis, and provide a new landscape of promising drug targets, while yielding important clues into mechanisms of resistance to the signal transduction inhibitors currently in use. We review here the recently identified central regulatory role for mechanistic target of rapamycin complex 2 (mTORC2), a downstream effector of many cancer-causing mutations, in metabolic reprogramming and cancer drug resistance. We consider the impact of mTORC2-related metabolism on epigenetics and therapeutics, with a particular focus on the intractable malignant brain tumor, glioblastoma multiforme (GBM).
Collapse
Affiliation(s)
- Kenta Masui
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA; Laboratory of Neuropathology, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Paul S Mischel
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
442
|
Caneba CA, Yang L, Baddour J, Curtis R, Win J, Hartig S, Marini J, Nagrath D. Nitric oxide is a positive regulator of the Warburg effect in ovarian cancer cells. Cell Death Dis 2014; 5:e1302. [PMID: 24967964 PMCID: PMC4611736 DOI: 10.1038/cddis.2014.264] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 01/25/2023]
Abstract
Ovarian cancer (OVCA) is among the most lethal gynecological cancers leading to high mortality rates among women. Increasing evidence indicate that cancer cells undergo metabolic transformation during tumorigenesis and growth through nutrients and growth factors available in tumor microenvironment. This altered metabolic rewiring further enhances tumor progression. Recent studies have begun to unravel the role of amino acids in the tumor microenvironment on the proliferation of cancer cells. One critically important, yet often overlooked, component to tumor growth is the metabolic reprogramming of nitric oxide (NO) pathways in cancer cells. Multiple lines of evidence support the link between NO and tumor growth in some cancers, including pancreas, breast and ovarian. However, the multifaceted role of NO in the metabolism of OVCA is unclear and direct demonstration of NO's role in modulating OVCA cells' metabolism is lacking. This study aims at indentifying the mechanistic links between NO and OVCA metabolism. We uncover a role of NO in modulating OVCA metabolism: NO positively regulates the Warburg effect, which postulates increased glycolysis along with reduced mitochondrial activity under aerobic conditions in cancer cells. Through both NO synthesis inhibition (using L-arginine deprivation, arginine is a substrate for NO synthase (NOS), which catalyzes NO synthesis; using L-Name, a NOS inhibitor) and NO donor (using DETA-NONOate) analysis, we show that NO not only positively regulates tumor growth but also inhibits mitochondrial respiration in OVCA cells, shifting these cells towards glycolysis to maintain their ATP production. Additionally, NO led to an increase in TCA cycle flux and glutaminolysis, suggesting that NO decreases ROS levels by increasing NADPH and glutathione levels. Our results place NO as a central player in the metabolism of OVCA cells. Understanding the effects of NO on cancer cell metabolism can lead to the development of NO targeting drugs for OVCAs.
Collapse
Affiliation(s)
- C A Caneba
- 1] Laboratory for Systems Biology of Human Diseases, Rice University, Houston, TX, USA [2] Department of Bioengineering, Rice University, Houston, TX, USA
| | - L Yang
- 1] Laboratory for Systems Biology of Human Diseases, Rice University, Houston, TX, USA [2] Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - J Baddour
- 1] Laboratory for Systems Biology of Human Diseases, Rice University, Houston, TX, USA [2] Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - R Curtis
- 1] Laboratory for Systems Biology of Human Diseases, Rice University, Houston, TX, USA [2] Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - J Win
- 1] Laboratory for Systems Biology of Human Diseases, Rice University, Houston, TX, USA [2] Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - S Hartig
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - J Marini
- 1] Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA [2] Pediatric Critical Care Medicine and USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - D Nagrath
- 1] Laboratory for Systems Biology of Human Diseases, Rice University, Houston, TX, USA [2] Department of Bioengineering, Rice University, Houston, TX, USA [3] Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| |
Collapse
|
443
|
Abstract
Thyroid hormone (TH) is required for normal development as well as regulating metabolism in the adult. The thyroid hormone receptor (TR) isoforms, α and β, are differentially expressed in tissues and have distinct roles in TH signaling. Local activation of thyroxine (T4), to the active form, triiodothyronine (T3), by 5'-deiodinase type 2 (D2) is a key mechanism of TH regulation of metabolism. D2 is expressed in the hypothalamus, white fat, brown adipose tissue (BAT), and skeletal muscle and is required for adaptive thermogenesis. The thyroid gland is regulated by thyrotropin releasing hormone (TRH) and thyroid stimulating hormone (TSH). In addition to TRH/TSH regulation by TH feedback, there is central modulation by nutritional signals, such as leptin, as well as peptides regulating appetite. The nutrient status of the cell provides feedback on TH signaling pathways through epigentic modification of histones. Integration of TH signaling with the adrenergic nervous system occurs peripherally, in liver, white fat, and BAT, but also centrally, in the hypothalamus. TR regulates cholesterol and carbohydrate metabolism through direct actions on gene expression as well as cross-talk with other nuclear receptors, including peroxisome proliferator-activated receptor (PPAR), liver X receptor (LXR), and bile acid signaling pathways. TH modulates hepatic insulin sensitivity, especially important for the suppression of hepatic gluconeogenesis. The role of TH in regulating metabolic pathways has led to several new therapeutic targets for metabolic disorders. Understanding the mechanisms and interactions of the various TH signaling pathways in metabolism will improve our likelihood of identifying effective and selective targets.
Collapse
|
444
|
DNMT3a epigenetic program regulates the HIF-2α oxygen-sensing pathway and the cellular response to hypoxia. Proc Natl Acad Sci U S A 2014; 111:7783-8. [PMID: 24817692 DOI: 10.1073/pnas.1322909111] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Epigenetic regulation of gene expression by DNA methylation plays a central role in the maintenance of cellular homeostasis. Here we present evidence implicating the DNA methylation program in the regulation of hypoxia-inducible factor (HIF) oxygen-sensing machinery and hypoxic cell metabolism. We show that DNA methyltransferase 3a (DNMT3a) methylates and silences the HIF-2α gene (EPAS1) in differentiated cells. Epigenetic silencing of EPAS1 prevents activation of the HIF-2α gene program associated with hypoxic cell growth, thereby limiting the proliferative capacity of adult cells under low oxygen tension. Naturally occurring defects in DNMT3a, observed in primary tumors and malignant cells, cause the unscheduled activation of EPAS1 in early dysplastic foci. This enables incipient cancer cells to exploit the HIF-2α pathway in the hypoxic tumor microenvironment necessary for the formation of cellular masses larger than the oxygen diffusion limit. Reintroduction of DNMT3a in DNMT3a-defective cells restores EPAS1 epigenetic silencing, prevents hypoxic cell growth, and suppresses tumorigenesis. These data support a tumor-suppressive role for DNMT3a as an epigenetic regulator of the HIF-2α oxygen-sensing pathway and the cellular response to hypoxia.
Collapse
|
445
|
Gelato KA, Tauber M, Ong MS, Winter S, Hiragami-Hamada K, Sindlinger J, Lemak A, Bultsma Y, Houliston S, Schwarzer D, Divecha N, Arrowsmith CH, Fischle W. Accessibility of different histone H3-binding domains of UHRF1 is allosterically regulated by phosphatidylinositol 5-phosphate. Mol Cell 2014; 54:905-919. [PMID: 24813945 DOI: 10.1016/j.molcel.2014.04.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/11/2014] [Accepted: 04/02/2014] [Indexed: 11/30/2022]
Abstract
UHRF1 is a multidomain protein crucially linking histone H3 modification states and DNA methylation. While the interaction properties of its specific domains are well characterized, little is known about the regulation of these functionalities. We show that UHRF1 exists in distinct active states, binding either unmodified H3 or the H3 lysine 9 trimethylation (H3K9me3) modification. A polybasic region (PBR) in the C terminus blocks interaction of a tandem tudor domain (TTD) with H3K9me3 by occupying an essential peptide-binding groove. In this state the plant homeodomain (PHD) mediates interaction with the extreme N terminus of the unmodified H3 tail. Binding of the phosphatidylinositol phosphate PI5P to the PBR of UHRF1 results in a conformational rearrangement of the domains, allowing the TTD to bind H3K9me3. Our results define an allosteric mechanism controlling heterochromatin association of an essential regulatory protein of epigenetic states and identify a functional role for enigmatic nuclear phosphatidylinositol phosphates.
Collapse
Affiliation(s)
- Kathy A Gelato
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Maria Tauber
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Michelle S Ong
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Stefan Winter
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Kyoko Hiragami-Hamada
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Julia Sindlinger
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany
| | - Alexander Lemak
- Princess Margaret Cancer Center, TMDT, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Yvette Bultsma
- Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Scott Houliston
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Center, TMDT, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany
| | - Nullin Divecha
- Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Center, TMDT, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Wolfgang Fischle
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
446
|
Qin X, Du Y, Chen X, Li W, Zhang J, Yang J. Activation of Akt protects cancer cells from growth inhibition induced by PKM2 knockdown. Cell Biosci 2014; 4:20. [PMID: 24735734 PMCID: PMC4108064 DOI: 10.1186/2045-3701-4-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 03/14/2014] [Indexed: 11/26/2022] Open
Abstract
Background PKM2 is an attractive target for cancer therapy, however, for many cancer cells, PKM2 knockdown only leads to a modest impairment of survival and proliferation. It is not known whether PKM2 knockdown rewires cell signaling pathways in these “PKM2 knockdown resistant” cells, and whether the rewired pathways are needed for their survival. Findings In present study, we investigated the effects of PKM2 knockdown on cellular signaling pathways in “PKM2 knockdown resistant” cancer cells. We found that knockdown of PKM2 leads to activation of Akt. Furthermore, we revealed that activation of Akt in PKM2 knockdown cells is a result of glycolysis disruption. Inhibiton of PI3K-Akt signaling pathway leads to significant growth inhibition and apoptosis in PKM2 knockdown cells. Conclusions Overall, our results indicate that activation of Akt is necessary for the survival of PKM2 knockdown cells. Combing PKM2 knockdown with PI3K or Akt inhibitors may lead to a better chance to kill tumors. Our research may provide an unexpected opportunity for the development and implementation of drugs targeting cell metabolism and aberrant Akt signaling.
Collapse
Affiliation(s)
- Xiaodong Qin
- School of Life Science, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Yuping Du
- School of Life Science, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Xing Chen
- School of Life Science, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Wuyan Li
- Department of Engineering Science, Muskingum University, 163 Stormont St, New Concord, OH 43762, USA
| | - Jinghong Zhang
- School of Biomedical Science and Institutes of Molecule Medicine, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Jinbo Yang
- School of Life Science, Lanzhou University, Lanzhou, Gansu 730000, P. R. China ; Department of Cancer Biology, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland OH 44195, USA
| |
Collapse
|
447
|
Tan M, Peng C, Anderson KA, Chhoy P, Xie Z, Dai L, Park J, Chen Y, Huang H, Zhang Y, Ro J, Wagner GR, Green MF, Madsen AS, Schmiesing J, Peterson BS, Xu G, Ilkayeva OR, Muehlbauer MJ, Braulke T, Mühlhausen C, Backos DS, Olsen CA, McGuire PJ, Pletcher SD, Lombard DB, Hirschey MD, Zhao Y. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab 2014; 19:605-17. [PMID: 24703693 PMCID: PMC4108075 DOI: 10.1016/j.cmet.2014.03.014] [Citation(s) in RCA: 573] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 11/17/2013] [Accepted: 01/27/2014] [Indexed: 01/20/2023]
Abstract
We report the identification and characterization of a five-carbon protein posttranslational modification (PTM) called lysine glutarylation (Kglu). This protein modification was detected by immunoblot and mass spectrometry (MS), and then comprehensively validated by chemical and biochemical methods. We demonstrated that the previously annotated deacetylase, sirtuin 5 (SIRT5), is a lysine deglutarylase. Proteome-wide analysis identified 683 Kglu sites in 191 proteins and showed that Kglu is highly enriched on metabolic enzymes and mitochondrial proteins. We validated carbamoyl phosphate synthase 1 (CPS1), the rate-limiting enzyme in urea cycle, as a glutarylated protein and demonstrated that CPS1 is targeted by SIRT5 for deglutarylation. We further showed that glutarylation suppresses CPS1 enzymatic activity in cell lines, mice, and a model of glutaric acidemia type I disease, the last of which has elevated glutaric acid and glutaryl-CoA. This study expands the landscape of lysine acyl modifications and increases our understanding of the deacylase SIRT5.
Collapse
Affiliation(s)
- Minjia Tan
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Chao Peng
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Kristin A Anderson
- Sarah W. Stedman Nutrition and Metabolism Center and Department of Medicine, Duke University Medical Center, Durham, NC 27704, USA
| | - Peter Chhoy
- Sarah W. Stedman Nutrition and Metabolism Center and Department of Medicine, Duke University Medical Center, Durham, NC 27704, USA
| | - Zhongyu Xie
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Lunzhi Dai
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Jeongsoon Park
- Department of Pathology and Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yue Chen
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - He Huang
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Yi Zhang
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Jennifer Ro
- Department of Molecular and Integrative Physiology and Geriatrics Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gregory R Wagner
- Sarah W. Stedman Nutrition and Metabolism Center and Department of Medicine, Duke University Medical Center, Durham, NC 27704, USA
| | - Michelle F Green
- Sarah W. Stedman Nutrition and Metabolism Center and Department of Medicine, Duke University Medical Center, Durham, NC 27704, USA
| | - Andreas S Madsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark
| | - Jessica Schmiesing
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Brett S Peterson
- Sarah W. Stedman Nutrition and Metabolism Center and Department of Medicine, Duke University Medical Center, Durham, NC 27704, USA
| | - Guofeng Xu
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Olga R Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center and Department of Medicine, Duke University Medical Center, Durham, NC 27704, USA
| | - Michael J Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center and Department of Medicine, Duke University Medical Center, Durham, NC 27704, USA
| | - Thomas Braulke
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Chris Mühlhausen
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Donald S Backos
- Computational Chemistry and Biology Core Facility, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christian A Olsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark
| | - Peter J McGuire
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Scott D Pletcher
- Department of Molecular and Integrative Physiology and Geriatrics Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - David B Lombard
- Department of Pathology and Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew D Hirschey
- Sarah W. Stedman Nutrition and Metabolism Center and Department of Medicine, Duke University Medical Center, Durham, NC 27704, USA.
| | - Yingming Zhao
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China; Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
448
|
Oosterveer MH, Schoonjans K. Hepatic glucose sensing and integrative pathways in the liver. Cell Mol Life Sci 2014; 71:1453-67. [PMID: 24196749 PMCID: PMC11114046 DOI: 10.1007/s00018-013-1505-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/17/2013] [Accepted: 10/18/2013] [Indexed: 12/21/2022]
Abstract
The hepatic glucose-sensing system is a functional network of enzymes and transcription factors that is critical for the maintenance of energy homeostasis and systemic glycemia. Here we review the recent literature on its components and metabolic actions. Glucokinase (GCK) is generally considered as the initial postprandial glucose-sensing component, which acts as the gatekeeper for hepatic glucose metabolism and provides metabolites that activate the transcription factor carbohydrate response element binding protein (ChREBP). Recently, liver receptor homolog 1 (LRH-1) has emerged as an upstream regulator of the central GCK-ChREBP axis, with a critical role in the integration of hepatic intermediary metabolism in response to glucose. Evidence is also accumulating that O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) and acetylation can act as glucose-sensitive modifications that may contribute to hepatic glucose sensing by targeting regulatory proteins and the epigenome. Further elucidation of the components and functional roles of the hepatic glucose-sensing system may contribute to the future treatment of liver diseases associated with deregulated glucose sensors.
Collapse
Affiliation(s)
- Maaike H. Oosterveer
- Department of Pediatrics and Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Kristina Schoonjans
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
449
|
Shah NC, Shah GJ, Li Z, Jiang XC, Altura BT, Altura BM. Short-term magnesium deficiency downregulates telomerase, upregulates neutral sphingomyelinase and induces oxidative DNA damage in cardiovascular tissues: relevance to atherogenesis, cardiovascular diseases and aging. Int J Clin Exp Med 2014; 7:497-514. [PMID: 24753742 PMCID: PMC3992387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/27/2014] [Indexed: 06/03/2023]
Abstract
1) short-term dietary deficiency of magnesium (Mg; 21 days) in rats (MgD) would result in a downregulation of telomerase in cardiac and aortic smooth muscle cells, 2) low levels of Mg(2+) added to drinking water (DW) would either prevent or greatly reduce the downregulation of telomerase in MgD, 3) MgD in rats would cause an upregulation of neutral-sphingomyelinase (N-SMAse) and p53, 4) short-term MgD would result in oxidation of DNA in diverse cardiac muscle and aortic smooth muscle cells as exemplified by measurement of 8-hydroxydeoxyguanosine (8-OH-dG), and 5) cross-talk between telomerase, N-SMase, p53, and 8-OH-dG would be evident in left ventricular (LV), right ventricular (RV), atrial and aortic smooth muscle obtained from rats subjected to short-term MgD. The data indicated that short-term MgD (10% normal dietary intake) resulted in downregulation of telomerase in LV, RV, atrial and aortic muscle cells; even very low levels of water-bourne Mg(2+) (e.g., 15-40 mg/lday) either prevented or ameliorated the downregulation of telomerase. Our experiments also showed that MgD resulted in a 7-10 fold increased formation of 8-OH-dG in the cardiac and aortic muscle cells. The experiments also confirmed that short-term dietary deficiency of Mg resulted in greatly increased upregulation of N-SMAse and p53 in the cardiac and aortic muscle tissues. These new experiments point to a sizeable cross-talk among telomerase, N-SMAse, and p53 in rat cardiac and peripheral vascular muscle exposed to a short-term MgD. These studies would be compatible with the idea that even short-term MgD could cause alterations of the genome in diverse cell types leading to mutations of cardiac, vascular, and endothelial cells seen in aging and atherogenesis. Since we have shown, previously, that activation of N-SMAse in MgD leads to synthesis and release of ceramide in cardiovascular tissues and cells, we believe this pathway, most likely, helps to result in downregulation of telomerase, upregulation of transcription factors (e.g., p53; NF-kB), cytokine release, mutations, transformations, and dysfunctional growth seen in the cardiac and vascular cells observed in the normal aging process, atherogenesis, hypertension, and cardiac failure. Lastly, we suggest ways in which this hypothesis can be tested.
Collapse
Affiliation(s)
- Nilank C Shah
- Department of Physiology and Pharmacology, State University of New York Downstate Medical CenterBrooklyn, NY 11203
| | - Gatha J Shah
- Department of Physiology and Pharmacology, State University of New York Downstate Medical CenterBrooklyn, NY 11203
| | - Zhiqiang Li
- Department of Anatomy and Cell Biology, State University of New York Downstate Medical CenterBrooklyn, NY 11203
| | - Xian-Cheng Jiang
- Department of Anatomy and Cell Biology, State University of New York Downstate Medical CenterBrooklyn, NY 11203
- The Center for Cardiovascular and Muscle Research, State University of New York Downstate Medical CenterBrooklyn, NY 11203
| | - Bella T Altura
- Department of Physiology and Pharmacology, State University of New York Downstate Medical CenterBrooklyn, NY 11203
- The Center for Cardiovascular and Muscle Research, State University of New York Downstate Medical CenterBrooklyn, NY 11203
- Bio-Defense Systems, Inc.Rockville Centre, NY 11570
| | - Burton M Altura
- Department of Physiology and Pharmacology, State University of New York Downstate Medical CenterBrooklyn, NY 11203
- The Center for Cardiovascular and Muscle Research, State University of New York Downstate Medical CenterBrooklyn, NY 11203
- Department of Medicine, State University of New York Downstate Medical CenterBrooklyn, NY 11203
- Bio-Defense Systems, Inc.Rockville Centre, NY 11570
| |
Collapse
|
450
|
Salcedo-Sora JE, Caamano-Gutierrez E, Ward SA, Biagini GA. The proliferating cell hypothesis: a metabolic framework for Plasmodium growth and development. Trends Parasitol 2014; 30:170-5. [PMID: 24636355 PMCID: PMC3989997 DOI: 10.1016/j.pt.2014.02.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/02/2014] [Accepted: 02/03/2014] [Indexed: 12/21/2022]
Abstract
The hypothesis offers a framework to explain the atypical features of parasite metabolism. Aerobic glycolysis is hypothesised to meet the biosynthetic demands of rapid proliferation. Differentiation may be epigenetically regulated in response to nutrient-linked metabolism.
We hypothesise that intraerythrocytic malaria parasite metabolism is not merely fulfilling the need for ATP generation, but is evolved to support rapid proliferation, similar to that seen in other rapidly proliferating cells such as cancer cells. Deregulated glycolytic activity coupled with impaired mitochondrial metabolism is a metabolic strategy to generate glycolytic intermediates essential for rapid biomass generation for schizogony. Further, we discuss the possibility that Plasmodium metabolism is not only a functional consequence of the ‘hard-wired’ genome and argue that metabolism may also have a causal role in triggering the cascade of events that leads to developmental stage transitions. This hypothesis offers a framework to rationalise the observations of aerobic glycolysis, atypical mitochondrial metabolism, and metabolic switching in nonproliferating stages.
Collapse
Affiliation(s)
| | - Eva Caamano-Gutierrez
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK; Warwick Systems Biology Centre, Senate House, University of Warwick, Coventry, CV4 7AL, UK
| | - Stephen A Ward
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Giancarlo A Biagini
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|