401
|
Racine AM, Brickhouse M, Wolk DA, Dickerson BC. The personalized Alzheimer's disease cortical thickness index predicts likely pathology and clinical progression in mild cognitive impairment. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2018; 10:301-310. [PMID: 29780874 PMCID: PMC5956936 DOI: 10.1016/j.dadm.2018.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction An Alzheimer's disease (AD) biomarker adjusted for age-related brain changes should improve specificity for AD-related pathological burden. Methods We calculated a brain-age-adjusted “personalized AD cortical thickness index” (pADi) in mild cognitive impairment patients from the Alzheimer's Disease Neuroimaging Initiative. We performed receiver operating characteristic analysis for discrimination between patients with and without cerebrospinal fluid evidence of AD and logistic regression in an independent sample to determine if a dichotomized pADi predicted conversion to AD dementia. Results Receiver operating characteristic area under the curve was 0.69 and 0.72 in the two samples. Three empirical methods identified the same cut-point for pADi in the discovery sample. In the validation sample, 83% of pADi+ mild cognitive impairment patients were cerebrospinal fluid AD biomarker positive. pADi+ mild cognitive impairment patients (n = 63, 38%) were more likely to progress to AD dementia after 1 (odds ratio = 2.9) and 3 (odds ratio = 2.6) years. Discussion The pADi is a personalized, magnetic resonance imaging–derived AD biomarker that predicts progression to dementia. The personalized AD cortical thickness index (pADi) is a personalized magnetic resonance imaging–derived, brain-age-adjusted Alzheimer's disease (AD) biomarker. The pADi accurately identifies mild cognitive impairment patients with cerebrospinal fluid markers of AD. The pADi was consistent across two independent samples with 1.5T and 3T magnetic resonance imaging data. An optimal cut-point predicted progression to AD dementia over 1 or 3 years. The pADi can identify mild cognitive impairment likely due to AD in individual patients.
Collapse
Affiliation(s)
- Annie M. Racine
- Aging Brain Center, Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Brickhouse
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - David A. Wolk
- Department of Neurology, Perelman School of Medicine, and Penn Memory Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Bradford C. Dickerson
- Harvard Medical School, Boston, MA, USA
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
- Corresponding author. Tel.: 617-726-5571; Fax: 617-726-5760.
| | | |
Collapse
|
402
|
Eckerström C, Klasson N, Olsson E, Selnes P, Rolstad S, Wallin A. Similar pattern of atrophy in early- and late-onset Alzheimer's disease. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2018; 10:253-259. [PMID: 29780870 PMCID: PMC5956802 DOI: 10.1016/j.dadm.2018.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Introduction Previous research on structural changes in early-onset Alzheimer's disease (EOAD) and late-onset Alzheimer's disease (LOAD) have reported inconsistent findings. Methods In the present substudy of the Gothenburg MCI study, 1.5 T scans were used to estimate lobar and hippocampal volumes using FreeSurfer. Study participants (N = 145) included 63 patients with AD, (24 patients with EOAD [aged ≤65 years], 39 patients with LOAD [aged >65 years]), 25 healthy controls aged ≤65 years, and 57 healthy controls aged >65 years. Results Hippocampal atrophy is the most prominent feature of both EOAD and LOAD compared with controls. Direct comparison between EOAD and LOAD showed that the differences between the groups did not remain after correcting for age. Discussion Structurally, EOAD and LOAD does not seem to be different nosological entities. The difference in brain volumes between the groups compared with controls is likely due to age-related atrophy. Hippocampal atrophy is the most prominent feature of both early- and late-onset AD. No structural difference between early- and late-onset AD after adjusting for age. Early- and late-onset AD exhibits a similar pattern of atrophy.
Collapse
Affiliation(s)
- Carl Eckerström
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenberg, Sweden
| | - Niklas Klasson
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenberg, Sweden
| | - Erik Olsson
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenberg, Sweden
| | - Per Selnes
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Sindre Rolstad
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenberg, Sweden
| | - Anders Wallin
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenberg, Sweden
| |
Collapse
|
403
|
Hao ZH, Huang Y, Wang MR, Huo TT, Jia Q, Feng RF, Fan P, Wang JH. SS31 ameliorates age-related activation of NF-κB signaling in senile mice model, SAMP8. Oncotarget 2018; 8:1983-1992. [PMID: 28030844 PMCID: PMC5356771 DOI: 10.18632/oncotarget.14077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 12/12/2016] [Indexed: 01/29/2023] Open
Abstract
Aging has been attributed to oxidative stress and inflammatory response, in which NF-κB and Nrf2-ARE signaling pathways play significant roles. Senescence accelerated mouse prone 8 (SAMP8) is generally used an animal model for aging studies. Here, we investigated the NF-κB and Nrf2-ARE signaling pathways in SAMP8 brains at different ages and their responses to SS31 peptide treatment. Thirty six SAMP8 mice were separated into aging groups and SS31-treatment groups. The hippocampus from each mouse was dissected for RNA and protein extraction. Cytokines and ROS levels were measured using ELISA and standardised method. Gene expressions of NF-κB, Nrf2 and HO-1 were measured by RT-qPCR. Total protein amount of NF-κB and HO-1, as well as the concentrations of nuclear and cytoplasmic Nrf2 were measured using Western blots. Our data showed that aging could activate both NF-κB and Nrf2-ARE signaling pathways, which could be suppressed and activated by SS31 treatment respectively. Regression analysis revealed that NF-κB gene expression was the most important parameter predicting aging process and SS31 treatment effects in SAMP8. Our findings suggested that SS31 treatment may modulate the inflammatory and oxidative stress status of the aged brains and exert protective effects during brain aging.
Collapse
Affiliation(s)
- Zhi-Hua Hao
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China.,Graduate School, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yue Huang
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, Australia
| | - Mei-Rong Wang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China.,Graduate School, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tian-Tian Huo
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Qian Jia
- Graduate School,Hebei Medical University, Shijiazhuang, Hebei, China
| | - Rong-Fang Feng
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Ping Fan
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jian-Hua Wang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
404
|
Khan W, Giampietro V, Banaschewski T, Barker GJ, Bokde ALW, Büchel C, Conrod P, Flor H, Frouin V, Garavan H, Gowland P, Heinz A, Ittermann B, Lemaître H, Nees F, Paus T, Pausova Z, Rietschel M, Smolka MN, Ströhle A, Gallinat J, Vellas B, Soininen H, Kloszewska I, Tsolaki M, Mecocci P, Spenger C, Villemagne VL, Masters CL, Muehlboeck JS, Bäckman L, Fratiglioni L, Kalpouzos G, Wahlund LO, Schumann G, Lovestone S, Williams SCR, Westman E, Simmons A. A Multi-Cohort Study of ApoE ɛ4 and Amyloid-β Effects on the Hippocampus in Alzheimer's Disease. J Alzheimers Dis 2018; 56:1159-1174. [PMID: 28157104 PMCID: PMC5302035 DOI: 10.3233/jad-161097] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The apolipoprotein E (APOE) gene has been consistently shown to modulate the risk of Alzheimer’s disease (AD). Here, using an AD and normal aging dataset primarily consisting of three AD multi-center studies (n = 1,781), we compared the effect of APOE and amyloid-β (Aβ) on baseline hippocampal volumes in AD patients, mild cognitive impairment (MCI) subjects, and healthy controls. A large sample of healthy adolescents (n = 1,387) was also used to compare hippocampal volumes between APOE groups. Subjects had undergone a magnetic resonance imaging (MRI) scan and APOE genotyping. Hippocampal volumes were processed using FreeSurfer. In the AD and normal aging dataset, hippocampal comparisons were performed in each APOE group and in ɛ4 carriers with positron emission tomography (PET) Aβ who were dichotomized (Aβ+/Aβ–) using previous cut-offs. We found a linear reduction in hippocampal volumes with ɛ4 carriers possessing the smallest volumes, ɛ3 carriers possessing intermediate volumes, and ɛ2 carriers possessing the largest volumes. Moreover, AD and MCI ɛ4 carriers possessed the smallest hippocampal volumes and control ɛ2 carriers possessed the largest hippocampal volumes. Subjects with both APOE ɛ4 and Aβ positivity had the lowest hippocampal volumes when compared to Aβ- ɛ4 carriers, suggesting a synergistic relationship between APOE ɛ4 and Aβ. However, we found no hippocampal volume differences between APOE groups in healthy 14-year-old adolescents. Our findings suggest that the strongest neuroanatomic effect of APOE ɛ4 on the hippocampus is observed in AD and groups most at risk of developing the disease, whereas hippocampi of old and young healthy individuals remain unaffected.
Collapse
Affiliation(s)
- Wasim Khan
- King's College London, Institute of Psychiatry, London, UK.,NIHR Biomedical Research Centre for Mental Health, King's College London, London, UK.,NIHR Biomedical Research Unit for Dementia, King's College London, London, UK
| | | | - Tobias Banaschewski
- Central Institute of Mental Health, Mannheim, Germany.,Medical Faculty Mannheim, University of Heidelberg, Germany
| | | | - Arun L W Bokde
- Institute of Neuroscience and Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | | - Patricia Conrod
- King's College London, Institute of Psychiatry, London, UK.,Department of Psychiatry, Universite de Montreal, CHU Ste Justine Hospital, Canada
| | - Herta Flor
- Central Institute of Mental Health, Mannheim, Germany.,Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Vincent Frouin
- Neurospin, Commissariat à l'Energie Atomique et aux Energies Alternatives, Paris, France
| | - Hugh Garavan
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.,Departments of Psychiatry and Psychology, University of Vermont, USA
| | - Penny Gowland
- School of Physics and Astronomy, University of Nottingham, UK
| | - Anreas Heinz
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig und Berlin, Berlin, Germany
| | - Hervé Lemaître
- Institute National de la Santé et de la Recherche Médicale, INSERM CEA Unit 1000 "Imaging & Psychiatry", University Paris Sud, Orsay, and AP-HP Department of Adolescent Psychopathology and Medicine, Maison de Solenn, University Paris Descartes, Paris, France
| | - Frauke Nees
- Central Institute of Mental Health, Mannheim, Germany.,Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Tomas Paus
- otman Research Institute, University of Toronto, Toronto, Canada.,School of Psychology, University of Nottingham, UK.,Montreal Neurological Institute, McGill University, Canada
| | - Zdenka Pausova
- The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Marcella Rietschel
- Central Institute of Mental Health, Mannheim, Germany.,Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Michael N Smolka
- Neuroimaging Center, Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Germany
| | - Andreas Ströhle
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jeurgen Gallinat
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bruno Vellas
- INSERM U 558, University of Toulouse, Toulouse, France
| | - Hilkka Soininen
- Department of Neurology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | | | - Magda Tsolaki
- Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Christian Spenger
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Victor L Villemagne
- The Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia.,University of Melbourne, Parkville, Vic., Australia
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia.,University of Melbourne, Parkville, Vic., Australia
| | - J-Sebastian Muehlboeck
- King's College London, Institute of Psychiatry, London, UK.,NIHR Biomedical Research Centre for Mental Health, King's College London, London, UK
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Laura Fratiglioni
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Grégoria Kalpouzos
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Lars-Olof Wahlund
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Gunther Schumann
- King's College London, Institute of Psychiatry, London, UK.,NIHR Biomedical Research Centre for Mental Health, King's College London, London, UK
| | - Simon Lovestone
- King's College London, Institute of Psychiatry, London, UK.,NIHR Biomedical Research Centre for Mental Health, King's College London, London, UK.,NIHR Biomedical Research Unit for Dementia, King's College London, London, UK
| | - Steven C R Williams
- King's College London, Institute of Psychiatry, London, UK.,NIHR Biomedical Research Centre for Mental Health, King's College London, London, UK.,NIHR Biomedical Research Unit for Dementia, King's College London, London, UK
| | - Eric Westman
- King's College London, Institute of Psychiatry, London, UK.,Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Andrew Simmons
- King's College London, Institute of Psychiatry, London, UK.,NIHR Biomedical Research Centre for Mental Health, King's College London, London, UK.,NIHR Biomedical Research Unit for Dementia, King's College London, London, UK.,Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
405
|
Vemuri P, Knopman DS, Jack CR, Lundt ES, Weigand SD, Zuk SM, Thostenson KB, Reid RI, Kantarci K, Slinin Y, Lakshminarayan K, Davey CS, Murray A. Association of Kidney Function Biomarkers with Brain MRI Findings: The BRINK Study. J Alzheimers Dis 2018; 55:1069-1082. [PMID: 27767995 DOI: 10.3233/jad-160834] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Chronic kidney disease (CKD) studies have reported variable prevalence of brain pathologies, in part due to low inclusion of participants with moderate to severe CKD. OBJECTIVE To measure the association between kidney function biomarkers and brain MRI findings in CKD. METHODS In the BRINK (BRain IN Kidney Disease) study, MRI was used to measure gray matter volumes, cerebrovascular pathologies (white matter hyperintensity (WMH), infarctions, microhemorrhages), and microstructural changes using diffusion tensor imaging (DTI). We performed regression analyses with estimated glomerular filtration rate (eGFR) and urine albumin to creatinine ratio (UACR) as primary predictors, and joint models that included both predictors, adjusted for vascular risk factors. RESULTS We obtained 240 baseline MRI scans (150 CKD with eGFR <45 in ml/min/1.73 m2; 16 mild CKD: eGFR 45-59; 74 controls: eGFR≥60). Lower eGFR was associated with greater WMH burden, increased odds of cortical infarctions, and worsening diffusion changes throughout the brain. In eGFR models adjusted for UACR, only cortical infarction associations persisted. However, after adjusting for eGFR, higher UACR provided additional information related to temporal lobe atrophy, increased WMH, and whole brain microstructural changes as measured by increased DTI mean diffusivity. CONCLUSIONS Biomarkers of kidney disease (eGFR and UACR) were associated with MRI brain changes, even after accounting for vascular risk factors. UACR adds unique additional information to eGFR regarding brain structural and diffusion biomarkers. There was a greater impact of kidney function biomarkers on cerebrovascular pathologies and microstructural brain changes, suggesting that cerebrovascular etiology may be the primary driver of cognitive impairment in CKD.
Collapse
Affiliation(s)
| | | | | | - Emily S Lundt
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Stephen D Weigand
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Samantha M Zuk
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Robert I Reid
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Yelena Slinin
- Department of Internal Medicine, Nephrology Division, University of Minnesota, Minneapolis, MN, USA.,Veteran's Affairs Medical Center, Minneapolis, MN, USA
| | - Kamakshi Lakshminarayan
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA.,Division of Epidemiology & Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Cynthia S Davey
- Biostatistical Design and Analysis Center, University of Minnesota Clinical and Translational Science Institute, Minneapolis, MN, USA
| | - Anne Murray
- Berman Center for Clinical Research and Outcomes, Minneapolis Medical Research Foundation, Minneapolis, MN, USA.,Department of Internal Medicine, Geriatrics Division, Hennepin County Medical Center, Minneapolis, MN, USA.,Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
406
|
Mohamed M, Barker PB, Skolasky RL, Sacktor N. 7T Brain MRS in HIV Infection: Correlation with Cognitive Impairment and Performance on Neuropsychological Tests. AJNR Am J Neuroradiol 2018; 39:704-712. [PMID: 29449278 DOI: 10.3174/ajnr.a5547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/01/2017] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND PURPOSE Validated neuroimaging markers of HIV-associated neurocognitive disorder in patients on antiretroviral therapy are urgently needed for clinical trials. The purpose of this study was to explore the relationship between cognitive impairment and brain metabolism in older subjects with HIV infection. It was hypothesized that MR spectroscopy measurements related to neuronal health and function (particularly N-acetylaspartate and glutamate) would be lower in HIV-positive subjects with worse cognitive performance. MATERIALS AND METHODS Forty-five HIV-positive patients (mean age, 58.9 ± 5.3 years; 33 men) underwent detailed neuropsychological testing and brain MR spectroscopy at 7T. Twenty-four subjects were classified as having asymptomatic cognitive impairment, and 21 were classified as having symptomatic cognitive impairment. Single-voxel proton MR spectra were acquired from 5 brain regions and quantified using LCModel software. Brain metabolites and neuropsychological test results were compared using nonparametric statistics and Pearson correlation coefficients. RESULTS Differences in brain metabolites were found between symptomatic and asymptomatic subjects, with the main findings being lower measures of N-acetylaspartate in the frontal white matter, posterior cingulate cortex, and precuneus. In the precuneus, glutamate was also lower in the symptomatic group. In the frontal white matter, precuneus, and posterior cingulate cortex, NAA and glutamate measurements showed significant positive correlation with better performance on neuropsychological tests. CONCLUSIONS Compared with asymptomatic subjects, symptomatic HIV-positive subjects had lower levels of NAA and glutamate, most notably in the frontal white matter, which also correlated with performance on neuropsychological tests. High-field MR spectroscopy offers insight into the pathophysiology associated with cognitive impairment in HIV and may be useful as a quantitative outcome measure in future treatment trials.
Collapse
Affiliation(s)
- M Mohamed
- From the Russell H. Morgan Department of Radiology and Radiological Science (M.M., P.B.B.)
| | - P B Barker
- From the Russell H. Morgan Department of Radiology and Radiological Science (M.M., P.B.B.).,Psychiatry and Behavioral Sciences (P.B.B.), Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Center for Functional Brain Imaging (P.B.B.), Kennedy Krieger Institute, Baltimore, Maryland
| | - R L Skolasky
- Departments of Neurology (R.L.S., N.S.).,Orthopedic Surgery (R.L.S.)
| | - N Sacktor
- Departments of Neurology (R.L.S., N.S.)
| |
Collapse
|
407
|
Kuga GK, Muñoz VR, Gaspar RC, Nakandakari SCBR, da Silva ASR, Botezelli JD, Leme JACDA, Gomes RJ, de Moura LP, Cintra DE, Ropelle ER, Pauli JR. Impaired insulin signaling and spatial learning in middle-aged rats: The role of PTP1B. Exp Gerontol 2018; 104:66-71. [PMID: 29421605 DOI: 10.1016/j.exger.2018.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/23/2018] [Accepted: 02/05/2018] [Indexed: 12/20/2022]
Abstract
The insulin and Brain-Derived Neurotrophic Factor (BDNF) signaling in the hippocampus promotes synaptic plasticity and memory formation. On the other hand, aging is related to the cognitive decline and is the main risk factor for Alzheimer's Disease (AD). The Protein-Tyrosine Phosphatase 1B (PTP1B) is related to several deleterious processes in neurons and emerges as a promising target for new therapies. In this context, our study aims to investigate the age-related changes in PTP1B content, insulin signaling, β-amyloid content, and Tau phosphorylation in the hippocampus of middle-aged rats. Young (3 months) and middle-aged (17 months) Wistar rats were submitted to Morris-water maze (MWM) test, insulin tolerance test, and molecular analysis in the hippocampus. Aging resulted in increased body weight, and insulin resistance and decreases learning process in MWM. Interestingly, the middle-aged rats have higher levels of PTP-1B, lower phosphorylation of IRS-1, Akt, GSK3β, mTOR, and TrkB. Also, the aging process increased Tau phosphorylation and β-amyloid content in the hippocampus region. In summary, this study provides new evidence that aging-related PTP1B increasing, contributing to insulin resistance and the onset of the AD.
Collapse
Affiliation(s)
- Gabriel Keine Kuga
- Post-graduate Program in Movement Sciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Vitor Rosetto Muñoz
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - Rafael Calais Gaspar
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | | | | | - José Diego Botezelli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | | | - Ricardo José Gomes
- Department of Biosciences, São Paulo Federal University (UNIFESP), Santos, SP, Brazil
| | - Leandro Pereira de Moura
- Post-graduate Program in Movement Sciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil; Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil; Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil; CEPECE - Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - Dennys Esper Cintra
- Laboratory of Nutritional Genomics (LabGeN), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil; Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil; Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil; CEPECE - Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil; Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil; CEPECE - Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil.
| |
Collapse
|
408
|
Manuello J, Nani A, Premi E, Borroni B, Costa T, Tatu K, Liloia D, Duca S, Cauda F. The Pathoconnectivity Profile of Alzheimer's Disease: A Morphometric Coalteration Network Analysis. Front Neurol 2018; 8:739. [PMID: 29472885 PMCID: PMC5810291 DOI: 10.3389/fneur.2017.00739] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/21/2017] [Indexed: 01/18/2023] Open
Abstract
Gray matter alterations are typical features of brain disorders. However, they do not impact on the brain randomly. Indeed, it has been suggested that neuropathological processes can selectively affect certain assemblies of neurons, which typically are at the center of crucial functional networks. Because of their topological centrality, these areas form a core set that is more likely to be affected by neuropathological processes. In order to identify and study the pattern formed by brain alterations in patients’ with Alzheimer’s disease (AD), we devised an innovative meta-analytic method for analyzing voxel-based morphometry data. This methodology enabled us to discover that in AD gray matter alterations do not occur randomly across the brain but, on the contrary, follow identifiable patterns of distribution. This alteration pattern exhibits a network-like structure composed of coaltered areas that can be defined as coatrophy network. Within the coatrophy network of AD, we were able to further identify a core subnetwork of coaltered areas that includes the left hippocampus, left and right amygdalae, right parahippocampal gyrus, and right temporal inferior gyrus. In virtue of their network centrality, these brain areas can be thought of as pathoconnectivity hubs.
Collapse
Affiliation(s)
- Jordi Manuello
- GCS-fMRI, Department of Psychology, Koelliker Hospital, University of Turin, Turin, Italy.,FOCUS Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Andrea Nani
- GCS-fMRI, Department of Psychology, Koelliker Hospital, University of Turin, Turin, Italy.,FOCUS Laboratory, Department of Psychology, University of Turin, Turin, Italy.,Michael Trimble Neuropsychiatry Research Group, Birmingham and Solihull Mental Health NHS Foundation Trust, Birmingham, United Kingdom
| | - Enrico Premi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Tommaso Costa
- GCS-fMRI, Department of Psychology, Koelliker Hospital, University of Turin, Turin, Italy.,FOCUS Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Karina Tatu
- GCS-fMRI, Department of Psychology, Koelliker Hospital, University of Turin, Turin, Italy.,FOCUS Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Donato Liloia
- FOCUS Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Sergio Duca
- GCS-fMRI, Department of Psychology, Koelliker Hospital, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI, Department of Psychology, Koelliker Hospital, University of Turin, Turin, Italy.,FOCUS Laboratory, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
409
|
ATP-sensitive potassium-channel inhibitor glibenclamide attenuates HPA axis hyperactivity, depression- and anxiety-related symptoms in a rat model of Alzheimer's disease. Brain Res Bull 2018; 137:265-276. [PMID: 29307659 DOI: 10.1016/j.brainresbull.2018.01.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/13/2017] [Accepted: 01/03/2018] [Indexed: 12/17/2022]
Abstract
Affective disorders including depression and anxiety are among the most prevalent behavioral abnormalities in patients with Alzheimer's disease (AD), which affect the quality of life and progression of the disease. Dysregulation of the hypothalamic-pituitary-adrenal-(HPA) axis has been reported in affective disorders and AD. Recent studies revealed that current antidepressant drugs are not completely effective for treating anxiety- and depression-related disorders in people with dementia. ATP-sensitive-potassium-(KATP) channels are well-known to be involved in AD pathophysiology, HPA axis function and the pathogenesis of depression and anxiety-related behaviors. Thus, targeting of KATP channel may be a potential therapeutic strategy in AD. Hence, we investigated the effects of intracerebroventricular injection of Aβ25-35 alone or in combination with glibenclamide, KATP channel inhibitor on depression- and anxiety-related behaviors as well as HPA axis response to stress in rats. To do this, non-Aβ25-35- and Aβ25-35-treated rats were orally treated with glibenclamide, then the behavioral consequences were assessed using sucrose preference, forced swim, light-dark box and plus maze tests. Stress-induced corticosterone levels following forced swim and plus maze tests were also evaluated as indicative of abnormal HPA-axis-function. Aβ25-35 induced HPA axis hyperreactivity and increased depression- and anxiety-related symptoms in rats. Our results showed that blockade of KATP channels with glibenclamide decreased depression- and anxiety-related behaviors by normalizing HPA axis activity in Aβ25-35-treated rats. This study provides additional evidence that Aβ administration can induce depression- and anxiety-like symptoms in rodents, and suggests that KATP channel inhibitors may be a plausible therapeutic strategy for treating affective disorders in AD patients.
Collapse
|
410
|
|
411
|
Mishina M, Kimura Y, Sakata M, Ishii K, Oda K, Toyohara J, Kimura K, Ishiwata K. Age-Related Decrease in Male Extra-Striatal Adenosine A 1 Receptors Measured Using11C-MPDX PET. Front Pharmacol 2017; 8:903. [PMID: 29326588 PMCID: PMC5741655 DOI: 10.3389/fphar.2017.00903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/28/2017] [Indexed: 11/15/2022] Open
Abstract
Adenosine A1 receptors (A1Rs) are widely distributed throughout the entire human brain, while adenosine A2A receptors (A2ARs) are present in dopamine-rich areas of the brain, such as the basal ganglia. A past study using autoradiography reported a reduced binding ability of A1R in the striatum of old rats. We developed positron emission tomography (PET) ligands for mapping the adenosine receptors and we successfully visualized the A1Rs using 8-dicyclopropylmethyl-1-11C-methyl-3-propylxanthine (11C-MPDX). We previously reported that the density of A1Rs decreased with age in the human striatum, although we could not observe an age-related change in A2ARs. The aim of this study was to investigate the age-related change of the density of A1Rs in the thalamus and cerebral cortices of healthy participants using 11C-MPDX PET. We recruited eight young (22.0 ± 1.7 years) and nine elderly healthy male volunteers (65.7 ± 8.0 years). A dynamic series of decay-corrected PET scans was performed for 60 min starting with the injection of 11C-MPDX. We placed the circular regions of interest of 10 mm in diameter in 11C-MPDX PET images. The values for the binding potential (BPND) of 11C-MPDX in the thalamus, and frontal, temporal, occipital, and parietal cortices were calculated using a graphical analysis, wherein the reference region was the cerebellum. BPND of 11C-MPDX was significantly lower in elderly participants than young participants in the thalamus, and frontal, temporal, occipital, and parietal cortices. In the human brain, we could observe the age-related decrease in the distribution of A1Rs.
Collapse
Affiliation(s)
- Masahiro Mishina
- Department of Neuro-pathophysiological Imaging, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.,Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yuichi Kimura
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Department of Computational Systems Biology, Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| | - Muneyuki Sakata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Keiichi Oda
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Department of Radiological Technology, Faculty of Health Sciences, Hokkaido University of Science, Sapporo, Japan
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kazumi Kimura
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kiichi Ishiwata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Institute of Cyclotron and Drug Discovery Research, Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan.,Department of Biofunctional Imaging, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
412
|
Rovnyagina NR, Sluchanko NN, Tikhonova TN, Fadeev VV, Litskevich AY, Maskevich AA, Shirshin EA. Binding of thioflavin T by albumins: An underestimated role of protein oligomeric heterogeneity. Int J Biol Macromol 2017; 108:284-290. [PMID: 29208556 DOI: 10.1016/j.ijbiomac.2017.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 12/22/2022]
Abstract
Amyloid fibrils formation is the well-known hallmark of various neurodegenerative diseases. Thioflavin T (ThT)-based fluorescence assays are widely used to detect and characterize fibrils, however, if performed in bioliquids, the analysis can be biased due to the presence of other, especially abundant, proteins. Particularly, it is known that albumin may bind ThT, although the binding mechanism remains debatable. Here the role of low-order albumin oligomers in ThT binding is investigated using time-resolved fluorometry and size-exclusion chromatography. Under conditions used, the fraction of dimers in human (HSA) and bovine (BSA) serum albumin solutions is as low as ∼7%, however, it is responsible for ∼50% of ThT binding. For both albumins, the binding affinity was estimated to be ∼200 and ∼40μM for monomeric and dimeric species, respectively. Molecular docking suggested that ThT preferentially binds in the hydrophobic pocket of subdomain IB of albumin monomer in a similar position but with a variable torsion angle, resulting in a lower fluorescence enhancement (∼40-fold) compared to amyloid fibrils (∼1000-fold). Dimerization of albumin presumably creates an extra binding site at the subunit interface. These results demonstrate the underestimated role of low-order albumin oligomers that can be highly relevant when analyzing drugs binding using fluorescence spectroscopy.
Collapse
Affiliation(s)
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow 119071, Russia; Department of biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Tatiana N Tikhonova
- International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Victor V Fadeev
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | | | | | - Evgeny A Shirshin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow 119991, Russia.
| |
Collapse
|
413
|
Choi CI, Yoo KH, Hussaini SMQ, Jeon BT, Welby J, Gan H, Scarisbrick IA, Zhang Z, Baker DJ, van Deursen JM, Rodriguez M, Jang MH. The progeroid gene BubR1 regulates axon myelination and motor function. Aging (Albany NY) 2017; 8:2667-2688. [PMID: 27922816 PMCID: PMC5191862 DOI: 10.18632/aging.101032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/25/2016] [Indexed: 01/22/2023]
Abstract
Myelination, the process by which oligodendrocytes form the myelin sheath around axons, is key to axonal signal transduction and related motor function in the central nervous system (CNS). Aging is characterized by degenerative changes in the myelin sheath, although the molecular underpinnings of normal and aberrant myelination remain incompletely understood. Here we report that axon myelination and related motor function are dependent on BubR1, a mitotic checkpoint protein that has been linked to progeroid phenotypes when expressed at low levels and healthy lifespan when overabundant. We found that oligodendrocyte progenitor cell proliferation and oligodendrocyte density is markedly reduced in mutant mice with low amounts of BubR1 (BubR1H/H mice), causing axonal hypomyelination in both brain and spinal cord. Expression of essential myelin-related genes such as MBP and PLP1 was significantly reduced in these tissues. Consistent with defective myelination, BubR1H/H mice exhibited various motor deficits, including impaired motor strength, coordination, and balance, irregular gait patterns and reduced locomotor activity. Collectively, these data suggest that BubR1 is a key determinant of oligodendrocyte production and function and provide a molecular entry point to understand age-related degenerative changes in axon myelination.
Collapse
Affiliation(s)
- Chan-Il Choi
- Department of Neurologic Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Ki Hyun Yoo
- Department of Neurologic Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | - Byeong Tak Jeon
- Department of Neurologic Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - John Welby
- Department of Neurologic Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Haiyun Gan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Isobel A Scarisbrick
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Zhiguo Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Darren J Baker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Jan M van Deursen
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Moses Rodriguez
- Departments of Neurology and Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Mi-Hyeon Jang
- Department of Neurologic Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
414
|
Coupé P, Catheline G, Lanuza E, Manjón JV. Towards a unified analysis of brain maturation and aging across the entire lifespan: A MRI analysis. Hum Brain Mapp 2017; 38:5501-5518. [PMID: 28737295 PMCID: PMC6866824 DOI: 10.1002/hbm.23743] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/12/2017] [Accepted: 07/16/2017] [Indexed: 12/13/2022] Open
Abstract
There is no consensus in literature about lifespan brain maturation and senescence, mainly because previous lifespan studies have been performed on restricted age periods and/or with a limited number of scans, making results instable and their comparison very difficult. Moreover, the use of nonharmonized tools and different volumetric measurements lead to a great discrepancy in reported results. Thanks to the new paradigm of BigData sharing in neuroimaging and the last advances in image processing enabling to process baby as well as elderly scans with the same tool, new insights on brain maturation and aging can be obtained. This study presents brain volume trajectory over the entire lifespan using the largest age range to date (from few months of life to elderly) and one of the largest number of subjects (N = 2,944). First, we found that white matter trajectory based on absolute and normalized volumes follows an inverted U-shape with a maturation peak around middle life. Second, we found that from 1 to 8-10 y there is an absolute gray matter (GM) increase related to body growth followed by a GM decrease. However, when normalized volumes were considered, GM continuously decreases all along the life. Finally, we found that this observation holds for almost all the considered subcortical structures except for amygdala which is rather stable and hippocampus which exhibits an inverted U-shape with a longer maturation period. By revealing the entire brain trajectory picture, a consensus can be drawn since most of the previously discussed discrepancies can be explained. Hum Brain Mapp 38:5501-5518, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pierrick Coupé
- University of Bordeaux, LaBRI, UMR 5800, PICTURATalenceF‐33400France
- CNRS, LaBRI, UMR 5800, PICTURATalenceF‐33400France
| | - Gwenaelle Catheline
- University of Bordeaux, CNRS, EPHE PSL Research University of, INCIA, UMR 5283BordeauxF‐33000, France
| | - Enrique Lanuza
- Department of Cell BiologyUniversity of ValenciaBurjassotValencia46100Spain
| | - José Vicente Manjón
- Instituto Universitario de Tecnologías de la Información y Comunicaciones (ITACA), Universitat Politècnica de València, Camino de Vera s/nValencia46022Spain
| | | |
Collapse
|
415
|
Dyall SC. Interplay Between n-3 and n-6 Long-Chain Polyunsaturated Fatty Acids and the Endocannabinoid System in Brain Protection and Repair. Lipids 2017; 52:885-900. [PMID: 28875399 PMCID: PMC5656721 DOI: 10.1007/s11745-017-4292-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/26/2017] [Indexed: 12/13/2022]
Abstract
The brain is enriched in arachidonic acid (ARA) and docosahexaenoic acid (DHA), long-chain polyunsaturated fatty acids (LCPUFAs) of the n-6 and n-3 series, respectively. Both are essential for optimal brain development and function. Dietary enrichment with DHA and other long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA), has shown beneficial effects on learning and memory, neuroinflammatory processes, and synaptic plasticity and neurogenesis. ARA, DHA and EPA are precursors to a diverse repertoire of bioactive lipid mediators, including endocannabinoids. The endocannabinoid system comprises cannabinoid receptors, their endogenous ligands, the endocannabinoids, and their biosynthetic and degradation enzymes. Anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are the most widely studied endocannabinoids and are both derived from phospholipid-bound ARA. The endocannabinoid system also has well-established roles in neuroinflammation, synaptic plasticity and neurogenesis, suggesting an overlap in the neuroprotective effects observed with these different classes of lipids. Indeed, growing evidence suggests a complex interplay between n-3 and n-6 LCPUFA and the endocannabinoid system. For example, long-term DHA and EPA supplementation reduces AEA and 2-AG levels, with reciprocal increases in levels of the analogous endocannabinoid-like DHA and EPA-derived molecules. This review summarises current evidence of this interplay and discusses the therapeutic potential for brain protection and repair.
Collapse
Affiliation(s)
- Simon C Dyall
- Faculty of Health and Social Sciences, Bournemouth University, Dorset, UK.
| |
Collapse
|
416
|
Viviano RP, Raz N, Yuan P, Damoiseaux JS. Associations between dynamic functional connectivity and age, metabolic risk, and cognitive performance. Neurobiol Aging 2017; 59:135-143. [PMID: 28882422 PMCID: PMC5679403 DOI: 10.1016/j.neurobiolaging.2017.08.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/03/2017] [Accepted: 08/02/2017] [Indexed: 01/09/2023]
Abstract
Advanced age is associated with reduced within-network functional connectivity, particularly within the default mode network. Most studies to date have examined age differences in functional connectivity via static indices that are computed over the entire blood-oxygen-level dependent time series. Little is known about the effects of age on short-term temporal dynamics of functional connectivity. Here, we examined age differences in dynamic connectivity as well as associations between connectivity, metabolic risk, and cognitive performance in healthy adults (N = 168; age, 18-83 years). A sliding-window k-means clustering approach was used to assess dynamic connectivity from resting-state functional magnetic resonance imaging data. Three out of 8 dynamic connectivity profiles were associated with age. Furthermore, metabolic risk was associated with the relative amount of time allocated to 2 of these profiles. Finally, the relative amount of time allocated to a dynamic connectivity profile marked by heightened connectivity between default mode and medial temporal regions was positively associated with executive functions. Thus, dynamic connectivity analyses can enrich understanding of age-related differences beyond what is revealed by static analyses.
Collapse
Affiliation(s)
- Raymond P Viviano
- Department of Psychology, Wayne State University, Detroit, MI, USA; Institute of Gerontology, Wayne State University, Detroit, MI, USA
| | - Naftali Raz
- Department of Psychology, Wayne State University, Detroit, MI, USA; Institute of Gerontology, Wayne State University, Detroit, MI, USA
| | - Peng Yuan
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Jessica S Damoiseaux
- Department of Psychology, Wayne State University, Detroit, MI, USA; Institute of Gerontology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
417
|
Edler MK, Sherwood CC, Meindl RS, Hopkins WD, Ely JJ, Erwin JM, Mufson EJ, Hof PR, Raghanti MA. Aged chimpanzees exhibit pathologic hallmarks of Alzheimer's disease. Neurobiol Aging 2017; 59:107-120. [PMID: 28888720 PMCID: PMC6343147 DOI: 10.1016/j.neurobiolaging.2017.07.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is a uniquely human brain disorder characterized by the accumulation of amyloid-beta protein (Aβ) into extracellular plaques, neurofibrillary tangles (NFT) made from intracellular, abnormally phosphorylated tau, and selective neuronal loss. We analyzed a large group of aged chimpanzees (n = 20, age 37-62 years) for evidence of Aβ and tau lesions in brain regions affected by AD in humans. Aβ was observed in plaques and blood vessels, and tau lesions were found in the form of pretangles, NFT, and tau-immunoreactive neuritic clusters. Aβ deposition was higher in vessels than in plaques and correlated with increases in tau lesions, suggesting that amyloid build-up in the brain's microvasculature precedes plaque formation in chimpanzees. Age was correlated to greater volumes of Aβ plaques and vessels. Tangle pathology was observed in individuals that exhibited plaques and moderate or severe cerebral amyloid angiopathy, a condition in which amyloid accumulates in the brain's vasculature. Amyloid and tau pathology in aged chimpanzees suggests these AD lesions are not specific to the human brain.
Collapse
Affiliation(s)
- Melissa K Edler
- School of Biomedical Sciences, Kent State University, Kent, OH, USA; Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA.
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
| | - Richard S Meindl
- Department of Anthropology, Kent State University, Kent, OH, USA
| | - William D Hopkins
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, USA; Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | - Joseph M Erwin
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
| | - Elliott J Mufson
- Departments of Neurobiology and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; New York Consortium for Evolutionary Primatology, New York, NY, USA
| | - Mary Ann Raghanti
- School of Biomedical Sciences, Kent State University, Kent, OH, USA; Department of Anthropology, Kent State University, Kent, OH, USA
| |
Collapse
|
418
|
Vemuri P, Lesnick TG, Przybelski SA, Knopman DS, Lowe VJ, Graff-Radford J, Roberts RO, Mielke MM, Machulda MM, Petersen RC, Jack CR. Age, vascular health, and Alzheimer disease biomarkers in an elderly sample. Ann Neurol 2017; 82:706-718. [PMID: 29023983 DOI: 10.1002/ana.25071] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/05/2017] [Accepted: 10/05/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To investigate the associations between age, vascular health, and Alzheimer disease (AD) imaging biomarkers in an elderly sample. METHODS We identified 430 individuals along the cognitive continuum aged >60 years with amyloid positron emission tomography (PET), tau PET, and magnetic resonance imaging (MRI) scans from the population-based Mayo Clinic Study of Aging. A subset of 329 individuals had fluorodeoxyglucose (FDG) PET. We ascertained presently existing cardiovascular and metabolic conditions (CMC) from health care records and used the summation of presence/absence of hypertension, hyperlipidemia, cardiac arrhythmias, coronary artery disease, congestive heart failure, diabetes mellitus, and stroke as a surrogate for vascular health. We used global amyloid from Pittsburgh compound B PET, entorhinal cortex tau uptake (ERC-tau) from tau-PET, and neurodegeneration in AD signature regions from MRI and FDG-PET as surrogates for AD pathophysiology. We dichotomized participants into CMC = 0 (CMC- ) versus CMC > 0 (CMC+ ) and tested for age-adjusted group differences in AD biomarkers. Using structural equation models (SEMs), we assessed the impact of vascular health on AD biomarker cascade (amyloid leads to tau leads to neurodegeneration) after considering the direct and indirect age, sex, and apolipoprotein E effects. RESULTS CMC+ participants had significantly greater neurodegeneration than CMC- participants but did not differ by amyloid or ERC-tau. The SEMs showed that (1) vascular health had a significant direct and indirect impact on neurodegeneration but not on amyloid; and (2) vascular health, specifically the presence of hyperlipidemia, had a significant direct impact on ERC-tau. INTERPRETATION Vascular health had quantifiably greater impact on neurodegeneration in AD regions than on amyloid deposition. Longitudinal studies are warranted to clarify the relationship between tau deposition and vascular health. Ann Neurol 2017;82:706-718.
Collapse
Affiliation(s)
| | | | | | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN
| | | | | | - Michelle M Mielke
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN.,Department of Neurology, Mayo Clinic, Rochester, MN
| | | | | | | |
Collapse
|
419
|
Pliássova A, Canas PM, Xavier AC, da Silva BS, Cunha RA, Agostinho P. Age-Related Changes in the Synaptic Density of Amyloid-β Protein Precursor and Secretases in the Human Cerebral Cortex. J Alzheimers Dis 2017; 52:1209-14. [PMID: 27104908 DOI: 10.3233/jad-160213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Amyloid-β protein precursor (AβPP) is involved in synaptic formation and function. In the human cingulate cortex, AβPP was preferentially located in the presynaptic active zone as in rodents, indicating a preserved subsynaptic AβPP distribution across species and brain regions. Synaptic AβPP immunoreactivity was decreased with aging in cortical samples collected from autopsies of males (20-80 years), whereas the synaptic levels of α-secretase (ADAM10) and β-secretase (BACE1) did not significantly change. Decreased AβPP levels may be related to lower allostasis of synapses in the aged brain and their greater susceptibility to dysfunction characteristic of the onset of neurodegenerative disorders.
Collapse
Affiliation(s)
- Anna Pliássova
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal.,FMUC - Faculty of Medicine, University of Coimbra, Portugal
| | - Paula M Canas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal.,FMUC - Faculty of Medicine, University of Coimbra, Portugal
| | - Ana Carolina Xavier
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Beatriz S da Silva
- Portuguese National Institute of Legal Medicine and Forensic Sciences (INMLCF IP), Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal.,FMUC - Faculty of Medicine, University of Coimbra, Portugal
| | - Paula Agostinho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal.,FMUC - Faculty of Medicine, University of Coimbra, Portugal
| |
Collapse
|
420
|
Brain structural differences between 73- and 92-year olds matched for childhood intelligence, social background, and intracranial volume. Neurobiol Aging 2017; 62:146-158. [PMID: 29149632 PMCID: PMC5759896 DOI: 10.1016/j.neurobiolaging.2017.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/05/2017] [Accepted: 10/06/2017] [Indexed: 01/17/2023]
Abstract
Fully characterizing age differences in the brain is a key task for combating aging-related cognitive decline. Using propensity score matching on 2 independent, narrow-age cohorts, we used data on childhood cognitive ability, socioeconomic background, and intracranial volume to match participants at mean age of 92 years (n = 42) to very similar participants at mean age of 73 years (n = 126). Examining a variety of global and regional structural neuroimaging variables, there were large differences in gray and white matter volumes, cortical surface area, cortical thickness, and white matter hyperintensity volume and spatial extent. In a mediation analysis, the total volume of white matter hyperintensities and total cortical surface area jointly mediated 24.9% of the relation between age and general cognitive ability (tissue volumes and cortical thickness were not significant mediators in this analysis). These findings provide an unusual and valuable perspective on neurostructural aging, in which brains from the 8th and 10th decades of life differ widely despite the same cognitive, socioeconomic, and brain-volumetric starting points.
Collapse
|
421
|
Valk SL, Bernhardt BC, Trautwein FM, Böckler A, Kanske P, Guizard N, Collins DL, Singer T. Structural plasticity of the social brain: Differential change after socio-affective and cognitive mental training. SCIENCE ADVANCES 2017; 3:e1700489. [PMID: 28983507 PMCID: PMC5627980 DOI: 10.1126/sciadv.1700489] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/24/2017] [Indexed: 05/19/2023]
Abstract
Although neuroscientific research has revealed experience-dependent brain changes across the life span in sensory, motor, and cognitive domains, plasticity relating to social capacities remains largely unknown. To investigate whether the targeted mental training of different cognitive and social skills can induce specific changes in brain morphology, we collected longitudinal magnetic resonance imaging (MRI) data throughout a 9-month mental training intervention from a large sample of adults between 20 and 55 years of age. By means of various daily mental exercises and weekly instructed group sessions, training protocols specifically addressed three functional domains: (i) mindfulness-based attention and interoception, (ii) socio-affective skills (compassion, dealing with difficult emotions, and prosocial motivation), and (iii) socio-cognitive skills (cognitive perspective-taking on self and others and metacognition). MRI-based cortical thickness analyses, contrasting the different training modules against each other, indicated spatially diverging changes in cortical morphology. Training of present-moment focused attention mostly led to increases in cortical thickness in prefrontal regions, socio-affective training induced plasticity in frontoinsular regions, and socio-cognitive training included change in inferior frontal and lateral temporal cortices. Module-specific structural brain changes correlated with training-induced behavioral improvements in the same individuals in domain-specific measures of attention, compassion, and cognitive perspective-taking, respectively, and overlapped with task-relevant functional networks. Our longitudinal findings indicate structural plasticity in well-known socio-affective and socio-cognitive brain networks in healthy adults based on targeted short daily mental practices. These findings could promote the development of evidence-based mental training interventions in clinical, educational, and corporate settings aimed at cultivating social intelligence, prosocial motivation, and cooperation.
Collapse
Affiliation(s)
- Sofie L. Valk
- Department of Social Neuroscience, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Boris C. Bernhardt
- Department of Social Neuroscience, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, Québec, Canada
| | - Fynn-Mathis Trautwein
- Department of Social Neuroscience, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Anne Böckler
- Department of Social Neuroscience, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Psychology, Würzburg University, Würzburg, Germany
| | - Philipp Kanske
- Department of Social Neuroscience, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Psychology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Nicolas Guizard
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, Québec, Canada
| | - D. Louis Collins
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, Québec, Canada
| | - Tania Singer
- Department of Social Neuroscience, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
422
|
Walco GA, Krane EJ, Schmader KE, Weiner DK. Applying a Lifespan Developmental Perspective to Chronic Pain: Pediatrics to Geriatrics. THE JOURNAL OF PAIN 2017; 17:T108-17. [PMID: 27586828 DOI: 10.1016/j.jpain.2015.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/23/2015] [Accepted: 11/16/2015] [Indexed: 11/29/2022]
Abstract
UNLABELLED An ideal taxonomy of chronic pain would be applicable to people of all ages. Developmental sciences focus on lifespan developmental approaches, and view the trajectory of processes in the life course from birth to death. In this article we provide a review of lifespan developmental models, describe normal developmental processes that affect pain processing, and identify deviations from those processes that lead to stable individual differences of clinical interest, specifically the development of chronic pain syndromes. The goals of this review were 1) to unify what are currently separate purviews of "pediatric pain," "adult pain," and "geriatric pain," and 2) to generate models so that specific elements of the chronic pain taxonomy might include important developmental considerations. PERSPECTIVE A lifespan developmental model is applied to the forthcoming Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks-American Pain Society Pain Taxonomy to ascertain the degree to which general "adult" descriptions apply to pediatric and geriatric populations, or if age- or development-related considerations need to be invoked.
Collapse
Affiliation(s)
- Gary A Walco
- Departments of Anesthesiology and Pain Medicine, Pediatrics, and Psychiatry, University of Washington School of Medicine, Seattle, Washington; Seattle Children's Hospital, Seattle, Washington.
| | - Elliot J Krane
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, California; Stanford Children's Health, Palo Alto, California
| | - Kenneth E Schmader
- Department of Medicine, Duke University Medical Center, Durham, North Carolina; GRECC, Durham VA Medical Center, Durham, North Carolina
| | - Debra K Weiner
- VA Pittsburgh Geriatric Research, Education and Clinical Center, Pittsburgh, Pennsylvania; Departments of Medicine, Psychiatry, and Anesthesiology, Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
423
|
Sun BL, Wang LH, Yang T, Sun JY, Mao LL, Yang MF, Yuan H, Colvin RA, Yang XY. Lymphatic drainage system of the brain: A novel target for intervention of neurological diseases. Prog Neurobiol 2017; 163-164:118-143. [PMID: 28903061 DOI: 10.1016/j.pneurobio.2017.08.007] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/11/2017] [Accepted: 08/31/2017] [Indexed: 12/20/2022]
Abstract
The belief that the vertebrate brain functions normally without classical lymphatic drainage vessels has been held for many decades. On the contrary, new findings show that functional lymphatic drainage does exist in the brain. The brain lymphatic drainage system is composed of basement membrane-based perivascular pathway, a brain-wide glymphatic pathway, and cerebrospinal fluid (CSF) drainage routes including sinus-associated meningeal lymphatic vessels and olfactory/cervical lymphatic routes. The brain lymphatic systems function physiological as a route of drainage for interstitial fluid (ISF) from brain parenchyma to nearby lymph nodes. Brain lymphatic drainage helps maintain water and ion balance of the ISF, waste clearance, and reabsorption of macromolecular solutes. A second physiological function includes communication with the immune system modulating immune surveillance and responses of the brain. These physiological functions are influenced by aging, genetic phenotypes, sleep-wake cycle, and body posture. The impairment and dysfunction of the brain lymphatic system has crucial roles in age-related changes of brain function and the pathogenesis of neurovascular, neurodegenerative, and neuroinflammatory diseases, as well as brain injury and tumors. In this review, we summarize the key component elements (regions, cells, and water transporters) of the brain lymphatic system and their regulators as potential therapeutic targets in the treatment of neurologic diseases and their resulting complications. Finally, we highlight the clinical importance of ependymal route-based targeted gene therapy and intranasal drug administration in the brain by taking advantage of the unique role played by brain lymphatic pathways in the regulation of CSF flow and ISF/CSF exchange.
Collapse
Affiliation(s)
- Bao-Liang Sun
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong (Taishan Medical University), Department of Neurology, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong 271000, China.
| | - Li-Hua Wang
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, China
| | - Tuo Yang
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jing-Yi Sun
- Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Gangwon 220-701, Republic of Korea
| | - Lei-Lei Mao
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong (Taishan Medical University), Department of Neurology, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong 271000, China
| | - Ming-Feng Yang
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong (Taishan Medical University), Department of Neurology, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong 271000, China
| | - Hui Yuan
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong (Taishan Medical University), Department of Neurology, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong 271000, China
| | - Robert A Colvin
- Department of Biological Sciences, Interdisciplinary Graduate Program in Molecular and Cellular Biology, Neuroscience Program, Ohio University, Athens, OH 45701, USA
| | - Xiao-Yi Yang
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong (Taishan Medical University), Department of Neurology, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong 271000, China.
| |
Collapse
|
424
|
Namratha HG, George VM, Bajaj G, Mridula J, Bhat JS. Effect of yoga and working memory training on cognitive communicative abilities among middle aged adults. Complement Ther Clin Pract 2017; 28:92-100. [PMID: 28779944 DOI: 10.1016/j.ctcp.2017.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 11/26/2022]
Abstract
Several studies have reported improvements in cognitive communicative abilities with working memory training and alternative therapeutic methods conducted separately. The present study aimed to investigate the effects of combining yoga and working memory training among healthy middle aged adults. A total of 45 participants were randomly assigned into three groups. Group 1 received both yoga and working memory training, group 2 received only working memory training and group 3 served as the control group. Working memory training was provided on six tasks. Yoga training involved pranayamas and mudras. Effects of training were assessed along with the self-perceptual rating of the participants towards training. Results reveal greater training effects among group 1 participants, followed by group 2 and group 3. Group 1 also reported better perception of training (p < 0.05) than group 2. The study highlights that yoga is not only an alternative approach, but also augmentative in improving cognitive communicative abilities.
Collapse
Affiliation(s)
- H G Namratha
- Dept. of Audiology and Speech Language Pathology, Kasturba Medical College, Manipal University, Mangalore, India
| | - Vinitha Mary George
- Dept. of Audiology and Speech Language Pathology, Kasturba Medical College, Manipal University, Mangalore, India
| | - Gagan Bajaj
- Dept. of Audiology and Speech Language Pathology, Kasturba Medical College, Manipal University, Mangalore, India.
| | - J Mridula
- Dept. of Audiology and Speech Language Pathology, Kasturba Medical College, Manipal University, Mangalore, India
| | - Jayashree S Bhat
- Dept. of Audiology and Speech Language Pathology, Kasturba Medical College, Manipal University, Mangalore, India
| |
Collapse
|
425
|
Madan CR. Advances in Studying Brain Morphology: The Benefits of Open-Access Data. Front Hum Neurosci 2017; 11:405. [PMID: 28824407 PMCID: PMC5543094 DOI: 10.3389/fnhum.2017.00405] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/21/2017] [Indexed: 12/20/2022] Open
|
426
|
Koppelmans V, Bloomberg JJ, De Dios YE, Wood SJ, Reuter-Lorenz PA, Kofman IS, Riascos R, Mulavara AP, Seidler RD. Brain plasticity and sensorimotor deterioration as a function of 70 days head down tilt bed rest. PLoS One 2017; 12:e0182236. [PMID: 28767698 PMCID: PMC5540603 DOI: 10.1371/journal.pone.0182236] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 07/15/2017] [Indexed: 12/18/2022] Open
Abstract
Background Adverse effects of spaceflight on sensorimotor function have been linked to altered somatosensory and vestibular inputs in the microgravity environment. Whether these spaceflight sequelae have a central nervous system component is unknown. However, experimental studies have shown spaceflight-induced brain structural changes in rodents’ sensorimotor brain regions. Understanding the neural correlates of spaceflight-related motor performance changes is important to ultimately develop tailored countermeasures that ensure mission success and astronauts’ health. Method Head down-tilt bed rest (HDBR) can serve as a microgravity analog because it mimics body unloading and headward fluid shifts of microgravity. We conducted a 70-day 6° HDBR study with 18 right-handed males to investigate how microgravity affects focal gray matter (GM) brain volume. MRI data were collected at 7 time points before, during and post-HDBR. Standing balance and functional mobility were measured pre and post-HDBR. The same metrics were obtained at 4 time points over ~90 days from 12 control subjects, serving as reference data. Results HDBR resulted in widespread increases GM in posterior parietal regions and decreases in frontal areas; recovery was not yet complete by 12 days post-HDBR. Additionally, HDBR led to balance and locomotor performance declines. Increases in a cluster comprising the precuneus, precentral and postcentral gyrus GM correlated with less deterioration or even improvement in standing balance. This association did not survive Bonferroni correction and should therefore be interpreted with caution. No brain or behavior changes were observed in control subjects. Conclusions Our results parallel the sensorimotor deficits that astronauts experience post-flight. The widespread GM changes could reflect fluid redistribution. Additionally, the association between focal GM increase and balance changes suggests that HDBR also may result in neuroplastic adaptation. Future studies are warranted to determine causality and underlying mechanisms.
Collapse
Affiliation(s)
- Vincent Koppelmans
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | | | | | - Scott J. Wood
- NASA Johnson Space Center, Houston, TX, United States of America
| | | | | | - Roy Riascos
- The University of Texas Health Science Center, Houston, TX, United States of America
| | | | - Rachael D. Seidler
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
- Neuroscience Program, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
427
|
García-Velázquez L, Arias C. The emerging role of Wnt signaling dysregulation in the understanding and modification of age-associated diseases. Ageing Res Rev 2017. [PMID: 28624530 DOI: 10.1016/j.arr.2017.06.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wnt signaling is a highly conserved pathway that participates in multiple aspects of cellular function during development and in adults. In particular, this pathway has been implicated in cell fate determination, proliferation and cell polarity establishment. In the brain, it contributes to synapse formation, axonal remodeling, dendrite outgrowth, synaptic activity, neurogenesis and behavioral plasticity. The expression and distribution of Wnt components in different organs vary with age, which may have important implications for preserving tissue homeostasis. The dysregulation of Wnt signaling has been implicated in age-associated diseases, such as cancer and some neurodegenerative conditions. This is a relevant research topic, as an important research avenue for therapeutic targeting of the Wnt pathway in regenerative medicine has recently been opened. In this review, we discuss the recent findings on the regulation of Wnt components during aging, particularly in brain functioning, and the implications of Wnt signaling in age-related diseases.
Collapse
|
428
|
Distinct resting-state functional connections associated with episodic and visuospatial memory in older adults. Neuroimage 2017; 159:122-130. [PMID: 28756237 PMCID: PMC5678287 DOI: 10.1016/j.neuroimage.2017.07.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/14/2017] [Accepted: 07/24/2017] [Indexed: 12/20/2022] Open
Abstract
Episodic and spatial memory are commonly impaired in ageing and Alzheimer's disease. Volumetric and task-based functional magnetic resonance imaging (fMRI) studies suggest a preferential involvement of the medial temporal lobe (MTL), particularly the hippocampus, in episodic and spatial memory processing. The present study examined how these two memory types were related in terms of their associated resting-state functional architecture. 3T multiband resting state fMRI scans from 497 participants (60–82 years old) of the cross-sectional Whitehall II Imaging sub-study were analysed using an unbiased, data-driven network-modelling technique (FSLNets). Factor analysis was performed on the cognitive battery; the Hopkins Verbal Learning test and Rey-Osterreith Complex Figure test factors were used to assess verbal and visuospatial memory respectively. We present a map of the macroscopic functional connectome for the Whitehall II Imaging sub-study, comprising 58 functionally distinct nodes clustered into five major resting-state networks. Within this map we identified distinct functional connections associated with verbal and visuospatial memory. Functional anticorrelation between the hippocampal formation and the frontal pole was significantly associated with better verbal memory in an age-dependent manner. In contrast, hippocampus–motor and parietal–motor functional connections were associated with visuospatial memory independently of age. These relationships were not driven by grey matter volume and were unique to the respective memory domain. Our findings provide new insights into current models of brain-behaviour interactions, and suggest that while both episodic and visuospatial memory engage MTL nodes of the default mode network, the two memory domains differ in terms of the associated functional connections between the MTL and other resting-state brain networks. Episodic and visuospatial memory engaged a common medial temporal lobe substrate at rest. However, the resting-state functional connections of the MTL differed based on the memory demand. Visuospatial memory was associated with hippocampal-parietal and motorparietal interaction. Verbal memory was associated with hippocampus-frontal pole anticorrelation. Findings provide novel insights into resting-state brain-behaviour interactions in older adults.
Collapse
|
429
|
Chen Y, Wang W, Zhao X, Sha M, Liu Y, Zhang X, Ma J, Ni H, Ming D. Age-Related Decline in the Variation of Dynamic Functional Connectivity: A Resting State Analysis. Front Aging Neurosci 2017; 9:203. [PMID: 28713261 PMCID: PMC5491557 DOI: 10.3389/fnagi.2017.00203] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/06/2017] [Indexed: 11/23/2022] Open
Abstract
Normal aging is typically characterized by abnormal resting-state functional connectivity (FC), including decreasing connectivity within networks and increasing connectivity between networks, under the assumption that the FC over the scan time was stationary. In fact, the resting-state FC has been shown in recent years to vary over time even within minutes, thus showing the great potential of intrinsic interactions and organization of the brain. In this article, we assumed that the dynamic FC consisted of an intrinsic dynamic balance in the resting brain and was altered with increasing age. Two groups of individuals (N = 36, ages 20–25 for the young group; N = 32, ages 60–85 for the senior group) were recruited from the public data of the Nathan Kline Institute. Phase randomization was first used to examine the reliability of the dynamic FC. Next, the variation in the dynamic FC and the energy ratio of the dynamic FC fluctuations within a higher frequency band were calculated and further checked for differences between groups by non-parametric permutation tests. The results robustly showed modularization of the dynamic FC variation, which declined with aging; moreover, the FC variation of the inter-network connections, which mainly consisted of the frontal-parietal network-associated and occipital-associated connections, decreased. In addition, a higher energy ratio in the higher FC fluctuation frequency band was observed in the senior group, which indicated the frequency interactions in the FC fluctuations. These results highly supported the basis of abnormality and compensation in the aging brain and might provide new insights into both aging and relevant compensatory mechanisms.
Collapse
Affiliation(s)
- Yuanyuan Chen
- College of Microelectronics, Tianjin UniversityTianjin, China.,Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin UniversityTianjin, China
| | - Weiwei Wang
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin UniversityTianjin, China.,Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin UniversityTianjin, China
| | - Xin Zhao
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin UniversityTianjin, China.,Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin UniversityTianjin, China
| | - Miao Sha
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin UniversityTianjin, China.,Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin UniversityTianjin, China
| | - Ya'nan Liu
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin UniversityTianjin, China.,Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin UniversityTianjin, China
| | - Xiong Zhang
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin UniversityTianjin, China.,Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin UniversityTianjin, China
| | - Jianguo Ma
- College of Microelectronics, Tianjin UniversityTianjin, China
| | - Hongyan Ni
- Department of Radiology, Tianjin First Center HospitalTianjin, China
| | - Dong Ming
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin UniversityTianjin, China.,Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin UniversityTianjin, China
| |
Collapse
|
430
|
Exley C. Aluminum Should Now Be Considered a Primary Etiological Factor in Alzheimer's Disease. J Alzheimers Dis Rep 2017; 1:23-25. [PMID: 30480226 PMCID: PMC6159653 DOI: 10.3233/adr-170010] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In this paper, I have summarized the experimental and largely clinical evidence that implicates aluminum as a primary etiological factor in Alzheimer’s disease. The unequivocal neurotoxicity of aluminum must mean that when brain burdens of aluminum exceed toxic thresholds that it is inevitable that aluminum contributes toward disease. Aluminum acts as a catalyst for an earlier onset of Alzheimer’s disease in individuals with or without concomitant predispositions, genetic or otherwise. Alzheimer’s disease is not an inevitable consequence of aging in the absence of a brain burden of aluminum.
Collapse
Affiliation(s)
- Christopher Exley
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Staffordshire, UK
| |
Collapse
|
431
|
Sala-Llonch R, Idland AV, Borza T, Watne LO, Wyller TB, Brækhus A, Zetterberg H, Blennow K, Walhovd KB, Fjell AM. Inflammation, Amyloid, and Atrophy in The Aging Brain: Relationships with Longitudinal Changes in Cognition. J Alzheimers Dis 2017; 58:829-840. [DOI: 10.3233/jad-161146] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Roser Sala-Llonch
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Ane-Victoria Idland
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Tom Borza
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Centre for Old Age Psychiatric Research, Innlandet Hospital Trust, Ottestad, Norway
| | - Leiv Otto Watne
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Torgeir Bruun Wyller
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Anne Brækhus
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kristine Beate Walhovd
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Anders Martin Fjell
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| |
Collapse
|
432
|
|
433
|
Vemuri P, Knopman DS, Lesnick TG, Przybelski SA, Mielke MM, Graff-Radford J, Murray ME, Roberts RO, Vassilaki M, Lowe VJ, Machulda MM, Jones DT, Petersen RC, Jack CR. Evaluation of Amyloid Protective Factors and Alzheimer Disease Neurodegeneration Protective Factors in Elderly Individuals. JAMA Neurol 2017; 74:718-726. [PMID: 28418521 PMCID: PMC5649401 DOI: 10.1001/jamaneurol.2017.0244] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/28/2017] [Indexed: 01/11/2023]
Abstract
Importance While amyloid and neurodegeneration are viewed together as Alzheimer disease pathophysiology (ADP), the factors that influence amyloid and AD-pattern neurodegeneration may be considerably different. Protection from these ADP factors may be important for aging without significant ADP. Objective To identify the combined and independent protective factors for amyloid and AD-pattern neurodegeneration in a population-based sample and to test the hypothesis that "exceptional agers" with advanced ages do not have significant ADP because they have protective factors for amyloid and neurodegeneration. Design, Setting, and Participants This cohort study conducted a prospective analysis of 942 elderly individuals (70-≥90 years) with magnetic resonance imaging and Pittsburgh compound B-positron emission tomography scans enrolled in the Mayo Clinic Study of Aging, a longitudinal population-based study of cognitive aging in Olmsted County, Minnesota. We operationalized "exceptional aging" without ADP by considering individuals 85 years or older to be without significant evidence of ADP. Main Outcomes and Measures We evaluated predictors including demographics, APOE, intellectual enrichment, midlife risk factors (physical inactivity, obesity, smoking, diabetes, hypertension, and dyslipidemia), and the total number of late-life cardiac and metabolic conditions. We used multivariate linear regression models to identify the combined and independent protective factors for amyloid and AD-pattern neurodegeneration. Using a subsample of the cohort 85 years of age or older, we computed Cohen d-based effect size estimations to compare the quantitative strength of each predictor variable in their contribution with exceptional aging without ADP. Results The study participants included 423 (45%) women and the average age of participants was 79.7 (5.9) years. Apart from demographics and the APOE genotype, only midlife dyslipidemia was associated with amyloid deposition. Obesity, smoking, diabetes, hypertension, and cardiac and metabolic conditions, but not intellectual enrichment, were associated with greater AD-pattern neurodegeneration. In the 85 years or older cohort, the Cohen d results showed small to moderate effects (effect sizes > 0.2) of several variables except job score and midlife hypertension in predicting exceptional aging without ADP. Conclusions and Relevance The protective factors that influence amyloid and AD-pattern neurodegeneration are different. "Exceptional aging" without ADP may be possible with a greater number of protective factors across the lifespan but warrants further investigation.
Collapse
Affiliation(s)
- Prashanthi Vemuri
- Department of Radiology, Mayo Clinic–Rochester, Rochester, Minnesota
| | - David S. Knopman
- Department of Neurology, Mayo Clinic–Rochester, Rochester, Minnesota
| | - Timothy G. Lesnick
- Department of Health Sciences Research, Mayo Clinic–Rochester, Rochester, Minnesota
| | - Scott A. Przybelski
- Department of Health Sciences Research, Mayo Clinic–Rochester, Rochester, Minnesota
| | - Michelle M. Mielke
- Department of Health Sciences Research, Mayo Clinic–Rochester, Rochester, Minnesota
| | | | - Melissa E. Murray
- Department of Neuroscience, Mayo Clinic–Jacksonville, Jacksonville, Florida
| | - Rosebud O. Roberts
- Department of Health Sciences Research, Mayo Clinic–Rochester, Rochester, Minnesota
| | - Maria Vassilaki
- Department of Health Sciences Research, Mayo Clinic–Rochester, Rochester, Minnesota
| | - Val J. Lowe
- Department of Radiology, Mayo Clinic–Rochester, Rochester, Minnesota
| | - Mary M. Machulda
- Department of Psychology, Mayo Clinic–Rochester, Rochester, Minnesota
| | - David T. Jones
- Department of Neurology, Mayo Clinic–Rochester, Rochester, Minnesota
| | | | - Clifford R. Jack
- Department of Radiology, Mayo Clinic–Rochester, Rochester, Minnesota
| |
Collapse
|
434
|
Sebastjan A, Skrzek A, Ignasiak Z, Sławińska T. Age-related changes in hand dominance and functional asymmetry in older adults. PLoS One 2017; 12:e0177845. [PMID: 28558047 PMCID: PMC5448747 DOI: 10.1371/journal.pone.0177845] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/04/2017] [Indexed: 12/31/2022] Open
Abstract
The aim of the study was to investigate fine motor performance and ascertain age-related changes in laterality between the dominant and non-dominant hand. A representative sample of 635 adults (144 males and 491 females) aged 50 years and over completed a test battery MLS (Motor Performance Series) to assess a broad range of hand functions. Functional asymmetry was observed in all four motor tests (postural tremor, aiming, tapping, and inserting long pins). Significant differences between the dominant and non-dominant hand were obtained in both sexes across all age groups, except in the oldest female group (age >70) for the aiming (number of hits and errors) and postural tremor (number of errors) tasks. These differences in age-related changes may be attributed to hemispheric asymmetry, environmental factors, or use-dependent plasticity. Conflicting evidence in the literature warrants additional research to better explain age-related alterations of hand dominance and manual performance in old age.
Collapse
Affiliation(s)
- Anna Sebastjan
- Faculty of Physical Education, University School of Physical Education in Wroclaw, Wroclaw, Poland
| | - Anna Skrzek
- Faculty of Physiotherapy, University School of Physical Education in Wroclaw, Wroclaw, Poland
| | - Zofia Ignasiak
- Faculty of Physical Education, University School of Physical Education in Wroclaw, Wroclaw, Poland
| | - Teresa Sławińska
- Faculty of Physical Education, University School of Physical Education in Wroclaw, Wroclaw, Poland
| |
Collapse
|
435
|
Minakawa EN, Miyazaki K, Maruo K, Yagihara H, Fujita H, Wada K, Nagai Y. Chronic sleep fragmentation exacerbates amyloid β deposition in Alzheimer's disease model mice. Neurosci Lett 2017; 653:362-369. [PMID: 28554860 DOI: 10.1016/j.neulet.2017.05.054] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/20/2017] [Accepted: 05/24/2017] [Indexed: 10/19/2022]
Abstract
Sleep fragmentation due to intermittent nocturnal arousal resulting in a reduction of total sleep time and sleep efficiency is a common symptom among people with Alzheimer's disease (AD) and elderly people with normal cognitive function. Although epidemiological studies have indicated an association between sleep fragmentation and elevated risk of AD, a relevant disease model to elucidate the underlying mechanisms was lacking owing to technical limitations. Here we successfully induced chronic sleep fragmentation in AD model mice using a recently developed running-wheel-based device and demonstrate that chronic sleep fragmentation increases amyloid β deposition. Notably, the severity of amyloid β deposition exhibited a significant positive correlation with the extent of sleep fragmentation. These findings provide a useful contribution to the development of novel treatments that decelerate the disease course of AD in the patients, or decrease the risk of developing AD in healthy elderly people through the improvement of sleep quality.
Collapse
Affiliation(s)
- Eiko N Minakawa
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.
| | - Koyomi Miyazaki
- Physiologically Active Substances Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| | - Kazushi Maruo
- Department of Clinical Epidemiology, Translational Medical Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8551, Japan.
| | - Hiroko Yagihara
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.
| | - Hiromi Fujita
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.
| | - Keiji Wada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan; Translational Medical Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8551, Japan.
| | - Yoshitaka Nagai
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan; Department of Neurotherapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
436
|
Wegener S. [Not Available]. PRAXIS 2017; 106:477-481. [PMID: 28443708 DOI: 10.1024/1661-8157/a002661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Zusammenfassung. Unser Gehirn verändert sich mit zunehmendem Alter. Dieser physiologische Prozess kann mithilfe von Magnetresonanztomografie (MRT) beschrieben werden. Im Laufe des Lebens kommt es zu Atrophie (Schrumpfen von Hirnstrukturen) sowie Auftreten von charakteristischen MRT-Signal-Hyperintensitäten in der weissen Substanz. Eine besonders starke oder frühe Ausprägung dieser Veränderungen kann pathologisch sein. Die Abgrenzung zwischen gesundem Altern und Prozessen mit Krankheitswert ist dabei nicht einfach. In diesem Mini-Review sollen normale Alterungsprozesse des Gehirns beschrieben und krankhafte Veränderungen aufgezeigt werden, die weiterer Abklärung und Behandlung bedürfen.
Collapse
|
437
|
Dissociable diffusion MRI patterns of white matter microstructure and connectivity in Alzheimer's disease spectrum. Sci Rep 2017; 7:45131. [PMID: 28338052 PMCID: PMC5364534 DOI: 10.1038/srep45131] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/15/2017] [Indexed: 11/08/2022] Open
Abstract
Recent efforts using diffusion tensor imaging (DTI) have documented white matter (WM) alterations in Alzheimer's disease (AD). The full potential of whole-brain DTI, however, has not been fully exploited as studies have focused on individual microstructural indices independently. In patients with AD (n = 79), mild (MCI, n = 55) and subjective (SCI, n = 30) cognitive impairment, we applied linked independent component analysis (LICA) to model inter-subject variability across five complementary DTI measures (fractional anisotropy (FA), axial/radial/mean diffusivity, diffusion tensor mode), two crossing fiber measures estimated using a multi-compartment crossing-fiber model reflecting the volume fraction of the dominant (f1) and non-dominant (f2) diffusion orientation, and finally, connectivity density obtained from full-brain probabilistic tractography. The LICA component explaining the largest data variance was highly sensitive to disease severity (AD < MCI < SCI) and revealed widespread coordinated decreases in FA and f1 with increases in all diffusivity measures in AD. Additionally, it reflected regional coordinated decreases and increases in f2, mode and connectivity density, implicating bidirectional alterations of crossing fibers in the fornix, uncinate fasciculi, corpus callosum and major sensorimotor pathways. LICA yielded improved diagnostic classification performance compared to univariate region-of-interest features. Our results document coordinated WM microstructural and connectivity alterations in line with disease severity across the AD continuum.
Collapse
|
438
|
Modifications in resting state functional anticorrelation between default mode network and dorsal attention network: comparison among young adults, healthy elders and mild cognitive impairment patients. Brain Imaging Behav 2017; 12:127-141. [DOI: 10.1007/s11682-017-9686-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
439
|
Kuhn T, Schonfeld D, Sayegh P, Arentoft A, Jones JD, Hinkin CH, Bookheimer SY, Thames AD. The effects of HIV and aging on subcortical shape alterations: A 3D morphometric study. Hum Brain Mapp 2017; 38:1025-1037. [PMID: 27778407 PMCID: PMC5225033 DOI: 10.1002/hbm.23436] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/28/2016] [Accepted: 10/04/2016] [Indexed: 12/21/2022] Open
Abstract
Standard volumetric neuroimaging studies have demonstrated preferential atrophy of subcortical structures among individuals with HIV. However, to our knowledge, no study has investigated subcortical shape alterations secondary to HIV and whether advancing age impacts that relationship. This study employed 3D morphometry to examine the independent and interactive effects of HIV and age on shape differences in nucleus accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and thalamus in 81 participants ranging in age from 24 to 76 including 59 HIV+ individuals and 22 HIV-seronegative controls. T1-weighted MRI underwent a preprocessing pipeline followed by automated subcortical segmentation. Parametric statistical analyses were used to determine independent effects of HIV infection and age on volume and shape in each region of interest (ROI) and the interaction between age and HIV serostatus in predicting volume/shape in each ROI. Significant main effects for HIV were found in the shape of right caudate and nucleus accumbens, left pallidum, and hippocampus. Age was associated with differences in shape in left pallidum, right nucleus accumbens and putamen, and bilateral caudate, hippocampus, and thalamus. Of greatest interest, an age × HIV interaction effect was found in the shape of bilateral nucleus accumbens, amygdala, caudate, and thalamus as well as right pallidum and putamen such that increasing age in HIV participants was associated with greater shape alterations. Traditional volumemetric analyses revealed main effects for both HIV and age but no age × HIV interaction. These findings may suggest that age and HIV infection conferred additional deleterious effects on subcortical shape abnormalities beyond the independent effects of these factors. Hum Brain Mapp 38:1025-1037, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Taylor Kuhn
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los Angeles740 Westwood PlazaC8‐746Los AngelesCalifornia
- Veterans Association Greater Los Angeles Healthcare Center11301 Wilshire BlvdLos AngelesCalifornia
| | - Daniel Schonfeld
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los Angeles740 Westwood PlazaC8‐746Los AngelesCalifornia
- Veterans Association Greater Los Angeles Healthcare Center11301 Wilshire BlvdLos AngelesCalifornia
- Imaging Genetics CenterKeck School of Medicine of University of Southern California1975 Zonal AveLos AngelesCalifornia
| | - Philip Sayegh
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los Angeles740 Westwood PlazaC8‐746Los AngelesCalifornia
| | - Alyssa Arentoft
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los Angeles740 Westwood PlazaC8‐746Los AngelesCalifornia
| | - Jacob D. Jones
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los Angeles740 Westwood PlazaC8‐746Los AngelesCalifornia
- Veterans Association Greater Los Angeles Healthcare Center11301 Wilshire BlvdLos AngelesCalifornia
| | - Charles H. Hinkin
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los Angeles740 Westwood PlazaC8‐746Los AngelesCalifornia
- Veterans Association Greater Los Angeles Healthcare Center11301 Wilshire BlvdLos AngelesCalifornia
| | - Susan Y. Bookheimer
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los Angeles740 Westwood PlazaC8‐746Los AngelesCalifornia
- Department of Cognitive PsychologyTennenbaum Center for the Biology of Creativity, University of California Los Angeles635 Charles E Young Dr. S,260‐MLos AngelesCalifornia
| | - April D. Thames
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los Angeles740 Westwood PlazaC8‐746Los AngelesCalifornia
| |
Collapse
|
440
|
Effects of aging on functional and structural brain connectivity. Neuroimage 2017; 160:32-40. [PMID: 28159687 DOI: 10.1016/j.neuroimage.2017.01.077] [Citation(s) in RCA: 341] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/20/2017] [Accepted: 01/31/2017] [Indexed: 12/13/2022] Open
Abstract
Over the past decade there has been an enormous rise in the application of functional and structural connectivity approaches to explore the brain's intrinsic organization in healthy and clinical populations. The notion underlying the application of these approaches to study aging is that subtle age-related disruption of the brain's regional integrity and information flow across the brain, are expressed by age-related differences in functional and structural connectivity. In this review I will discus recent advances in our understanding of how age affects our brain's intrinsic organization, and I will share my perspective on potential challenges and future directions of the field.
Collapse
|
441
|
Palomera-Ávalos V, Griñán-Ferré C, Izquierdo V, Camins A, Sanfeliu C, Pallàs M. Metabolic Stress Induces Cognitive Disturbances and Inflammation in Aged Mice: Protective Role of Resveratrol. Rejuvenation Res 2017; 20:202-217. [PMID: 27998210 DOI: 10.1089/rej.2016.1885] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inflammation and oxidative stress (OS) are key points in age progression. Both processes impact negatively in cognition and in brain functions. Resveratrol (RV) has been postulated as a potent antioxidant natural compound, with rejuvenating properties. Inducing a metabolic stress by high-fat (HF) diet in aged C56/BL6 (24 months) led to cognitive disturbances compared with control age mated and with young mice. These changes were prevented by RV. Molecular determinations demonstrated a significant increase in some inflammatory parameters (TNF-α, Cxcl10, IL-1, IL-6, and Ccl3) in old mice, but slight changes in OS machinery. RV mainly induced the recovery of the metabolically stressed animals. The study of key markers involved in senescence and rejuvenation (mitochondrial biogenesis and Sirt1-AMPK-PGC1-α) demonstrated that RV is also able to modulate the changes in these cellular metabolic pathways. Moreover, changes of epigenetic marks (methylation and acetylation) that are depending on OS were demonstrated. On the whole, results showed the importance of integrative role of different cellular mechanisms in the deleterious effects of age in cognition and the beneficial role of RV. The work presented in this study showed a wide range of processes modified in old age and by metabolic stress, weighting the importance of each one and the role of RV as a possible strategy for fighting against.
Collapse
Affiliation(s)
- Veronica Palomera-Ávalos
- 1 Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona , Barcelona, Spain
| | - Christian Griñán-Ferré
- 1 Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona , Barcelona, Spain
| | - Vanesa Izquierdo
- 1 Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona , Barcelona, Spain
| | - Antonio Camins
- 1 Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona , Barcelona, Spain
| | - Coral Sanfeliu
- 2 Institut d'Investigacions Biomèdiques de Barcelona (IIBB) , CSIC, and IDIBAPS, Barcelona, Spain
| | - Mercè Pallàs
- 1 Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona , Barcelona, Spain
| |
Collapse
|
442
|
Mandyam CD, Schilling JM, Cui W, Egawa J, Niesman IR, Kellerhals SE, Staples MC, Busija AR, Risbrough VB, Posadas E, Grogman GC, Chang JW, Roth DM, Patel PM, Patel HH, Head BP. Neuron-Targeted Caveolin-1 Improves Molecular Signaling, Plasticity, and Behavior Dependent on the Hippocampus in Adult and Aged Mice. Biol Psychiatry 2017; 81:101-110. [PMID: 26592463 PMCID: PMC4826329 DOI: 10.1016/j.biopsych.2015.09.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 01/19/2023]
Abstract
BACKGROUND Studies in vitro demonstrate that neuronal membrane/lipid rafts (MLRs) establish cell polarity by clustering progrowth receptors and tethering cytoskeletal machinery necessary for neuronal sprouting. However, the effect of MLR and MLR-associated proteins on neuronal aging is unknown. METHODS Here, we assessed the impact of neuron-targeted overexpression of an MLR scaffold protein, caveolin-1 (Cav-1) (via a synapsin promoter, SynCav1), in the hippocampus in vivo in adult (6-month-old) and aged (20-month-old) mice on biochemical, morphologic, and behavioral changes. RESULTS SynCav1 resulted in increased expression of Cav-1, MLRs, and MLR-localization of Cav-1 and tropomyosin-related kinase B receptor independent of age and time post gene transfer. Cav-1 overexpression in adult mice enhanced dendritic arborization within the apical dendrites of hippocampal cornu ammonis 1 and granule cell neurons, effects that were also observed in aged mice, albeit to a lesser extent, indicating preserved impact of Cav-1 on structural plasticity of hippocampal neurons with age. Cav-1 overexpression enhanced contextual fear memory in adult and aged mice demonstrating improved hippocampal function. CONCLUSIONS Neuron-targeted overexpression of Cav-1 in the adult and aged hippocampus enhances functional MLRs with corresponding roles in cell signaling and protein trafficking. The resultant structural alterations in hippocampal neurons in vivo are associated with improvements in hippocampal-dependent learning and memory. Our findings suggest Cav-1 as a novel therapeutic strategy in disorders involving impaired hippocampal function.
Collapse
Affiliation(s)
- Chitra D. Mandyam
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD,Committee on the Neurobiology of Addictive Disorders, TSRI
| | - Jan M. Schilling
- Veterans Affairs San Diego Healthcare System,Department of Anesthesiology, UCSD
| | - Weihua Cui
- Veterans Affairs San Diego Healthcare System,Department of Anesthesiology, UCSD,Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University
| | - Junji Egawa
- Veterans Affairs San Diego Healthcare System,Department of Anesthesiology, UCSD
| | - Ingrid R. Niesman
- Department of Cellular and Molecular Medicine, UCSD, Sanford Consortium for Regenerative Medicine
| | - Sarah E. Kellerhals
- Veterans Affairs San Diego Healthcare System,Department of Anesthesiology, UCSD
| | | | - Anna R. Busija
- Veterans Affairs San Diego Healthcare System,Department of Anesthesiology, UCSD
| | | | - Edmund Posadas
- Veterans Affairs San Diego Healthcare System,Department of Anesthesiology, UCSD
| | - Grace C. Grogman
- Veterans Affairs San Diego Healthcare System,Department of Anesthesiology, UCSD
| | - Jamie W. Chang
- Veterans Affairs San Diego Healthcare System,Department of Anesthesiology, UCSD
| | - David M. Roth
- Veterans Affairs San Diego Healthcare System,Department of Anesthesiology, UCSD
| | - Piyush M. Patel
- Veterans Affairs San Diego Healthcare System,Department of Anesthesiology, UCSD
| | - Hemal H. Patel
- Veterans Affairs San Diego Healthcare System,Department of Anesthesiology, UCSD
| | - Brian P. Head
- Veterans Affairs San Diego Healthcare System,Department of Anesthesiology, UCSD,Corresponding Author: Brian P. Head, Department of Anesthesiology, University of California San Diego, VASDHS (9125), 3350 La Jolla Village Dr., San Diego, CA 92161, USA.
| |
Collapse
|
443
|
Siman-Tov T, Bosak N, Sprecher E, Paz R, Eran A, Aharon-Peretz J, Kahn I. Early Age-Related Functional Connectivity Decline in High-Order Cognitive Networks. Front Aging Neurosci 2017; 8:330. [PMID: 28119599 PMCID: PMC5223363 DOI: 10.3389/fnagi.2016.00330] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 12/19/2016] [Indexed: 12/15/2022] Open
Abstract
As the world ages, it becomes urgent to unravel the mechanisms underlying brain aging and find ways of intervening with them. While for decades cognitive aging has been related to localized brain changes, growing attention is now being paid to alterations in distributed brain networks. Functional connectivity magnetic resonance imaging (fcMRI) has become a particularly useful tool to explore large-scale brain networks; yet, the temporal course of connectivity lifetime changes has not been established. Here, an extensive cross-sectional sample (21-85 years old, N = 887) from a public fcMRI database was used to characterize adult lifespan connectivity dynamics within and between seven brain networks: the default mode, salience, dorsal attention, fronto-parietal control, auditory, visual and motor networks. The entire cohort was divided into young (21-40 years, mean ± SD: 25.5 ± 4.8, n = 543); middle-aged (41-60 years, 50.6 ± 5.4, n = 238); and old (61 years and above, 69.0 ± 6.3, n = 106) subgroups. Correlation matrices as well as a mixed model analysis of covariance indicated that within high-order cognitive networks a considerable connectivity decline is already evident by middle adulthood. In contrast, a motor network shows increased connectivity in middle adulthood and a subsequent decline. Additionally, alterations in inter-network interactions are noticeable primarily in the transition between young and middle adulthood. These results provide evidence that aging-related neural changes start early in adult life.
Collapse
Affiliation(s)
- Tali Siman-Tov
- Cognitive Neurology Institute, Rambam Health Care Campus Haifa, Israel
| | - Noam Bosak
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology Haifa, Israel
| | - Elliot Sprecher
- Laboratory of Clinical Neurophysiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of TechnologyHaifa, Israel; Department of Neurology, Rambam Health Care CampusHaifa, Israel
| | - Rotem Paz
- Cognitive Neurology Institute, Rambam Health Care Campus Haifa, Israel
| | - Ayelet Eran
- Department of Diagnostic Imaging, Rambam Health Care Campus Haifa, Israel
| | - Judith Aharon-Peretz
- Cognitive Neurology Institute, Rambam Health Care CampusHaifa, Israel; Department of Neurology, Rambam Health Care CampusHaifa, Israel
| | - Itamar Kahn
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology Haifa, Israel
| |
Collapse
|
444
|
Yagishita S, Suzuki S, Yoshikawa K, Iida K, Hirata A, Suzuki M, Takashima A, Maruyama K, Hirasawa A, Awaji T. Treatment of intermittent hypoxia increases phosphorylated tau in the hippocampus via biological processes common to aging. Mol Brain 2017; 10:2. [PMID: 28057021 PMCID: PMC5217192 DOI: 10.1186/s13041-016-0282-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/15/2016] [Indexed: 12/17/2022] Open
Abstract
Sleep-disordered breathing produces cognitive impairments, and is possibly associated with Alzheimer disease (AD). Intermittent hypoxia treatment (IHT), an experimental model for sleep-disordered breathing, results in cognitive impairments in animals via unknown mechanisms. Here, we exposed mice to IHT protocols, and performed biochemical analyses and microarray analyses regarding their hippocampal samples. In particular, we performed gene ontology (GO)-based microarray analysis to elucidate effects of IHT on hippocampal functioning, which were compared with the effects of various previously-reported experimental conditions on that (ref. Gene Expression Omnibus, The National Center for Biotechnology Information). Our microarray analyses revealed that IHT and aging shared alterations in some common GO, which were also observed with kainic acid treatment, Dicer ablation, or moderate glutamate excess. Mapping the altered genes using the Kyoto Encyclopedia of Genes and Genomes PATHWAY database indicated that IHT and aging affected several pathways including “MAPK signaling pathway”, “PI3K-Akt signaling pathway”, and “glutamatergic synapse”. Consistent with the gene analyses, in vivo analyses revealed that IHT increased phosphorylated tau, reflecting an imbalance of kinases and/or phosphatases, and reduced proteins relevant to glutamatergic synapses. In addition, IHT increased phosphorylated p70 S6 kinase, indicating involvement of the mammalian target of rapamycin signaling pathway. Furthermore, IHT mice demonstrated hyperactivity in Y-maze tests, which was also observed in AD models. We obtained important data or something from the massive amount of microarray data, and confirmed the validity by in vivo analyses: the IHT-induced cognitive impairment may be partially explained by the fact that IHT increases phosphorylated tau via biological processes common to aging. Moreover, as aging is a major risk factor for AD, IHT is a novel model for investigating the pathological processes contributing to AD onset.
Collapse
Affiliation(s)
- Sosuke Yagishita
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan. .,Present address: Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan.
| | - Seiya Suzuki
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan.,Faculty of Health and Medical Care, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1241, Japan
| | - Keisuke Yoshikawa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Keiko Iida
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ayako Hirata
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Masahiko Suzuki
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan.,Faculty of Health and Medical Care, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1241, Japan
| | - Akihiko Takashima
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 171-8588, Japan
| | - Kei Maruyama
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Akira Hirasawa
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Takeo Awaji
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| |
Collapse
|
445
|
Niraula A, Sheridan JF, Godbout JP. Microglia Priming with Aging and Stress. Neuropsychopharmacology 2017; 42:318-333. [PMID: 27604565 PMCID: PMC5143497 DOI: 10.1038/npp.2016.185] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 01/08/2023]
Abstract
The population of aged individuals is increasing worldwide and this has significant health and socio-economic implications. Clinical and experimental studies on aging have discovered myriad changes in the brain, including reduced neurogenesis, increased synaptic aberrations, higher metabolic stress, and augmented inflammation. In rodent models of aging, these alterations are associated with cognitive decline, neurobehavioral deficits, and increased reactivity to immune challenges. In rodents, caloric restriction and young blood-induced revitalization reverses the behavioral effects of aging. The increased inflammation in the aged brain is attributed, in part, to the resident population of microglia. For example, microglia of the aged brain are marked by dystrophic morphology, elevated expression of inflammatory markers, and diminished expression of neuroprotective factors. Importantly, the heightened inflammatory profile of microglia in aging is associated with a 'sensitized' or 'primed' phenotype. Mounting evidence points to a causal link between the primed profile of the aged brain and vulnerability to secondary insults, including infections and psychological stress. Conversely, psychological stress may also induce aging-like sensitization of microglia and increase reactivity to secondary challenges. This review delves into the characteristics of neuroinflammatory signaling and microglial sensitization in aging, its implications in psychological stress, and interventions that reverse aging-associated deficits.
Collapse
Affiliation(s)
- Anzela Niraula
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - John F Sheridan
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA,Division of Biosciences, The Ohio State University, College of Dentistry, Columbus, OH, USA
| | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA,Department of Neuroscience, The Ohio State University, 231 IBMR Bld, 460 Medical Center Drive Columbus, OH 43210, USA, Tel: +614 293 3456, Fax: +614 366 2097, E-mail:
| |
Collapse
|
446
|
Todd MA. Inflammation and Cognition in Older Adults: Evidence from Taiwan. BIODEMOGRAPHY AND SOCIAL BIOLOGY 2017; 63:309-323. [PMID: 29199872 PMCID: PMC9756785 DOI: 10.1080/19485565.2017.1403305] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Inflammation has been linked to clinical cognitive impairment, including Alzheimer's disease. Less is known, however, about the relationship between inflammation and normal, age-associated cognitive decline. An understanding of the determinants of all types of cognitive decline is important for improving quality of life in an aging world. This study investigated whether biomarkers of inflammation were associated with cognitive function and decline in older Taiwanese adults. Data were from the Taiwan Longitudinal Study of Aging and the Social Environment and Biomarkers of Aging Study. Inflammation was measured in 2000 and 2006 as C-reactive protein, interleukin-6, soluble e-selectin, soluble intercellular adhesion molecule-1, and white blood cell count. Cognition was assessed by 10 cognitive and memory tasks, measured in 2006, 2007, and 2011. Growth curve models were used to examine the relationship between inflammation and cognitive score over this time period. Higher levels of inflammation were associated with lower baseline cognitive scores, but not with longitudinal change in cognitive score. This study did not support a causal link between inflammation and cognitive decline among this older cohort. The observed cross-sectional relationship could reflect a causal relationship that arises earlier in life, or confounding; additional research across the life course is warranted.
Collapse
Affiliation(s)
- Megan A Todd
- a Columbia Aging Center , Columbia University , New York , New York , USA
| |
Collapse
|
447
|
Arshad M, Stanley JA, Raz N. Test-retest reliability and concurrent validity of in vivo myelin content indices: Myelin water fraction and calibrated T 1 w/T 2 w image ratio. Hum Brain Mapp 2016; 38:1780-1790. [PMID: 28009069 DOI: 10.1002/hbm.23481] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/06/2016] [Accepted: 11/21/2016] [Indexed: 11/09/2022] Open
Abstract
In an age-heterogeneous sample of healthy adults, we examined test-retest reliability (with and without participant repositioning) of two popular MRI methods of estimating myelin content: modeling the short spin-spin (T2 ) relaxation component of multi-echo imaging data and computing the ratio of T1 -weighted and T2 -weighted images (T1 w/T2 w). Taking the myelin water fraction (MWF) index of myelin content derived from the multi-component T2 relaxation data as a standard, we evaluate the concurrent and differential validity of T1 w/T2 w ratio images. The results revealed high reliability of MWF and T1 w/T2 w ratio. However, we found significant correlations of low to moderate magnitude between MWF and the T1 w/T2 w ratio in only two of six examined regions of the cerebral white matter. Notably, significant correlations of the same or greater magnitude were observed for T1 w/T2 w ratio and the intermediate T2 relaxation time constant, which is believed to reflect differences in the mobility of water between the intracellular and extracellular compartments. We conclude that although both methods are highly reliable and thus well-suited for longitudinal studies, T1 w/T2 w ratio has low criterion validity and may be not an optimal index of subcortical myelin content. Hum Brain Mapp 38:1780-1790, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Muzamil Arshad
- Department of Psychiatry and Behavioral Neuroscience, School of Medicine, Wayne State University, Detroit, Michigan.,Institute of Gerontology, Wayne State University, Detroit, Michigan
| | - Jeffrey A Stanley
- Department of Psychiatry and Behavioral Neuroscience, School of Medicine, Wayne State University, Detroit, Michigan
| | - Naftali Raz
- Institute of Gerontology, Wayne State University, Detroit, Michigan.,Department of Psychology, Wayne State University, Detroit, Michigan
| |
Collapse
|
448
|
Zhao Y, Raichle ME, Wen J, Benzinger TL, Fagan AM, Hassenstab J, Vlassenko AG, Luo J, Cairns NJ, Christensen JJ, Morris JC, Yablonskiy DA. In vivo detection of microstructural correlates of brain pathology in preclinical and early Alzheimer Disease with magnetic resonance imaging. Neuroimage 2016; 148:296-304. [PMID: 27989773 DOI: 10.1016/j.neuroimage.2016.12.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/08/2016] [Accepted: 12/10/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Alzheimer disease (AD) affects at least 5 million individuals in the USA alone stimulating an intense search for disease prevention and treatment therapies as well as for diagnostic techniques allowing early identification of AD during a long pre-symptomatic period that can be used for the initiation of prevention trials of disease-modifying therapies in asymptomatic individuals. METHODS Our approach to developing such techniques is based on the Gradient Echo Plural Contrast Imaging (GEPCI) technique that provides quantitative in vivo measurements of several brain-tissue-specific characteristics of the gradient echo MRI signal (GEPCI metrics) that depend on the integrity of brain tissue cellular structure. Preliminary data were obtained from 34 participants selected from the studies of aging and dementia at the Knight Alzheimer's Disease Research Center at Washington University in St. Louis. Cognitive status was operationalized with the Clinical Dementia Rating (CDR) scale. The participants, assessed as cognitively normal (CDR=0; n=23) or with mild AD dementia (CDR=0.5 or 1; n=11) underwent GEPCI MRI, a collection of cognitive performance tests and CSF amyloid (Aβ) biomarker Aβ42. A subset of 19 participants also underwent PET PiB studies to assess their brain Aβ burden. According to the Aβ status, cognitively normal participants were divided into normal (Aβ negative; n=13) and preclinical (Aβ positive; n=10) groups. RESULTS GEPCI quantitative measurements demonstrated significant differences between all the groups: normal and preclinical, normal and mild AD, and preclinical and mild AD. GEPCI quantitative metrics characterizing tissue cellular integrity in the hippocampus demonstrated much stronger correlations with psychometric tests than the hippocampal atrophy. Importantly, GEPCI-determined changes in the hippocampal tissue cellular integrity were detected even in the hippocampal areas not affected by the atrophy. Our studies also uncovered strong correlations between GEPCI brain tissue metrics and beta-amyloid (Aβ) burden defined by positron emission tomography (PET) - the current in vivo gold standard for detection of cortical Aβ, thus supporting GEPCI as a potential surrogate marker for Aβ imaging - a known biomarker of early AD. Remarkably, the data show significant correlations not only in the areas of high Aβ accumulation (e.g. precuneus) but also in some areas of medial temporal lobe (e.g. parahippocampal cortex), where Aβ accumulation is relatively low. CONCLUSION We have demonstrated that GEPCI provides a new approach for the in vivo evaluation of AD-related tissue pathology in the preclinical and early symptomatic stages of AD. Since MRI is a widely available technology, the GEPCI surrogate markers of AD pathology have a potential for improving the quality of AD diagnostic, and the evaluation of new disease-modifying therapies.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Marcus E Raichle
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jie Wen
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Tammie L Benzinger
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Anne M Fagan
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jason Hassenstab
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Andrei G Vlassenko
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jie Luo
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Nigel J Cairns
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jon J Christensen
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - John C Morris
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Dmitriy A Yablonskiy
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
449
|
Schättin A, Arner R, Gennaro F, de Bruin ED. Adaptations of Prefrontal Brain Activity, Executive Functions, and Gait in Healthy Elderly Following Exergame and Balance Training: A Randomized-Controlled Study. Front Aging Neurosci 2016; 8:278. [PMID: 27932975 PMCID: PMC5120107 DOI: 10.3389/fnagi.2016.00278] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022] Open
Abstract
During aging, the prefrontal cortex (PFC) undergoes age-dependent neuronal changes influencing cognitive and motor functions. Motor-learning interventions are hypothesized to ameliorate motor and cognitive deficits in older adults. Especially, video game-based physical exercise might have the potential to train motor in combination with cognitive abilities in older adults. The aim of this study was to compare conventional balance training with video game-based physical exercise, a so-called exergame, on the relative power (RP) of electroencephalographic (EEG) frequencies over the PFC, executive function (EF), and gait performance. Twenty-seven participants (mean age 79.2 ± 7.3 years) were randomly assigned to one of two groups. All participants completed 24 trainings including three times a 30 min session/week. The EEG measurements showed that theta RP significantly decreased in favor of the exergame group [L(14) = 6.23, p = 0.007]. Comparing pre- vs. post-test, EFs improved both within the exergame (working memory: z = -2.28, p = 0.021; divided attention auditory: z = -2.51, p = 0.009; divided attention visual: z = -2.06, p = 0.040; go/no-go: z = -2.55, p = 0.008; set-shifting: z = -2.90, p = 0.002) and within the balance group (set-shifting: z = -2.04, p = 0.042). Moreover, spatio-temporal gait parameters primarily improved within the exergame group under dual-task conditions (speed normal walking: z = -2.90, p = 0.002; speed fast walking: z = -2.97, p = 0.001; cadence normal walking: z = -2.97, p = 0.001; stride length fast walking: z = -2.69, p = 0.005) and within the balance group under single-task conditions (speed normal walking: z = -2.54, p = 0.009; speed fast walking: z = -1.98, p = 0.049; cadence normal walking: z = -2.79, p = 0.003). These results indicate that exergame training as well as balance training positively influence prefrontal cortex activity and/or function in varying proportion.
Collapse
Affiliation(s)
- Alexandra Schättin
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich Zurich, Switzerland
| | - Rendel Arner
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich Zurich, Switzerland
| | - Federico Gennaro
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich Zurich, Switzerland
| | - Eling D de Bruin
- Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich Zurich, Switzerland
| |
Collapse
|
450
|
Differential associations between systemic markers of disease and cortical thickness in healthy middle-aged and older adults. Neuroimage 2016; 146:19-27. [PMID: 27847345 DOI: 10.1016/j.neuroimage.2016.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 11/20/2022] Open
Abstract
Aside from cortical damage associated with age, cerebrovascular and neurodegenerative diseases, it's an outstanding question if factors of global health, including normal variation in blood markers of metabolic and systemic function, may also be associated with individual variation in brain structure. This cross-sectional study included 138 individuals between 40 to 86 years old who were physically healthy and cognitively intact. Eleven markers (total cholesterol, HDL, LDL, triglycerides, insulin, fasting glucose, glycated hemoglobin, creatinine, blood urea nitrogen, albumin, total protein) and five derived indicators (estimated glomerular filtration rate, creatinine clearance rate, insulin-resistance, average glucose, and cholesterol/HDL ratio) were obtained from blood sampling of all participants. T1-weighted 3T MRI scans were used to evaluate gray matter cortical thickness. The markers were clustered into five factors, and factor scores were related to cortical thickness by general linear model. Two factors, one linked to insulin/metabolic health and the other to kidney function (KFF) showed regionally selective associations with cortical thickness including lateral and medial temporal, temporoparietal, and superior parietal regions for both factors and frontoparietal regions for KFF. An association between the increasing cholesterol and greater thickness in frontoparietal and occipital areas was also noted. Associations persisted independently of age, presence of cardiovascular risk factors and ApoE gene status. These findings may provide information on distinct mechanisms of inter-individual cortical variation as well as factors contributing to trajectories of cortical thinning with advancing age.
Collapse
|