401
|
Abstract
Members of the transforming growth factor-beta (TGF-beta) family bind to type II and type I serine/threonine kinase receptors, which initiate intracellular signals through activation of Smad proteins. Receptor-regulated Smads (R-Smads) are anchored to the cell membrane by interaction with membrane-bound proteins, including Smad anchor for receptor activation (SARA). Upon ligand stimulation, R-Smads are phosphorylated by the receptors and form oligomeric complexes with common-partner Smads (Co-Smads). The oligomeric Smad complexes then translocate into the nucleus, where they regulate the transcription of target genes by direct binding to DNA, interaction with various DNA-binding proteins, and recruitment of transcriptional coactivators or corepressors. A third class of Smads, inhibitory Smads (I-Smads), inhibits the signals from the serine/threonine kinase receptors. Since the expression of I-Smads is induced by the TGF-beta superfamily proteins, Smads constitute an autoinhibitory signaling pathway. The functions of Smads are regulated by other signaling pathways, such as the MAP kinase pathway. Moreover, Smads interact with and modulate the functions of various transcription factors which are downstream targets of other signaling pathways. Loss of function of certain Smads is involved in tumorigenesis, e.g., pancreatic and colorectal cancers. Analyses by gene targeting revealed pivotal roles of Smads in early embryogenesis, angiogenesis, and immune functions in vivo.
Collapse
Affiliation(s)
- K Miyazono
- Department of Biochemistry, Cancer Institute of Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | | |
Collapse
|
402
|
Abstract
Transforming growth factor beta has many biological effects including the control of cellular growth, differentiation, migration and extracellular matrix production; these are all processes essential for normal development. Although mice first generated more than eight years ago, bearing mutations in TGF beta ligands demonstrated the importance of TGF beta-induced signal transduction pathways for development in mammals but complete functional analysis is still lacking. Here, the current state-of-the-art in mouse development is reviewed. As a basis for understanding function, the principle features of mouse development over the 21 days of pregnancy are described and illustrated, from fertilization of the egg to mid-gestation when organogenesis is largely complete. This is completed with a description of when and where TGF beta ligands, receptors and downstream signalling molecules are expressed as the mouse embryo develops. The functions of TGF beta in preimplantation development, in implantation of the embryos in the uterine wall and in postimplantation development are then described through a review of the literature on gene ablation of the ligands, receptors and downstream molecules, or the ectopic expression of dominant negative forms of the receptors in vivo, which interfere with normal signal transduction. The evidence confirms multifunctional roles at all stages of development.
Collapse
Affiliation(s)
- C L Mummery
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, 3584 CT Utrecht, The Netherlands.
| |
Collapse
|
403
|
Abstract
The TGFbeta signaling pathway is one of the most important mechanisms in the maintenance of epithelial homeostasis. Alterations leading to either the repression or enhancement of this pathway have been shown to affect cancer development. Although TGFbeta inhibits growth of normal epithelial cells, it is paradoxically overexpressed in many epithelial cancers. It has been postulated that TGFbeta acts as a tumor suppressor at the early stages of carcinogenesis, but overexpression of TGFbeta at late stages of carcinogenesis may be a critical factor for tumor invasion and metastasis. The detailed mechanisms regulating this functional switch of TGFbeta remain to be elucidated. The relevance of the TGFbeta signaling pathway to the development of primary epithelial tumors in man has been further substantiated by the discovery of mutations in TGFbeta receptors and in the downstream signaling mediators, the Smads. The epidermis is one of the major targeting tissues for TGFbeta signaling. Chemical carcinogenesis studies have revealed a paradoxical effect of TGFbeta on skin carcinogenesis: inhibition of papilloma formation but promotion of malignant conversion. In addition, deletion of the TGFbeta type II receptor accelerates skin carcinogenesis. This review focuses on our current understanding of the role of TGFbeta signaling in skin carcinogenesis.
Collapse
Affiliation(s)
- X J Wang
- Departments of Dermatology, Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
404
|
Abstract
There is substantial evidence to support the contention that the Smad portion of the TGF-beta signal transduction pathway provides an important tumor-suppressor function. Mutational loss of function of Smad pathway members have been associated with the development of human cancers and appear to be causative in selected rodent carcinogenesis models. TGF-beta also has multiple other actions that appear to be independent of the growth-inhibitory/tumor suppressor effects. The predominant effect of TGF-beta appears to be dependent on the context of the responding cell. Once transformation has occurred, TGF-beta effects may be detrimental and may actually promote tumor cell survival, invasion, and metastasis. Recent work suggests that these effects may involve TGF-beta regulation of COX-2 and other pathways that may contribute to tumor cell aggressiveness. In gaining a better understanding of the mechanisms by which TGF-beta may promote tumor progression, it is likely that new therapeutic strategies may be developed that preserve tumor-suppressor function of TGF-beta while inhibiting the tumor-promoting effects.
Collapse
Affiliation(s)
- C Roman
- Department of Surgery, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
405
|
Abstract
Transforming growth factor (TGF-beta) is a multifunctional polypeptide implicated in the regulation of a variety of cellular processes including growth, differentiation, apoptosis, adhesion, and motility. Abnormal activation or inhibition of these TGF-beta regulated processes is implicated in many diseases, including cancer. Cancers can develop through selective exploitation of defects in TGF-beta signaling that occur at several different levels in the pathway. The TGF-beta signal transduction cascade is initiated when TGF-beta binds to transmembrane receptors. The TGF-beta receptors then phosphorylate and activate Smad proteins, which transduce the signal from the cytoplasm to the nucleus. In the nucleus, Smads can bind directly to DNA and cooperate with other transcription factors to induce transcription of TGF-beta target genes. Mutations in target genes, Smads, or the TGF-beta receptor are associated with certain human cancers.
Collapse
Affiliation(s)
- J Rich
- Division of Neurology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
406
|
Flanders KC, Kim ES, Roberts AB. Immunohistochemical expression of Smads 1-6 in the 15-day gestation mouse embryo: signaling by BMPs and TGF-betas. Dev Dyn 2001; 220:141-54. [PMID: 11169847 DOI: 10.1002/1097-0177(2000)9999:9999<::aid-dvdy1096>3.0.co;2-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The eight mammalian Smad proteins mediate cellular signaling from members of the transforming growth factor-beta (TGF-beta), bone morphogenetic protein (BMP), and activin families. Smads 1, 5, and 8 transmit signals from BMPs, while Smads 2 and 3 transmit signals from TGF-betas and activin. Smad 4 is a common mediator of both pathways, while Smads 6 and 7 inhibit signaling. Signal transduction involves translocation of Smad complexes to the nucleus and subsequent gene activation. Little is known about the expression of endogenous Smad proteins during development. We identified commercially available Smad antibodies that specifically recognize a unique Smad protein and are suitable for immunohistochemistry. Here we compare the localization of Smads 1, 2, 3, 4, 5, and 6 in tissues of the 15-day gestation mouse embryo. Immunoreactive Smad proteins are seen in many tissues with differences in the localization being dependent upon the cell type. All tissues express Smad 4 and at least one each of the BMP-specific and TGF-beta-specific Smads, while expression of Smad 6 is more restricted. Differences are observed in the nuclear versus cytoplasmic localization among the Smads in different cell types or tissues, suggesting selective activation of Smads during this stage of development.
Collapse
Affiliation(s)
- K C Flanders
- Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, Bethesda, MD 20892-5055, USA.
| | | | | |
Collapse
|
407
|
He W, Cao T, Smith DA, Myers TE, Wang XJ. Smads mediate signaling of the TGFbeta superfamily in normal keratinocytes but are lost during skin chemical carcinogenesis. Oncogene 2001; 20:471-83. [PMID: 11313978 DOI: 10.1038/sj.onc.1204117] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2000] [Revised: 11/01/2000] [Accepted: 11/16/2000] [Indexed: 12/13/2022]
Abstract
The Smads are the signaling mediators of the TGFbeta superfamily. In the present study, we examined Smad expression in mouse epidermis and chemically-induced skin tumors. Mutations in Smad2 and -4 genes were also screened. Transcripts of Smad1 through -5 were constantly expressed in the epidermis regardless of changes in TGFbeta signaling, state of differentiation and stages of carcinogenesis. Smad7 transcripts were barely detectable in keratinocytes, but were induced by TGFbeta1 treatment and in chemically-induced skin tumors. At the protein level, Smad1 was detected throughout the epidermis, whereas Smad2 through -5 exhibited greater levels in suprabasal layers than basal keratinocytes. In cultured keratinocytes, Smad2, -3 and -4 underwent nuclear translocation upon TGFbeta1 treatment. Furthermore, nuclear translocation of Smads correlated with decreased BrdU labeling in proliferative keratinocytes. Although no mutations were detected in the Smad2 and -4 genes in tumors, proteins of Smad1 through -5 were partially or completely lost in carcinomas. These data document that Smads are expressed at high levels in the epidermis and mediate signaling of the TGFbeta superfamily. During skin carcinogenesis, loss of Smad1 through -5 and overexpression of Smad7 may contribute to the loss of growth inhibition mediated by TGFbeta superfamily members, thus resulting in tumor progression.
Collapse
Affiliation(s)
- W He
- Department of Dermatology, Baylor College of Medicine, Houston, Texas, TX 77030, USA
| | | | | | | | | |
Collapse
|
408
|
Kumar A, Novoselov V, Celeste AJ, Wolfman NM, ten Dijke P, Kuehn MR. Nodal signaling uses activin and transforming growth factor-beta receptor-regulated Smads. J Biol Chem 2001; 276:656-61. [PMID: 11024047 DOI: 10.1074/jbc.m004649200] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nodal, a member of the transforming growth factor beta (TGF-beta) superfamily, is implicated in many events critical to the early vertebrate embryo, including mesoderm formation, anterior patterning, and left-right axis specification. Here we define the intracellular signaling pathway induced by recombinant nodal protein treatment of P19 embryonal carcinoma cells. Nodal signaling activates pAR3-Lux, a luciferase reporter previously shown to respond specifically to activin and TGF-beta. However, nodal is unable to induce pTlx2-Lux, a reporter specifically responsive to bone morphogenetic proteins. We also demonstrate that nodal induces p(CAGA)(12), a reporter previously shown to be specifically activated by Smad3. Expression of a dominant negative Smad2 significantly reduces the level of luciferase reporter activity induced by nodal treatment. Finally, we show that nodal signaling rapidly leads to the phosphorylation of Smad2. These results provide the first direct biochemical evidence that nodal signaling is mediated by both activin-TGF-beta pathway Smads, Smad2 and Smad3. We also show here that the extracellular cripto protein is required for nodal signaling, making it distinct from activin or TGF-beta signaling.
Collapse
Affiliation(s)
- A Kumar
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
409
|
Abstract
Transforming growth factor-beta is believed to play a dual role in carcinogenesis. Through its ability to inhibit cellular proliferation it suppresses tumor development in its early stages, but in the course of tumor progression malignant cells often acquire resistance to growth inhibition by transforming growth factor-beta and themselves secrete large amounts of this cytokine. Transforming growth factor-beta furthers malignant progression in two ways: for one, it acts on nontransformed cells present in the tumor mass to suppress antitumor immune responses and to augment angiogenesis. Secondly, it promotes invasion and the formation of metastases in a cell-autonomous manner that requires transforming growth factor-beta signaling activity, albeit at reduced levels, to be present in the tumor cells themselves.
Collapse
Affiliation(s)
- R Wieser
- Institut für Medizinische Biologie der Universität Wien, Wien, Austria.
| |
Collapse
|
410
|
Rooke HM, Crosier KE. The smad proteins and TGFβ signalling: uncovering a pathway critical in cancer. Pathology 2001. [DOI: 10.1080/00313020123383] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
411
|
Abstract
SUMMARY The large transforming growth factor-beta (TGFbeta) superfamily of secreted proteins regulate the growth, development and differentiation of cells in diverse organisms, including nematode worms, flies, mice and humans. Signals are initiated upon binding of TGFbeta superfamily members to cell-surface serine/threonine kinase receptors and are then propagated by the intracellular mediators known as Smads. Activation of Smads results in their translocation from the cytoplasm into the nucleus, where they activate or repress transcription together with transcription factors so as to regulate target gene expression. Most Smads consist of two conserved domains. Mad homology (MH) domains I and 2, which are separated by a non-conserved linker region. These domains lack enzymatic activity and, instead, Smads mediate their effects through protein-protein and protein-DNA interactions. Targeted disruption of Smad genes in mice has revealed their importance in embryonic development, and a tumor-suppressor role for Smads in human cancers has been described. Smads therefore play an essential role in mediating TGFbeta-superfamily signals in development and disease.
Collapse
Affiliation(s)
- L Attisano
- Department of Anatomy and Cell Biology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| | | |
Collapse
|
412
|
Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME, Arteaga CL, Moses HL. Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 2001; 12:27-36. [PMID: 11160820 PMCID: PMC30565 DOI: 10.1091/mbc.12.1.27] [Citation(s) in RCA: 814] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2000] [Revised: 09/06/2000] [Accepted: 11/07/2000] [Indexed: 12/21/2022] Open
Abstract
Transforming growth factor-beta1 (TGF-beta) can be tumor suppressive, but it can also enhance tumor progression by stimulating the complex process of epithelial-to-mesenchymal transdifferentiaion (EMT). The signaling pathway(s) that regulate EMT in response to TGF-beta are not well understood. We demonstrate the acquisition of a fibroblastoid morphology, increased N-cadherin expression, loss of junctional E-cadherin localization, and increased cellular motility as markers for TGF-beta-induced EMT. The expression of a dominant-negative Smad3 or the expression of Smad7 to levels that block growth inhibition and transcriptional responses to TGF-beta do not inhibit mesenchymal differentiation of mammary epithelial cells. In contrast, we show that TGF-beta rapidly activates RhoA in epithelial cells, and that blocking RhoA or its downstream target p160(ROCK), by the expression of dominant-negative mutants, inhibited TGF-beta-mediated EMT. The data suggest that TGF-beta rapidly activates RhoA-dependent signaling pathways to induce stress fiber formation and mesenchymal characteristics.
Collapse
Affiliation(s)
- N A Bhowmick
- Vanderbilt-Ingram Cancer Center, Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
413
|
Abstract
The members of the Smad protein family are intracellular mediators of transforming growth factor beta (TGF-beta) signaling. Smad1 transduces bone morphogenetic protein signals, inducing formation of ventral mesoderm in Xenopus embryos, whereas Smad2 transduces activin/TGF-beta signals, generating dorsal mesoderm. Calmodulin directly binds to many Smads and was shown to down-regulate Smad2 activity in a cell culture system (Zimmerman, C. M., Kariapper, M. S. T., and Mathews, L. S. (1997) J. Biol. Chem. 273, 677-680). Here, we extend those data and demonstrate that calmodulin alters Smad signaling in living embryos, increasing Smad1 activity while inhibiting Smad2 function. To characterize this regulation, we undertook a structure-function analysis and found that calmodulin binds to two distinct and conserved regions in both Smad1 and Smad2. Receptor tyrosine kinase signaling also modifies Smad activity (Kretzschmar, M., Doody, J., and Massagué, J. (1997) Nature 389, 618-622; Kretzschmar, M., Doody, J., Timokhina, I., and Massagué, J. (1999) Genes Dev. 13, 804-816; de Caestecker, M. P., Parks, W. T., Frank, C. J., Castagnino, P., Bottaro, D. P., Roberts, A. B., and Lechleider, R. J. (1998) Genes Dev. 12, 1587-1592). We show that calmodulin binding to Smads inhibits subsequent Erk2-dependent phosphorylation of Smads and vice versa. These observations suggest the presence of a cross-talk between three major signaling cascades as follows: Ca(2+)/calmodulin, receptor tyrosine kinase, and TGF-beta pathways.
Collapse
Affiliation(s)
- A Scherer
- Center for Developmental Biology, Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9133, USA
| | | |
Collapse
|
414
|
Petritsch C, Beug H, Balmain A, Oft M. TGF-beta inhibits p70 S6 kinase via protein phosphatase 2A to induce G(1) arrest. Genes Dev 2000; 14:3093-101. [PMID: 11124802 PMCID: PMC317138 DOI: 10.1101/gad.854200] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
On TGF-beta binding, the TGF-beta receptor directly phosphorylates and activates the transcription factors Smad2/3, leading to G(1) arrest. Here, we present evidence for a second, parallel, TGF-beta-dependent pathway for cell cycle arrest, achieved via inhibition of p70(s6k). TGF-beta induces association of its receptor with protein phosphatase-2A (PP2A)-Balpha. Concomitantly, three PP2A-subunits, Balpha, Abeta, and Calpha, associate with p70(s6k), leading to its dephosphorylation and inactivation. Although either pathway is sufficient to induce G(1) arrest, abrogation of both, the inhibition of p70(s6k), and transcription through Smad proteins is required for release of epithelial cells from TGF-beta-induced G(1) arrest. TGF-beta thereby modulates the translational and posttranscriptional control of cell cycle progression.
Collapse
Affiliation(s)
- C Petritsch
- IMP, Research Institute for Molecular Pathology, A-1030 Vienna, Austria
| | | | | | | |
Collapse
|
415
|
Abstract
The development of colorectal cancer has been viewed as an ordered process in which three main phases can be identified: initiation, promotion and progression. There is definite proof that stable alterations of the structure or sequence of DNA (mutations) represent the initiating event; these are followed by an uncontrolled expansion of the neoplastic clones which characterizes tumoural growth. Several classes of genes have been identified foncogenes, tumour suppressor genes and "mutator" genes) the alterations of which are important in the initiation as well as in the promotion and progression of tumours. Colorectal cancer, therefore, results from a series of genetic changes which lead to the progressive and irreversible loss of normal control of cell growth and differentiation. Available evidence is consistent with the hypothesis that there are several molecular pathways underlying the passage from normal mucosa to colorectal carcinoma, thus explaining the existence of intestinal tumours with a different biological nature, which may represent specific targets for prevention and cure. Well-defined molecular pathways have been identified for: A) sporadic colorectal cancer ("Loss of heterozygosity pathway"); B) familial adenomatous polyposis and related polyposis syndromes; C) hereditary non-polyposis colorectal cancer ("mutator genes/microsatellite instability pathway"); D) cancer developing in inflammatory bowel diseases; E) familial colorectal cancer. Thus, there is consistent and considerable evidence suggesting the existence of several biological pathways leading to the same phenotypical expression (i.e., colorectal cancer), and it is likely that additional pathways will be clarified in the future. From a practical point of view, tumours with a diverse biology might offer different and more effective preventive and curative approaches.
Collapse
Affiliation(s)
- M Ponz de Leon
- Department of Internal Medicine, University of Modena, Italy.
| | | |
Collapse
|
416
|
Dünker N, Krieglstein K. Targeted mutations of transforming growth factor-beta genes reveal important roles in mouse development and adult homeostasis. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6982-8. [PMID: 11106407 DOI: 10.1046/j.1432-1327.2000.01825.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transforming growth factors-beta (TGF-beta) are multifunctional molecules with profound biological effects in many developmental processes including regulation of cell proliferation, differentiation, cell adhesion, skeletal development, haematopoiesis, inflammatory responses, and wound healing. To learn about the role of TGF-beta in vivo, phenotypes of targeted mutations of molecules within the TGF-beta signalling pathway, TGF-beta1, -beta2, -beta3, TGF-beta receptor (TbetaR-II) and the signalling molecules SMAD2, SMAD3 and SMAD4, are discussed in this review. The three individual TGF-beta mutants show distinct and only partially overlapping phenotypes. In mice, targeted disruption of the TGF-beta1 gene results in diffuse and lethal inflammation about 3 weeks after birth, suggesting a prominent role of TGF-beta in the regulation of immune cell proliferation and extravasation into tissues. However, just half of the TGF-beta1 (-/-) conceptuses actually reach partuition due to defective haematopoiesis and endothelial differentiation. Targeted disruption of both TGF-beta2 and TGF-beta3 genes results in perinatal lethality. TGF-beta2 null mice exhibit a broad range of developmental defects, including cardiac, lung, craniofacial, limb, eye, ear and urogenital defects, whereas TGF-beta3 gene ablation results exclusively in defective palatogenesis and delayed pulmonary development. The TbetaR-II null phenotype closely resembles that of TGF-beta1 (-/-) conceptuses, which die in utero by E10.5. Loss of SMAD2 or SMAD4 results in related phenotypes: the mutants fail to form an organized egg cylinder, lack mesoderm required for gastrulation and die prior to E8.5. Together, gene ablation within the TGF-beta signalling pathway supports the notion of a prominent role of TGF-beta during development.
Collapse
Affiliation(s)
- N Dünker
- University of Saarland, Department of Anatomy, Homburg/Saar, Germany
| | | |
Collapse
|
417
|
Itoh S, Itoh F, Goumans MJ, Ten Dijke P. Signaling of transforming growth factor-beta family members through Smad proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6954-67. [PMID: 11106403 DOI: 10.1046/j.1432-1327.2000.01828.x] [Citation(s) in RCA: 402] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Smads are pivotal intracellular nuclear effectors of transforming growth factor-beta (TGF-beta) family members. Ligand-induced activation of TGF-beta family receptors with intrinsic serine/threonine kinase activity trigger phosphorylation of receptor-regulated Smads (R-Smads), whereas Smad2 and Smad3 are phosphorylated by TGF-beta, and activin type I receptors, Smad1, Smad5 and Smad8, act downstream of BMP type I receptors. Activated R-Smads form heteromeric complexes with common-partner Smads (Co-Smads), e.g. Smad4, which translocate efficiently to the nucleus, where they regulate, in co-operation with other transcription factors, coactivators and corepressors, the transcription of target genes. Inhibitory Smads act in most cases in an opposite manner from R- and Co-Smads. Like other components in the TGF-beta family signaling cascade, Smad activity is intricately regulated. The multifunctional and context dependency of TGF-beta family responses are reflected in the function of Smads as signal integrators. Certain Smads are somatically mutated at high frequency in particular types of human cancers. Gene ablation of Smads in the mouse has revealed their critical roles during embryonic development. Here we review the latest advances in our understanding of the Smad mechanism of action and their in vivo functions.
Collapse
Affiliation(s)
- S Itoh
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
418
|
Werner F, Jain MK, Feinberg MW, Sibinga NE, Pellacani A, Wiesel P, Chin MT, Topper JN, Perrella MA, Lee ME. Transforming growth factor-beta 1 inhibition of macrophage activation is mediated via Smad3. J Biol Chem 2000; 275:36653-8. [PMID: 10973958 DOI: 10.1074/jbc.m004536200] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Activated macrophages are critical cellular participants in inflammatory disease states. Transforming growth factor (TGF)-beta1 is a growth factor with pleiotropic effects including inhibition of immune cell activation. Although the pathway of gene activation by TGF-beta1 via Smad proteins has recently been elucidated, suppression of gene expression by TGF-beta1 remains poorly understood. We found that of Smad1-Smad7, Smad3 alone was able to inhibit expression of markers of macrophage activation (inducible nitric-oxide synthase and matrix metalloproteinase-12) following lipopolysaccharide treatment in gene reporter assays. Transient and constitutive overexpression of a dominant negative Smad3 opposed the inhibitory effect of TGF-beta1. Domain swapping experiments suggest that both the Smad MH-1 and MH-2 domains are required for inhibition. Mutation of a critical amino acid residue required for DNA binding in the MH-1 of Smad3 (R74A) resulted in the loss of inhibition. Transient overexpression of p300, an interactor of the Smad MH-2 domain, partially alleviated the inhibition by TGF-beta1/Smad3, suggesting that inhibition of gene expression may be due to increased competition for limiting amounts of this coactivator. Our results have implications for the understanding of gene suppression by TGF-beta1 and for the regulation of activated macrophages by TGF-beta1.
Collapse
Affiliation(s)
- F Werner
- Program of Developmental Cardiovascular Biology, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
419
|
Yamamura Y, Hua X, Bergelson S, Lodish HF. Critical role of Smads and AP-1 complex in transforming growth factor-beta -dependent apoptosis. J Biol Chem 2000; 275:36295-302. [PMID: 10942775 DOI: 10.1074/jbc.m006023200] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor-beta1 (TGF-beta1) induces not only cell growth inhibition but also apoptosis in hepatocytes, myeloid cells, and epithelial cells. Although Smad proteins are identified as key signal transducers in TGF-beta1-dependent growth inhibition, their roles in the induction of apoptosis are unclear. We show here that both Smad proteins and AP-1 complex are involved in TGF-beta1 signaling for apoptosis. Overexpression of a dominant-negative Smad3 mutant or Smad7, both of which impair Smad-mediated signal transduction, inhibits TGF-beta1-dependent apoptosis. Only the JunD. FosB form of the AP-1 complex is markedly activated during TGF-beta1-dependent apoptosis. FosB substantially enhances Smad3. Smad4-dependent transcription, and dominant-negative FosB blocks TGF-beta1-dependent apoptosis but not growth inhibition. Expression of JunD.FosB enhances induction of apoptosis by TGF-beta1. Moreover, JunD.FosB binds to the 12-O-tetradecanoyl-13-acetate-responsive gene promoter element and recruits Smad3.Smad4 to form a multicomponent complex. These results suggest that Smad proteins and AP-1 complex synergize to mediate TGF-beta1-dependent apoptosis.
Collapse
Affiliation(s)
- Y Yamamura
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA.
| | | | | | | |
Collapse
|
420
|
Wicks SJ, Lui S, Abdel-Wahab N, Mason RM, Chantry A. Inactivation of smad-transforming growth factor beta signaling by Ca(2+)-calmodulin-dependent protein kinase II. Mol Cell Biol 2000; 20:8103-11. [PMID: 11027280 PMCID: PMC86420 DOI: 10.1128/mcb.20.21.8103-8111.2000] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Members of the transforming growth factor beta (TGF-beta) family transduce signals through Smad proteins. Smad signaling can be regulated by the Ras/Erk/mitogen-activated protein pathway in response to receptor tyrosine kinase activation and the gamma interferon pathway and also by the functional interaction of Smad2 with Ca(2+)-calmodulin. Here we report that Smad-TGF-beta-dependent transcriptional responses are prevented by expression of a constitutively activated Ca(2+)-calmodulin-dependent protein kinase II (Cam kinase II). Smad2 is a target substrate for Cam kinase II in vitro at serine-110, -240, and -260. Cam kinase II induces in vivo phosphorylation of Smad2 and Smad4 and, to a lesser extent, Smad3. A phosphopeptide antiserum raised against Smad2 phosphoserine-240 reacted with Smad2 in vivo when coexpressed with Cam kinase II and by activation of the platelet-derived growth factor receptor, the epidermal growth factor receptor, HER2 (c-erbB2), and the TGF-beta receptor. Furthermore, Cam kinase II blocked nuclear accumulation of a Smad2 and induced Smad2-Smad4 hetero-oligomerization independently of TGF-beta receptor activation, while preventing TGF-beta-dependent Smad2-Smad3 interactions. These findings provide a novel cross-talk mechanism by which Ca(2+)-dependent kinases activated downstream of multiple growth factor receptors antagonize cell responses to TGF-beta.
Collapse
Affiliation(s)
- S J Wicks
- Department of Cancer Medicine, Division of Medicine, Imperial College School of Medicine, Hammersmith Campus, London W12 ONN, United Kingdom
| | | | | | | | | |
Collapse
|
421
|
Affiliation(s)
- J Massagué
- Cell Biology Program, Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | |
Collapse
|
422
|
Feng XH, Lin X, Derynck R. Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15(Ink4B) transcription in response to TGF-beta. EMBO J 2000; 19:5178-93. [PMID: 11013220 PMCID: PMC302105 DOI: 10.1093/emboj/19.19.5178] [Citation(s) in RCA: 318] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) arrests growth of epithelial cells by inducing the transcription of p15(Ink4B), a cyclin-dependent kinase inhibitor. In this study, we demonstrate that p15(Ink4B) induction was mediated by a TGF-beta-induced complex of Smad2, Smad3, Smad4 and Sp1. Mutations in the Sp1- or Smad-binding sequences decreased or abolished the TGF-beta responsiveness of the p15(Ink4B) promoter. Interference with, or deficiency in, Smad2, Smad3 or Smad4 functions also reduced or abolished the TGF-beta-dependent p15(Ink4B) induction, whereas the absence of Sp1 reduced the basal and TGF-beta-induced p15(Ink4B) transcription. In the nucleoprotein complex, Smad2 interacted through its C-domain with Sp1 and enhanced the DNA binding and transcriptional activity of Sp1. Smad3 interacted indirectly with Sp1 through its association with Smad2 and/or Smad4, and bound directly to the p15(Ink4B) promoter. Finally, Smad4 interacted through its N-domain with Sp1. Our data demonstrate the physical interactions and functional cooperativity of Sp1 with a complex of Smad2, Smad3 and Smad4 in the induction of the p15(Ink4B) gene. These findings explain the tumor suppressor roles of Smad2 and Smad4 in growth arrest signaling by TGF-beta.
Collapse
Affiliation(s)
- X H Feng
- Departments of Growth and Development and Anatomy, and Programs in Cell Biology and Developmental Biology, University of California, San Francisco, CA 94143-0640, USA.
| | | | | |
Collapse
|
423
|
Niehrs C, Dosch R, Onichtchouk D. Embryonic patterning of Xenopus mesoderm by Bmp-4. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2000:165-90. [PMID: 10943310 DOI: 10.1007/978-3-662-04264-9_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- C Niehrs
- Division of Molecular Embryology, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | |
Collapse
|
424
|
Affiliation(s)
- L F Parada
- Center for Developmental Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., 75390-9133, Dallas, TX, USA.
| |
Collapse
|
425
|
Nakao A, Miike S, Hatano M, Okumura K, Tokuhisa T, Ra C, Iwamoto I. Blockade of transforming growth factor beta/Smad signaling in T cells by overexpression of Smad7 enhances antigen-induced airway inflammation and airway reactivity. J Exp Med 2000; 192:151-8. [PMID: 10899902 PMCID: PMC2193250 DOI: 10.1084/jem.192.2.151] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transforming growth factor (TGF)-beta has been implicated in immunosuppression. However, it remains obscure whether regulation of T cells by TGF-beta contributes to the immunosuppression in vivo. To address this issue, we developed transgenic mice expressing Smad7, an intracellular antagonist of TGF-beta/Smad signaling, selectively in mature T cells using a plasmid construct coding a promoter element (the distal lck promoter) that directs high expression in peripheral T cells. Peripheral T cells were not growth inhibited by TGF-beta in Smad7 transgenic mice. Although Smad7 transgenic mice did not spontaneously show a specific phenotype, antigen-induced airway inflammation and airway reactivity were enhanced in Smad7 transgenic mice associated with high production of both T helper cell type 1 (Th1) and Th2 cytokines. Thus, blockade of TGF-beta/Smad signaling in mature T cells by expression of Smad7 enhanced airway inflammation and airway reactivity, suggesting that regulation of T cells by TGF-beta was crucial for negative regulation of the inflammatory (immune) response. Our findings also implicated TGF-beta/Smad signaling in mature T cells as a regulatory component of allergic asthma.
Collapse
Affiliation(s)
- A Nakao
- Allergy Research Center, Juntendo University, School of Medicine, Tokyo 113-8421, Japan.
| | | | | | | | | | | | | |
Collapse
|
426
|
Tremblay KD, Hoodless PA, Bikoff EK, Robertson EJ. Formation of the definitive endoderm in mouse is a Smad2-dependent process. Development 2000; 127:3079-90. [PMID: 10862745 DOI: 10.1242/dev.127.14.3079] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
TGFbeta growth factors specify cell fate and establish the body plan during early vertebrate development. Diverse cellular responses are elicited via interactions with specific cell surface receptor kinases that in turn activate Smad effector proteins. Smad2-dependent signals arising in the extraembryonic tissues of early mouse embryos serve to restrict the site of primitive streak formation and establish anteroposterior identity in the epiblast. Here we have generated chimeric embryos using lacZ-marked Smad2-deficient ES cells. Smad2 mutant cells extensively colonize ectodermal and mesodermal populations without disturbing normal development, but are not recruited into the definitive endoderm lineage during gastrulation. These experiments provide the first evidence that TGFbeta signaling pathways are required for specification of the definitive endoderm lineage in mammals and identify Smad2 as a key mediator that directs epiblast derivatives towards an endodermal as opposed to a mesodermal fate. In largely Smad2-deficient chimeras, asymmetric nodal gene expression is maintained and expression of pitx2, a nodal target, is also unaffected. These results strongly suggest that other Smad(s) act downstream of Nodal signals in mesodermal populations. We found Smad2 and Smad3 transcripts both broadly expressed in derivatives of the epiblast. However, Smad2 and not Smad3 mRNA is expressed in the visceral endoderm, potentially explaining why the primary defect in Smad2 mutant embryos originates in this cell population.
Collapse
Affiliation(s)
- K D Tremblay
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
427
|
Monier R. [Fundamental aspects: mechanisms of carcinogenesis and dose-effect relationship]. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 2000; 323:603-10. [PMID: 10983270 DOI: 10.1016/s0764-4469(00)00161-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oncogenesis is a multistep process, which is the outcome of the accumulation in a single cell of genetic and epigenetic events. The events alter proto-oncogenes, which are converted into oncogenes with gain of function and tumor suppressor genes with loss of function. Cellular mechanisms (e.g. apoptosis) protect tissues against the malignant transformation of cells and limit, for each tissue, the combinations of efficient genetic alterations. The number of genetic events required for conversion to malignancy is still debated, but, at least in the case of many solid tumors (e.g. colon carcinomas), this number may be as high as seven to eight, which implies that a genetic instability occurs during cancer progression. In most cancers the probability of occurrence of oncogenic genetic events is increased by exposure to behavioural and environmental factors. In the case of chemical carcinogens, the dose-effect relationship is strongly affected by their effects on cellular proliferation, which should be taken account into when the experimental data of animal experiments are extrapolated to human exposures. When non-genotoxic carcinogens are considered, a threshold in the dose-effect relationship is generally observed. For genotoxic carcinogens, it is hard to prove experimentally that a threshold exists and linear no-threshold relationships are generally used to evaluate permissible levels of human exposures.
Collapse
Affiliation(s)
- R Monier
- Laboratoire de génétique oncologique, UMR 1599 CNRS, Institut Gustave-Roussy, Villejuif, France.
| |
Collapse
|
428
|
Cormier RT, Bilger A, Lillich AJ, Halberg RB, Hong KH, Gould KA, Borenstein N, Lander ES, Dove WF. The Mom1AKR intestinal tumor resistance region consists of Pla2g2a and a locus distal to D4Mit64. Oncogene 2000; 19:3182-3192. [PMID: 10918573 DOI: 10.1038/sj.onc.1203646] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2000] [Revised: 04/19/2000] [Accepted: 04/25/2000] [Indexed: 12/21/2022]
Abstract
The Mom1 (Modifier of Min-1) region of distal chromosome 4 was identified during a screen for polymorphic modifiers of intestinal tumorigenesis in ApcMin/+ mice. Here, we demonstrate that the Mom1AKR allele consists of two genetic components. These include the secretory phospholipase Pla2g2a, whose candidacy as a Mom1 resistance modifier has now been tested with several transgenic lines. A second region, distal to Pla2g2a, has also been identified using fine structure recombinants. Pla2g2aAKR transgenic mice demonstrate a modest resistance to tumorigenesis in the small intestine and a very robust resistance in the large intestine. Moreover, the tumor resistance in the colon of Pla2g2aAKR animals is dosage-dependent, a finding that is consistent with our observation that Pla2g2a is expressed in goblet cells. By contrast, mice carrying the distal Mom1 modifier demonstrate a modest tumor resistance that is confined to the small intestine. Thus, the phenotypes of these two modifier loci are complementary, both in their quantitative and regional effects. The additive effects and tight linkage of these modifiers may have been necessary for the initial identification of the Mom1 region.
Collapse
Affiliation(s)
- R T Cormier
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison 53706, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
429
|
Yazumi S, Ko K, Watanabe N, Shinohara H, Yoshikawa K, Chiba T, Takahashi R. Disrupted transforming growth factor-beta signaling and deregulated growth in human biliary tract cancer cells. Int J Cancer 2000; 86:782-9. [PMID: 10842191 DOI: 10.1002/(sici)1097-0215(20000615)86:6<782::aid-ijc5>3.0.co;2-o] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Biliary tract carcinoma is a common neoplasm in Japan, and its treatment is difficult because it tends to promote fibrosis and easily invades surrounding tissues. To better characterize the biological features of this carcinoma, we investigated abnormalities in the transforming growth factor-beta (TGF-beta) signaling pathway in five human biliary tract cancer cell lines: RBE, KMBC, SK-ChA-1, Mz-ChA-1, and Mz-ChA-2. We stably transfected into these cells the luciferase reporter plasmid carrying promoter of the plasminogen activator inhibitor-1 gene, the expression of which is stimulated by TGF-beta1. Treating the KMBC and Mz-ChA-1 cells with TGF-beta1 neither inhibited cell growth nor stimulated luciferase activity. In contrast, the RBE and Mz-ChA-2 cells responded well to TGF-beta1 treatment. TGF-beta1-treated SK-ChA-1 cells exhibited attenuated luciferase activity and their growth was not inhibited. Smad4 mRNA was not detected in SK-ChA-1 and Mz-ChA-1 cells by Northern blot analysis. Genetic analysis disclosed a nonsense mutation in the Mad homologue 2a domain of the Smad4 gene in the SK-ChA-1 cells and a heterozygous deletion in the TGF-beta type II receptor gene in the KMBC cells. Expression of the exogenous Smad4 gene in the Mz-ChA-1 cells by transient transfection restored their luciferase activity. When these TGF-beta1-insensitive and less-TGF-beta1-sensitive cell lines were xenografted into nude mice, they developed tumors that had more prominent, intervening fibrosis (desmoplasia) than the tumors caused by TGF-beta1-sensitive cells. Thus, a tight correlation between disruption of the TGF-beta signaling pathway and deregulated growth of cancer cells has been demonstrated in biliary tract carcinoma. This seems to be a critical event in this carcinoma and may also be correlated with stromal cell reaction in cancer invasion.
Collapse
Affiliation(s)
- S Yazumi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
430
|
Abstract
N-myc is a transcription factor expressed in the developing metanephric kidney and other organs. In mice, complete disruption of the N-myc gene results in fetal death on the first day of renal organogenesis. In addition to the null N-myc allele, others have generated a hypomorphic N-myc allele. In this study, combinations of these mutant genes were used to demonstrate that reduction in N-myc protein levels correlate with fewer developing glomeruli and collecting ducts in embryonic kidney explants. Histological sections revealed that the mutant kidneys were hypoplastic with normal developing structures. The data indicate that the hypoplasia is due to a reduction in proliferation rather than an increase in apoptosis. Thus, N-myc loss causes a decrease in numbers of ureteric bud tips and developing glomeruli in explants and hypoplastic kidneys in vivo, in a dose-dependent manner.
Collapse
Affiliation(s)
- C M Bates
- Children's Research Institute, Children's Hospital, Columbus, Ohio, 43205, USA
| | | | | | | | | |
Collapse
|
431
|
Differential expression of a novel C-terminally truncated splice form of SMAD5 in hematopoietic stem cells and leukemia. Blood 2000. [DOI: 10.1182/blood.v95.12.3945.012k42_3945_3950] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SMADs are evolutionarily conserved transducers of the differentiation and growth arrest signals from the transforming growth factor/BMP (TGF/BMP) family of ligands. Upon receptor activation, the ligand-restricted SMADs1–35 are phosphorylated in the C-terminal MH2 domain and recruit the common subunit SMAD4/DPC-4 gene to the nucleus to mediate target gene expression. Frequent inactivating mutations of SMAD4, or less common somatic mutations ofSMAD2 seen in solid tumors, suggest that these genes have a suppressor function. However, there have been no identified mutations of SMAD5, although the gene localizes to the critical region of loss in chromosome 5q31.1 (chromosome 5, long arm, region 3, band 1, subband 1) in myelodysplasia (MDS) and acute myelogenous leukemia (AML). A ubiquitously expressed novel isoform,SMAD5β, encodes a 351 amino acid protein with a truncated MH2 domain and a unique C-terminal tail of 18 amino acids, which may be the functional equivalent of inactivating mutations. The levels of SMAD5β transcripts are higher in the undifferentiated CD34+ hematopoietic stem cells than in the terminally differentiated peripheral blood leukocytes, thereby implicating the β form in stem cell homeostasis. Yeast 2-hybrid interaction assays reveal the lack of physical interactions between SMAD5β and SMAD5 or SMAD4. The expression ofSMAD5β may represent a novel mechanism to protect pluripotent stem cells and malignant cells from the growth inhibitory and differentiation signals of BMPs.
Collapse
|
432
|
Differential expression of a novel C-terminally truncated splice form of SMAD5 in hematopoietic stem cells and leukemia. Blood 2000. [DOI: 10.1182/blood.v95.12.3945] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
SMADs are evolutionarily conserved transducers of the differentiation and growth arrest signals from the transforming growth factor/BMP (TGF/BMP) family of ligands. Upon receptor activation, the ligand-restricted SMADs1–35 are phosphorylated in the C-terminal MH2 domain and recruit the common subunit SMAD4/DPC-4 gene to the nucleus to mediate target gene expression. Frequent inactivating mutations of SMAD4, or less common somatic mutations ofSMAD2 seen in solid tumors, suggest that these genes have a suppressor function. However, there have been no identified mutations of SMAD5, although the gene localizes to the critical region of loss in chromosome 5q31.1 (chromosome 5, long arm, region 3, band 1, subband 1) in myelodysplasia (MDS) and acute myelogenous leukemia (AML). A ubiquitously expressed novel isoform,SMAD5β, encodes a 351 amino acid protein with a truncated MH2 domain and a unique C-terminal tail of 18 amino acids, which may be the functional equivalent of inactivating mutations. The levels of SMAD5β transcripts are higher in the undifferentiated CD34+ hematopoietic stem cells than in the terminally differentiated peripheral blood leukocytes, thereby implicating the β form in stem cell homeostasis. Yeast 2-hybrid interaction assays reveal the lack of physical interactions between SMAD5β and SMAD5 or SMAD4. The expression ofSMAD5β may represent a novel mechanism to protect pluripotent stem cells and malignant cells from the growth inhibitory and differentiation signals of BMPs.
Collapse
|
433
|
Inman GJ, Allday MJ. Resistance to TGF-beta1 correlates with a reduction of TGF-beta type II receptor expression in Burkitt's lymphoma and Epstein-Barr virus-transformed B lymphoblastoid cell lines. J Gen Virol 2000; 81:1567-78. [PMID: 10811940 DOI: 10.1099/0022-1317-81-6-1567] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The pleiotropic cytokine TGF-beta1 is a member of a large family of related factors involved in controlling cell proliferation, differentiation and apoptosis. TGF-beta ligands interact with a complex of type I and type II transmembrane serine/threonine kinases and they transmit their signals to the nucleus via a family of Smad proteins. A panel of over 20 Burkitt's lymphoma (BL) cell lines has been compiled including those that are Epstein-Barr virus (EBV) negative, those that carry EBV with a restricted pattern of EBV latent gene expression (group I) and those that express the full range of latent EBV genes (group III), together with selected EBV-transformed lymphoblastoid cell lines (LCLs). Most of the EBV-negative and group I BL cell lines underwent apoptosis or a G(1) arrest in response to TGF-beta1 treatment. In contrast, group III cell lines and LCLs were completely refractory to these effects of TGF-beta1. All of the cell lines expressed the TGF-beta pathway Smads and the TGF-beta type I receptor. Lack of responsiveness to TGF-beta1 appears to correlate with a down-regulation of TGF-beta type II receptor expression. Studies of EBV-converted and stably transfected BL cell lines demonstrated that the EBV gene LMP-1 is neither necessary nor sufficient to block the TGF-beta1 response.
Collapse
Affiliation(s)
- G J Inman
- Section of Virology and Cell Biology and the Ludwig Institute for Cancer Research, Imperial College of Science, Technology and Medicine, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | | |
Collapse
|
434
|
Hoffman RM. Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Invest New Drugs 2000; 17:343-59. [PMID: 10759402 DOI: 10.1023/a:1006326203858] [Citation(s) in RCA: 396] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Currently used rodent tumor models, including transgenic tumor models, or subcutaneously-growing human tumors in immunodeficient mice, do not sufficiently represent clinical cancer, especially with regard to metastasis and drug sensitivity. In order to obtain clinically accurate models, we have developed the technique of surgical orthotopic implantation (SOI) to transplant histologically-intact fragments of human cancer, including tumors taken directly from the patient, to the corresponding organ of immunodeficient rodents. It has been demonstrated in 70 publications describing 10 tumor types that SOI allows the growth and metastatic potential of the transplanted tumors to be expressed and reflects clinical cancer. Unique clinically-accurate and relevant SOI models of human cancer for antitumor and antimetastatic drug discovery include: spontaneous SOI bone metastatic models of prostate cancer, breast cancer and lung cancer; spontaneous SOI liver and lymph node ultra-metastatic model of colon cancer, metastatic models of pancreatic, stomach, ovarian, bladder and kidney cancer. Comparison of the SOI models with transgenic mouse models of cancer indicate that the SOI models have more features of clinical metastatic cancer. Cancer cell lines have been stably transfected with the jellyfish Aequorea victoria green fluorescent protein (GFP) in order to track metastases in fresh tissue at ultra-high resolution and externally image metastases in the SOI models. Effective drugs can be discovered and evaluated in the SOI models utilizing human tumor cell lines and patient tumors. These unique SOI models have been used for innovative drug discovery and mechanism studies and serve as a bridge linking pre-clinical and clinical research and drug development.
Collapse
|
435
|
Affiliation(s)
- G C Blobe
- Whitehead Institute for Biomedical Research, Cambridge, Mass 02142, USA
| | | | | |
Collapse
|
436
|
Zhao J, Crowe DL, Castillo C, Wuenschell C, Chai Y, Warburton D. Smad7 is a TGF-beta-inducible attenuator of Smad2/3-mediated inhibition of embryonic lung morphogenesis. Mech Dev 2000; 93:71-81. [PMID: 10781941 DOI: 10.1016/s0925-4773(00)00281-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Smad7 was recently shown to antagonize TGF-beta-induced activation of signal-transducing Smad2 and Smad3 proteins. However, the biological function of Smad7 in the process of lung organogenesis is not known. Since Smad2/3-mediated TGF-beta signaling is known to inhibit embryonic lung branching morphogenesis, we tested the hypothesis that Smad7 regulates early lung development by modulating TGF-beta signal transduction. An antisense oligodeoxynucleotide (ODN) was designed to specifically block endogenous Smad7 gene expression at both transcriptional and translational levels in embryonic mouse lungs in culture. TGF-beta-mediated inhibition of lung branching morphogenesis was significantly potentiated in cultured embryonic lungs in the absence of Smad7 gene expression: abrogation of Smad7 potentiated TGF-beta-mediated inhibition of lung branching morphogenesis from 76 to 52% of the basal level in lungs cultured in the presence of 5 ng/ml TGF-beta1 ligand. Likewise, TGF-beta1 EC(50) (concentration of TGF-beta1 that induced half maximal branching inhibition) was reduced from 5 to 1 ng/ml when Smad7 gene expression was abrogated in lung culture, indicating an enhanced level of TGF-beta signaling in lung tissue with abolished Smad7 gene expression. By immunocytochemistry, Smad7 protein was co-localized with both Smad2 and Smad3 in distal bronchial epithelial cells, supporting the concept that Smad7 inhibits TGF-beta signaling by competing locally with Smad2 and Smad3 for TGF-beta receptor complex binding during lung morphogenesis. Furthermore, antisense Smad7 ODN increased the negative effect of TGF-beta1 on epithelial cell growth in developing lungs in culture. We also demonstrated that Smad7 mRNA levels were rapidly and potently induced upon TGF-beta1 stimulation of lungs in culture, suggesting that Smad7 regulates TGF-beta responses in a negative feedback loop. These studies define a novel function for Smad7 as an intracellular antagonist of TGF-beta-induced, Smad2/3-mediated inhibition of murine embryonic lung growth and branching morphogenesis in culture. The optimization of TGF-beta signaling during early lung development therefore requires a finely-regulated competitive balance between both permissive and inhibitory members of the Smad family.
Collapse
Affiliation(s)
- J Zhao
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles 90033, USA.
| | | | | | | | | | | |
Collapse
|
437
|
Weiss KM, Fullerton SM. Phenogenetic drift and the evolution of genotype-phenotype relationships. Theor Popul Biol 2000; 57:187-95. [PMID: 10828213 DOI: 10.1006/tpbi.2000.1460] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- K M Weiss
- Departments of Anthropology and Biology, Penn State University, 409 Carpenter, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|
438
|
Xu J, Attisano L. Mutations in the tumor suppressors Smad2 and Smad4 inactivate transforming growth factor beta signaling by targeting Smads to the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A 2000; 97:4820-5. [PMID: 10781087 PMCID: PMC18316 DOI: 10.1073/pnas.97.9.4820] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Biological signals for transforming growth factor beta (TGF-beta) are transduced through transmembrane serine/threonine kinase receptors that signal to a family of intracellular mediators known as Smads. Smad2 and Smad4 are important for transcriptional and antiproliferative responses to TGF-beta, and their inactivation in human cancers indicates that they are tumor suppressors. A missense mutation at a conserved arginine residue in the amino-terminal MH1 domain of both Smad2 and Smad4 has been identified in tumors from patients with colorectal and pancreatic cancers, respectively. However, the mechanism whereby this mutation interferes with Smad activity is uncertain. Here we show that these mutations do not disrupt activation of Smads, including receptor-mediated phosphorylation of Smad2, Smad2/Smad4 heteromeric complex formation, and Smad nuclear translocation. In contrast, we demonstrate that the mutant Smads are degraded rapidly in comparison with their wild-type counterparts. We show that this decrease in Smad protein stability occurs through induction of Smad ubiquitination by pathways involving the UbcH5 family of ubiquitin ligases. These studies thus reveal a mechanism for tumorigenesis whereby genetic defects in Smads induce their degradation through the ubiquitin-mediated pathway.
Collapse
Affiliation(s)
- J Xu
- Institute of Medical Science, University of Toronto, Toronto, ON Canada M5S 1A8
| | | |
Collapse
|
439
|
Xu X, Brodie SG, Yang X, Im YH, Parks WT, Chen L, Zhou YX, Weinstein M, Kim SJ, Deng CX. Haploid loss of the tumor suppressor Smad4/Dpc4 initiates gastric polyposis and cancer in mice. Oncogene 2000; 19:1868-74. [PMID: 10773876 DOI: 10.1038/sj.onc.1203504] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The tumor suppressor SMAD4, also known as DPC4, deleted in pancreatic cancer, is a central mediator of TGF-beta signaling. It was previously shown that mice homozygous for a null mutation of Smad4 (Smad4-/-) died prior to gastrulation displaying impaired extraembryonic membrane formation and endoderm differentiation. Here we show that Smad4+/- mice began to develop polyposis in the fundus and antrum when they were over 6 - 12 months old, and in the duodenum and cecum in older animals at a lower frequency. With increasing age, polyps in the antrum show sequential changes from hyperplasia, to dysplasia, in-situ carcinoma, and finally invasion. These alterations are initiated by a dramatic expansion of the gastric epithelium where Smad4 is expressed. However, loss of the remaining Smad4 wild-type allele was detected only in later stages of tumor progression, suggesting that haploinsufficiency of Smad4 is sufficient for tumor initiation. Our data also showed that overexpression of TGF-beta1 and Cyclin D1 was associated with increased proliferation of gastric polyps and tumors. These studies demonstrate that Smad4 functions as a tumor suppressor in the gastrointestinal tract and also provide a valuable model for screening factors that promote or prevent gastric tumorigenesis.
Collapse
Affiliation(s)
- X Xu
- Genetics of Development and Disease Branch, 10/9N105, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
440
|
Dick A, Mayr T, Bauer H, Meier A, Hammerschmidt M. Cloning and characterization of zebrafish smad2, smad3 and smad4. Gene 2000; 246:69-80. [PMID: 10767528 DOI: 10.1016/s0378-1119(00)00056-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
smad genes encode transcription factors involved in the signal transduction of members of the TGFbeta superfamily. We report here the cloning, characterization and genomic mapping of smad2, smad3 and smad4 from the zebrafish, Danio rerio. In Xenopus, smad2 overexpression has been shown to interfere with gastrulation and dorsal cell fate specification. However, full-length zebrafish smad2, although functionally active in Xenopus explants, has no effect when overexpressed in zebrafish embryos. In contrast, an N-terminally truncated, constitutively active version of Smad2 protein causes severe dorsalization or partial secondary axis formation, pointing to a role of Smad2 during mesoderm and axis formation. The temporal and spatial expression patterns of zebrafish smad2, 3 and 4 were investigated by developmental RT-PCR and whole mount in-situ hybridization. All three genes show strong and ubiquitous maternal expression. Zygotic expression is weak and ubiquitous in the case of smad2, and strong and ubiquitious in the case of smad4, while smad3 shows a spatially restricted zygotic expression pattern. It is expressed in migrating neural crest cells of the trunk and a subset of cells in the diencephalon in close proximity to the expression domain of the Nodal-related protein Cyclops/Ndr2/Znr1, a potential signal upstream of Smad2/3 required for eye-field separation and floor plate specification. Overexpression of truncated smad2 in cyclops mutant embryos leads to a rescue of the eye and floorplate defects. These data suggest that Smad2 acts as a mediator of Nodal signals during zebrafish midline signaling, while Smad3 might be involved in later steps of eye field separation.
Collapse
Affiliation(s)
- A Dick
- Max-Planck Institut für Immunbiologie, Stübeweg 51, D-79108, Freiburg, Germany
| | | | | | | | | |
Collapse
|
441
|
Vogel KS, El-Afandi M, Parada LF. Neurofibromin negatively regulates neurotrophin signaling through p21ras in embryonic sensory neurons. Mol Cell Neurosci 2000; 15:398-407. [PMID: 10845775 DOI: 10.1006/mcne.2000.0836] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Embryonic sensory and sympathetic neurons that lack neurofibromin, the protein product of the neurofibromatosis type 1 (Nfl) gene, survive and extend neurites in the absence of neurotrophins. To determine whether neurofibromin negatively regulates neurotrophin signaling through its interaction with p21ras, we used Fab antibody fragments to block Ras function in DRG, trigeminal, nodose, and SCG neurons isolated from Nfl(-/-) and wild-type mouse embryos. We show that introduction of anti-Ras Fab fragments significantly reduces the ability of neurofibromin-deficient neurons to survive in the absence of neurotrophins. Moreover, addition of H-ras protein enhances the survival of Nfl(-/-), but not wild-type, DRG neurons. Our results are consistent with a major role for neurofibromin in modulating Trk signaling through p21ras during neuronal development.
Collapse
Affiliation(s)
- K S Vogel
- Center for Developmental Biology, University of Texas Southwestern Medical Center, Dallas 75235-9133, USA.
| | | | | |
Collapse
|
442
|
Kawabata M, Imamura T, Inoue H, Hanai J, Nishihara A, Hanyu A, Takase M, Ishidou Y, Udagawa Y, Oeda E, Goto D, Yagi K, Kato M, Miyazono K. Intracellular signaling of the TGF-beta superfamily by Smad proteins. Ann N Y Acad Sci 2000; 886:73-82. [PMID: 10667205 DOI: 10.1111/j.1749-6632.1999.tb09402.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
TGF-beta is a potent inhibitor of cell growth, and accumulating evidence suggests that perturbation of the TGF-beta signaling pathway leads to tumorigenesis. Smads are recently identified proteins that mediate intracellular signaling of the TGF-beta superfamily. Smads 2 and 3 are phosphorylated by the TGF-beta type I receptor. Smad4 was originally identified as a candidate tumor suppressor gene in pancreatic cancers. Smads 2 and 3 form complexes with Smad4 upon TGF-beta stimulation. The heteromeric Smad complexes translocate into the nucleus, where they activate expression of target genes. Our recent study demonstrated that Smads exist as monomers in the absence of TGF-beta. Smads 2 and 3 form homo- as well as hetero-oligomers with Smad4 upon ligand stimulation. Both homo-oligomers and hetero-oligomers directly bind to DNA, suggesting that the signaling pathway of Smads may be multiplex. Smads 2 and 3 associate with transcriptional coactivators such as p300 in a ligand-dependent manner, p300 enhances transactivation by TGF-beta, suggesting that coactivators link Smads to the basal transcriptional machinery. A missense mutation of Smad2 identified in colorectal and lung cancers was introduced to Smad3. The mutant, Smad3(DE), blocked the activation of wild-type Smad2 and Smad3. Thus, the missense mutation not only disrupts the function of the wild-type Smad but also creates a dominant-negative Smad, which could actively contribute to oncogenesis.
Collapse
Affiliation(s)
- M Kawabata
- Department of Biochemistry, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
443
|
Abstract
The field of transforming growth factor-beta (TGF-beta) signaling sees periodic discoveries that revolutionize our thinking, redirect our experiments, and peak our excitement. One of the first such discoveries was less than a decade ago: the molecular cloning of the type I and type II TGF-beta receptors. This breakthrough defined a novel family of serine/threonine kinase receptors, which led to the description of an ever-expanding superfamily. The discovery of how these receptors are grouped on the cell surface, bind TGF-beta and are activated by specific phosphorylation events further defined the uniqueness of this system in comparison to other families of growth factor receptors. Now, once again, the TGF-beta field has been revolutionized. This time, the discovery is the Smad family of proteins. Although one can hardly imagine TGF-beta without the Smads, the cloning of the Smads and their implication in TGF-beta signaling was only four years ago. Since that time, great advances have been made in our understanding of the Smads as transcription factors, which are activated by receptor mediated phosphorylation. In addition, animal models for a loss of Smad function have provided insight into the role of specific Smads in a variety of physiologic systems. The Smad field has been growing exponentially. A comprehensive review of all aspects of the Smads, therefore, would be beyond the scope of a single review. Instead, this review highlights some of the general aspects of Smad function, and then focuses on the role of specific Smad family members in transcriptional regulation, animal physiology, and disease processes.
Collapse
Affiliation(s)
- M Datto
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham 27710, USA
| | | |
Collapse
|
444
|
Abstract
TGF-beta plays a central and critical role in tissue repair. The recent identification of TGF-beta signal transduction pathways involving Smad proteins has now made it possible to explore their contribution to the activities of TGF-beta in vivo. Both Smad3 and its closely related homolog Smad2 act as latent nuclear transcriptional activators and mediate intracellular signaling by TGF-betas and activin, each of which regulates cellular functions pivotal to cutaneous wound healing. Mice null for Smad3 (Smad3(ex8/ex8)) survive into adulthood and show accelerated cutaneous wound healing characterized by an increased rate of re-epithelialization and a reduced local inflammatory infiltrate. These data implicate Smad3 in specific pathways of tissue repair and suggest that it could be a target for the development of therapeutic strategies to modulate wound healing.
Collapse
Affiliation(s)
- G S Ashcroft
- Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
445
|
Weinstein M, Yang X, Deng C. Functions of mammalian Smad genes as revealed by targeted gene disruption in mice. Cytokine Growth Factor Rev 2000; 11:49-58. [PMID: 10708952 DOI: 10.1016/s1359-6101(99)00028-3] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The Smad genes are the intracellular mediators of TGF-beta signals. Targeted mutagenesis in mice has yielded valuable new insights into the functions of this important gene family. These experiments have shown that Smad2 and Smad4 are needed for gastrulation, Smad5 for angiogenesis, and Smad3 for establishment of the mucosal immune response and proper development of the skeleton. In addition, these experiments have shown us the importance of gene dosage in this family, as several of its members yielded haploinsufficiency phenotypes. These include gastrulation and craniofacial defects for Smad2, accelerated wound healing for Smad3, and the incidence of gastric cancer for Smad4. Combinatorial genetics has also revealed functions of Smads in left/right isomerism and liver development.
Collapse
Affiliation(s)
- M Weinstein
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10/9N105, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
446
|
Letterio JJ. Murine models define the role of TGF-beta as a master regulator of immune cell function. Cytokine Growth Factor Rev 2000; 11:81-7. [PMID: 10708955 DOI: 10.1016/s1359-6101(99)00031-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Many members of transforming growth factor-beta (TGF-beta) superfamily, including not only TGF-beta, but also the activins, and bone morphogenetic proteins (BMPs), have been demonstrated to affect the development and function of immune cells. From the proliferation and differentiation of pluripotent stem cells, to the activation and migration of mature lymphoid and myeloid lineages, the TGF-betas have been recognized for their ability to modulate the manner in which such cells respond to stimuli in their environment. Recent studies involving disruption of this pathway in genetically engineered mice now emphasize the importance of this activity and validate functional models predicted by in vitro studies. Phenotypic differences between mice harboring mutations in the TGF-beta1 ligand and the TGF-beta receptor-activated signaling intermediate Smad3 are presented and serve to highlight the valuable role of these in vivo genetic tests of function.
Collapse
Affiliation(s)
- J J Letterio
- Laboratory of Cell Regulation and Carcinogenesis, The National Cancer Institute, NIH, Bethesda, MD 20892-5055, USA.
| |
Collapse
|
447
|
ten Dijke P, Miyazono K, Heldin CH. Signaling inputs converge on nuclear effectors in TGF-beta signaling. Trends Biochem Sci 2000; 25:64-70. [PMID: 10664585 DOI: 10.1016/s0968-0004(99)01519-4] [Citation(s) in RCA: 279] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent studies have consolidated the pivotal role of Smads as intracellular effectors of TGF-beta family members. Upon binding to their specific type I and type II serine/threonine kinase receptors, each family member activates a particular subset of Smad proteins. Activated, receptor-regulated Smads form hetero-oligomeric complexes with common-partner Smads that translocate into the nucleus, where they control the expression of target genes in a cell-type-specific manner. Smads appear to function not only as nuclear effectors for TGF-beta family members, but as signal integrators within an extensive intracellular network.
Collapse
Affiliation(s)
- P ten Dijke
- Ludwig Institute for Cancer Research, Box 595, S-751 24 Uppsala, Sweden.
| | | | | |
Collapse
|
448
|
Abstract
Although tumor suppressor genes continue to be discovered, the most recent advances have been made in attributing new and exciting functions to existing ones - such as the apparent role of VHL as a regulator of proteolysis. Great insights have also come from piecing genes together into pathways and networks. For instance the discovery that cyclin D1 is regulated by beta-catenin/Tcf-4 allows us to tie the APC pathway to the RB pathway and cell cycle control. Similarly, tumor suppressor genes have been fitted together with oncogenes into the various pathways that regulate apoptosis such that tumor suppressor function is now attributed to some of the basic components of the apoptotic machinery, such as caspases and Apaf-1. The great pace at which mouse models of tumorigenesis continue to advance our knowledge of tumor suppressor gene function has led us to look anew at the role of genes such as TCF-1 and SMAD-3 in human cancer. Finally, the realisation that different growth regulatory pathways give rise to generic signals suggests that future work may lie in integrating the signals from different pathways and in understanding the importance of protein levels to cellular function.
Collapse
Affiliation(s)
- K Macleod
- Department of Molecular & Cellular Pathology, University of Dundee, Ninewells Hospital & Medical School, Dundee, DD1 9SY, Scotland. k.f.
| |
Collapse
|
449
|
Minoo P. Transcriptional regulation of lung development: emergence of specificity. Respir Res 2000; 1:109-15. [PMID: 11667973 PMCID: PMC59550 DOI: 10.1186/rr20] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2000] [Revised: 08/24/2000] [Accepted: 08/24/2000] [Indexed: 11/10/2022] Open
Abstract
The lung is the product of a set of complex developmental interactions between two distinct tissues, the endodermally derived epithelium and the mesoderm. Each tissue contributes to lung development by fine-tuning the spatial and temporal pattern of gene expression for a distinct array of signaling molecules, transcriptional molecules and molecules related to the extracellular matrix. Morphoregulatory transcriptional factors such as NKX2.1 have the crucial role of connecting the cell-cell crosstalk to the activation or repression of gene expression through which processes such as cellular proliferation, migration, differentiation and apoptosis can be controlled. Although none of the factors participating in lung development are exclusively lung-specific, their unique combinations and interactions constitute the basis for emergence of lung structural and functional specificities. An understanding of the individual molecules and their unique interactions in the context of lung development is necessary for the construction of a morphogenetic map for this vital organ as well as for the development of rational and innovative approaches to congenital and induced lung disease.
Collapse
Affiliation(s)
- P Minoo
- Department of Pediatrics, Women's and Children's Hospital, University of Southern California School of Medicine, Los Angeles, California, USA.
| |
Collapse
|
450
|
Wakefield LM, Yang YA, Dukhanina O. Transforming growth factor-beta and breast cancer: Lessons learned from genetically altered mouse models. Breast Cancer Res 2000; 2:100-6. [PMID: 11250699 PMCID: PMC139431 DOI: 10.1186/bcr41] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/1999] [Revised: 01/21/2000] [Accepted: 01/24/2000] [Indexed: 12/02/2022] Open
Abstract
Transforming growth factor (TGF)-betas are plausible candidate tumor suppressors in the breast. They also have oncogenic activities under certain circumstances, however. Genetically altered mouse models provide powerful tools to analyze the complexities of TGF-beta action in the context of the whole animal. Overexpression of TGF-beta can suppress tumorigenesis in the mammary gland, raising the possibility that use of pharmacologic agents to enhance TGF-beta function locally might be an effective method for the chemoprevention of breast cancer. Conversely, loss of TGF-beta response increases spontaneous and induced tumorigenesis in the mammary gland. This confirms that endogenous TGF-betas have tumor suppressor activity in the mammary gland, and suggests that the loss of TGF-beta receptors seen in some human breast hyperplasias may play a causal role in tumor development.
Collapse
Affiliation(s)
- L M Wakefield
- Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, 41 Library DR MSC 5055, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|