401
|
Svobodova I, Vanecek J, Zemkova H. The bidirectional phase-shifting effects of melatonin on the arginine vasopressin secretion rhythm in rat suprachiasmatic nuclei in vitro. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 116:80-5. [PMID: 12941463 DOI: 10.1016/s0169-328x(03)00254-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In vivo melatonin serves as a feedback signal to the circadian pacemaker located in the suprachiasmatic nuclei (SCN) and in vitro it phase advances the circadian rhythm of electrical activity in pacemaker cells. However, the occurrence and nature of phase shifting in secretion by cultured SCN neurons has not yet been established. Here we studied the effects of melatonin on the pattern of spontaneous arginine vasopressin (AVP) release in organotypic SCN slices. This culture mimicked the in vivo circadian AVP secretory rhythm, with low release during the subjective night and with peaks in secretion during the middle of subjective day. The endogenous period of the AVP secretory rhythm in organotypic culture ranged between 23 and 26 h, with the mean period of 24.1 +/- 0.3 h. Melatonin (10 nM) had variable effects on the pattern of AVP secretion depending on time of its application directly to the medium with organotypic SCN slices. When introduced at circadian time 22, 2 and 6 (the times corresponding to the late night and early day), melatonin delayed the AVP secretory rhythm by 1-4 h. When applied at circadian time 10 (late day), however, melatonin advanced the AVP secretory rhythm by about 2 h. At other circadian times, melatonin was ineffective. These results indicate that melatonin exhibits the bidirectional phase-shifting effects on circadian secretory rhythm clock, which depends on the time-window of its application.
Collapse
Affiliation(s)
- Irena Svobodova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenska 1083, 142 20 Prague 4, Czech Republic
| | | | | |
Collapse
|
402
|
Dardente H, Klosen P, Pévet P, Masson-Pévet M. MT1 melatonin receptor mRNA expressing cells in the pars tuberalis of the European hamster: effect of photoperiod. J Neuroendocrinol 2003; 15:778-86. [PMID: 12834439 DOI: 10.1046/j.1365-2826.2003.01060.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Melatonin, secreted only during the night by the pineal gland, transduces the photoperiodic message to the organism. One important target for the hormone is the pars tuberalis (PT) of the adenohypophysis which displays a very high number of melatonin binding sites in mammals and is implicated in the seasonal regulation of prolactin secretion. To gain insight into the mechanism by which the melatonin signal is decoded in the PT, we studied the effect of photoperiod on the PT cells expressing the MT1 melatonin receptor in a highly photoperiodic species, the European hamster. Recently, we showed that, in the rat, the MT1 receptor mRNA is expressed in PT-specific cells characterized by their expression of beta-thyroid stimulating hormone (beta-TSH) along with the alpha-glycoprotein subunit (alpha-GSU). As the cellular composition of the PT shows variability among species, we first identified the cell type expressing the MT1 receptor in the European hamster by combining immunocytochemistry and nonradioactive in situ hybridization for the MT1 receptor mRNA. Our results show that, in the European hamster, as in the rat, the MT1 receptor is only expressed by the PT-specific-cells, beta-TSH and alpha-GSU positive. In a second step, we analysed the effects of photoperiod on the MT1 mRNA, and on beta-TSH and alpha-GSU both at the mRNA and protein levels. Our data show that, compared to long photoperiod, short photoperiod induces a dramatic decrease of MT1, beta-TSH and alpha-GSU expression. Protein levels of beta-TSH and alpha-GSU were also dramatically reduced in short photoperiod. Together, our data suggest that melatonin exerts its seasonal effects in the PT by signalling to PT specific-cells through the MT1 receptor subtype.
Collapse
Affiliation(s)
- H Dardente
- Neurobiologie des Rythmes, UMR 7518 CNRS/ULP, Strasbourg, France
| | | | | | | |
Collapse
|
403
|
Rivera-Bermúdez MA, Gerdin MJ, Earnest DJ, Dubocovich ML. Regulation of basal rhythmicity in protein kinase C activity by melatonin in immortalized rat suprachiasmatic nucleus cells. Neurosci Lett 2003; 346:37-40. [PMID: 12850542 DOI: 10.1016/s0304-3940(03)00590-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Melatonin phase shifts circadian rhythms of the neuronal firing rate and stimulates PKC activity at dusk (CT 10) and dawn (CT 23) in the rat suprachiasmatic nucleus (SCN) slice via activation of the MT(2) melatonin receptor. We demonstrated that in the SCN2.2 cells basal PKC activity follows a rhythmic oscillation with an acrophase during the subjective dark phase (CT 14-CT 22) and nadirs during the subjective light phase at CT 2 and CT 10. Melatonin (0.01-10 nM, 10 min) significantly doubled basal PKC activity at CT 2 and CT 10, and decreased basal PKC activity at CT 6. We conclude that melatonin regulates the basal rhythm in PKC activity generated in SCN2.2 cells at the same periods of sensitivity observed in the native SCN.
Collapse
Affiliation(s)
- Moisés A Rivera-Bermúdez
- Department of Molecular Pharmacology and Biological Chemistry, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
404
|
Korf HW, Von Gall C, Stehle J. The circadian system and melatonin: lessons from rats and mice. Chronobiol Int 2003; 20:697-710. [PMID: 12916721 DOI: 10.1081/cbi-120022415] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The circadian system (CS) comprises three key components: (1) endogenous oscillators (clocks) generating a circadian rhythm; (2) input pathways entraining the circadian rhythm to the astrophysical day; and (3) output pathways distributing signals from the oscillator to the periphery. This contribution briefly reviews some general aspects ofthe organization of the rodent CS and pays particular attention to recent results obtained with various mouse strains, related to molecular mechanisms involved in entraining the endogenous clock and the role of the pineal hormone melatonin as a hand of the endogenous clock.
Collapse
Affiliation(s)
- H W Korf
- Dr. Senckenbergische Anatomie, Institut für Anatomie II, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany.
| | | | | |
Collapse
|
405
|
Yokoyama T, Kato N, Yamada N. Development of a high-throughput bioassay to screen melatonin receptor agonists using human melatonin receptor expressing CHO cells. Neurosci Lett 2003; 344:45-8. [PMID: 12781918 DOI: 10.1016/s0304-3940(03)00419-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Melatonin receptors belong to the superfamily of G-protein-coupled receptors and appear to couple with Gi type of G protein, which has an inhibitory effect on the adenylate cyclase. Normally, melatonin dose not induce transient elevation of intracellular calcium concentration in CHO cells stably expressing melatonin receptors. Accordingly, the cells are unable to be used for fluorescent imaging plate reader (FLIPR), which is the device used to measure the cellular signal as a calcium elevation. To overcome this issue we tried to transfect chimeric G protein, Gqi5, into CHO cells expressing melatonin receptors. The Gqi5 is a chimeric Gq protein containing the five carboxyl-terminal amino acids from Gi, which interact with Gi-coupled receptor and possess the function of evaluating calcium concentration through the Gq pathway. The transfected cells result in a calcium elevation in a concentration-response manner. The specificity of this assay was similar to that of radioreceptor binding assay. Therefore, this FLIPR assay, using melatonin receptor and Gqi5 expressing CHO cells, is available for clinical bioassay of melatonin and for the screening of specific ligands of melatonin.
Collapse
Affiliation(s)
- Tetsuo Yokoyama
- JCR Pharmaceuticals Co, Ltd, Pharmaceutical Science, Research Center, Research and Development Division, 2-2-10 Murotani, Nishi-ku, Kobe 651-2241, Japan.
| | | | | |
Collapse
|
406
|
Abstract
The circadian rhythms are daily oscillations in various biological processes that are regulated by an endogenous clock. Disruption of these rhythms has been associated with cancer in humans. One of the cellular processes that is regulated by circadian rhythm is cell proliferation, which often shows asynchrony between normal and malignant tissues. This asynchrony highlights the importance of the circadian clock in tumour suppression in vivo and is one of the theoretical foundations for cancer chronotherapy. Investigation of the mechanisms by which the circadian clock controls cell proliferation and other cellular functions might lead to new therapeutic targets.
Collapse
Affiliation(s)
- Loning Fu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | |
Collapse
|
407
|
Chen Z, Chua CC, Gao J, Hamdy RC, Chua BHL. Protective effect of melatonin on myocardial infarction. Am J Physiol Heart Circ Physiol 2003; 284:H1618-24. [PMID: 12679327 DOI: 10.1152/ajpheart.00874.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The dose- and time dependence of melatonin and the effective window of melatonin administration were determined in a mouse model of myocardial infarction. When mouse hearts were subjected to 60 min of occlusion of the left anterior descending artery (LAD) followed by 4 h of reperfusion, melatonin pretreatment for 30 min significantly reduced the infarct size/risk area. The most effective dose was found to be 150 microg/kg intraperitoneally, and the effective period of protection lasted up to 2 h after melatonin administration. Melatonin administration 45 min after LAD ligation or right before reperfusion was as effective as administration 30 min before ligation; however, melatonin administered after the release of occlusion was not protective. Melatonin's effect was still present in mice deficient for the Mel1a melatonin receptor. 8-Methoxy-2-propionamidotetralin, a melatonin receptor agonist with no antioxidant activity, offered no protection, suggesting a lack of involvement of melatonin receptors. Finally, the effects of melatonin were similar in rats and mice. Our results demonstrate that melatonin is an effective cardioprotective agent when administered either before or during coronary occlusion at a very low dose.
Collapse
Affiliation(s)
- Zhongyi Chen
- Cecile Cox Quillen Laboratory of Geriatric Research, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | | | | | | | | |
Collapse
|
408
|
Witt-Enderby PA, Bennett J, Jarzynka MJ, Firestine S, Melan MA. Melatonin receptors and their regulation: biochemical and structural mechanisms. Life Sci 2003; 72:2183-98. [PMID: 12628439 DOI: 10.1016/s0024-3205(03)00098-5] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is growing evidence demonstrating the complexity of melatonin's role in modulating a diverse number of physiological processes. This complexity could be attributed to the fact that melatonin receptors belong to two distinct classes of proteins, that is, the G-protein coupled receptor superfamily (MT(1), MT(2)) and the quinone reductase enzyme family (MT(3)) which makes them unique at the molecular level. Also, within the G-protein coupled receptor family of proteins, the MT(1) and MT(2) receptors can couple to multiple and distinct signal transduction cascades whose activation can lead to unique cellular responses. Also, throughout the 24-hour cycle, the receptors' sensitivity to specific cues fluctuates and this sensitivity can be modulated in a homologous fashion, that is, by melatonin itself, and in a heterologous manner, that is, by other cues including the photoperiod or estrogen. This sensitivity of response may reflect changes in melatonin receptor density that also occurs throughout the 24-hour light/dark cycle but out of phase with circulating melatonin levels. The mechanisms that underlie the changes in melatonin receptor density and function are still not well-understood, but data is beginning to show that transcriptional events and G-protein uncoupling may be involved. Even though this area of research is still in its infancy, great strides are being made everyday in elucidating the mechanisms that underlie melatonin receptor function and regulation. The focus of this review is to highlight some of these discoveries in an attempt to reveal the uniqueness of the melatonin receptor family while at the same time provide thought-provoking ideas to further advance this area of research. Thus, a brief overview of each of the mammalian melatonin receptor subtypes and the signal transduction cascades to which they couple will be discussed with a greater emphasis placed on the mechanisms underlying their regulation and the domains within the receptors essential for proper signaling.
Collapse
Affiliation(s)
- Paula A Witt-Enderby
- Division of Pharmaceutical Sciences, Duquesne University School of Pharmacy, 421 Mellon Hall, Pittsburgh, PA 15282, USA.
| | | | | | | | | |
Collapse
|
409
|
Abstract
In mammals, the role of melatonin in the control of seasonality is well documented, and the sites and mechanisms of action involved are beginning to be identified. The exact role of the hormone in the circadian timing system remains to be determined. However, exogenous melatonin has been shown to affect the circadian clock. Identification of the molecular and cellular mechanisms involved in this well characterized chronobiotic effect will allow clarification of the role of endogenous melatonin in circadian organization.
Collapse
Affiliation(s)
- P Pévet
- Laboratoire de Neurobiologie des Rythmes, UMR 7518 CNRS-Université L. Pasteur, 12 rue de l'Université, 67000 Strasbourg, France.
| |
Collapse
|
410
|
Mattson RJ, Catt JD, Keavy D, Sloan CP, Epperson J, Gao Q, Hodges DB, Iben L, Mahle CD, Ryan E, Yocca FD. Indanyl piperazines as melatonergic MT2 selective agents. Bioorg Med Chem Lett 2003; 13:1199-202. [PMID: 12643943 DOI: 10.1016/s0960-894x(03)00090-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Optimization of a benzyl piperazine pharmacophore produced N-acyl-4-indanyl-piperazines that bind with high affinity to melatonergic MT(2) receptors. (R)-4-(2,3-dihydro-6-methoxy-1H-inden-1-yl)-N-ethyl-1-piperazine-carboxamide fumarate (13) is a water soluble, selective MT(2) agonist, which produces advances in circadian phase in rats at doses of 1-56 mg/kg that are no different from those of melatonin at 1 mg/kg. Unlike melatonin, 13 produced only weak contractile effects in rat tail artery.
Collapse
Affiliation(s)
- Ronald J Mattson
- Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, CT 06492-7660, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
411
|
Abstract
The mammalian circadian clock in the suprachiasmatic nucleus (SCN) receives multiple afferent signals that could potentially modulate its phase. One input, the serotonin (5-HT) projection from the raphe nuclei, has been extensively investigated in rats and hamsters, yet its role(s) in modulating circadian clock phase remains controversial. To expand our investigation of 5-HT modulation of the SCN clock, we investigated the phase-shifting effects of 5-HT and its agonist, (+)8-hydroxy-2-(di-n-propylamino)tetralin (DPAT), when applied to mouse SCN brain slices. 5-HT induced 2-3 h phase advances when applied during subjective day, while non-significant phase shifts were seen after 5-HT application at other times. These phase shifts were completely blocked by the 5-HT antagonist, metergoline. DPAT also induced phase shifts when applied during mid-subjective day, and this effect appeared dose-dependent. Together, these results demonstrate that the mouse SCN, like that of the rat, is directly sensitive to in vitro phase-resetting by 5-HT.
Collapse
Affiliation(s)
- Rebecca A Prosser
- University of Tennessee, Department of Biochemistry and Cellular and Molecular Biology, M407 Walter's Life Sciences Building, Knoxville, TN 37996, USA.
| |
Collapse
|
412
|
Johnston JD, Messager S, Ebling FJP, Williams LM, Barrett P, Hazlerigg DG. Gonadotrophin-releasing hormone drives melatonin receptor down-regulation in the developing pituitary gland. Proc Natl Acad Sci U S A 2003; 100:2831-5. [PMID: 12598657 PMCID: PMC151426 DOI: 10.1073/pnas.0436184100] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2002] [Indexed: 11/18/2022] Open
Abstract
Melatonin is produced nocturnally by the pineal gland and is a neurochemical representation of time. It regulates neuroendocrine target tissues through G-protein-coupled receptors, of which MT(1) is the predominant subtype. These receptors are transiently expressed in several fetal and neonatal tissues, suggesting distinct roles for melatonin in development and that specific developmental cues define time windows for melatonin sensitivity. We have investigated MT(1) gene expression in the rat pituitary gland. MT(1) mRNA is confined to the pars tuberalis region of the adult pituitary, but in neonates extends into the ventral pars distalis and colocalizes with luteinizing hormone beta-subunit (LH beta) expression. This accounts for the well documented transient sensitivity of rat gonadotrophs to melatonin in the neonatal period. Analysis of an upstream fragment of the rat MT(1) gene revealed multiple putative response elements for the transcription factor pituitary homeobox-1 (Pitx-1), which is expressed in the anterior pituitary from Rathke's pouch formation. A Pitx-1 expression vector potently stimulated expression of both MT(1)-luciferase and LH beta-luciferase reporter constructs in COS-7 cells. Interestingly, transcription factors that synergize with Pitx-1 to trans-activate gonadotroph-associated genes did not potentiate Pitx-1-induced MT(1)-luciferase activity. Moreover, the transcription factor, early growth response factor-1, which is induced by gonadotrophin-releasing hormone (GnRH) and trans-activates LH beta expression, attenuated Pitx-1-induced MT(1)-luciferase activity. Finally, pituitary MT(1) gene expression was 4-fold higher in hypogonadal (hpg) mice, which do not synthesize GnRH, than in their wild-type littermates. These data suggest that establishment of a mature hypothalamic GnRH input drives the postnatal decline in pituitary MT(1) gene expression.
Collapse
Affiliation(s)
- Jonathan D Johnston
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 5UA, United Kingdom
| | | | | | | | | | | |
Collapse
|
413
|
Gerdin MJ, Masana MI, Ren D, Miller RJ, Dubocovich ML. Short-term exposure to melatonin differentially affects the functional sensitivity and trafficking of the hMT1 and hMT2 melatonin receptors. J Pharmacol Exp Ther 2003; 304:931-9. [PMID: 12604667 DOI: 10.1124/jpet.102.044990] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The hormone melatonin mediates a variety of physiological functions in mammals through activation of pharmacologically distinct MT(1) and MT(2) G protein-coupled melatonin receptors. We therefore sought to investigate how the receptors were regulated in response to short melatonin exposure. Using 2-[(125)I]iodomelatonin binding, cAMP functional assays, and confocal microscopy, we demonstrated robust differences in specific 2-[(125)I]iodomelatonin binding, receptor desensitization, and cellular trafficking of hMT(1) and hMT(2) melatonin receptors expressed in Chinese hamster ovary (CHO) cells after short (10-min) exposure to melatonin. Exposure to melatonin decreased specific 2-[(125)I]iodomelatonin binding to CHO-MT(2) cells (70.3 +/- 7.6%, n = 3) compared with vehicle controls. The robust decreases in specific binding to the hMT(2) melatonin receptors correlated both with the observed functional desensitization of melatonin to inhibit forskolin-stimulated cAMP formation in CHO-MT(2) cells pretreated with 10 nM melatonin (EC(50) of 159.8 +/- 17.8 nM, n = 3, p < 0.05) versus vehicle (EC(50) of 6.0 +/- 1.2 nM, n = 3), and with the arrestin-dependent internalization of the receptor. In contrast, short exposure of CHO-MT(1) cells to melatonin induced a small decrease in specific 2-[(125)I]iodomelatonin binding (34.2 +/- 13.0%, n = 5) without either desensitization or receptor internalization. We conclude that differential regulation of the hMT(1) and hMT(2) melatonin receptors by the hormone melatonin could underlie temporally regulated signal transduction events mediated by the hormone in vivo.
Collapse
Affiliation(s)
- M J Gerdin
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611-3008, USA
| | | | | | | | | |
Collapse
|
414
|
Mutoh T, Shibata S, Korf HW, Okamura H. Melatonin modulates the light-induced sympathoexcitation and vagal suppression with participation of the suprachiasmatic nucleus in mice. J Physiol 2003; 547:317-32. [PMID: 12562939 PMCID: PMC2342619 DOI: 10.1113/jphysiol.2002.028001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/05/2002] [Accepted: 12/03/2002] [Indexed: 12/15/2022] Open
Abstract
In mammals, the autonomic nervous system mediates the central circadian clock oscillation from the suprachiasmatic nucleus (SCN) to the peripheral organs, and controls cardiovascular, respiratory and gastrointestinal functions. The present study was conducted in mice to address whether light signals conveyed to the SCN can control peripheral autonomic functions, and further examined the impact of centrally administered melatonin on peripheral autonomic functions via activation of melatonin receptor signalling. In vivo electrophysiological techniques were performed in anaesthetised, open-chest and artificially ventilated mice whilst monitoring the arterial blood pressure and heart rate. Light induced an increase of the renal sympathetic nerve activity, arterial blood pressure and heart rate immediately after lights on. Conversely, light rapidly suppressed the gastric vagal parasympathetic nerve activity, which was affected neither by hepatic vagotomy nor by total subdiaphragmatic vagotomy. These autonomic responses were mediated by the SCN since bilateral SCN lesion totally abolished the light-evoked neuronal and cardiovascular responses. Melatonin administered intracerebroventricularly (I.C.V.) attenuated the sympathetic and vagal nerve activities in a dose-dependent manner with a threshold of 0.1 ng and these effects were blocked by I.C.V. pre-treatment of the competitive melatonin receptor antagonist luzindole. These results suggest that light induces sympathoexcitation and vagal suppression through the SCN and that melatonin modulates the light-induced autonomic responses via activation of the central melatonin receptor signalling.
Collapse
Affiliation(s)
- Tatsushi Mutoh
- Division of Molecular Brain Science, Department of Brain Sciences, Kobe University Graduate School of Medicine, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | |
Collapse
|
415
|
Saeb-Parsy K, Dyball REJ. Defined cell groups in the rat suprachiasmatic nucleus have different day/night rhythms of single-unit activity in vivo. J Biol Rhythms 2003; 18:26-42. [PMID: 12568242 DOI: 10.1177/0748730402239674] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The electrical activity of the rat suprachiasmatic nucleus (SCN) was examined in anesthetized rats in vivo using single-unit electrophysiological techniques. The present data confirm the daily variation in the electrical activity of the SCN previously reported in vitro and in vivo using multiple-unit recording techniques. They further suggest that subpopulations of suprachiasmatic neurons with different neural connections have a different daily rhythm of activity. Neurons in the SCN region showed a significant rhythm of activity (p = 0.034; Kruskall-Wallis analysis of variance [KW-ANOVA]). The greatest activity occurred during the second part of the light period (ZT 10-12), and the lowest activity occurred in the early part of the light period (ZT 0-2). The subgroup of cells in the suprachiasmatic region with output projections to the arcuate nucleus (ARC) and/or supraoptic nucleus (SON) regions also showed a significant rhythm (p = 0.001; K-W ANOVA). Their activity appeared to show two peaks near the light-dark (ZT 10-12) and dark-light (ZT 22-24) transition periods with the lowest activity at ZT 16-18. This rhythm was significantly different (p = 0.016) from that of neurons without an output projection to the ARC and/or SON. Retinorecipient suprachiasmatic neurons appeared to have a less robust daily rhythm in their activity. The change in the firing behavior of the cells was not reflected simply by changes in mean firing rate. Examination of the coefficient of variation of the interspike interval distribution of cells at different times of day revealed changes in the firing pattern of cells in the SCN region that did not have output projections (p = 0.032; K-W ANOVA). The present results thus suggest that the SCN is composed of a heterogeneous population of neurons and that different rhythms of activity are expressed by neurons with different neural connections. There were changes in both firing pattern and firing rate.
Collapse
Affiliation(s)
- K Saeb-Parsy
- Department of Anatomy, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| | | |
Collapse
|
416
|
Jin X, von Gall C, Pieschl RL, Gribkoff VK, Stehle JH, Reppert SM, Weaver DR. Targeted disruption of the mouse Mel(1b) melatonin receptor. Mol Cell Biol 2003; 23:1054-60. [PMID: 12529409 PMCID: PMC140714 DOI: 10.1128/mcb.23.3.1054-1060.2003] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Two high-affinity, G protein-coupled melatonin receptor subtypes have been identified in mammals. Targeted disruption of the Mel(1a) melatonin receptor prevents some, but not all, responses to the hormone, suggesting functional redundancy among receptor subtypes (Liu et al., Neuron 19:91-102, 1997). In the present work, the mouse Mel(1b) melatonin receptor cDNA was isolated and characterized, and the gene has been disrupted. The cDNA encodes a receptor with high affinity for melatonin and a pharmacological profile consistent with its assignment as encoding a melatonin receptor. Mice with targeted disruption of the Mel(1b) receptor have no obvious circadian phenotype. Melatonin suppressed multiunit electrical activity in the suprachiasmatic nucleus (SCN) in Mel(1b) receptor-deficient mice as effectively as in wild-type controls. The neuropeptide, pituitary adenylyl cyclase activating peptide, increases the level of phosphorylated cyclic AMP response element binding protein (CREB) in SCN slices, and melatonin reduces this effect. The Mel(1a) receptor subtype mediates this inhibitory response at moderate ligand concentrations (1 nM). A residual response apparent in Mel(1a) receptor-deficient C3H mice at higher melatonin concentrations (100 nM) is absent in Mel(1a)-Mel(1b) double-mutant mice, indicating that the Mel(1b) receptor mediates this effect of melatonin. These data indicate that there is a limited functional redundancy between the receptor subtypes in the SCN. Mice with targeted disruption of melatonin receptor subtypes will allow molecular dissection of other melatonin receptor-mediated responses.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cyclic AMP Response Element-Binding Protein/metabolism
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Gene Targeting
- Melatonin/pharmacology
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Sequence Data
- Phenotype
- Phosphorylation
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cytoplasmic and Nuclear/deficiency
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Melatonin
- Sequence Homology, Amino Acid
- Suprachiasmatic Nucleus/drug effects
- Suprachiasmatic Nucleus/metabolism
Collapse
Affiliation(s)
- Xiaowei Jin
- Laboratory of Developmental Chronobiology, MassGeneral Hospital for Children, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
417
|
Klosen P, Bienvenu C, Demarteau O, Dardente H, Guerrero H, Pévet P, Masson-Pévet M. The mt1 melatonin receptor and RORbeta receptor are co-localized in specific TSH-immunoreactive cells in the pars tuberalis of the rat pituitary. J Histochem Cytochem 2002; 50:1647-57. [PMID: 12486087 DOI: 10.1177/002215540205001209] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The pars tuberalis (PT) of the pituitary represents an important target site for the time-pacing pineal hormone melatonin because it expresses a large number of mt1 receptors. Functional studies suggest that the PT mediates the seasonal effects of melatonin on prolactin (PRL) secretion. The aim of this study was the characterization of the phenotype of melatonin-responsive cells. Furthermore, we determined whether RORbeta, a retinoid orphan receptor present in the PT, was co-expressed in the same cells. We combined nonradioactive in situ hybridization (ISH) with hapten-labeled riboprobes for detection of the receptors and immunocytochemistry (ICC) for detection of alphaGSU (alpha-glycoprotein subunit), betaTSH, betaFSH, betaLH, GH, PRL, and ACTH. Expression of mt1 mRNA was found in small round cells, co-localized with alphaGSU and betaTSH. However, not all betaTSH-containing cells expressed mt1 mRNA. The distribution of mt1- and RORbeta-positive cells appeared to overlap, although more cells were labeled for RORbeta than for mt1. Gonadotrophs, as well as other pars distalis cell types, were never labeled for mt1 melatonin receptor. Therefore, this study identifies the "specific" cells of the PT as the mt1 melatonin receptor-expressing cells.
Collapse
Affiliation(s)
- Paul Klosen
- Neurobiologie des Rythmes, CNRS-UMR 7518, IFR 37, Université Louis Pasteur, Strasbourg, France.
| | | | | | | | | | | | | |
Collapse
|
418
|
Musshoff U, Riewenherm D, Berger E, Fauteck JD, Speckmann EJ. Melatonin receptors in rat hippocampus: molecular and functional investigations. Hippocampus 2002; 12:165-73. [PMID: 12000116 DOI: 10.1002/hipo.1105] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Since binding sites for melatonin have been found in the hippocampus of several mammals, it has been suggested that the pineal hormone melatonin is able to modulate neuronal functions of hippocampal cells. In order to get more insight into the role of melatonin for the functions of hippocampal cells, the following experiments were performed: male rats, maintained under a 12/12-h light-dark cycle, were sacrificed by decapitation at zeitgeber times (h) ZT2, ZT8, and ZT15 (ZT0 = lights on); for experiment 1, gene expression for melatonin receptors was detected in the hippocampus and in hippocampal subfields by means of the RT-PCR technique; for experiment 2, electrophysiological and pharmacological properties of melatonin receptors heterologously expressed in Xenopus oocytes after injection of mRNA from the hippocampus were analyzed by means of voltage clamp technique; and for experiment 3, effects of melatonin on the spontaneous firing rate of action potentials in the CA1 regions of hippocampal slices were analyzed by means of extracellular recordings. The RT-PCR data revealed that transcripts for both the MT1 and MT2 melatonin receptors are present in the dentate gyrus, CA3, and CA1 regions, and the subiculum of the hippocampus. Injection of mRNA from rat hippocampus into the Xenopus oocytes led to the functional reconstitution of melatonin-sensitive receptors, which activates calcium-dependent chloride inward currents. The melatonin responses were abolished by simultaneous administration of the antagonists 2-phenylmelatonin and luzindole, and were unaffected by the MT2 antagonist 4-phenyl-2-propionamidotetralin. Bath-applied melatonin (1 micromol/l) enhances the firing rate of neurons in the CA1 region. The effect was small in experiments performed at ZT8 (<2 times the initial level) and large in experiments performed at ZT15 (>6 times). The changes of neuronal firing rate induced by melatonin were completely suppressed with simultaneous administration of the melatonin receptor antagonist luzindole (10 micromol/l). The results indicate that melatonin may play an important role in modulating neuronal excitability in the hippocampus.
Collapse
|
419
|
|
420
|
Masana MI, Doolen S, Ersahin C, Al-Ghoul WM, Duckles SP, Dubocovich ML, Krause DN. MT(2) melatonin receptors are present and functional in rat caudal artery. J Pharmacol Exp Ther 2002; 302:1295-302. [PMID: 12183692 DOI: 10.1124/jpet.302.3.1295] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In rat caudal artery, contraction to melatonin results primarily from activation of MT(1) melatonin receptors; however, the role of MT(2) melatonin receptors in vascular responses is controversial. We examined and compared the expression and function of MT(2) receptors with that of MT(1) receptors in male rat caudal artery. MT(1) and MT(2) melatonin receptor mRNA was amplified by reverse transcription-polymerase chain reaction from caudal arteries of three rat strains (i.e., Fisher, Sprague-Dawley, and Wistar). Antisense (but not sense) (33)P-labeled oligonucleotide probes specific for MT(1) or MT(2) receptor mRNA hybridized to smooth muscle, as well as intimal and adventitial layers, of caudal artery. In male Fisher rat caudal artery denuded of endothelium, melatonin was 10 times more potent than 6-chloromelatonin to potentiate contraction to phenylephrine, suggesting activation of smooth muscle MT(1) melatonin receptors. The MT(1)/MT(2) competitive melatonin receptor antagonist luzindole (3 microM), blocked melatonin-mediated contraction (0.1-100 nM) with an affinity constant (K(B) value of 157 nM) similar to that for the human MT(1) receptor. However, at melatonin concentrations above 100 nM, luzindole potentiated the contractile response, suggesting blockade of MT(2) receptors mediating vasorelaxation and/or an inverse agonist effect at MT(1) constitutively active receptors. The involvement of MT(2) receptors in vasorelaxation is supported by the finding that the competitive antagonists 4-phenyl 2-acetamidotetraline and 4-phenyl-2-propionamidotetraline, at MT(2)-selective concentrations (10 nM), significantly enhanced contractile responses to all melatonin concentrations tested (0.1 nM-10 microM). We conclude that MT(2) melatonin receptors expressed in vascular smooth muscle mediate vasodilation in contrast to vascular MT(1) receptors mediating vasoconstriction.
Collapse
MESH Headings
- Animals
- Arteries/metabolism
- Base Sequence
- In Situ Hybridization
- Male
- Melatonin/metabolism
- Molecular Sequence Data
- Muscle Contraction/drug effects
- Muscle, Smooth, Vascular/metabolism
- RNA, Messenger/biosynthesis
- Rats
- Rats, Inbred F344
- Rats, Sprague-Dawley
- Rats, Wistar
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Cytoplasmic and Nuclear/biosynthesis
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Melatonin
- Reverse Transcriptase Polymerase Chain Reaction
- Species Specificity
Collapse
Affiliation(s)
- Monica I Masana
- Department of Molecular Pharmacology and Biological Chemistry, The Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
421
|
Bothorel B, Barassin S, Saboureau M, Perreau S, Vivien-Roels B, Malan A, Pévet P. In the rat, exogenous melatonin increases the amplitude of pineal melatonin secretion by a direct action on the circadian clock. Eur J Neurosci 2002; 16:1090-8. [PMID: 12383238 DOI: 10.1046/j.1460-9568.2002.02176.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effect of exogenous melatonin on pineal melatonin synthesis was studied in the rat in vivo. Daily melatonin profiles were measured by transpineal microdialysis over 4 consecutive days in rats maintained on a 12-h light : 12-h dark schedule (LD 12 : 12). Curve-fitting was used to determine the amplitude of the peak of melatonin production, and the times of its onset (IT50) and offset (DT50). A subcutaneous injection of melatonin (1 mg/kg) at the onset of darkness (ZT12) induced an advance of IT50 on the second day after the treatment, in 50% of the animals kept in LD. When the animals were switched to constant darkness, the treatment caused no detectable advance of IT50, while 70% of individuals showed a significant delay in DT50 2 days after the injection. Locally infusing the drug by reverse microdialysis into the suprachiasmatic nuclei (SCN) failed to enhance the shift in melatonin onset. Following subcutaneous melatonin injection, a significant increase ( approximately 100%) in melatonin peak amplitude was observed. This increase persisted over 2 days and occurred only when the melatonin was applied at ZT12, but not at ZT6, 17 or 22. The effect was also observed when the drug was infused directly into the SCN, but not into the pineal. Thus, the SCN are the target site for the effect of exogenous melatonin on the amplitude of the endogenous melatonin rhythm, with a similar window of sensitivity as its phase-shifting effect on the pacemaker.
Collapse
Affiliation(s)
- Béatrice Bothorel
- Laboratoire de Neurobiologie des Rythmes, UMR 7518 CNRS/Université Louis Pasteur, Strasbourg, France.
| | | | | | | | | | | | | |
Collapse
|
422
|
Poirel VJ, Masson-Pévet M, Pevét P, Gauer F. MT1 melatonin receptor mRNA expression exhibits a circadian variation in the rat suprachiasmatic nuclei. Brain Res 2002; 946:64-71. [PMID: 12133595 DOI: 10.1016/s0006-8993(02)02824-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aim of the present study was to investigate the daily regulation of both MT1 and MT2 melatonin receptor subtype mRNA expression in the rat SCN in order to clarify their role in the daily variation of SCN melatonin receptors. Existing MT1 and MT2 partial clones were extended by PCR to 982 and 522 bp, respectively. However, while the MT1 clone allowed us to set up a highly sensitive in situ hybridization (ISH) method, we could not detect MT2 expression within the SCN. Therefore, our results suggest that only MT1 mRNA can be correlated with 2-iodo-melatonin binding sites in the rat SCN. Investigation of MT1 mRNA expression throughout the 24 h light/dark cycle or in constant darkness clearly showed that in the two conditions, mRNA expression showed a robust rhythm with two peaks, one after the day/night and one after the night/day transitions in LD, and at the beginning of the subjective night and day in DD, respectively. Furthermore, these variations were not linked to the daily changes in melatonin receptor density. Thus, the transcriptional regulation of MT1 receptors does not appear to play a role in the daily regulation of melatonin binding sites availability.
Collapse
Affiliation(s)
- Vincent-Joseph Poirel
- Laboratoire de Neurobiologie des Rythmes, CNRS-UMR 7518, Université Louis Pasteur, 12 rue de l'Université, 67000 Strasbourg, France
| | | | | | | |
Collapse
|
423
|
Pace-Schott EF, Hobson JA. The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci 2002; 3:591-605. [PMID: 12154361 DOI: 10.1038/nrn895] [Citation(s) in RCA: 543] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Edward F Pace-Schott
- Laboratory of Neurophysiology, Department of Psychiatry, Harvard Medical School, Massachusetts Mental Health Center, 74 Fenwood Road, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
424
|
Yuan L, Collins AR, Dai J, Dubocovich ML, Hill SM. MT(1) melatonin receptor overexpression enhances the growth suppressive effect of melatonin in human breast cancer cells. Mol Cell Endocrinol 2002; 192:147-56. [PMID: 12088876 DOI: 10.1016/s0303-7207(02)00029-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Melatonin inhibits the proliferation of estrogen receptor alpha (ERalpha)-positive (MCF-7), but not ERalpha-negative (MDA-MB-231) breast cancer cells. Here, we assessed the effect of MT(1) melatonin receptor stable overexpression in MCF-7 and MDA-MB-231 breast cancer cells on the growth-suppressive effects of melatonin. Parental and vector-transfected MCF-7 cells demonstrated a modest, but significant, growth-suppressive response to melatonin; however, melatonin treatment of MT(1)-transfected MCF-7 cells resulted in significantly enhanced growth-suppression. This response was blocked by an MT1/MT2 melatonin receptor antagonist. Interestingly, MT(1)-overexpression did not induce a melatonin-sensitive phenotype in melatonin-insensitive MDA-MB-231 cells. Finally, Northern blot analysis demonstrated an enhanced inhibition of ERalpha mRNA expression and an enhanced induction of pancreatic spasmolytic polypeptide (pS2) by melatonin in MT(1)-transfected MCF-7 cells relative to vector-transfected MCF-7 cells. These data suggest the involvement of the MT(1) melatonin receptor in mediation of melatonin effects on growth-suppression and gene-modulation in breast cancer cells.
Collapse
MESH Headings
- Adenocarcinoma/chemistry
- Adenocarcinoma/pathology
- Breast Neoplasms/chemistry
- Breast Neoplasms/pathology
- Cell Division/drug effects
- Estrogen Receptor alpha
- Estrogens
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Hormone Antagonists/pharmacology
- Humans
- Intercellular Signaling Peptides and Proteins
- Melatonin/pharmacology
- Mucins
- Muscle Proteins
- Naphthalenes/pharmacology
- Neoplasm Proteins/analysis
- Neoplasms, Hormone-Dependent/chemistry
- Neoplasms, Hormone-Dependent/pathology
- Neuropeptides
- Peptides/genetics
- Peptides/metabolism
- RNA, Messenger/biosynthesis
- RNA, Neoplasm/biosynthesis
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/physiology
- Receptors, Estrogen/analysis
- Receptors, Melatonin
- Recombinant Fusion Proteins/physiology
- Transfection
- Trefoil Factor-2
- Trefoil Factor-3
- Tumor Cells, Cultured/chemistry
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/pathology
Collapse
Affiliation(s)
- Lin Yuan
- Department of Structural and Cellular Biology, Tulane University Medical School, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
425
|
von Gall C, Garabette ML, Kell CA, Frenzel S, Dehghani F, Schumm-Draeger PM, Weaver DR, Korf HW, Hastings MH, Stehle JH. Rhythmic gene expression in pituitary depends on heterologous sensitization by the neurohormone melatonin. Nat Neurosci 2002; 5:234-8. [PMID: 11836530 DOI: 10.1038/nn806] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In mammals, many daily cycles are driven by a central circadian clock, which is based on the cell-autonomous rhythmic expression of clock genes. It is not clear, however, how peripheral cells are able to interpret the rhythmic signals disseminated from this central oscillator. Here we show that cycling expression of the clock gene Period1 in rodent pituitary cells depends on the heterologous sensitization of the adenosine A2b receptor, which occurs through the nocturnal activation of melatonin mt1 receptors. Eliminating the impact of the neurohormone melatonin simultaneously suppresses the expression of Period1 and evokes an increase in the release of pituitary prolactin. Our findings expose a mechanism by which two convergent signals interact within a temporal dimension to establish high-amplitude, precise and robust cycles of gene expression.
Collapse
Affiliation(s)
- Charlotte von Gall
- Institute of Anatomy II, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
426
|
Gaildrat P, Becq F, Falcón J. First cloning and functional characterization of a melatonin receptor in fish brain: a novel one? J Pineal Res 2002; 32:74-84. [PMID: 12071471 DOI: 10.1034/j.1600-079x.2002.1817.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Melatonin, a neuroendocrine transducer of photoperiod, influences a number of physiological functions and behaviors through specific seven transmembrane domains receptors. We report here the first full-length cloning and functional characterization of a melatonin receptor (P2.6) in a fish, the pike (Teleost). P2.6 encodes a protein that is approximately 80% identical to melatonin receptors previously isolated partially in non-mammals and classified as members of the Mel(1b) subtype; but, it shares only 61% identity with the full-length human Mel(1b) melatonin receptor (hMT2). Expression of P2.6 results in ligand binding characteristics similar to that described for endogenous melatonin receptors. Selective antagonists of the hMT2 (4-phenyl-2-propionamidotetraline and luzindole) were poor competitors of 2-[125I]iodomelatonin binding to the recombinant receptor. In Chinese hamster ovary cells expressing both the cystic fibrosis transmembrane conductance regulator chloride channel and P2.6 receptor, melatonin counteracted the forskolin induced activation of the channel. The results are best explained by a selective inhibition of the adenylyl cyclase. By reverse transcription-polymerase chain reaction, P2.6 mRNA appeared expressed in the optic tectum and, to lesser extent, in the retina and pituitary. In conclusion, these results, together with those of a phylogenetic analysis, suggest that P2.6 might belong to a distinct subtype group within the vertebrate melatonin receptor family.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Binding, Competitive
- Blotting, Northern
- Brain/physiology
- CHO Cells
- Cloning, Molecular
- Colforsin/pharmacology
- Cricetinae
- Cystic Fibrosis Transmembrane Conductance Regulator/drug effects
- Cystic Fibrosis Transmembrane Conductance Regulator/genetics
- Cystic Fibrosis Transmembrane Conductance Regulator/metabolism
- Melatonin/analogs & derivatives
- Melatonin/metabolism
- Molecular Sequence Data
- Phylogeny
- RNA, Messenger/metabolism
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Melatonin
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
- Superior Colliculi/physiology
- Tetrahydronaphthalenes/metabolism
Collapse
Affiliation(s)
- Pascaline Gaildrat
- Département des Neurosciences, CNRS UMR 6558, Université de Poitiers, France
| | | | | |
Collapse
|
427
|
MacKenzie RS, Melan MA, Passey DK, Witt-Enderby PA. Dual coupling of MT(1) and MT(2) melatonin receptors to cyclic AMP and phosphoinositide signal transduction cascades and their regulation following melatonin exposure. Biochem Pharmacol 2002; 63:587-95. [PMID: 11992626 DOI: 10.1016/s0006-2952(01)00881-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this investigation, we wanted to determine whether MT(1) or MT(2) melatonin receptors are capable of coupling to the phosphoinositide (PI) signal transduction cascade. In addition, we wanted to assess the effects of chronic melatonin exposure on MT(1) and MT(2) melatonin receptor-mediated stimulation of PI hydrolysis. We also assessed the effects of chronic melatonin exposure on other parameters of the MT(2) melatonin receptor function including total specific 2-[125I]-iodomelatonin binding, the affinity of melatonin for the receptor, and melatonin (1nM)-mediated inhibition of cyclic 3',5'-adenosine monophosphate (cAMP) accumulation. Investigation of the PI signal transduction cascade activated by either the MT(1) or MT(2) melatonin receptor expressed in Chinese hamster ovary (CHO) cells showed that melatonin (1pM to 1mM) was able to stimulate the formation of PIs to approximately 40-60% over basal [EC(50): MT(1)=29nM (2-300nM) and MT(2)=1.1nM (0.32-3.5nM), N=5]. This response was mediated via receptors based upon the findings that melatonin did not stimulate the formation of PIs in CHO cells devoid of receptor and that antagonism of MT(2) melatonin receptors by 4P-PDOT (AH 024; 4-phenyl-2-propionamidotetralin) attenuated melatonin-mediated stimulation of PI hydrolysis in CHO cells expressing the MT(2) melatonin receptor. The consequence of chronic melatonin exposure on MT(1) and MT(2) receptor function was also examined. Pretreatment of either MT(1)- or MT(2)-CHO cells with melatonin (1 microM for 5hr) resulted in: (a) a complete loss of melatonin-mediated stimulation of PI hydrolysis, and (b) an attenuation of melatonin (1nM)-mediated inhibition of forskolin-induced cAMP accumulation by approximately 20-40%. The desensitization of the PI hydrolysis signal transduction cascades coupled to either MT(1) or MT(2) melatonin receptors following chronic melatonin exposure was not due to depleted phospholipid pools, to elevated basal levels, or to decreases in receptor affinity and density. This dual coupling of melatonin receptors to different signal transduction cascades may contribute to the diversity of melatonin receptor function in vivo.
Collapse
Affiliation(s)
- Renee S MacKenzie
- Department of Pharmacology and Toxicology, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | | | | | | |
Collapse
|
428
|
van den Top M, Buijs RM, Ruijter JM, Delagrange P, Spanswick D, Hermes ML. Melatonin generates an outward potassium current in rat suprachiasmatic nucleus neurones in vitro independent of their circadian rhythm. Neuroscience 2002; 107:99-108. [PMID: 11744250 DOI: 10.1016/s0306-4522(01)00346-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present study investigated the membrane mechanisms underlying the inhibitory influence of melatonin on suprachiasmatic nucleus (SCN) neurones in a hypothalamic slice preparation. Perforated-patch recordings were performed to prevent the rapid rundown of spontaneous firing rate as observed during whole cell recordings and to preserve circadian rhythmicity in SCN neurones. In current-clamp mode melatonin (1 microM or 1 nM) application, in the presence of agents that block action potential generation and fast synaptic transmission, resulted in a membrane hyperpolarisation accompanied with a decrease in input resistance in the majority of SCN neurones (71-86%). The amplitude of the hyperpolarisation was not found to be significantly different between circadian time 5-12 and 14-21. In voltage-clamp mode melatonin (1 microM or 1 nM) induced an outward current accompanied with an increase in membrane conductance. The current was found to be mainly potassium driven with voltage kinetics resembling those of an open rectifying potassium conductance. Investigations into the signal transduction mechanism revealed melatonin-induced inhibition of SCN neurones to be sensitive to pertussis toxin but independent of intracellular cAMP levels and phospholipase C activity. The present study shows that melatonin, at night-time physiological concentrations, reduces the neuronal excitability of the majority of SCN neurones independent of the time of application in the circadian cycle. Thus in vivo melatonin may be important for circadian time-keeping by amplifying the circadian rhythm in SCN neurones, by lowering their sensitivity to phase-shifting stimuli occurring at night.
Collapse
Affiliation(s)
- M van den Top
- Netherlands Institute for Brain Research, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
429
|
Abstract
Many daily biological rhythms are governed by an innate timekeeping mechanism or clock. Endogenous, temperature-compensated circadian clocks have been localized to discrete sites within the nervous systems of a number of organisms. In mammals, the master circadian pacemaker is the bilaterally paired suprachiasmatic nucleus (SCN) in the anterior hypothalamus. The SCN is composed of multiple single cell oscillators that must synchronize to each other and the environmental light schedule. Other tissues, including those outside the nervous system, have also been shown to express autonomous circadian periodicities. This review examines 1) how intracellular regulatory molecules function in the oscillatory mechanism and in its entrainment to environmental cycles; 2) how individual SCN cells interact to create an integrated tissue pacemaker with coherent metabolic, electrical, and secretory rhythms; and 3) how such clock outputs are converted into temporal programs for the whole organism.
Collapse
Affiliation(s)
- Erik D Herzog
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
430
|
Abstract
To review the interaction between melatonin and the dopaminergic system in the hypothalamus and striatum and its potential clinical use in dopamine-related disorders in the central nervous system. Medline-based search on melatonin-dopamine interactions in mammals. Melatonin. the hormone produced by the pineal gland at night. influences circadian and seasonal rhythms, most notably the sleep-wake cycle and seasonal reproduction. The neurochemical basis of these activities is not understood yet. Inhibition of dopamine release by melatonin has been demonstrated in specific areas of the mammalian central nervous system (hypothalamus, hippocampus, medulla-pons, and retina). Antidopaminergic activities of melatonin have been demonstrated in the striatum. Dopaminergic transmission has a pivotal role in circadian entrainment of the fetus, in coordination of body movement and reproduction. Recent findings indicate that melatonin may modulate dopaminergic pathways involved in movement disorders in humans. In Parkinson patients melatonin may, on the one hand, exacerbate symptoms (because of its putative interference with dopamine release) and, on the other, protect against neurodegeneration (by virtue of its antioxidant properties and its effects on mitochondrial activity). Melatonin appears to be effective in the treatment of tardive dyskinesia. a severe movement disorder associated with long-term blockade of the postsynaptic dopamine D2 receptor by antipsychotic drugs in schizophrenic patients. The interaction of melatonin with the dopaminergic system may play a significant role in the nonphotic and photic entrainment of the biological clock as well as in the fine-tuning of motor coordination in the striatum. These interactions and the antioxidant nature of melatonin may be beneficial in the treatment of dopamine-related disorders.
Collapse
Affiliation(s)
- N Zisapel
- Department of Neurobiochemistry, Tel Aviv University, Israel.
| |
Collapse
|
431
|
Masana MI, Dubocovich ML. Melatonin receptor signaling: finding the path through the dark. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2001; 2001:pe39. [PMID: 11698691 DOI: 10.1126/stke.2001.107.pe39] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Melatonin, dubbed "the hormone of darkness," is involved in relaying photoperiodic information to the organism. Not only is melatonin involved in the regulation of circadian rhythms and sleep, but it also has roles in visual, cerebrovascular, reproductive, neuroendocrine, and neuroimmunological functions. Melatonin mediates its effects through G protein-coupled receptors: MT(1), MT(2), and, possibly, MT(3). Pharmacological agents have been instrumental in identifying these receptor types. Masana and Dubocovich discuss how the level of receptor expression may alter their efficacy, so that caution is necessary when extrapolating the pharmacological properties of ligands defined on recombinant systems to the receptors in the organism. With these cautions in mind, they describe the various signaling pathways and physiological roles ascribed to the three melatonin receptor types.
Collapse
Affiliation(s)
- M I Masana
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, IL 60611, USA
| | | |
Collapse
|
432
|
Pando MP, Sassone-Corsi P. Signaling to the mammalian circadian clocks: in pursuit of the primary mammalian circadian photoreceptor. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2001; 2001:re16. [PMID: 11698692 DOI: 10.1126/stke.2001.107.re16] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The mammalian circadian system is critical for the proper regulation of behavioral and physiological rhythms. The central oscillator, or master clock, is located in the hypothalamic suprachiasmatic nucleus (SCN). Additional circadian clocks are dispersed throughout most organs and tissues of an animal. The most prominent stimuli capable of synchronizing circadian oscillations to the environment is light. This occurs through daily photic signaling to the SCN, which ultimately results in the appropriate phasing of the various biological rhythms. Two critical aspects of circadian biology that will be discussed here are photic signaling and the communication between central and peripheral clocks. After 10 years of investigation, the primary mammalian circadian photoreceptor remains elusive. Recent findings suggest that multiple photoreceptive molecules may contribute to the perception of environmental light cycles. In addition, the relatively recent identification of cell-autonomous peripheral clocks has opened up an entirely new area of investigation. Deciphering the communication networks responsible for harmonious central and peripheral clock function is a critical step toward the development of effective therapies for circadian-related disorders.
Collapse
Affiliation(s)
- M P Pando
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Louis Pasteur, 1 Rue Laurent Fries, 67404 Illkirch, Strasbourg, France
| | | |
Collapse
|
433
|
Lotufo CM, Lopes C, Dubocovich ML, Farsky SH, Markus RP. Melatonin and N-acetylserotonin inhibit leukocyte rolling and adhesion to rat microcirculation. Eur J Pharmacol 2001; 430:351-7. [PMID: 11711054 DOI: 10.1016/s0014-2999(01)01369-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The hormone melatonin produced by the pineal gland during the daily dark phase regulates a variety of biological processes in mammals. The aim of this study was to determine the effect of melatonin and its precursor N-acetylserotonin on the microcirculation during acute inflammation. Arteriolar diameter, blood flow rate, leukocyte rolling and adhesion were measured in the rat microcirculation in situ by intravital microscopy. Melatonin alone or together with noradrenaline did not affect the arteriolar diameter or blood flow rate. Melatonin inhibited both leukocyte rolling and leukotriene B(4) induced adhesion while its precursor N-acetylserotonin inhibits only leukocyte adhesion. The rank order of potency of agonists and antagonist receptor selective ligands suggested that the activation of MT(2) and MT(3) melatonin binding sites receptors modulate leukocyte rolling and adhesion, respectively. The effect of melatonin and N-acetylserotonin herein described were observed with concentrations in the range of the nocturnal surge, providing the first evidence for a possible physiological role of these hormones in acute inflammation.
Collapse
Affiliation(s)
- C M Lotufo
- Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
434
|
Roy D, Angelini NL, Fujieda H, Brown GM, Belsham DD. Cyclical regulation of GnRH gene expression in GT1-7 GnRH-secreting neurons by melatonin. Endocrinology 2001; 142:4711-20. [PMID: 11606436 DOI: 10.1210/endo.142.11.8464] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The pineal hormone melatonin plays an important role in the neuroendocrine control of reproductive physiology, but its effects on hypothalamic GnRH neurons are not yet known. We have found that GT1-7 GnRH-secreting neurons express membrane-bound G protein-coupled melatonin receptors, mt1 (Mel-1a) and MT2 (Mel-1b) as well as the orphan nuclear receptors ROR alpha and RZR beta. Melatonin (1 nM) significantly downregulates GnRH mRNA levels in a 24-h cyclical manner, an effect that is specifically inhibited by the melatonin receptor antagonist luzindole (10 microM). Repression of GnRH gene expression by melatonin appears to occur at the transcriptional level and can be mapped to the GnRH neuron-specific enhancer located within the 5' regulatory region of the GnRH gene. Using transient transfection of GT1-7 cells, downregulation of GnRH gene expression by melatonin was further localized to five specific regions within the GnRH enhancer including -1827/-1819, -1780/-1772, -1746/-1738, -1736/-1728, and -1697/-1689. Interestingly, the region located at -1736/-1728 includes sequences that correspond to two direct repeats of hexameric consensus binding sites for members of the ROR/RZR orphan nuclear receptor family. To begin to dissect the mechanisms involved in the 24-h cyclical regulation of GnRH transcription, we have found that melatonin (10 nM) induces rapid internalization of membrane-bound mt1 receptors through a beta-arrestin 1-mediated mechanism. These results provide the first evidence that melatonin may mediate its neuroendocrine control on reproductive physiology through direct actions on the GnRH neurons of the hypothalamus, both at the level of GnRH gene expression and through the regulation of G protein-coupled melatonin receptors.
Collapse
Affiliation(s)
- D Roy
- Institute for Medical Sciences, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
435
|
Abstract
An intrinsic body clock residing in the suprachiasmatic nucleus (SCN) within the brain regulates a complex series of rhythms in humans, including sleep/wakefulness. The individual period of the endogenous clock is usually >24 hours and is normally entrained to match the environmental rhythm. Misalignment of the circadian clock with the environmental cycle may result in sleep disorders. Among these are chronic insomnias associated with an endogenous clock which runs slower or faster than the norm [delayed (DSPS) or advanced (ASPS) sleep phase syndrome, or irregular sleep-wake cycle], periodic insomnias due to disturbances in light perception (non-24-hour sleep-wake syndrome and sleep disturbances in blind individuals) and temporary insomnias due to social circumstances (jet lag and shift-work sleep disorder). Synthesis of melatonin (N-acetyl-5-methoxytryptamine) within the pineal gland is induced at night, directly regulated by the SCN. Melatonin can relay time-of-day information (signal of darkness) to various organs, including the SCN itself. The phase-shifting effects of melatonin are essentially opposite to those of light. In addition, melatonin facilitates sleep in humans. In the absence of a light-dark cycle, the timing of the circadian clock, including the timing of melatonin production in the pineal gland, may to some extent be adjusted with properly timed physical exercise. Bright light exposure has been demonstrated as an effective treatment for circadian rhythm sleep disorders. Under conditions of entrainment to the 24-hour cycle, bright light in the early morning and avoidance of light in the evening should produce a phase advance (for treatment of DSPS), whereas bright light in the evening may be effective in delaying the clock (ASPS). Melatonin, given several hours before its endogenous peak at night, effectively advances sleep time in DSPS and adjusts the sleep-wake cycle to 24 hours in blind individuals. In some blind individuals, melatonin appears to fully entrain the clock. Melatonin and light, when properly timed, may also alleviate jet lag. Because of its sleep-promoting effect, melatonin may improve sleep in night-shift workers trying to sleep during the daytime. Melatonin replacement therapy may also provide a rational approach to the treatment of age-related insomnia in the elderly. However, there is currently no melatonin formulation approved for clinical use, neither are there consensus protocols for light or melatonin therapies. The use of bright light or melatonin for circadian rhythm sleep disorders is thus considered exploratory at this stage.
Collapse
Affiliation(s)
- N Zisapel
- Department of Neurobiochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel.
| |
Collapse
|
436
|
Malpaux B, Migaud M, Tricoire H, Chemineau P. Biology of mammalian photoperiodism and the critical role of the pineal gland and melatonin. J Biol Rhythms 2001; 16:336-47. [PMID: 11506379 DOI: 10.1177/074873001129002051] [Citation(s) in RCA: 241] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In mammals, photoperiodic information is transformed into a melatonin secretory rhythm in the pineal gland (high levels at night, low levels during the day). Melatonin exerts its effects in discrete hypothalamic areas, most likely through MT1 melatonin receptors. Whether melatonin is brought to the hypothalamus from the cerebrospinal fluid or the blood is still unclear. The final action of this indoleamine at the level of the central nervous system is a modulation of GnRH secretion but it does not act directly on GnRH neurones; rather, its action involves a complex neural circuit of interneurones that includes at least dopaminergic, serotoninergic and aminoacidergic neurones. In addition, this network appears to undergo morphological changes between seasons.
Collapse
Affiliation(s)
- B Malpaux
- UMR 6073 INRA-CNRS-Université François Rabelais, Physiologie de la Reproduction et des Comportements, Nouzilly, France.
| | | | | | | |
Collapse
|
437
|
Nelson CS, Ikeda M, Gompf HS, Robinson ML, Fuchs NK, Yoshioka T, Neve KA, Allen CN. Regulation of melatonin 1a receptor signaling and trafficking by asparagine-124. Mol Endocrinol 2001; 15:1306-17. [PMID: 11463855 DOI: 10.1210/mend.15.8.0681] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Melatonin is a pineal hormone that regulates seasonal reproduction and has been used to treat circadian rhythm disorders. The melatonin 1a receptor is a seven- transmembrane domain receptor that signals predominately via pertussis toxin-sensitive G-proteins. Point mutations were created at residue N124 in cytoplasmic domain II of the receptor and the mutant receptors were expressed in a neurohormonal cell line. The acidic N124D- and E-substituted receptors had high-affinity (125)I-melatonin binding and a subcellular localization similar to the neutral N124N wild-type receptor. Melatonin efficacy for the inhibition of cAMP by N124D and E mutations was significantly decreased. N124D and E mutations strongly compromised melatonin efficacy and potency for inhibition of K(+)-induced intracellular Ca(++) fluxes and eliminated control of spontaneous calcium fluxes. However, these substitutions did not appear to affect activation of Kir3 potassium channels. The hydrophobic N124L and N124A or basic N124K mutations failed to bind (125)I-melatonin and appeared to aggregate or traffic improperly. N124A and N124K receptors were retained in the Golgi. Therefore, mutants at N124 separated into two sets: the first bound (125)I-melatonin with high affinity and trafficked normally, but with reduced inhibitory coupling to adenylyl cyclase and Ca(++) channels. The second set lacked melatonin binding and exhibited severe trafficking defects. In summary, asparagine-124 controls melatonin receptor function as evidenced by changes in melatonin binding, control of cAMP levels, and regulation of ion channel activity. Asparagine-124 also has a unique structural effect controlling receptor distribution within the cell.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Animals
- Asparagine
- Calcium/metabolism
- Calcium Channels/metabolism
- Cyclic AMP/metabolism
- Electrophysiology
- Fluorescent Antibody Technique
- G Protein-Coupled Inwardly-Rectifying Potassium Channels
- Golgi Apparatus/metabolism
- Iodine Radioisotopes
- Melatonin/metabolism
- Melatonin/pharmacology
- Mice
- Mutagenesis, Site-Directed
- Pituitary Neoplasms
- Potassium/pharmacology
- Potassium Channels/drug effects
- Potassium Channels/physiology
- Potassium Channels, Inwardly Rectifying
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/physiology
- Receptors, Melatonin
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- C S Nelson
- Center for Research on Occupational and Environmental Toxicology, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | | | | | | | | | | | |
Collapse
|
438
|
Hazlerigg DG, Morgan PJ, Messager S. Decoding photoperiodic time and melatonin in mammals: what can we learn from the pars tuberalis? J Biol Rhythms 2001; 16:326-35. [PMID: 11506378 DOI: 10.1177/074873001129002042] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cellular and molecular mechanisms through which the melatonin signal is decoded to drive/synchronize photoperiodic responses remain unclear. Much of our current understanding of the processes involved in this readout derives from studies of melatonin action in the pars tuberalis of the anterior pituitary. Here, the authors review current knowledge and highlight critical gaps in our present understanding.
Collapse
Affiliation(s)
- D G Hazlerigg
- Aberdeen Centre for Energy Regulation and Obesity, University of Aberdeen, Scotland, UK.
| | | | | |
Collapse
|
439
|
The neuropeptide Y Y5 receptor mediates the blockade of "photic-like" NMDA-induced phase shifts in the golden hamster. J Neurosci 2001. [PMID: 11438613 DOI: 10.1523/jneurosci.21-14-05367.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Circadian or daily rhythms generated from the mammalian suprachiasmatic nuclei (SCN) of the hypothalamus can be synchronized by light and nonphotic stimuli. Whereas glutamate mediates photic information, nonphotic information can in some cases be mediated by neuropeptide Y (NPY) or serotonin. NPY or serotonin can reduce the phase-resetting effect of light or glutamate; however, the mechanisms and level of interaction of these two kinds of stimuli are unknown. Here we investigate the effect of NPY on the NMDA-induced phase shift of the hamster SCN circadian neural activity rhythm by means of single-unit recording techniques. NMDA (10-100 microm) applied in the early subjective night induced phase delays in the time of peak firing, whereas doses in the millimolar range disrupted firing patterns. The NMDA-induced phase delay was blocked by coapplication of NPY (0.02-200 microm). NPY Y1/Y5 and Y5 receptor agonists, but not the Y2 receptor agonist, blocked the NMDA-induced phase delay in a similar manner as NPY. The coapplication of a Y5 but not Y1 receptor antagonist eliminated NPY blockade of NMDA-induced phase delays, suggesting that the Y5 receptor is capable of mediating the inhibitory effect of NPY on photic responses. These results indicate that nonphotic and photic stimuli may interact at a level at or beyond NMDA receptor response and indicate that the Y5 receptor is involved in this interaction. Alteration of Y5 receptor function may therefore be expected to alter synchronization of circadian rhythms to light.
Collapse
|
440
|
Abstract
In mammals, a master circadian "clock" resides in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. The SCN clock is composed of multiple, single-cell circadian oscillators, which, when synchronized, generate coordinated circadian outputs that regulate overt rhythms. Eight clock genes have been cloned that are involved in interacting transcriptional-/translational-feedback loops that compose the molecular clockwork. The daily light-dark cycle ultimately impinges on the control of two clock genes that reset the core clock mechanism in the SCN. Clock-controlled genes are also generated by the central clock mechanism, but their protein products transduce downstream effects. Peripheral oscillators are controlled by the SCN and provide local control of overt rhythm expression. Greater understanding of the cellular and molecular mechanisms of the SCN clockwork provides opportunities for pharmacological manipulation of circadian timing.
Collapse
Affiliation(s)
- S M Reppert
- Laboratory of Developmental Chronobiology, Mass General Hospital for Children, and Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
441
|
Weaver DR, Capodice CE. Postmortem stability of melatonin receptor binding and clock-relevant mRNAs in mouse suprachiasmatic nucleus. J Biol Rhythms 2001; 16:216-23. [PMID: 11407781 DOI: 10.1177/074873040101600304] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The stability of receptor proteins and mRNAs in brain tissue is variable after death. As a prelude to quantitative studies of melatonin receptor density and clock gene expression in the human brain, the stability of these macromolecules was examined in the mouse brain under simulated postmortem conditions using the model of Spokes and Koch. In the mouse suprachiasmatic nucleus (SCN), melatonin receptor binding was significantly reduced after 18 to 24 h under postmortem conditions. Two mRNAs that are rhythmically expressed in the SCN, mPer1 and prepropressophysin (AVP), also decreased significantly over the interval studied, and mPer1 declined more rapidly than AVP. Both mPer1 and AVP mRNA levels in the SCN declined more rapidly in vivo than under postmortem conditions, suggesting that the degradation of these mRNAs is an active process. The results indicate that quantitative studies of melatonin receptor density on human postmortem material are feasible and that detection of rhythmic gene expression in the human SCN will likely require collection of specimens with a rather short (< 8 h) interval from death to tissue collection. The relative stability of melatonin receptor binding in the SCN also suggests that receptor binding may be a reliable marker for the location of the SCN in studies assessing clock gene expression in postmortem material.
Collapse
Affiliation(s)
- D R Weaver
- Laboratory of Developmental Chronobiology, MassGeneral Hospital for Children, Boston, MA 02114, USA.
| | | |
Collapse
|
442
|
Abstract
The physiological and neuroendocrine functions of the pineal gland hormone, melatonin, and its therapeutic potential critically depend on the understanding of its target sites and its mechanisms of action. This has progressed considerably in the last few years through the cloning of G protein-coupled seven-transmembrane melatonin receptors (Mel1a and Mel1b) as well as of nuclear receptors (RZR/ROR alpha and RZR beta) that are associated with melatonin signaling. The transcription factor RZR/ROR alpha appears to mediate a direct gene regulatory action of the hormone, and specific binding sites have been identified in promoter regions of a variety of genes, such as 5-lipoxygenase (5-LO), p21WAF1/CIP1, and bone sialoprotein (BSP). The membrane signaling pathway clearly shows higher ligand sensitivity than the nuclear signaling pathway, but details of its signal transduction cascade, and target genes are presently unknown. Membrane melatonin receptors are expressed mainly in the central nervous system, whereas RZR/ROR alpha is prominently expressed both in the periphery and the brain. The action of membrane melatonin receptors and their specific agonists have been associated with circadian rhythmicity, whereas direct effects of melatonin in the periphery, such as immunomodulation, cellular growth, and bone differentiation, mainly appear to be mediated by RZR/ROR alpha. It is hypothesized in this review that, in some cases, RZR/ROR alpha may be a primary target of membrane melatonin receptors.
Collapse
Affiliation(s)
- C Carlberg
- Institut für Physiologische Chemie I, Heinrich-Heine-Universität Düsseldorf, Postfach 10 10 07, D-40001 Düsseldorf, Germany.
| |
Collapse
|
443
|
Underwood H, Steele CT, Zivkovic B. Circadian organization and the role of the pineal in birds. Microsc Res Tech 2001; 53:48-62. [PMID: 11279670 DOI: 10.1002/jemt.1068] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
All organisms exhibit significant daily rhythms in a myriad of functions from molecular levels to the level of the whole organism. Significantly, most of these rhythms will persist under constant conditions, showing that they are driven by an internal circadian clock. In birds the circadian system is composed of several interacting sites, each of which may contain a circadian clock. These sites include the pineal organ, the suprachiasmatic nucleus (SCN) of the hypothalamus, and, in some species, the eyes. Light is the most powerful entraining stimulus for circadian rhythms and, in birds, light can affect the system via three different pathways: the eyes, the pineal, and extraretinal photoreceptors located in the deep brain. Circadian pacemakers in the pineal and in the eyes of some avian species communicate with the hypothalamic pacemakers via the rhythmic synthesis and release of the hormone melatonin. Often the hypothalamic pacemakers are unable to sustain persistent rhythmicity in constant conditions in the absence of periodic melatonin input from the pineal (or eyes). It has also been proposed that pineal pacemakers may be unable to sustain rhythmicity in constant conditions without periodic neural input from the SCN. Significant variation can occur among birds in the relative roles that the pineal, the SCN, and the eyes play within the circadian system; for example, in the house sparrow pacemakers in the pineal play the predominant role, in the pigeon circadian pacemakers in both the pineal and eyes play a significant role, and in Japanese quail ocular pacemakers play the predominant role.
Collapse
Affiliation(s)
- H Underwood
- Department of Zoology, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | |
Collapse
|
444
|
Isobe Y, Torii T, Nishino H. Melatonin inhibits Arg-vasopressin release via MT(2) receptor in the suprachiasmatic nucleus-slice culture of rats. Brain Res 2001; 889:214-9. [PMID: 11166706 DOI: 10.1016/s0006-8993(00)03139-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The effect of melatonin on the release of Arg-vasopressin (AVP) was analyzed in a suprachiasmatic nucleus-slice explant culture. The release of AVP into the culture medium exhibited a circadian rhythm, with higher level during the subjective day and lower level during the subjective night. Melatonin (500 nM) inhibited the release of AVP. Luzindole, a MT(2) (Mel 1b) melatonin receptor antagonist, attenuated the effect of melatonin on the AVP release. Results indicate that the inhibition of AVP release by melatonin in the suprachiasmatic nucleus-slice culture depends at least in part on the melatonin MT(2) receptor.
Collapse
Affiliation(s)
- Y Isobe
- Department of Physiology, Nagoya City University Medical School, Mizuho-ku, 467-8601, Nagoya, Japan.
| | | | | |
Collapse
|
445
|
Hunt AE, Al-Ghoul WM, Gillette MU, Dubocovich ML. Activation of MT(2) melatonin receptors in rat suprachiasmatic nucleus phase advances the circadian clock. Am J Physiol Cell Physiol 2001; 280:C110-8. [PMID: 11121382 DOI: 10.1152/ajpcell.2001.280.1.c110] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aim of this study was to identify the melatonin receptor type(s) (MT(1) or MT(2)) mediating circadian clock resetting by melatonin in the mammalian suprachiasmatic nucleus (SCN). Quantitative receptor autoradiography with 2-[(125)I]iodomelatonin and in situ hybridization histochemistry, with either (33)P- or digoxigenin-labeled antisense MT(1) and MT(2) melatonin receptor mRNA oligonucleotide probes, revealed specific expression of both melatonin receptor types in the SCN of inbred Long-Evans rats. The melatonin receptor type mediating phase advances of the circadian rhythm of neuronal firing rate in the SCN slice was assessed using competitive melatonin receptor antagonists, the MT(1)/MT(2) nonselective luzindole and the MT(2)-selective 4-phenyl-2-propionamidotetraline (4P-PDOT). Luzindole and 4P-PDOT (1 nM-1 microM) did not affect circadian phase on their own; however, they blocked both the phase advances (approximately 4 h) in the neuronal firing rate induced by melatonin (3 pM) at temporally distinct times of day [i.e., subjective dusk, circadian time (CT) 10; and dawn, CT 23], as well as the associated increases in protein kinase C activity. We conclude that melatonin mediates phase advances of the SCN circadian clock at both dusk and dawn via activation of MT(2) melatonin receptor signaling.
Collapse
Affiliation(s)
- A E Hunt
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | | | |
Collapse
|
446
|
Harada Y, Sanada K, Fukada Y. Circadian activation of bullfrog retinal mitogen-activated protein kinase associates with oscillator function. J Biol Chem 2000; 275:37078-85. [PMID: 10978323 DOI: 10.1074/jbc.m004706200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vertebrate retina retains a circadian oscillator, and its oscillation is self-sustained with a period close to 24 h under constant environmental conditions. Here we show that bullfrog retinal mitogen-activated protein kinase (MAPK) exhibits an in vivo circadian rhythm in phosphorylation with a peak at night in a light/dark cycle. The phosphorylation rhythm of MAPK persists in constant darkness with a peak at subjective night, and this self-sustained rhythm is also observed in cultured retinas, indicating its close interaction with the retinal oscillator. The rhythmically phosphorylated MAPK is detected only in a discrete subset of amacrine cells despite ubiquitous distribution of MAPK throughout the retinal layers. Treatment of the cultured retinas with MAPK kinase (MEK) inhibitor PD98059 suppresses MAPK phosphorylation during the subjective night, and this pulse perturbation of MEK activity induces a significant phase delay (4-8 h) of the retinal circadian rhythm in MAPK and MEK phosphorylation. These observations strongly suggest that the site-specific and time-of-day-specific activation of MAPK contributes to the circadian time-keeping mechanism of the retinal clock system.
Collapse
Affiliation(s)
- Y Harada
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo and CREST, Japan Science and Technology Corporation, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
447
|
Abstract
Living organisms adapt to light-dark rhythmicity using a complex programme based on internal clocks. These circadian clocks, which are regulated by the environment, direct various physiological functions. As the molecular mechanisms that govern clock function are unravelled, we are starting to appreciate simple patterns as well as exquisite layers of regulation.
Collapse
Affiliation(s)
- N Cermakian
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS-INSERM-Université Louis Pasteur, 1, Rue Laurent Fries, 67404 Illkirch-Strasbourg, France
| | | |
Collapse
|
448
|
Asai M, Ikeda M, Akiyama M, Oshima I, Shibata S. Administration of melatonin in drinking water promotes the phase advance of light-dark cycle in senescence-accelerated mice, SAMR1 but not SAMP8. Brain Res 2000; 876:220-4. [PMID: 10973614 DOI: 10.1016/s0006-8993(00)02661-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We analyzed effects of aging on behavioral rhythms in the mouse showing senescence acceleration, SAMP8 strains. The free-running rhythms had longer free-running periods (tau) in SAMP8 than in the control strain (SAMR1). Drinking of melatonin promoted the adaptation to advanced LD in SAMR1 but not in SAMP8, although both strains exhibited melatonin MT1 and MT2 receptors. The present results suggest that melatonin promotes the adaptation to advanced LD cycles in normal aging mice.
Collapse
Affiliation(s)
- M Asai
- Department of Pharmacology and Brain Science, School of Human Sciences, Waseda University, Tokorozawa, 359-1192, Saitama, Japan
| | | | | | | | | |
Collapse
|
449
|
Herzog ED, Grace MS, Harrer C, Williamson J, Shinohara K, Block GD. The role of Clock in the developmental expression of neuropeptides in the suprachiasmatic nucleus. J Comp Neurol 2000; 424:86-98. [PMID: 10888741 DOI: 10.1002/1096-9861(20000814)424:1<86::aid-cne7>3.0.co;2-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The suprachiasmatic nucleus (SCN) is the dominant circadian pacemaker in mammals. To understand better the ontogeny of mouse SCN and the role of the pacemaker in peptide expression, the authors examined the distribution of cells that were immunoreactive for vasopressin (AVP) or vasoactive intestinal polypeptide (VIP) in wild type and Clock mutant mice at two developmental stages. Clock homozygous mice failed to show the dramatic increase in the number of VIP-immunoreactive (VIP-ir) neurons from postnatal day 6 (P6) to P30 that was found in the SCN of wild type mice. The number of AVP-ir neurons was relatively constant in the postnatal SCN but was significantly reduced in Clock/Clock mice. The effects of the Clock mutation varied with position in the SCN for both peptides. Densitometry of immunolabeled brains indicated that the Clock mutation reduced AVP expression specifically in the SCN and not in other brain areas. The SCN did not significantly change shape or size with age or Clock genotype. Taken together, these results indicate that the neonatal mouse SCN has its full complement of cells, some of which are not yet mature in their neuropeptide content. Furthermore, the observation that the Clock mutation appears to act on a subset of AVP and VIP cells suggests heterogeneity within these cell classes in the SCN.
Collapse
Affiliation(s)
- E D Herzog
- Department of Biology, National Science Foundation Center for Biological Timing, University of Virginia, Charlottesville, Virginia 22903, USA.
| | | | | | | | | | | |
Collapse
|
450
|
Abstract
The physiology of the human circadian pacemaker and its influence and on the daily organization of sleep, endocrine and behavioral processes is an emerging interest in science and medicine. Understanding the development, organization and fundamental properties underlying the circadian timing system may provide insight for the application of circadian principles to the practice of clinical medicine, both diagnostically (interpretation of certain clinical tests are dependent on time of day) and therapeutically (certain pharmacological responses vary with the time of day). The light-dark cycle is the most powerful external influence acting upon the human circadian pacemaker. It has been shown that timed exposure to light can both synchronize and reset the phase of the circadian pacemaker in a predictable manner. The emergence of detectable circadian rhythmicity in the neonatal period is under investigation (as described elsewhere in this issue). Therefore, the pattern of light exposure provided in the neonatal intensive care setting has implications. One recent study identified differences in both amount of sleep time and weight gain in infants maintained in a neonatal intensive care environment that controlled the light-dark cycle. Unfortunately, neither circadian phase nor the time of day has been considered in most clinical investigations. Further studies with knowledge of principles characterizing the human circadian timing system, which governs a wide array of physiological processes, are required to integrate these findings with the practice of clinical medicine.
Collapse
Affiliation(s)
- T L Shanahan
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 20115, USA
| | | |
Collapse
|