401
|
Matsui TK, Mori E. Microglia support neural stem cell maintenance and growth. Biochem Biophys Res Commun 2018; 503:1880-1884. [PMID: 30098787 DOI: 10.1016/j.bbrc.2018.07.130] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 07/25/2018] [Indexed: 01/02/2023]
Abstract
Increasing evidence suggests that disease-associated microglia play a protective role in neurodegenerative diseases. Microglia are known to polarize into two reciprocate forms in response to external cues - inflammatory M1 state and anti-inflammatory M2 state. These cells perform key functions in the development of the brain, such as circuit refinement, neurogenesis, and neuronal growth. In this study, we analyzed the secretion effect of microglia on neural stem/progenitor cell (NSPC) proliferation and differentiation. We cultured adult mouse-derived NSPCs in a conditioned medium from BV2 immortalized microglia without growth factors and evaluated their differentiation. When cultivated with BV2-derived soluble factors in the presence of basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF), NSPCs were able to maintain Nestin expression and showed increased proliferation compared with those cells cultivated with bFGF and EGF only. Moreover, conditioned media from M2-polarized primary microglia, stimulated by IL-10/IL-13, showed supportive effect on NSPC proliferation. These data suggest that microglia support neural stem cell proliferation through secreting neuro-nutritious soluble factors.
Collapse
Affiliation(s)
- Takeshi K Matsui
- Department of Future Basic Medicine, Nara Medical University, Japan; Department of Neurology, Nara Medical University, Japan.
| | - Eiichiro Mori
- Department of Future Basic Medicine, Nara Medical University, Japan.
| |
Collapse
|
402
|
Zheng W, Li Q, Zhao C, Da Y, Zhang HL, Chen Z. Differentiation of Glial Cells From hiPSCs: Potential Applications in Neurological Diseases and Cell Replacement Therapy. Front Cell Neurosci 2018; 12:239. [PMID: 30140204 PMCID: PMC6094089 DOI: 10.3389/fncel.2018.00239] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022] Open
Abstract
Glial cells are the most abundant cell type in the central nervous system (CNS) and play essential roles in maintaining brain homeostasis, forming myelin, and providing support and protection for neurons, etc. Over the past decade, significant progress has been made in the reprogramming field. Given the limited accessibility of human glial cells, in vitro differentiation of human induced pluripotent stem cells (hiPSCs) into glia may provide not only a valuable research tool for a better understanding of the functions of glia in the CNS but also a potential cellular source for clinical therapeutic purposes. In this review, we will summarize up-to-date novel strategies for the committed differentiation into the three major glial cell types, i.e., astrocyte, oligodendrocyte, and microglia, from hiPSCs, focusing on the non-neuronal cell effects on the pathology of some representative neurological diseases. Furthermore, the application of hiPSC-derived glial cells in neurological disease modeling will be discussed, so as to gain further insights into the development of new therapeutic targets for treatment of neurological disorders.
Collapse
Affiliation(s)
- Wei Zheng
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China
| | - Qian Li
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China
| | - Chao Zhao
- Department of Clinical Neurosciences, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Yuwei Da
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hong-Liang Zhang
- Department of Life Sciences, National Natural Science Foundation of China, Beijing, China
| | - Zhiguo Chen
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
403
|
Surinkaew P, Sawaddiruk P, Apaijai N, Chattipakorn N, Chattipakorn SC. Role of microglia under cardiac and cerebral ischemia/reperfusion (I/R) injury. Metab Brain Dis 2018; 33:1019-1030. [PMID: 29656335 DOI: 10.1007/s11011-018-0232-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/06/2018] [Indexed: 12/27/2022]
Abstract
Both cerebral and cardiac ischemia causes loss of cerebral blood flow, which may lead to neuronal cell damage, neurocognitive impairment, learning and memory difficulties, neurological deficits, and brain death. Although reperfusion is required immediately to restore the blood supply to the brain, it could lead to several detrimental effects on the brain. Several studies demonstrate that microglia activity increases following cerebral and cardiac ischemic/reperfusion (I/R) injury. However, the effects of microglial activation in the brain following I/R remains unclear. Some reports demonstrated that microglia were involved in neurodegeneration and oxidative stress generation, whilst others showed that microglia did not respond to I/R injury. Moreover, microglia are activated in a time-dependent manner, and in a specific brain region following I/R. Recently, several therapeutic approaches including pharmacological interventions and electroacupuncture showed the beneficial effects, while some interventions such as hyperthermia and hyperoxic resuscitation, demonstrated the deteriorated effects on the microglial activity after I/R. Therefore, the present review summarized and discussed those studies regarding the effects of global and focal cerebral as well as cardiac I/R injury on microglia activation, and the therapeutic interventions.
Collapse
Affiliation(s)
- Poomarin Surinkaew
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Anesthesiology, Lamphun Hospital, Lamphun, 51000, Thailand
| | - Passakorn Sawaddiruk
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Anesthesiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
404
|
van Olst L, Bielefeld P, Fitzsimons CP, de Vries HE, Schouten M. Glucocorticoid-mediated modulation of morphological changes associated with aging in microglia. Aging Cell 2018; 17:e12790. [PMID: 29882317 PMCID: PMC6052476 DOI: 10.1111/acel.12790] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2018] [Indexed: 01/12/2023] Open
Abstract
Microglia dynamically adapt their morphology and function during increasing age. However, the mechanisms behind these changes are to date poorly understood. Glucocorticoids (GCs) are long known and utilized for their immunomodulatory actions and endogenous GC levels are described to alter with advancing age. We here tested the hypothesis that age‐associated elevations in GC levels implicate microglia function and morphology. Our data indicate a decrease in microglial complexity and a concomitant increase in GC levels during aging. Interestingly, enhancing GC levels in young mice enhanced microglial ramifications, while the knockdown of the glucocorticoid receptor expression in old mice aggravated age‐associated microglial amoebification. These data suggest that GCs increase ramification of hippocampal microglia and may modulate age‐associated changes in microglial morphology.
Collapse
Affiliation(s)
- Lynn van Olst
- Department of Molecular Cell Biology and Immunology; VU University Medical Center, Amsterdam Neuroscience; Amsterdam The Netherlands
| | - Pascal Bielefeld
- Neuroscience Program; Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam The Netherlands
| | - Carlos P. Fitzsimons
- Neuroscience Program; Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam The Netherlands
| | - Helga E. de Vries
- Department of Molecular Cell Biology and Immunology; VU University Medical Center, Amsterdam Neuroscience; Amsterdam The Netherlands
| | - Marijn Schouten
- Department of Molecular Cell Biology and Immunology; VU University Medical Center, Amsterdam Neuroscience; Amsterdam The Netherlands
| |
Collapse
|
405
|
Sharma S, Young RJ, Chen J, Chen X, Oh EC, Schiller MR. Minimotifs dysfunction is pervasive in neurodegenerative disorders. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2018; 4:414-432. [PMID: 30225339 PMCID: PMC6139474 DOI: 10.1016/j.trci.2018.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Minimotifs are modular contiguous peptide sequences in proteins that are important for posttranslational modifications, binding to other molecules, and trafficking to specific subcellular compartments. Some molecular functions of proteins in cellular pathways can be predicted from minimotif consensus sequences identified through experimentation. While a role for minimotifs in regulating signal transduction and gene regulation during disease pathogenesis (such as infectious diseases and cancer) is established, the therapeutic use of minimotif mimetic drugs is limited. In this review, we discuss a general theme identifying a pervasive role of minimotifs in the pathomechanism of neurodegenerative diseases. Beyond their longstanding history in the genetics of familial neurodegeneration, minimotifs are also major players in neurotoxic protein aggregation, aberrant protein trafficking, and epigenetic regulation. Generalizing the importance of minimotifs in neurodegenerative diseases offers a new perspective for the future study of neurodegenerative mechanisms and the investigation of new therapeutics.
Collapse
Affiliation(s)
- Surbhi Sharma
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
| | - Richard J. Young
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
| | - Jingchun Chen
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
| | - Xiangning Chen
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- Department of Psychology, Las Vegas, NV, USA
| | - Edwin C. Oh
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Medicine, Las Vegas, NV, USA
| | - Martin R. Schiller
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
- School of Medicine, Las Vegas, NV, USA
| |
Collapse
|
406
|
Song S, Wang S, Pigott VM, Jiang T, Foley LM, Mishra A, Nayak R, Zhu W, Begum G, Shi Y, Carney KE, Hitchens TK, Shull GE, Sun D. Selective role of Na + /H + exchanger in Cx3cr1 + microglial activation, white matter demyelination, and post-stroke function recovery. Glia 2018; 66:2279-2298. [PMID: 30043461 DOI: 10.1002/glia.23456] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/27/2018] [Accepted: 04/24/2018] [Indexed: 12/22/2022]
Abstract
Na+ /H+ exchanger (NHE1) activation is required for multiple microglial functions. We investigated effects of selective deletion of microglial Nhe1 in Cx3cr1-CreER ;Nhe1f/f mice on neuroinflammation and tissue repair after ischemic stroke. Infarct volume was similar in corn oil or tamoxifen (Tam)-treated mice at 48 hr and 14 days post-stroke. However, the Tam-treated mice showed significantly higher survival rate and faster neurological function recovery during day 1-14 post-stroke. Deletion of microglial Nhe1 prevented the elevation of CD11b+ /CD45low-med microglia in the ischemic hemisphere at day 3 post-stroke, but stimulated expression of Ym1, CD68, TGF-β, IL-10, decreased expression of CD86 and IL-1β, and reduced GFAP+ reactive astrocytes. Moreover, at day 14 post-stroke, enhanced white matter myelination was detected in the microglial Nhe1 deleted mice. In comparison, neuronal Nhe1-null mice (the CamKII-Cre+/- ;Nhe1f/f mice) showed a significant reduction in both acute and subacute infarct volume, along with increased survival rate and moderate neurological function recovery. However, these neuronal Nhe1-null mice did not exhibit reduced activation of CD11b+ /CD45low-med microglia or CD11b+ /CD45hi macrophages in the ischemic brains, and they exhibited no reductions in white matter lesions. Taken together, this study demonstrated that deletion of microglial and neuronal Nhe1 had differential effects on ischemic brain damage. Microglial NHE1 is involved in pro-inflammatory responses during post-stroke brain tissue repair. In contrast, neuronal NHE1 activation is directly associated with the acute ischemic neuronal injury but not inflammation. Our study reveals that NHE1 protein is a potential therapeutic target critical for differential regulation of ischemic neuronal injury, demyelination and tissue repair.
Collapse
Affiliation(s)
- Shanshan Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Shaoxia Wang
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Victoria M Pigott
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Tong Jiang
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Lesley M Foley
- Animal Imaging Center, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Abhishek Mishra
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Rachana Nayak
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Wen Zhu
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Gulnaz Begum
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Yejie Shi
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Karen E Carney
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - T Kevin Hitchens
- Animal Imaging Center, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213.,Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Gary E Shull
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, 45267
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213.,Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
407
|
Aberrant cardiolipin metabolism is associated with cognitive deficiency and hippocampal alteration in tafazzin knockdown mice. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3353-3367. [PMID: 30055293 DOI: 10.1016/j.bbadis.2018.07.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/14/2018] [Accepted: 07/19/2018] [Indexed: 12/17/2022]
Abstract
Cardiolipin (CL) is a key mitochondrial phospholipid essential for mitochondrial energy production. CL is remodeled from monolysocardiolipin (MLCL) by the enzyme tafazzin (TAZ). Loss-of-function mutations in the gene which encodes TAZ results in a rare X-linked disorder called Barth Syndrome (BTHS). The mutated TAZ is unable to maintain the physiological CL:MLCL ratio, thus reducing CL levels and affecting mitochondrial function. BTHS is best known as a cardiac disease, but has been acknowledged as a multi-syndrome disorder, including cognitive deficits. Since reduced CL levels has also been reported in numerous neurodegenerative disorders, we examined how TAZ-deficiency impacts cognitive abilities, brain mitochondrial respiration and the function of hippocampal neurons and glia in TAZ knockdown (TAZ kd) mice. We have identified for the first time the profile of changes that occur in brain phospholipid content and composition of TAZ kd mice. The brain of TAZ kd mice exhibited reduced TAZ protein expression, reduced total CL levels and a 19-fold accumulation of MLCL compared to wild-type littermate controls. TAZ kd brain exhibited a markedly distinct profile of CL and MLCL molecular species. In mitochondria, the activity of complex I was significantly elevated in the monomeric and supercomplex forms with TAZ-deficiency. This corresponded with elevated mitochondrial state I respiration and attenuated spare capacity. Furthermore, the production of reactive oxygen species was significantly elevated in TAZ kd brain mitochondria. While motor function remained normal in TAZ kd mice, they showed significant memory deficiency based on novel object recognition test. These results correlated with reduced synaptophysin protein levels and derangement of the neuronal CA1 layer in hippocampus. Finally, TAZ kd mice had elevated activation of brain immune cells, microglia compared to littermate controls. Collectively, our findings demonstrate that TAZ-mediated remodeling of CL contributes significantly to the expansive distribution of CL molecular species in the brain, plays a key role in mitochondria respiratory activity, maintains normal cognitive function, and identifies the hippocampus as a potential therapeutic target for BTHS.
Collapse
|
408
|
Reduced resting-state functional connectivity of the basolateral amygdala to the medial prefrontal cortex in preweaning rats exposed to chronic early-life stress. Brain Struct Funct 2018; 223:3711-3729. [DOI: 10.1007/s00429-018-1720-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/15/2018] [Indexed: 10/28/2022]
|
409
|
Baldy C, Fournier S, Boisjoly-Villeneuve S, Tremblay MÈ, Kinkead R. The influence of sex and neonatal stress on medullary microglia in rat pups. Exp Physiol 2018; 103:1192-1199. [PMID: 29920821 DOI: 10.1113/ep087088] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/13/2018] [Indexed: 12/16/2022]
Abstract
NEW FINDINGS What is the central question of the study? Does neonatal stress, in the form of neonatal maternal separation, influence the maturation of microglial density, morphology and neuronal signalling in medullary regions regulating cardiorespiratory function in rat pups? What is the main finding and its importance? Using Iba-1 immunohistochemistry, we show that neonatal maternal separation augments microglial density and the proportion of cells with an amoeboid morphology in the medulla. Although the current understanding of the effect of early life stress on medullary development is relatively limited, these data show that within this area, microglia are affected by neonatal stress. Microglia could therefore be important effectors in cardiorespiratory disorders resulting from maternal separation. ABSTRACT Neonatal stress has wide-ranging consequences for the developing brain, including the medullary cardiorespiratory network. In rat pups, the reflexive cardiorespiratory inhibition triggered by the presence of liquids near the larynx is augmented by neonatal maternal separation (NMS), especially in males. Sex-specific enhancement of synaptic connectivity by NMS might explain this cardiorespiratory dysfunction. Microglia influence the formation, maturation, activity and elimination of developing synapses, but their role in the wiring of medullary networks is unknown. Owing to their sensitivity to sex hormones and stress hormones, microglial dysfunction could contribute to the abnormal cardiorespiratory phenotype observed in NMS pups. Here, we first used ionized calcium-binding adapter molecule-1 (Iba-1) immunolabelling to compare the density and morphology of microglia in the medulla of male versus female rat pups (14-15 days old) that were either undisturbed or subjected to NMS (3 h day-1 ; postnatal days 3-12). Neonatal maternal separation augmented the density of Iba-1+ cells (caudal region of the NTS), increased the size of the soma and reduced the arborization area (especially in the dorsal motor nucleus of the vagus). Sex-based differences were not observed. Given that the actions of microglia are regulated by neuronal fractalkine (CX3 CL1 ), we then used western blot analysis to compare the expression of CX3 CL1 and its microglial receptor (CX3 CR1 ) in medullary homogenates from control and NMS pups. Although CX3 CR1 expression was 59% greater in males versus females, NMS had no effect on CX3 CL1 /CX3 CR1 signalling. Given that an amoeboid morphology reflects an immature phenotype in developing microglia, NMS could interfere with synaptic pruning via a different mechanism.
Collapse
Affiliation(s)
- Cécile Baldy
- Département de Pédiatrie, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Stéphanie Fournier
- Département de Pédiatrie, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Samuel Boisjoly-Villeneuve
- Département de Pédiatrie, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Université Laval, Québec, QC, Canada.,Département de Médecine Moléculaire, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Marie-Ève Tremblay
- Département de Médecine Moléculaire, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Richard Kinkead
- Département de Pédiatrie, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Université Laval, Québec, QC, Canada
| |
Collapse
|
410
|
Rizzi C, Tiberi A, Giustizieri M, Marrone MC, Gobbo F, Carucci NM, Meli G, Arisi I, D'Onofrio M, Marinelli S, Capsoni S, Cattaneo A. NGF steers microglia toward a neuroprotective phenotype. Glia 2018; 66:1395-1416. [PMID: 29473218 PMCID: PMC6001573 DOI: 10.1002/glia.23312] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 01/22/2018] [Accepted: 01/31/2018] [Indexed: 12/21/2022]
Abstract
Microglia are the sentinels of the brain but a clear understanding of the factors that modulate their activation in physiological and pathological conditions is still lacking. Here we demonstrate that Nerve Growth Factor (NGF) acts on microglia by steering them toward a neuroprotective and anti-inflammatory phenotype. We show that microglial cells express functional NGF receptors in vitro and ex vivo. Our transcriptomic analysis reveals how, in primary microglia, NGF treatment leads to a modulation of motility, phagocytosis and degradation pathways. At the functional level, NGF induces an increase in membrane dynamics and macropinocytosis and, in vivo, it activates an outward rectifying current that appears to modulate glutamatergic neurotransmission in nearby neurons. Since microglia are supposed to be a major player in Aβ peptide clearance in the brain, we tested the effects of NGF on its phagocytosis. NGF was shown to promote TrkA-mediated engulfment of Aβ by microglia, and to enhance its degradation. Additionally, the proinflammatory activation induced by Aβ treatment is counteracted by the concomitant administration of NGF. Moreover, by acting specifically on microglia, NGF protects neurons from the Aβ-induced loss of dendritic spines and inhibition of long term potentiation. Finally, in an ex-vivo setup of acute brain slices, we observed a similar increase in Aβ engulfment by microglial cells under the influence of NGF. Our work substantiates a role for NGF in the regulation of microglial homeostatic activities and points toward this neurotrophin as a neuroprotective agent in Aβ accumulation pathologies, via its anti-inflammatory activity on microglia.
Collapse
Affiliation(s)
- Caterina Rizzi
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri 7Pisa56126Italy
| | - Alexia Tiberi
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri 7Pisa56126Italy
| | - Michela Giustizieri
- European Brain Research Institute‐Fondazione Rita Levi Montalcini, Viale Regina Elena 295Roma00161, Italy
| | - Maria Cristina Marrone
- European Brain Research Institute‐Fondazione Rita Levi Montalcini, Viale Regina Elena 295Roma00161, Italy
| | - Francesco Gobbo
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri 7Pisa56126Italy
| | - Nicola Maria Carucci
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri 7Pisa56126Italy
| | - Giovanni Meli
- European Brain Research Institute‐Fondazione Rita Levi Montalcini, Viale Regina Elena 295Roma00161, Italy
| | - Ivan Arisi
- European Brain Research Institute‐Fondazione Rita Levi Montalcini, Viale Regina Elena 295Roma00161, Italy
| | - Mara D'Onofrio
- European Brain Research Institute‐Fondazione Rita Levi Montalcini, Viale Regina Elena 295Roma00161, Italy
| | - Silvia Marinelli
- European Brain Research Institute‐Fondazione Rita Levi Montalcini, Viale Regina Elena 295Roma00161, Italy
| | - Simona Capsoni
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri 7Pisa56126Italy
- Section of Human Physiology, Department of Biomedical and Specialty Surgical SciencesUniversity of Ferrara, Via Fossato di Mortara 17‐19Ferrara44121Italy
| | - Antonino Cattaneo
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri 7Pisa56126Italy
- European Brain Research Institute‐Fondazione Rita Levi Montalcini, Viale Regina Elena 295Roma00161, Italy
| |
Collapse
|
411
|
Jaber SM, Bordt EA, Bhatt NM, Lewis DM, Gerecht S, Fiskum G, Polster BM. Sex differences in the mitochondrial bioenergetics of astrocytes but not microglia at a physiologically relevant brain oxygen tension. Neurochem Int 2018; 117:82-90. [PMID: 28888963 PMCID: PMC5839942 DOI: 10.1016/j.neuint.2017.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/14/2017] [Accepted: 09/05/2017] [Indexed: 11/22/2022]
Abstract
Biological sex is thought to influence mitochondrial bioenergetic function. Previous respiration measurements examining brain mitochondrial sex differences were made at atmospheric oxygen using isolated brain mitochondria. Oxygen is 160 mm Hg (21%) in the atmosphere, while the oxygen tension in the brain generally ranges from ∼5 to 45 mm Hg (∼1-6% O2). This study tested the hypothesis that sex and/or brain physiological oxygen tension influence the mitochondrial bioenergetic properties of primary rat cortical astrocytes and microglia. Oxygen consumption was measured with a Seahorse XF24 cell respirometer in an oxygen-controlled environmental chamber. Strikingly, male astrocytes had a higher maximal respiration than female astrocytes when cultured and assayed at 3% O2. Three percent O2 yielded a low physiological dissolved O2 level of ∼1.2% (9.1 mm Hg) at the cell monolayer during culture and 1.2-3.0% O2 during assays. No differences in bioenergetic parameters were observed between male and female astrocytes at 21% O2 (dissolved O2 of ∼19.7%, 150 mm Hg during culture) or between either of these cell populations and female astrocytes at 3% O2. In contrast to astrocytes, microglia showed no sex differences in mitochondrial bioenergetic parameters at either oxygen level, regardless of whether they were non-stimulated or activated to a proinflammatory state. There were also no O2- or sex-dependent differences in proinflammatory TNF-α or IL-1β cytokine secretion measured at 18 h activation. Overall, results reveal an intriguing sex variance in astrocytic maximal respiration that requires additional investigation. Findings also demonstrate that sex differences can be masked by conducting experiments at non-physiological O2.
Collapse
Affiliation(s)
- Sausan M Jaber
- Department of Anesthesiology, and the Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore ST., MSTF 5-34, Baltimore, MD, 21201, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 685 W. Baltimore ST., MSTF 5-34, Baltimore, MD, 21201, USA
| | - Evan A Bordt
- Department of Anesthesiology, and the Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore ST., MSTF 5-34, Baltimore, MD, 21201, USA
| | - Niraj M Bhatt
- Department of Anesthesiology, and the Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore ST., MSTF 5-34, Baltimore, MD, 21201, USA
| | - Daniel M Lewis
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Shaffer Hall 200C, Baltimore, MD 21218, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Shaffer Hall 200C, Baltimore, MD 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Shaffer Hall 200C, Baltimore, MD 21218, USA
| | - Gary Fiskum
- Department of Anesthesiology, and the Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore ST., MSTF 5-34, Baltimore, MD, 21201, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 685 W. Baltimore ST., MSTF 5-34, Baltimore, MD, 21201, USA
| | - Brian M Polster
- Department of Anesthesiology, and the Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore ST., MSTF 5-34, Baltimore, MD, 21201, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 685 W. Baltimore ST., MSTF 5-34, Baltimore, MD, 21201, USA.
| |
Collapse
|
412
|
Ano Y, Nakayama H. Preventive Effects of Dairy Products on Dementia and the Underlying Mechanisms. Int J Mol Sci 2018; 19:E1927. [PMID: 29966358 PMCID: PMC6073537 DOI: 10.3390/ijms19071927] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/26/2018] [Accepted: 06/29/2018] [Indexed: 12/19/2022] Open
Abstract
Alongside the rapid population aging occurring worldwide, the prevention of age-related memory decline and dementia has become a high priority. Dairy products have many physiological effects owing to their contents of lactic acid bacteria and the fatty acids and peptides generated during their fermentation. In particular, several recent studies have elucidated the effects of fermented dairy products on cognitive function. Epidemiological and clinical evidence has indicated that fermented dairy products have preventive effects against dementia, including Alzheimer’s disease. Recent preclinical studies have identified individual molecules generated during fermentation that are responsible for those preventive effects. Oleamide and dehydroergosterol have been identified as the agents responsible for reducing microglial inflammatory responses and neurotoxicity. In this review, the protective effects of fermented dairy products and their components on cognitive function, the mechanisms underlying those effects, and the prospects for their future clinical development will be discussed.
Collapse
Affiliation(s)
- Yasuhisa Ano
- Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd, 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa 236-0004, Japan.
| | - Hiroyuki Nakayama
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
413
|
Early minor stimulation of microglial TLR2 and TLR4 receptors attenuates Alzheimer's disease-related cognitive deficit in rats: behavioral, molecular, and electrophysiological evidence. Neurobiol Aging 2018; 70:203-216. [PMID: 30031930 DOI: 10.1016/j.neurobiolaging.2018.06.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 05/26/2018] [Accepted: 06/18/2018] [Indexed: 11/20/2022]
Abstract
At early stages of Alzheimer's disease (AD), soluble amyloid beta (Aβ) accumulates in brain while microglia are in resting state. Microglia can recognize Aβ long after formation of plaques and release neurotoxic mediators. We examined impact of early minor activation of microglia by Toll-like receptors (TLRs) 2 and 4 agonists on Alzheimer's disease-related disturbed synaptic function and spatial memory in rats. Microglial BV-2 cells were treated by 0.1, 1, and 10 μg/mL of the TLRs ligands lipopolysaccharide, monophosphoryl lipid A (MPL), and Pam3Cys for 24 hours. Culture medium was then changed with media containing 1-μM Aβ. Tumour necrosis factor (TNF)-α and CCL3 levels were measured in the supernatant, 24 hours thereafter. One μg of TLRs ligands which was able to release low level of TNF-α and CCL3, was administered intracerebroventricularly (i.c.v) to adult male rats every 3 days for 24 days. At the half of the treatment period, Aβ1-42 was infused i.c.v (0.075 μg/hour) for 2 weeks. Finally, the following factors were measured: memory performance by Morris water maze, postsynaptic potentials of dentate gyrus following perforant pathway stimulation, hippocampal inflammatory cytokines interleukin 1 (IL-1)β and TNF-α, anti-inflammatory cytokines IL-10 and TGF-1β, microglia marker arginase 1, Aβ deposits, and the receptor involved in Aβ clearance, formyl peptide receptor 2 (FPR2). TLRs ligands caused dose-dependent release of TNF-α and CCL3 by BV-2 cells. Aβ-treated cells did not release TNF-α and CCL3, whereas those pretreated with MPL and Pam3Cys significantly released these cytokines in response to Aβ. Low-dose TLRs ligands improved the disturbance in spatial and working memory; restored the impaired long-term potentiation induced by Aβ; decreased TNF-α, and Aβ deposits; enhanced TGF-1β, IL-10, and arginase 1 in the hippocampus of Aβ-treated rats; and increased polarization of hippocampal microglia to the anti-inflammatory phenotype. The ligands increased formyl peptide receptor 2 in both BV-2 cells and hippocampus/cortex of Aβ-treated rats. Microglia can sense/clear soluble Aβ by early low-dose MPL and Pam3Cys and safeguard synaptic function and memory in rats.
Collapse
|
414
|
Zhang Y, Xu B, Chen Q, Yan Y, Du J, Du X. Apoptosis of Endothelial Cells Contributes to Brain Vessel Pruning of Zebrafish During Development. Front Mol Neurosci 2018; 11:222. [PMID: 30002618 PMCID: PMC6031709 DOI: 10.3389/fnmol.2018.00222] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/06/2018] [Indexed: 12/26/2022] Open
Abstract
During development, immature blood vessel networks remodel to form a simplified and efficient vasculature to meet the demand for oxygen and nutrients, and this remodeling process is mainly achieved via the pruning of existing vessels. It has already known that the migration of vascular endothelial cells (ECs) is one of the mechanisms underlying vessel pruning. However, the role of EC apoptosis in vessel pruning remains under debate, especially in the brain. Here, we reported that EC apoptosis makes a significant contribution to vessel pruning in the brain of larval zebrafish. Using in vivo long-term time-lapse confocal imaging of the brain vasculature in zebrafish larvae, we found that EC apoptosis was always accompanied with brain vessel pruning and about 15% of vessel pruning events were resulted from EC apoptosis. In comparison with brain vessels undergoing EC migration-associated pruning, EC apoptosis-accompanied pruned vessels were longer and showed higher probability that the nuclei of neighboring vessels’ ECs occupied their both ends. Furthermore, we found that microglia were responsible for the clearance of apoptotic ECs accompanying vessel pruning, though microglia themselves were dispensable for the occurrence of vessel pruning. Thus, our study demonstrates that EC apoptosis contributes to vessel pruning in the brain during development in a microglial cell-independent manner.
Collapse
Affiliation(s)
- Yu Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Bing Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Qi Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yong Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jiulin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xufei Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
415
|
E3 Ubiquitin Ligase c-cbl Inhibits Microglia Activation After Chronic Constriction Injury. Neurochem Res 2018; 43:1631-1640. [PMID: 29934689 DOI: 10.1007/s11064-018-2578-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022]
Abstract
E3 ubiquitin ligase c-Caritas B cell lymphoma (c-cbl) is associated with negative regulation of receptor tyrosine kinases, signal transduction of antigens and cytokine receptors, and immune response. However, the expression and function of c-cbl in the regulation of neuropathic pain after chronic constriction injury (CCI) are unknown. In rat CCI model, c-cbl inhibited the activation of spinal cord microglia and the release of pro-inflammatory factors including tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β) and interleukin 6 (IL-6), which alleviated mechanical and heat pain through down-regulating extracellular signal-regulated kinase (ERK) pathway. Additionally, exogenous TNF-α inhibited c-cbl protein level vice versa. In the primary microglia transfected with c-cbl siRNA, when treated with TNF-α or TNF-α inhibitor, the corresponding secretion of IL-1β and IL-6 did not change. In summary, CCI down-regulated c-cbl expression and induced the activation of microglia, then activated microglia released inflammatory factors via ERK signaling to cause pain. Our data might supply a novel molecular target for the therapy of CCI-induced neuropathic pain.
Collapse
|
416
|
Deming Y, Li Z, Benitez BA, Cruchaga C. Triggering receptor expressed on myeloid cells 2 (TREM2): a potential therapeutic target for Alzheimer disease? Expert Opin Ther Targets 2018; 22:587-598. [PMID: 29889572 DOI: 10.1080/14728222.2018.1486823] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
INTRODUCTION There are currently no effective therapeutics for Alzheimer disease (AD). Clinical trials targeting amyloid beta thus far have shown very little benefit and only in the earliest stages of disease. These limitations have driven research to identify alternative therapeutic targets, one of the most promising is the triggering receptor expressed on myeloid cells 2 (TREM2). Areas covered: Here, we review the literature to-date and discuss the potentials and pitfalls for targeting TREM2 as a potential therapeutic for AD. We focus on research in animal and cell models for AD and central nervous system injury models which may help in understanding the role of TREM2 in disease. Expert opinion: Studies suggest TREM2 plays a key role in AD pathology; however, results have been conflicting about whether TREM2 is beneficial or harmful. More research is necessary before designing TREM2-targeting therapies. Successful therapeutics will most likely be administered early in disease.
Collapse
Affiliation(s)
- Yuetiva Deming
- a Department of Psychiatry , Washington University School of Medicine , St Louis , MO , USA
| | - Zeran Li
- a Department of Psychiatry , Washington University School of Medicine , St Louis , MO , USA
| | - Bruno A Benitez
- b Department of Medicine , Washington University School of Medicine , St Louis , MO , USA
| | - Carlos Cruchaga
- a Department of Psychiatry , Washington University School of Medicine , St Louis , MO , USA.,c Department of Developmental Biology , Washington University School of Medicine , St Louis , MO , USA.,d Knight Alzheimer's Disease Research Center , Washington University School of Medicine , St Louis , MO , USA.,e Hope Center for Neurological Disorders , Washington University School of Medicine , St Louis , MO , USA
| |
Collapse
|
417
|
Sandvig I, Augestad IL, Håberg AK, Sandvig A. Neuroplasticity in stroke recovery. The role of microglia in engaging and modifying synapses and networks. Eur J Neurosci 2018; 47:1414-1428. [PMID: 29786167 DOI: 10.1111/ejn.13959] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 02/06/2023]
Abstract
Neuroplasticity after ischaemic injury involves both spontaneous rewiring of neural networks and circuits as well as functional responses in neurogenic niches. These events involve complex interactions with activated microglia, which evolve in a dynamic manner over time. Although the exact mechanisms underlying these interactions remain poorly understood, increasing experimental evidence suggests a determining role of pro- and anti-inflammatory microglial activation profiles in shaping both synaptogenesis and neurogenesis. While the inflammatory response of microglia was thought to be detrimental, a more complex profile of the role of microglia in tissue remodelling is emerging. Experimental evidence suggests that microglia in response to injury can rapidly modify neuronal activity and modulate synaptic function, as well as be beneficial for the proliferation and integration of neural progenitor cells (NPCs) from endogenous neurogenic niches into functional networks thereby supporting stroke recovery. The manner in which microglia contribute towards sculpting neural synapses and networks, both in terms of activity-dependent and homeostatic plasticity, suggests that microglia-mediated pro- and/or anti-inflammatory activity may significantly contribute towards spontaneous neuronal plasticity after ischaemic lesions. In this review, we first introduce some of the key cellular and molecular mechanisms underlying neuroplasticity in stroke and then proceed to discuss the crosstalk between microglia and endogenous neuroplasticity in response to brain ischaemia with special focus on the engagement of synapses and neural networks and their implications for grey matter integrity and function in stroke repair.
Collapse
Affiliation(s)
- Ioanna Sandvig
- Faculty of Medicine and Health Sciences, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ingrid Lovise Augestad
- Faculty of Medicine and Health Sciences, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Asta Kristine Håberg
- Faculty of Medicine and Health Sciences, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Radiology and Nuclear Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Axel Sandvig
- Faculty of Medicine and Health Sciences, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Neurology, St Olav's Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Pharmacology and Clinical Neurosciences, Division of Neuro, Head and Neck, Umeå University Hospital, Umeå, Sweden
| |
Collapse
|
418
|
Markers of Environmental Enteric Dysfunction Are Associated With Neurodevelopmental Outcomes in Tanzanian Children. J Pediatr Gastroenterol Nutr 2018; 66:953-959. [PMID: 29613921 PMCID: PMC5964017 DOI: 10.1097/mpg.0000000000001978] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Chronic exposure to enteropathogens may result in environmental enteric dysfunction (EED), a subclinical condition associated with poor child growth. Growth faltering is strongly associated with poor neurodevelopment, and occurs during sensitive periods of postnatal brain development. We investigated the role of novel EED biomarkers, systemic inflammation, and micronutrient status on neurodevelopment in Tanzanian children. METHODS Non-stunted subjects with 6-week and 6-month blood samples and neurodevelopmental measures (n = 107) were included in this study. Samples were tested for biomarkers of gastrointestinal function (citrulline, antibodies to lipopolysaccharide, and flagellin), micronutrient status (iron, retinol binding protein [RBP], and vitamin D), systemic inflammation (C-reactive protein [CRP] and alpha-1-acid glycoprotein), and growth (insulin-like growth factor and insulin-like growth factor binding protein 3). RESULTS Cognitive scores at 15 months were associated with higher concentrations of 6-month anti-lipopolysaccharide IgG (β = 1.95, P = 0.02), anti-flagellin IgA (β = 2.41, P = 0.04), and IgG (β = 2.99, P = 0.009). Higher receptive language scores were positively associated with anti-flagellin IgG (β = 0.95, P = 0.05), and receptive language and gross motor scores were positively associated with citrulline at 6 months (β = 0.09, P = 0.02; β = 0.10, P = 0.03, respectively). Gross motor scores were positively associated with RBP at 6 months (β = 1.70, P = 0.03). Markers of systemic inflammation were not significantly associated with neurodevelopment. CONCLUSIONS Plasma citrulline, a marker of gastrointestinal mucosal surface area, and vitamin A status were associated with higher gross motor development scores. Novel markers for EED, but not inflammation, were positively associated with cognitive scores, suggesting a possible mechanistic pathway involving immune response and neuroprotection.
Collapse
|
419
|
Chan TE, Grossman YS, Bloss EB, Janssen WG, Lou W, McEwen BS, Dumitriu D, Morrison JH. Cell-Type Specific Changes in Glial Morphology and Glucocorticoid Expression During Stress and Aging in the Medial Prefrontal Cortex. Front Aging Neurosci 2018; 10:146. [PMID: 29875653 PMCID: PMC5974224 DOI: 10.3389/fnagi.2018.00146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/30/2018] [Indexed: 12/15/2022] Open
Abstract
Repeated exposure to stressors is known to produce large-scale remodeling of neurons within the prefrontal cortex (PFC). Recent work suggests stress-related forms of structural plasticity can interact with aging to drive distinct patterns of pyramidal cell morphological changes. However, little is known about how other cellular components within PFC might be affected by these challenges. Here, we examined the effects of stress exposure and aging on medial prefrontal cortical glial subpopulations. Interestingly, we found no changes in glial morphology with stress exposure but a profound morphological change with aging. Furthermore, we found an upregulation of non-nuclear glucocorticoid receptors (GR) with aging, while nuclear levels remained largely unaffected. Both changes are selective for microglia, with no stress or aging effect found in astrocytes. Lastly, we show that the changes found within microglia inversely correlated with the density of dendritic spines on layer III pyramidal cells. These findings suggest microglia play a selective role in synaptic health within the aging brain.
Collapse
Affiliation(s)
- Thomas E. Chan
- Department of Neuroscience, The Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - Yael S. Grossman
- Department of Neuroscience, The Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - Erik B. Bloss
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - William G. Janssen
- Department of Neuroscience, The Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - Wendy Lou
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Bruce S. McEwen
- Laboratory of Neuroendocrinology, Department of Neuroscience, Rockefeller University, New York, NY, United States
| | - Dani Dumitriu
- Department of Neuroscience, The Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - John H. Morrison
- Department of Neuroscience, The Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, United States
- California National Primate Research Center, Department of Neurology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
420
|
Tumor Necrosis Factor and Interleukin-1 β Modulate Synaptic Plasticity during Neuroinflammation. Neural Plast 2018; 2018:8430123. [PMID: 29861718 PMCID: PMC5976900 DOI: 10.1155/2018/8430123] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/28/2018] [Indexed: 11/25/2022] Open
Abstract
Cytokines are constitutively released in the healthy brain by resident myeloid cells to keep proper synaptic plasticity, either in the form of Hebbian synaptic plasticity or of homeostatic plasticity. However, when cytokines dramatically increase, establishing a status of neuroinflammation, the synaptic action of such molecules remarkably interferes with brain circuits of learning and cognition and contributes to excitotoxicity and neurodegeneration. Among others, interleukin-1β (IL-1β) and tumor necrosis factor (TNF) are the best studied proinflammatory cytokines in both physiological and pathological conditions and have been invariably associated with long-term potentiation (LTP) (Hebbian synaptic plasticity) and synaptic scaling (homeostatic plasticity), respectively. Multiple sclerosis (MS) is the prototypical neuroinflammatory disease, in which inflammation triggers excitotoxic mechanisms contributing to neurodegeneration. IL-β and TNF are increased in the brain of MS patients and contribute to induce the changes in synaptic plasticity occurring in MS patients and its animal model, the experimental autoimmune encephalomyelitis (EAE). This review will introduce and discuss current evidence of the role of IL-1β and TNF in the regulation of synaptic strength at both physiological and pathological levels, in particular speculating on their involvement in the synaptic plasticity changes observed in the EAE brain.
Collapse
|
421
|
Savage JC, Picard K, González-Ibáñez F, Tremblay MÈ. A Brief History of Microglial Ultrastructure: Distinctive Features, Phenotypes, and Functions Discovered Over the Past 60 Years by Electron Microscopy. Front Immunol 2018; 9:803. [PMID: 29922276 PMCID: PMC5996933 DOI: 10.3389/fimmu.2018.00803] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/03/2018] [Indexed: 01/01/2023] Open
Abstract
The first electron microscope was constructed in 1931. Several decades later, techniques were developed to allow the first ultrastructural analysis of microglia by transmission electron microscopy (EM). In the 50 years that followed, important roles of microglia have been identified, specifically due to the ultrastructural resolution currently available only with EM. In particular, the addition of electron-dense staining using immunohistochemical EM methods has allowed the identification of microglial cell bodies, as well as processes, which are difficult to recognize in EM, and to uncover their complex interactions with neurons and synapses. The ability to recognize neuronal, astrocytic, and oligodendrocytic compartments in the neuropil without any staining is another invaluable advantage of EM over light microscopy for studying intimate cell-cell contacts. The technique has been essential in defining microglial interactions with neurons and synapses, thus providing, among other discoveries, important insights into their roles in synaptic stripping and pruning via phagocytosis of extraneous synapses. Recent technological advances in EM including serial block-face imaging and focused-ion beam scanning EM have also facilitated automated acquisition of large tissue volumes required to reconstruct neuronal circuits in 3D at nanometer-resolution. These cutting-edge techniques which are now becoming increasingly available will further revolutionize the study of microglia across stages of the lifespan, brain regions, and contexts of health and disease. In this mini-review, we will focus on defining the distinctive ultrastructural features of microglia and the unique insights into their function that were provided by EM.
Collapse
Affiliation(s)
- Julie C. Savage
- Axe neurosciences, Centre de Recherche du CHU de Québec – Université Laval, Québec City, QC, Canada
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada
| | - Katherine Picard
- Axe neurosciences, Centre de Recherche du CHU de Québec – Université Laval, Québec City, QC, Canada
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada
| | - Fernando González-Ibáñez
- Axe neurosciences, Centre de Recherche du CHU de Québec – Université Laval, Québec City, QC, Canada
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Axe neurosciences, Centre de Recherche du CHU de Québec – Université Laval, Québec City, QC, Canada
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada
| |
Collapse
|
422
|
Glia-to-neuron transfer of miRNAs via extracellular vesicles: a new mechanism underlying inflammation-induced synaptic alterations. Acta Neuropathol 2018; 135:529-550. [PMID: 29302779 PMCID: PMC5978931 DOI: 10.1007/s00401-017-1803-x] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/18/2017] [Accepted: 12/28/2017] [Indexed: 12/15/2022]
Abstract
Recent evidence indicates synaptic dysfunction as an early mechanism affected in neuroinflammatory diseases, such as multiple sclerosis, which are characterized by chronic microglia activation. However, the mode(s) of action of reactive microglia in causing synaptic defects are not fully understood. In this study, we show that inflammatory microglia produce extracellular vesicles (EVs) which are enriched in a set of miRNAs that regulate the expression of key synaptic proteins. Among them, miR-146a-5p, a microglia-specific miRNA not present in hippocampal neurons, controls the expression of presynaptic synaptotagmin1 (Syt1) and postsynaptic neuroligin1 (Nlg1), an adhesion protein which play a crucial role in dendritic spine formation and synaptic stability. Using a Renilla-based sensor, we provide formal proof that inflammatory EVs transfer their miR-146a-5p cargo to neuron. By western blot and immunofluorescence analysis we show that vesicular miR-146a-5p suppresses Syt1 and Nlg1 expression in receiving neurons. Microglia-to-neuron miR-146a-5p transfer and Syt1 and Nlg1 downregulation do not occur when EV-neuron contact is inhibited by cloaking vesicular phosphatidylserine residues and when neurons are exposed to EVs either depleted of miR-146a-5p, produced by pro-regenerative microglia, or storing inactive miR-146a-5p, produced by cells transfected with an anti-miR-146a-5p. Morphological analysis reveals that prolonged exposure to inflammatory EVs leads to significant decrease in dendritic spine density in hippocampal neurons in vivo and in primary culture, which is rescued in vitro by transfection of a miR-insensitive Nlg1 form. Dendritic spine loss is accompanied by a decrease in the density and strength of excitatory synapses, as indicated by reduced mEPSC frequency and amplitude. These findings link inflammatory microglia and enhanced EV production to loss of excitatory synapses, uncovering a previously unrecognized role for microglia-enriched miRNAs, released in association to EVs, in silencing of key synaptic genes.
Collapse
|
423
|
Webb E, Moon J, Dyrszka L, Rodriguez B, Cox C, Patisaul H, Bushkin S, London E. Neurodevelopmental and neurological effects of chemicals associated with unconventional oil and natural gas operations and their potential effects on infants and children. REVIEWS ON ENVIRONMENTAL HEALTH 2018; 33:3-29. [PMID: 29068792 DOI: 10.1515/reveh-2017-0008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/28/2017] [Indexed: 05/05/2023]
Abstract
Heavy metals (arsenic and manganese), particulate matter (PM), benzene, toluene, ethylbenzene, xylenes (BTEX), polycyclic aromatic hydrocarbons (PAHs) and endocrine disrupting chemicals (EDCs) have been linked to significant neurodevelopmental health problems in infants, children and young adults. These substances are widely used in, or become byproducts of unconventional oil and natural gas (UOG) development and operations. Every stage of the UOG lifecycle, from well construction to extraction, operations, transportation and distribution can lead to air and water contamination. Residents near UOG operations can suffer from increased exposure to elevated concentrations of air and water pollutants. Here we focus on five air and water pollutants that have been associated with potentially permanent learning and neuropsychological deficits, neurodevelopmental disorders and neurological birth defects. Given the profound sensitivity of the developing brain and central nervous system, it is reasonable to conclude that young children who experience frequent exposure to these pollutants are at particularly high risk for chronic neurological diseases. More research is needed to understand the extent of these concerns in the context of UOG, but since UOG development has expanded rapidly in recent years, the need for public health prevention techniques, well-designed studies and stronger state and national regulatory standards is becoming increasingly apparent.
Collapse
Affiliation(s)
- Ellen Webb
- Center for Environmental Health, 2201 Broadway, Suite 302, Oakland, CA 94612, USA
| | | | - Larysa Dyrszka
- Physicians for Social Responsibility, Glen Spey, NY, USA
| | | | - Caroline Cox
- Center for Environmental Health, Oakland, CA, USA
| | - Heather Patisaul
- North Carolina State University College of Sciences, Raleigh, NC, USA
| | - Sheila Bushkin
- Institute for Health and the Environment, Albany, NY, USA
| | - Eric London
- Institute for Basic Research, New York, NY, USA
| |
Collapse
|
424
|
Pisanu A, Boi L, Mulas G, Spiga S, Fenu S, Carta AR. Neuroinflammation in L-DOPA-induced dyskinesia: beyond the immune function. J Neural Transm (Vienna) 2018. [PMID: 29541852 DOI: 10.1007/s00702-018-1874-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuroinflammation is a main component of Parkinson's disease (PD) neuropathology, where unremitting reactive microglia and microglia-secreted soluble molecules such as cytokines, contribute to the neurodegenerative process as part of an aberrant immune reaction. Besides, pro-inflammatory cytokines, predominantly TNF-α, play an important neuromodulatory role in the healthy and diseased brain, being involved in neurotransmitter metabolism, synaptic scaling and brain plasticity. Recent preclinical studies have evidenced an exacerbated neuroinflammatory reaction in the striatum of parkinsonian rats that developed dyskinetic responses following L-DOPA administration. These findings prompted investigation of non-neuronal mechanisms of L-DOPA-induced dyskinesia (LID) involving glial cells and glial-secreted soluble molecules. Hence, besides the classical mechanisms of LID that include abnormal corticostriatal neurotransmission and maladaptive changes in striatal medium spiny neurons (MSNs), here we review studies supporting a role of striatal neuroinflammation in the development of LID, with a focus on microglia and the pro-inflammatory cytokine TNF-α. Moreover, we discuss several mechanisms that have been involved in the development of LID, which are directly or indirectly under the control of TNF-α, and might be abnormally affected by its chronic overproduction and release by microglia in PD. It is proposed that TNF-α may contribute to the altered neuronal responses occurring in LID by targeting receptor trafficking and function in MSNs, but also dopamine synthesis in preserved dopaminergic terminals and serotonin metabolism in serotonergic neurons. Therapeutic approaches specifically targeting glial-secreted cytokines may represent a novel target for preventing or treating LID.
Collapse
Affiliation(s)
- Augusta Pisanu
- Institute of Neuroscience, National Research Council, SS 554 km 4.500, Monserrato, 09042, Cagliari, Italy
| | - Laura Boi
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. N. 8, Monserrato, 09042, Cagliari, Italy
| | - Giovanna Mulas
- Department of Life and Environmental Sciences, University of Cagliari, Via Fiorelli 1, Cagliari, Italy
| | - Saturnino Spiga
- Department of Life and Environmental Sciences, University of Cagliari, Via Fiorelli 1, Cagliari, Italy
| | - Sandro Fenu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. N. 8, Monserrato, 09042, Cagliari, Italy
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. N. 8, Monserrato, 09042, Cagliari, Italy.
| |
Collapse
|
425
|
Collins HY, Bohlen CJ. Isolation and Culture of Rodent Microglia to Promote a Dynamic Ramified Morphology in Serum-free Medium. J Vis Exp 2018. [PMID: 29578519 DOI: 10.3791/57122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Microglia represent 5 - 10% of all central nervous system (CNS) cells and are increasingly drawing attention due to their contributions during development, homeostasis, and disease. Although macrophages have been studied in detail for decades, specialized features of microglia, the tissue-resident macrophages of the CNS, have remained largely mysterious, in part due to limitations in the ability to recapitulate mature microglial properties in culture. Here, we illustrate a straightforward procedure for the rapid isolation of pure microglia from the mature rodent brain. We also describe serum-free culture conditions that support high levels of microglial viability over time. Microglia cultured under these defined-medium conditions exhibit elaborate ramified processes and dynamic surveillance behavior. We illustrate some effects of serum exposure on cultured microglia and discuss how these serum-free cultures compare to both serum-exposed cultures as well as microglia in vivo.
Collapse
|
426
|
Chelini G, Pantazopoulos H, Durning P, Berretta S. The tetrapartite synapse: a key concept in the pathophysiology of schizophrenia. Eur Psychiatry 2018; 50:60-69. [PMID: 29503098 PMCID: PMC5963512 DOI: 10.1016/j.eurpsy.2018.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/01/2018] [Accepted: 02/13/2018] [Indexed: 12/20/2022] Open
Abstract
Growing evidence points to synaptic pathology as a core component of the pathophysiology of schizophrenia (SZ). Significant reductions of dendritic spine density and altered expression of their structural and molecular components have been reported in several brain regions, suggesting a deficit of synaptic plasticity. Regulation of synaptic plasticity is a complex process, one that requires not only interactions between pre- and post-synaptic terminals, but also glial cells and the extracellular matrix (ECM). Together, these elements are referred to as the ‘tetrapartite synapse’, an emerging concept supported by accumulating evidence for a role of glial cells and the extracellular matrix in regulating structural and functional aspects of synaptic plasticity. In particular, chondroitin sulfate proteoglycans (CSPGs), one of the main components of the ECM, have been shown to be synthesized predominantly by glial cells, to form organized perisynaptic aggregates known as perineuronal nets (PNNs), and to modulate synaptic signaling and plasticity during postnatal development and adulthood. Notably, recent findings from our group and others have shown marked CSPG abnormalities in several brain regions of people with SZ. These abnormalities were found to affect specialized ECM structures, including PNNs, as well as glial cells expressing the corresponding CSPGs. The purpose of this review is to bring forth the hypothesis that synaptic pathology in SZ arises from a disruption of the interactions between elements of the tetrapartite synapse.
Collapse
Affiliation(s)
- Gabriele Chelini
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA, 02478 USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115 USA.
| | - Harry Pantazopoulos
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA, 02478 USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115 USA.
| | - Peter Durning
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA, 02478 USA.
| | - Sabina Berretta
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA, 02478 USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115 USA; Program in Neuroscience, Harvard Medical School, 220 Longwood Ave., Boston, MA, 02115 USA.
| |
Collapse
|
427
|
Role of microglia-neuron interactions in diabetic encephalopathy. Ageing Res Rev 2018; 42:28-39. [PMID: 29247713 DOI: 10.1016/j.arr.2017.12.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/07/2017] [Accepted: 12/08/2017] [Indexed: 12/11/2022]
Abstract
In the central nervous system, the primary immune cells, the microglia, prevent pathogenic invasion as the first line of defense. Microglial energy consumption is dependent on their degree of activity. Microglia express transporters for the three primary energy substrates (glucose, fatty acids, glutamine) and regulate diabetic encephalopathy via microglia-neuron interactions. Microglia may play a sentry role for rapid protection or even ablation of impaired neurons. Neurons exhibit hyperactivity in response to hyperglycemia, hyperlipidemia, and neurotoxic factors and release potential microglial activators. Microglial activation is also regulated by proinflammatory factors, caspase-3 activity, P2X7 receptor, interferon regulatory factor-8, and glucocorticoids. Modulation of microglia in diabetic encephalopathy may involve CX3CL1, p38 MAPK, purinergic, and CD200/CD200R signaling pathways, and pattern recognition receptors. The microglia-neuron interactions play an important role in diabetic encephalopathy, and modulation of microglial activation may be a therapeutic target for diabetic encephalopathy.
Collapse
|
428
|
Chen S, Tisch N, Kegel M, Yerbes R, Hermann R, Hudalla H, Zuliani C, Gülcüler GS, Zwadlo K, von Engelhardt J, Ruiz de Almodóvar C, Martin-Villalba A. CNS Macrophages Control Neurovascular Development via CD95L. Cell Rep 2018; 19:1378-1393. [PMID: 28514658 DOI: 10.1016/j.celrep.2017.04.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/04/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022] Open
Abstract
The development of neurons and vessels shares striking anatomical and molecular features, and it is presumably orchestrated by an overlapping repertoire of extracellular signals. CNS macrophages have been implicated in various developmental functions, including the morphogenesis of neurons and vessels. However, whether CNS macrophages can coordinately influence neurovascular development and the identity of the signals involved therein is unclear. Here, we demonstrate that activity of the cell surface receptor CD95 regulates neuronal and vascular morphogenesis in the post-natal brain and retina. Furthermore, we identify CNS macrophages as the main source of CD95L, and macrophage-specific deletion thereof reduces both neurovascular complexity and synaptic activity in the brain. CD95L-induced neuronal and vascular growth is mediated through src-family kinase (SFK) and PI3K signaling. Together, our study highlights a coordinated neurovascular development instructed by CNS macrophage-derived CD95L, and it underlines the importance of macrophages for the establishment of the neurovascular network during CNS development.
Collapse
Affiliation(s)
- Si Chen
- Department of Molecular Neurobiology, German Cancer Research Center (DFKZ), 69120 Heidelberg, Germany
| | - Nathalie Tisch
- Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany
| | - Marcel Kegel
- Institute of Pathophysiology, University Medical Center of Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Rosario Yerbes
- Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany
| | - Robert Hermann
- Department of Molecular Neurobiology, German Cancer Research Center (DFKZ), 69120 Heidelberg, Germany
| | - Hannes Hudalla
- Department of Molecular Neurobiology, German Cancer Research Center (DFKZ), 69120 Heidelberg, Germany
| | - Cecilia Zuliani
- Department of Molecular Neurobiology, German Cancer Research Center (DFKZ), 69120 Heidelberg, Germany
| | - Gülce Sila Gülcüler
- Department of Molecular Neurobiology, German Cancer Research Center (DFKZ), 69120 Heidelberg, Germany
| | - Klara Zwadlo
- Department of Molecular Neurobiology, German Cancer Research Center (DFKZ), 69120 Heidelberg, Germany
| | - Jakob von Engelhardt
- Institute of Pathophysiology, University Medical Center of Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | | | - Ana Martin-Villalba
- Department of Molecular Neurobiology, German Cancer Research Center (DFKZ), 69120 Heidelberg, Germany.
| |
Collapse
|
429
|
Gulmez Karaca K, Brito DVC, Zeuch B, Oliveira AMM. Adult hippocampal MeCP2 preserves the genomic responsiveness to learning required for long-term memory formation. Neurobiol Learn Mem 2018; 149:84-97. [PMID: 29438740 DOI: 10.1016/j.nlm.2018.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/04/2018] [Accepted: 02/09/2018] [Indexed: 01/09/2023]
Abstract
MeCP2 is required both during postnatal neurodevelopment and throughout the adult life for brain function. Although it is well accepted that MeCP2 in the maturing nervous system is critical for establishing normal development, the functions of MeCP2 during adulthood are poorly understood. Particularly, the requirement of hippocampal MeCP2 for cognitive abilities in the adult is not studied. To characterize the role of MeCP2 in adult neuronal function and cognition, we used a temporal and region-specific disruption of MeCP2 expression in the hippocampus of adult male mice. We found that MeCP2 is required for long-term memory formation and that it controls the learning-induced transcriptional response of hippocampal neurons required for memory consolidation. Furthermore, we uncovered MeCP2 functions in the adult hippocampus that may underlie cognitive integrity. We showed that MeCP2 maintains the developmentally established chromatin configuration and epigenetic landscape of CA1 neurons throughout the adulthood, and that it regulates the expression of neuronal and immune-related genes in the adult hippocampus. Overall, our findings identify MeCP2 as a maintenance factor in the adult hippocampus that preserves signal responsiveness of the genome and allows for integrity of cognitive functions. This study provides new insight into how MeCP2 maintains adult brain functions, but also into the mechanisms underlying the cognitive impairments observed in RTT patients and highlights the understudied role of DNA methylation interpretation in adult cognitive processes.
Collapse
Affiliation(s)
- Kubra Gulmez Karaca
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, INF 364, 69120 Heidelberg, Germany
| | - David V C Brito
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, INF 364, 69120 Heidelberg, Germany
| | - Benjamin Zeuch
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, INF 364, 69120 Heidelberg, Germany
| | - Ana M M Oliveira
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, INF 364, 69120 Heidelberg, Germany.
| |
Collapse
|
430
|
Santoro A, Spinelli CC, Martucciello S, Nori SL, Capunzo M, Puca AA, Ciaglia E. Innate immunity and cellular senescence: The good and the bad in the developmental and aged brain. J Leukoc Biol 2018; 103:509-524. [PMID: 29389023 DOI: 10.1002/jlb.3mr0118-003r] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 12/21/2022] Open
Abstract
Ongoing studies evidence cellular senescence in undifferentiated and specialized cells from tissues of all ages. Although it is believed that senescence plays a wider role in several stress responses in the mature age, its participation in certain physiological and pathological processes throughout life is coming to light. The "senescence machinery" has been observed in all brain cell populations, including components of innate immunity (e.g., microglia and astrocytes). As the beneficial versus detrimental implications of senescence is an open question, we aimed to analyze the contribution of immune responses in regulatory mechanisms governing its distinct functions in healthy (development, organogenesis, danger patrolling events) and diseased brain (glioma, neuroinflammation, neurodeneration), and the putative connection between cellular and molecular events governing the 2 states. Particularly this review offers new insights into the complex roles of senescence both as a chronological event as age advances, and as a molecular mechanism of brain homeostasis through the important contribution of innate immune responses and their crosstalk with neighboring cells in brain parenchyma. We also highlight the impact of the recently described glymphatic system and brain lymphatic vasculature in the interplay between peripheral and central immune surveillance and its potential implication during aging. This will open new ways to understand brain development, its deterioration during aging, and the occurrence of several oncological and neurodegenerative diseases.
Collapse
Affiliation(s)
- Antonietta Santoro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Via Salvatore Allende, Baronissi, Italy
| | | | | | - Stefania Lucia Nori
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Via Salvatore Allende, Baronissi, Italy
| | - Mario Capunzo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Via Salvatore Allende, Baronissi, Italy
| | - Annibale Alessandro Puca
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Via Salvatore Allende, Baronissi, Italy.,Cardiovascular Research Unit, IRCCS MultiMedica, Milan, Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Via Salvatore Allende, Baronissi, Italy
| |
Collapse
|
431
|
Stephenson CP, Baguley IJ. Functional neurological symptom disorder (conversion disorder): A role for microglial-based plasticity mechanisms? Med Hypotheses 2018; 111:41-48. [DOI: 10.1016/j.mehy.2017.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/12/2017] [Accepted: 12/03/2017] [Indexed: 10/18/2022]
|
432
|
d’Avila JC, Siqueira LD, Mazeraud A, Azevedo EP, Foguel D, Castro-Faria-Neto HC, Sharshar T, Chrétien F, Bozza FA. Age-related cognitive impairment is associated with long-term neuroinflammation and oxidative stress in a mouse model of episodic systemic inflammation. J Neuroinflammation 2018; 15:28. [PMID: 29382344 PMCID: PMC5791311 DOI: 10.1186/s12974-018-1059-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/08/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Microglia function is essential to maintain the brain homeostasis. Evidence shows that aged microglia are primed and show exaggerated response to acute inflammatory challenge. Systemic inflammation signals to the brain inducing changes that impact cognitive function. However, the mechanisms involved in age-related cognitive decline associated to episodic systemic inflammation are not completely understood. The aim of this study was to identify neuropathological features associated to age-related cognitive decline in a mouse model of episodic systemic inflammation. METHODS Young and aged Swiss mice were injected with low doses of LPS once a week for 6 weeks to induce episodic systemic inflammation. Sickness behavior, inflammatory markers, and neuroinflammation were assessed in different phases of systemic inflammation in young and aged mice. Behavior was evaluated long term after episodic systemic inflammation by open field, forced swimming, object recognition, and water maze tests. RESULTS Episodic systemic inflammation induced systemic inflammation and sickness behavior mainly in aged mice. Systemic inflammation induced depressive-like behavior in both young and aged mice. Memory and learning were significantly affected in aged mice that presented lower exploratory activity and deficits in episodic and spatial memories, compared to aged controls and to young after episodic systemic inflammation. Systemic inflammation induced acute microglia activation in young mice that returned to base levels long term after episodic systemic inflammation. Aged mice presented dystrophic microglia in the hippocampus and entorhinal cortex at basal level and did not change morphology in the acute response to SI. Regardless of their dystrophic microglia, aged mice produced higher levels of pro-inflammatory (IL-1β and IL-6) as well as pro-resolution (IL-10 and IL-4) cytokines in the brain. Also, higher levels of Nox2 expression, oxidized proteins and lower antioxidant defenses were found in the aged brains compared to the young after episodic systemic inflammation. CONCLUSIONS Our data show that aged mice have increased susceptibility to episodic systemic inflammation. Aged mice that showed cognitive impairments also presented higher oxidative stress and abnormal production of cytokines in their brains. These results indicate that a neuroinflammation and oxidative stress are pathophysiological mechanisms of age-related cognitive impairments.
Collapse
Affiliation(s)
- Joana Costa d’Avila
- Laboratory of Immunopharmacology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Luciana Domett Siqueira
- Institute of Medical Biochemistry Leopoldo DeMeis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aurélien Mazeraud
- Human Histopathology and Animal Models, Pasteur Institute, Paris, France
| | - Estefania Pereira Azevedo
- Institute of Medical Biochemistry Leopoldo DeMeis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora Foguel
- Institute of Medical Biochemistry Leopoldo DeMeis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Tarek Sharshar
- Human Histopathology and Animal Models, Pasteur Institute, Paris, France
| | - Fabrice Chrétien
- Human Histopathology and Animal Models, Pasteur Institute, Paris, France
| | - Fernando Augusto Bozza
- National Institute of Infectious Diseases Evandro Chagas, Oswaldo Cruz Foundation (FIOCRUZ), Ministry of Health, Rio de Janeiro, Brazil
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| |
Collapse
|
433
|
Korin B, Dubovik T, Rolls A. Mass cytometry analysis of immune cells in the brain. Nat Protoc 2018; 13:377-391. [DOI: 10.1038/nprot.2017.155] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
434
|
Derk J, MacLean M, Juranek J, Schmidt AM. The Receptor for Advanced Glycation Endproducts (RAGE) and Mediation of Inflammatory Neurodegeneration. JOURNAL OF ALZHEIMER'S DISEASE & PARKINSONISM 2018; 8:421. [PMID: 30560011 PMCID: PMC6293973 DOI: 10.4172/2161-0460.1000421] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Julia Derk
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, NYU School of Medicine, 550 First Avenue, Smilow 906, New York, NY, 10016, USA
| | - Michael MacLean
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, NYU School of Medicine, 550 First Avenue, Smilow 906, New York, NY, 10016, USA
| | - Judyta Juranek
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, NYU School of Medicine, 550 First Avenue, Smilow 906, New York, NY, 10016, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, NYU School of Medicine, 550 First Avenue, Smilow 906, New York, NY, 10016, USA
| |
Collapse
|
435
|
Walker DJ, Spencer KA. Glucocorticoid programming of neuroimmune function. Gen Comp Endocrinol 2018; 256:80-88. [PMID: 28728884 DOI: 10.1016/j.ygcen.2017.07.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 07/13/2017] [Accepted: 07/16/2017] [Indexed: 01/15/2023]
Abstract
Throughout life physiological systems strive to maintain homeostasis and these systems are susceptible to exposure to maternal or environmental perturbations, particularly during embryonic development. In some cases, these perturbations may influence genetic and physiological processes that permanently alter the functioning of these physiological systems; a process known as developmental programming. In recent years, the neuroimmune system has garnered attention for its fundamental interactions with key hormonal systems, such as the hypothalamic pituitary adrenal (HPA) axis. The ultimate product of this axis, the glucocorticoid hormones, play a key role in modulating immune responses within the periphery and the CNS as part of the physiological stress response. It is well-established that elevated glucocorticoids induced by developmental stress exert profound short and long-term physiological effects, yet there is relatively little information of how these effects are manifested within the neuroimmune system. Pre and post-natal periods are prime candidates for manipulation in order to uncover the physiological mechanisms that underlie glucocorticoid programming of neuroimmune responses. Understanding the potential programming role of glucocorticoids may be key in uncovering vulnerable windows of CNS susceptibility to stressful experiences during embryonic development and improve our use of glucocorticoids as therapeutics in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- David J Walker
- School of Psychology & Neuroscience, University of St Andrews, Fife KY16 9JP, United Kingdom.
| | - Karen A Spencer
- School of Psychology & Neuroscience, University of St Andrews, Fife KY16 9JP, United Kingdom
| |
Collapse
|
436
|
VanRyzin JW, Pickett LA, McCarthy MM. Microglia: Driving critical periods and sexual differentiation of the brain. Dev Neurobiol 2018; 78:580-592. [PMID: 29243403 DOI: 10.1002/dneu.22569] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 12/12/2022]
Abstract
The proverbial role of microglia during brain development is shifting from passive members of the brain's immune system to active participants that are able to dictate enduring outcomes. Despite these advances, little attention has been paid to one of the most critical components of early brain development-sexual differentiation. Mounting evidence suggests that the normal developmental functions microglia perform-cell number regulation and synaptic connectivity-may be involved in the sex-specific patterning of the brain during these early sensitive periods, and may have lasting sex-dependent and sex-independent effects on behavior. In this review, we outline the known functions of microglia during developmental sensitive periods, and highlight the role they play in the establishment of sex differences in brain and behavior. We also propose a framework for how researchers can incorporate microglia in their study of sex differences and vice versa. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 580-592, 2018.
Collapse
Affiliation(s)
- Jonathan W VanRyzin
- Department of Pharmacology, The University of Maryland School of Medicine, Baltimore, Maryland, 21201.,Program in Neuroscience, The University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Lindsay A Pickett
- Department of Pharmacology, The University of Maryland School of Medicine, Baltimore, Maryland, 21201.,Program in Neuroscience, The University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Margaret M McCarthy
- Department of Pharmacology, The University of Maryland School of Medicine, Baltimore, Maryland, 21201.,Program in Neuroscience, The University of Maryland School of Medicine, Baltimore, Maryland, 21201
| |
Collapse
|
437
|
Wohleb ES, Terwilliger R, Duman CH, Duman RS. Stress-Induced Neuronal Colony Stimulating Factor 1 Provokes Microglia-Mediated Neuronal Remodeling and Depressive-like Behavior. Biol Psychiatry 2018; 83:38-49. [PMID: 28697890 PMCID: PMC6506225 DOI: 10.1016/j.biopsych.2017.05.026] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Chronic stress exposure causes neuronal atrophy and synaptic deficits in the medial prefrontal cortex (PFC), contributing to development of anxiety- and depressive-like behaviors. Concomitantly, microglia in the PFC undergo morphological and functional changes following stress exposure, suggesting that microglia contribute to synaptic deficits underlying behavioral consequences. METHODS Male and female mice were exposed to chronic unpredictable stress (CUS) to examine the role of neuron-microglia interactions in the medial PFC during development of anxiety- and depressive-like behaviors. Thy1-GFP-M mice were used to assess microglia-mediated neuronal remodeling and dendritic spine density in the medial PFC. Viral-mediated knockdown of neuronal colony stimulating factor 1 (CSF1) was used to modulate microglia function and behavioral consequences after CUS. RESULTS CUS promoted anxiety- and depressive-like behaviors that were associated with increased messenger RNA levels of CSF1 in the PFC. Increased CSF1 messenger RNA levels were also detected in the postmortem dorsolateral PFC of individuals with depression. Moreover, microglia isolated from the frontal cortex of mice exposed to CUS show elevated CSF1 receptor expression and increased phagocytosis of neuronal elements. Notably, functional alterations in microglia were more pronounced in male mice compared with female mice. These functional changes in microglia corresponded with reduced dendritic spine density on pyramidal neurons in layer 1 of the medial PFC. Viral-mediated knockdown of neuronal CSF1 in the medial PFC attenuated microglia-mediated neuronal remodeling and prevented behavioral deficits caused by CUS. CONCLUSIONS These findings revealed that stress-induced elevations in neuronal CSF1 provokes microglia-mediated neuronal remodeling in the medial PFC, contributing to synaptic deficits and development of anxiety- and depressive-like behavior.
Collapse
Affiliation(s)
- Eric S. Wohleb
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH,Corresponding author: Eric S. Wohleb, Department of Psychiatry & Behavioral Neuroscience, University of Cincinnati College of Medicine, 2120 East Galbraith Road, Cincinnati, OH 45237 U.S.A.,
| | | | - Catharine H. Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Ronald S. Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
438
|
Liberman AC, Trias E, da Silva Chagas L, Trindade P, Dos Santos Pereira M, Refojo D, Hedin-Pereira C, Serfaty CA. Neuroimmune and Inflammatory Signals in Complex Disorders of the Central Nervous System. Neuroimmunomodulation 2018; 25:246-270. [PMID: 30517945 DOI: 10.1159/000494761] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/17/2018] [Indexed: 11/19/2022] Open
Abstract
An extensive microglial-astrocyte-monocyte-neuronal cross talk seems to be crucial for normal brain function, development, and recovery. However, under certain conditions neuroinflammatory interactions between brain cells and neuroimmune cells influence disease outcome and brain pathology. Microglial cells express a range of functional states with dynamically pleomorphic profiles from a surveilling status of synaptic transmission to an active player in major events of development such as synaptic elimination, regeneration, and repair. Also, inflammation mediates a series of neurotoxic roles in neuropsychiatric conditions and neurodegenerative diseases. The present review discusses data on the involvement of neuroinflammatory conditions that alter neuroimmune interactions in four different pathologies. In the first section of this review, we discuss the ability of the early developing brain to respond to a focal lesion with a rapid compensatory plasticity of intact axons and the role of microglial activation and proinflammatory cytokines in brain repair. In the second section, we present data of neuroinflammation and neurodegenerative disorders and discuss the role of reactive astrocytes in motor neuron toxicity and the progression of amyotrophic lateral sclerosis. In the third section, we discuss major depressive disorders as the consequence of dysfunctional interactions between neural and immune signals that result in increased peripheral immune responses and increase proinflammatory cytokines. In the last section, we discuss autism spectrum disorders and altered brain circuitries that emerge from abnormal long-term responses of innate inflammatory cytokines and microglial phenotypic dysfunctions.
Collapse
Affiliation(s)
- Ana Clara Liberman
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina,
| | - Emiliano Trias
- Neurodegeneration Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Pablo Trindade
- D'OR Institute for Research and Education, Rio de Janeiro, Brazil
| | - Marissol Dos Santos Pereira
- National Institute of Science and Technology on Neuroimmunomodulation - INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory for Cellular NeuroAnatomy, Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Damian Refojo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Cecilia Hedin-Pereira
- National Institute of Science and Technology on Neuroimmunomodulation - INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory for Cellular NeuroAnatomy, Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- VPPCB, Fiocruz, Rio de Janeiro, Brazil
| | - Claudio A Serfaty
- Neuroscience Program, Federal Fluminense University, Niterói, Brazil
| |
Collapse
|
439
|
Kabba JA, Xu Y, Christian H, Ruan W, Chenai K, Xiang Y, Zhang L, Saavedra JM, Pang T. Microglia: Housekeeper of the Central Nervous System. Cell Mol Neurobiol 2018; 38:53-71. [PMID: 28534246 DOI: 10.1007/s10571-017-0504-2] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/16/2017] [Indexed: 12/17/2022]
Abstract
Microglia, of myeloid origin, play fundamental roles in the control of immune responses and the maintenance of central nervous system homeostasis. These cells, just like peripheral macrophages, may be activated into M1 pro-inflammatory or M2 anti-inflammatory phenotypes by appropriate stimuli. Microglia do not respond in isolation, but form part of complex networks of cells influencing each other. This review addresses the complex interaction of microglia with each cell type in the brain: neurons, astrocytes, cerebrovascular endothelial cells, and oligodendrocytes. We also highlight the participation of microglia in the maintenance of homeostasis in the brain, and their roles in the development and progression of age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- John Alimamy Kabba
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Yazhou Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Handson Christian
- Department of Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Wenchen Ruan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Kitchen Chenai
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yun Xiang
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, People's Republic of China
| | - Luyong Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Juan M Saavedra
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington DC, 20057, USA
| | - Tao Pang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China.
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington DC, 20057, USA.
| |
Collapse
|
440
|
Clasadonte J, Prevot V. The special relationship: glia-neuron interactions in the neuroendocrine hypothalamus. Nat Rev Endocrinol 2018; 14:25-44. [PMID: 29076504 DOI: 10.1038/nrendo.2017.124] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Natural fluctuations in physiological conditions require adaptive responses involving rapid and reversible structural and functional changes in the hypothalamic neuroendocrine circuits that control homeostasis. Here, we discuss the data that implicate hypothalamic glia in the control of hypothalamic neuroendocrine circuits, specifically neuron-glia interactions in the regulation of neurosecretion as well as neuronal excitability. Mechanistically, the morphological plasticity displayed by distal processes of astrocytes, pituicytes and tanycytes modifies the geometry and diffusion properties of the extracellular space. These changes alter the relationship between glial cells of the hypothalamus and adjacent neuronal elements, especially at specialized intersections such as synapses and neurohaemal junctions. The structural alterations in turn lead to functional plasticity that alters the release and spread of neurotransmitters, neuromodulators and gliotransmitters, as well as the activity of discrete glial signalling pathways that mediate feedback by peripheral signals to the hypothalamus. An understanding of the contributions of these and other non-neuronal cell types to hypothalamic neuroendocrine function is thus critical both to understand physiological processes such as puberty, the maintenance of bodily homeostasis and ageing and to develop novel therapeutic strategies for dysfunctions of these processes, such as infertility and metabolic disorders.
Collapse
Affiliation(s)
- Jerome Clasadonte
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, U1172, Bâtiment Biserte, 1 Place de Verdun, 59045, Lille, Cedex, France
- University of Lille, FHU 1000 days for Health, School of Medicine, Lille 59000, France
| | - Vincent Prevot
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, U1172, Bâtiment Biserte, 1 Place de Verdun, 59045, Lille, Cedex, France
- University of Lille, FHU 1000 days for Health, School of Medicine, Lille 59000, France
| |
Collapse
|
441
|
Kozlowska K, Chudleigh C, Cruz C, Lim M, McClure G, Savage B, Shah U, Cook A, Scher S, Carrive P, Gill D. Psychogenic non-epileptic seizures in children and adolescents: Part I - Diagnostic formulations. Clin Child Psychol Psychiatry 2018; 23:140-159. [PMID: 28956448 PMCID: PMC5757410 DOI: 10.1177/1359104517732118] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Psychogenic non-epileptic seizures (PNES) are a nonspecific, umbrella category that is used to collect together a range of atypical neurophysiological responses to emotional distress, physiological stressors and danger. Because PNES mimic epileptic seizures, children and adolescents with PNES usually present to neurologists or to epilepsy monitoring units. After a comprehensive neurological evaluation and a diagnosis of PNES, the patient is referred to mental health services for treatment. This study documents the diagnostic formulations - the clinical formulations about the probable neurophysiological mechanisms - that were constructed for 60 consecutive children and adolescents with PNES who were referred to our Mind-Body Rehabilitation Programme for treatment. As a heuristic framework, we used a contemporary reworking of Janet's dissociation model: PNES occur in the context of a destabilized neural system and reflect a release of prewired motor programmes following a functional failure in cognitive-emotional executive control circuitry. Using this framework, we clustered the 60 patients into six different subgroups: (1) dissociative PNES (23/60; 38%), (2) dissociative PNES triggered by hyperventilation (32/60; 53%), (3) innate defence responses presenting as PNES (6/60; 10%), (4) PNES triggered by vocal cord adduction (1/60; 2%), (5) PNES triggered by activation of the valsalva manoeuvre (1/60; 1.5%) and (6) PNES triggered by reflex activation of the vagus (2/60; 3%). As described in the companion article, these diagnostic formulations were used, in turn, both to inform the explanations of PNES that we gave to families and to design clinical interventions for helping the children and adolescents gain control of their PNES.
Collapse
Affiliation(s)
- Kasia Kozlowska
- 1 Department of Psychological Medicine, The Children's Hospital at Westmead, NSW, Australia.,2 Brain Dynamics Centre at at Westmead Institute for Medical Research, NSW, Australia.,3 Sydney Medical School, The University of Sydney, NSW, Australia
| | - Catherine Chudleigh
- 1 Department of Psychological Medicine, The Children's Hospital at Westmead, NSW, Australia
| | - Catherine Cruz
- 1 Department of Psychological Medicine, The Children's Hospital at Westmead, NSW, Australia
| | - Melissa Lim
- 1 Department of Psychological Medicine, The Children's Hospital at Westmead, NSW, Australia
| | - Georgia McClure
- 1 Department of Psychological Medicine, The Children's Hospital at Westmead, NSW, Australia
| | - Blanche Savage
- 1 Department of Psychological Medicine, The Children's Hospital at Westmead, NSW, Australia
| | - Ubaid Shah
- 3 Sydney Medical School, The University of Sydney, NSW, Australia.,4 TY Nelson Department of Neurology, The Children's Hospital at Westmead, NSW, Australia.,5 Lady Cilento Children's Hospital, Queensland, Australia
| | - Averil Cook
- 1 Department of Psychological Medicine, The Children's Hospital at Westmead, NSW, Australia.,6 Child and Adolescent Mental Health Service Macarthur (ICAMHS) Macarthur, NSW, Australia
| | - Stephen Scher
- 3 Sydney Medical School, The University of Sydney, NSW, Australia.,7 Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Pascal Carrive
- 8 Department of Anatomy, School of Medical Sciences, University of NSW, Australia
| | - Deepak Gill
- 3 Sydney Medical School, The University of Sydney, NSW, Australia.,4 TY Nelson Department of Neurology, The Children's Hospital at Westmead, NSW, Australia
| |
Collapse
|
442
|
Collins SM, Belagodu AP, Reed SL, Galvez R. SHANK1 is differentially expressed during development in CA1 hippocampal neurons and astrocytes. Dev Neurobiol 2017; 78:363-373. [PMID: 29218848 DOI: 10.1002/dneu.22564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/19/2017] [Accepted: 11/30/2017] [Indexed: 01/25/2023]
Abstract
Recent studies have strongly suggested a role for the synaptic scaffolding protein SHANK1 in normal synaptic structure and signaling. Global SHANK1 knockout (SHANK1-/-) mice demonstrate reduced dendritic spine density, an immature dendritic spine phenotype and impairments in various cognitive tasks. SHANK1 overexpression is associated with increased dendritic spine size and impairments in fear conditioning. These studies suggest proper regulation of SHANK1 is crucial for appropriate synaptic structure and cognition. However, little is known regarding SHANK1's developmental expression in brain regions critical for learning. The current study quantified cell specific developmental expression of SHANK1 in the hippocampus, a brain region critically involved in various learning paradigms shown to be disrupted by SHANK1 dysregulation. Consistent with prior studies, SHANK1 was found to be strongly co-expressed with dendritic markers, with significant increased co-expression at postnatal day (P) 15, an age associated with increased synaptogenesis in the hippocampus. Interestingly, SHANK1 was also found to be expressed in astrocytes and microglia. To our knowledge, this is the first demonstration of glial SHANK1 localization; therefore, these findings were further examined via a glial purified primary cell culture fraction using magnetic cell sorting. This additional analysis further demonstrated that SHANK1 was expressed in glial cells, supporting our immunofluorescence co-expression findings. Developmentally, astroglial SHANK1 co-expression was found to be significantly elevated at P5 with a reduction into adulthood, while SHANK1 microglial co-expression did not significantly change across development. These data collectively implicate a more global role for SHANK1 in mediating normal cellular signaling in the brain. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 363-373, 2018.
Collapse
Affiliation(s)
- Sean M Collins
- Psychology Department, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, Illinois, 61801
| | - Amogh P Belagodu
- Neuroscience Program, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, Illinois, 61801
| | - Samantha L Reed
- Psychology Department, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, Illinois, 61801
| | - Roberto Galvez
- Psychology Department, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, Illinois, 61801.,Neuroscience Program, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, Illinois, 61801
| |
Collapse
|
443
|
The Role of Microglia and Macrophages in CNS Homeostasis, Autoimmunity, and Cancer. J Immunol Res 2017; 2017:5150678. [PMID: 29410971 PMCID: PMC5749282 DOI: 10.1155/2017/5150678] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/20/2017] [Accepted: 11/27/2017] [Indexed: 12/21/2022] Open
Abstract
Macrophages are major cell types of the immune system, and they comprise both tissue-resident populations and circulating monocyte-derived subsets. Here, we discuss microglia, the resident macrophage within the central nervous system (CNS), and CNS-infiltrating macrophages. Under steady state, microglia play important roles in the regulation of CNS homeostasis through the removal of damaged or unnecessary neurons and synapses. In the face of inflammatory or pathological insults, microglia and CNS-infiltrating macrophages not only constitute the first line of defense against pathogens by regulating components of innate immunity, but they also regulate the adaptive arms of immune responses. Dysregulation of these responses contributes to many CNS disorders. In this overview, we summarize the current knowledge regarding the highly diverse and complex function of microglia and macrophages during CNS autoimmunity—multiple sclerosis and cancer—malignant glioma. We emphasize how the crosstalk between natural killer (NK) cells or glioma cells or glioma stem cells and CNS macrophages impacts on the pathological processes. Given the essential role of CNS microglia and macrophages in the regulation of all types of CNS disorders, agents targeting these subsets are currently applied in preclinical and clinical trials. We believe that a better understanding of the biology of these macrophage subsets offers new exciting paths for therapeutic intervention.
Collapse
|
444
|
Reshef R, Kudryavitskaya E, Shani-Narkiss H, Isaacson B, Rimmerman N, Mizrahi A, Yirmiya R. The role of microglia and their CX3CR1 signaling in adult neurogenesis in the olfactory bulb. eLife 2017; 6. [PMID: 29251592 PMCID: PMC5734876 DOI: 10.7554/elife.30809] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/05/2017] [Indexed: 01/09/2023] Open
Abstract
Microglia play important roles in perinatal neuro- and synapto-genesis. To test the role of microglia in these processes during adulthood, we examined the effects of microglia depletion, via treatment of mice with the CSF-1 receptor antagonist PLX5622, and abrogated neuronal-microglial communication in CX3C receptor-1 deficient (Cx3cr1−/−) mice. Microglia depletion significantly lowered spine density in young (developing) but not mature adult-born-granule-cells (abGCs) in the olfactory bulb. Two-photon time-lapse imaging indicated that microglia depletion reduced spine formation and elimination. Functionally, odor-evoked responses of mitral cells, which are normally inhibited by abGCs, were increased in microglia-depleted mice. In Cx3cr1−/− mice, abGCs exhibited reduced spine density, dynamics and size, concomitantly with reduced contacts between Cx3cr1-deficient microglia and abGCs' dendritic shafts, along with increased proportion of microglia-contacted spines. Thus, during adult neurogenesis, microglia regulate the elimination (pruning), formation, and maintenance of synapses on newborn neurons, contributing to the functional integrity of the olfactory bulb circuitry.
Collapse
Affiliation(s)
- Ronen Reshef
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elena Kudryavitskaya
- Department of Neurobiology, Institute for Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haran Shani-Narkiss
- Department of Neurobiology, Institute for Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Batya Isaacson
- Department of Immunology and Cancer Research, The Lautenberg Center for General and Tumor Immunology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Neta Rimmerman
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Mizrahi
- Department of Neurobiology, Institute for Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Raz Yirmiya
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
445
|
Shigemoto-Mogami Y, Sato K. [Microglia and cellular differentiation - possibility of microglia as drug discovery target]. Nihon Yakurigaku Zasshi 2017; 150:268-274. [PMID: 29225288 DOI: 10.1254/fpj.150.268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
446
|
Zwergal A, Günther L, Brendel M, Beck R, Lindner S, Xiong G, Eilles E, Unterrainer M, Albert NL, Becker-Bense S, Brandt T, Ziegler S, la Fougère C, Dieterich M, Bartenstein P. In Vivo Imaging of Glial Activation after Unilateral Labyrinthectomy in the Rat: A [ 18F]GE180-PET Study. Front Neurol 2017; 8:665. [PMID: 29312111 PMCID: PMC5732190 DOI: 10.3389/fneur.2017.00665] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/24/2017] [Indexed: 01/31/2023] Open
Abstract
The functional relevance of reactive gliosis for recovery from acute unilateral vestibulopathy is unknown. In the present study, glial activation was visualized in vivo by [18F]GE180-PET in a rat model of unilateral labyrinthectomy (UL) and compared to behavioral vestibular compensation (VC) overtime. 14 Sprague-Dawley rats underwent a UL by transtympanic injection of bupivacaine/arsenilate, 14 rats a SHAM UL (injection of normal saline). Glial activation was depicted with [18F]GE180-PET and ex vivo autoradiography at baseline and 7, 15, 30 days after UL/SHAM UL. Postural asymmetry and nystagmus were registered at 1, 2, 3, 7, 15, 30 days after UL/SHAM UL. Signs of vestibular imbalance were found only after UL, which significantly decreased until days 15 and 30. In parallel, [18F]GE180-PET and ex vivo autoradiography depicted glial activation in the ipsilesional vestibular nerve and nucleus on days 7 and 15 after UL. Correlation analysis revealed a strong negative association of [18F]GE180 uptake in the ipsilesional vestibular nucleus on day 7 with the rate of postural recovery (R = −0.90, p < 0.001), suggesting that glial activation accelerates VC. In conclusion, glial activation takes place in the ipsilesional vestibular nerve and nucleus within the first 30 days after UL in the rat and can be visualized in vivo by [18F]GE180-PET.
Collapse
Affiliation(s)
- Andreas Zwergal
- German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University, Munich, Germany.,Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - Lisa Günther
- German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany.,Munich Cluster of Systems Neurology, SyNergy, Munich, Germany
| | - Roswitha Beck
- German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Guoming Xiong
- German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University, Munich, Germany
| | - Eva Eilles
- German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University, Munich, Germany
| | - Marcus Unterrainer
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany
| | | | - Sandra Becker-Bense
- German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University, Munich, Germany.,Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - Thomas Brandt
- German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University, Munich, Germany.,Clinical Neurosciences, Ludwig-Maximilians-University, Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Christian la Fougère
- German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University, Munich, Germany.,Department of Nuclear Medicine, Eberhard Karls University, Tübingen, Germany
| | - Marianne Dieterich
- German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University, Munich, Germany.,Department of Neurology, Ludwig-Maximilians-University, Munich, Germany.,Munich Cluster of Systems Neurology, SyNergy, Munich, Germany
| | - Peter Bartenstein
- German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University, Munich, Germany.,Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany.,Munich Cluster of Systems Neurology, SyNergy, Munich, Germany
| |
Collapse
|
447
|
Hansen DV, Hanson JE, Sheng M. Microglia in Alzheimer's disease. J Cell Biol 2017; 217:459-472. [PMID: 29196460 PMCID: PMC5800817 DOI: 10.1083/jcb.201709069] [Citation(s) in RCA: 1230] [Impact Index Per Article: 153.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/05/2017] [Accepted: 11/14/2017] [Indexed: 12/15/2022] Open
Abstract
Hansen et al. review the potential dual helpful and harmful roles of microglia in the development and progression of Alzheimer’s disease. Proliferation and activation of microglia in the brain, concentrated around amyloid plaques, is a prominent feature of Alzheimer’s disease (AD). Human genetics data point to a key role for microglia in the pathogenesis of AD. The majority of risk genes for AD are highly expressed (and many are selectively expressed) by microglia in the brain. There is mounting evidence that microglia protect against the incidence of AD, as impaired microglial activities and altered microglial responses to β-amyloid are associated with increased AD risk. On the other hand, there is also abundant evidence that activated microglia can be harmful to neurons. Microglia can mediate synapse loss by engulfment of synapses, likely via a complement-dependent mechanism; they can also exacerbate tau pathology and secrete inflammatory factors that can injure neurons directly or via activation of neurotoxic astrocytes. Gene expression profiles indicate multiple states of microglial activation in neurodegenerative disease settings, which might explain the disparate roles of microglia in the development and progression of AD pathology.
Collapse
Affiliation(s)
- David V Hansen
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA
| | - Jesse E Hanson
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA
| | - Morgan Sheng
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA
| |
Collapse
|
448
|
Age-related changes in microglial physiology: the role for healthy brain ageing and neurodegenerative disorders. ACTA ACUST UNITED AC 2017. [DOI: 10.1515/nf-2016-a057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Microglia are the main immune cells of the brain contributing, however, not only to brain’s immune defense but also to many basic housekeeping functions such as development and maintenance of functional neural networks, provision of trophic support for surrounding neurons, monitoring and modulating the levels of synaptic activity, cleaning of accumulating extracellular debris and repairing microdamages of the brain parenchyma. As a consequence, age-related alterations in microglial function likely have a manifold impact on brain’s physiology. In this review, I discuss the recent data about physiological properties of microglia in the adult mammalian brain; changes observed in the brain innate immune system during healthy aging and the probable biological mechanisms responsible for them as well as changes occurring in humans and mice during age-related neurodegenerative disorders along with underlying cellular/molecular mechanisms. Together these data provide a new conceptual framework for thinking about the role of microglia in the context of age-mediated brain dysfunction.
Collapse
|
449
|
Um JW. Roles of Glial Cells in Sculpting Inhibitory Synapses and Neural Circuits. Front Mol Neurosci 2017; 10:381. [PMID: 29180953 PMCID: PMC5694142 DOI: 10.3389/fnmol.2017.00381] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/01/2017] [Indexed: 01/04/2023] Open
Abstract
Glial cells are essential for every aspect of normal neuronal development, synapse formation, and function in the central nervous system (CNS). Astrocytes secrete a variety of factors that regulate synaptic connectivity and circuit formation. Microglia also modulate synapse development through phagocytic activity. Most of the known actions of CNS glial cells are limited to roles at excitatory synapses. Nevertheless, studies have indicated that both astrocytes and microglia shape inhibitory synaptic connections through various mechanisms, including release of regulatory molecules, direct contact with synaptic terminals, and utilization of mediators in the extracellular matrix. This review summarizes recent investigations into the mechanisms underlying CNS glial cell-mediated inhibitory synapse development.
Collapse
Affiliation(s)
- Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| |
Collapse
|
450
|
Amici SA, Dong J, Guerau-de-Arellano M. Molecular Mechanisms Modulating the Phenotype of Macrophages and Microglia. Front Immunol 2017; 8:1520. [PMID: 29176977 PMCID: PMC5686097 DOI: 10.3389/fimmu.2017.01520] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/26/2017] [Indexed: 12/24/2022] Open
Abstract
Macrophages and microglia play crucial roles during central nervous system development, homeostasis and acute events such as infection or injury. The diverse functions of tissue macrophages and microglia are mirrored by equally diverse phenotypes. A model of inflammatory/M1 versus a resolution phase/M2 macrophages has been widely used. However, the complexity of macrophage function can only be achieved by the existence of varied, plastic and tridimensional macrophage phenotypes. Understanding how tissue macrophages integrate environmental signals via molecular programs to define pathogen/injury inflammatory responses provides an opportunity to better understand the multilayered nature of macrophages, as well as target and modulate cellular programs to control excessive inflammation. This is particularly important in MS and other neuroinflammatory diseases, where chronic inflammatory macrophage and microglial responses may contribute to pathology. Here, we perform a comprehensive review of our current understanding of how molecular pathways modulate tissue macrophage phenotype, covering both classic pathways and the emerging role of microRNAs, receptor-tyrosine kinases and metabolism in macrophage phenotype. In addition, we discuss pathway parallels in microglia, novel markers helpful in the identification of peripheral macrophages versus microglia and markers linked to their phenotype.
Collapse
Affiliation(s)
- Stephanie A Amici
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Joycelyn Dong
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,McCormick School of Engineering, Division of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Mireia Guerau-de-Arellano
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States.,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| |
Collapse
|