401
|
Park JW, Kuehn HS, Kim SY, Chung KM, Choi H, Kim M, Kim J, Lee SY, Bae DS, Jin DK, Bae YS. Downregulation of Wnt-mediated ROS generation is causally implicated in leprechaunism. Mol Cells 2010; 29:63-9. [PMID: 20033851 DOI: 10.1007/s10059-010-0017-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 10/08/2009] [Accepted: 10/14/2009] [Indexed: 12/11/2022] Open
Abstract
Although mutations in the insulin receptor have been causally implicated with leprechaunism, the full pathophysiology of the syndrome cannot be accounted for by malfunction of this gene alone. We sought to characterize a connection between Wnt-mediated cell signaling and the production of reactive oxygen species (ROS) which revealed a novel mechanistic basis for understanding the pathogenesis of leprechaunism. To identify candidate genes involved in this process, a PCR-based subtractive hybridization was performed. Candidate genes were examined for interaction with the Wnt signaling pathway and ROS generation. We found that Dickkopf 1 (Dkk1), a Wnt inhibitor, is overexpressed in skin fibroblast cells derived from three leprechaunism patients and that the cells showed an impaired response to Wnt2 in terms of beta-catenin-Tcf activation. Knockdown of Dkk1 in the patient cell lines rescued Wnt2-mediated Tcf activation. Concerted action of Wnt2 and knockdown of Dkk1 resulted in enhanced Nox4 expression and PDGF-induced ROS generation compared to parental patient cells. Furthermore, we found that NFATc2 was activated in response to Wnt2 stimulation and directly activates Nox4 expression. These data show a crosstalk between Wnt and ROS pathways which in turn provides new mechanistic insights at the molecular level into the pathogenesis of leprechaunism.
Collapse
Affiliation(s)
- Ji Won Park
- Department of Life Sciences, Ewha Womans University, Seoul, 120-750, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
402
|
Khurana S, Mills JC. The gastric mucosa development and differentiation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 96:93-115. [PMID: 21075341 DOI: 10.1016/b978-0-12-381280-3.00004-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The development and differentiation of the gastric mucosa are controlled by a complex interplay of signaling proteins and transcriptional regulators. This process is complicated by the fact that the stomach is derived from two germ layers, the endoderm and the mesoderm, with the first giving rise to the mature epithelium and the latter contributing the smooth muscle required for peristalsis. Reciprocal epithelial-mesenchymal interactions dictate the formation of the stomach during fetal development, and also contribute to its continuous regeneration and differentiation throughout adult life. In this chapter, we discuss the discoveries that have been made in different model systems, from zebrafish to human, which show that the Hedgehog, Wnt, Notch, bone morphogenetic protein, and fibroblast growth factor (FGF) signaling systems play essential roles during various stages of stomach development.
Collapse
Affiliation(s)
- Shradha Khurana
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
403
|
Abstract
The purpose of this review is to provide a better understanding for the LRP co-receptor-mediated Wnt pathway signaling. Using proteomics, we have also subdivided the LRP receptor family into six sub-families, encompassing the twelve family members. This review includes a discussion of proteins containing a cystine-knot protein motif (i.e., Sclerostin, Dan, Sostdc1, Vwf, Norrin, Pdgf, Mucin) and discusses how this motif plays a role in mediating Wnt signaling through interactions with LRP.
Collapse
|
404
|
Abstract
Rheumatoid arthritis (RA) is a chronic, debilitating autoimmune disease that results in inflammation and structural destruction of the joints. A hallmark of RA pathogenesis is an imbalance of the osteoblast-osteoclast axis driven by inflammatory processes, resulting in elevated bone resorption by osteoclasts. Current therapies used to treat this disease have focused on inhibition of synovitis, but such treatments do not adequately repair damaged bone. A key pathway of osteoclast formation involves the receptor activator of nuclear factor kappaB ligand (RANKL) pathway acting on myeloid progenitor cells. The Wnt pathway has been shown to be important for the differentiation of osteoblasts from mesenchymal lineage precursors, and endogenous Wnt inhibitors, such as Dickkopf1 and sclerostin, might have important roles in osteoclast dysregulation in RA. Inhibition of the RANKL pathway, or blockade of Dickkopf1 and sclerostin, might serve to restore the osteoblast-osteoclast balance and repair bone erosion in RA joints. Such treatments, in combination with anti-inflammatory therapies, could stabilize and repair damaged joints and have the potential to be valuable additions to the armory of RA treatments.
Collapse
|
405
|
Navarro D, Agra N, Pestaña A, Alonso J, González-Sancho JM. The EWS/FLI1 oncogenic protein inhibits expression of the Wnt inhibitor DICKKOPF-1 gene and antagonizes beta-catenin/TCF-mediated transcription. Carcinogenesis 2009; 31:394-401. [PMID: 20019092 DOI: 10.1093/carcin/bgp317] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Tumours of the Ewing family, which comprise Ewing's sarcoma and peripheral primitive neuroectodermal tumours, are highly aggressive and mostly affect children and adolescents. They are characterized by chromosomal translocations leading to the generation of fusion proteins between EWS (or very rarely FUS) and members of the E-twenty-six (ETS) family of transcription factors that are capable of transforming cells. EWS/FLI1, the most frequent fusion, is thought to cause transformation through activation or repression of specific target genes. We present evidence demonstrating that the Wnt inhibitor and beta-catenin/T-cell factor (TCF)-responsive gene DICKKOPF-1 (DKK-1) is a transcriptional target of EWS/FLI1, which can inhibit both basal and beta-catenin-induced transactivation of the DKK-1 promoter. Moreover, our data indicate that EWS/FLI1 has a more general effect on beta-catenin/TCF-mediated transcription since it can block transactivation of a consensus beta-catenin/TCF reporter construct. Consistently, Ewing tumour cells expressing different EWS/ETS translocations cannot engage beta-catenin/TCF-dependent transcription, whereas silencing of EWS/FLI1 restores beta-catenin responsiveness in A673 and RD-ES Ewing tumour cells. Accordingly, gene set enrichment analysis shows that beta-catenin/TCF target genes are significantly enriched among genes downregulated by EWS/FLI1 in the Ewing cell line A673. Mechanistically, the inhibitory effect of EWS/FLI1 can be overcome by a constitutively active TCF4 protein (TCF4-VP16). Moreover, EWS/FLI1 binds lymphoid enhancer factor 1, a TCF family member, and interferes with its binding to beta-catenin, which could explain its negative effect on beta-catenin/TCF-mediated transcription. Our results show that EWS/FLI1 inhibits both DKK-1 expression as well as beta-catenin/TCF-dependent transcription, which could contribute to progression of tumours of the Ewing family.
Collapse
Affiliation(s)
- Diego Navarro
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Arturo Duperier 4, E-28029, Madrid, Spain
| | | | | | | | | |
Collapse
|
406
|
Moreno CS. The Sex-determining region Y-box 4 and homeobox C6 transcriptional networks in prostate cancer progression: crosstalk with the Wnt, Notch, and PI3K pathways. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:518-27. [PMID: 20019190 DOI: 10.2353/ajpath.2010.090657] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The transforming growth factor beta, Hedgehog, Notch, and Wnt signaling pathways all play critical roles in the development and progression of prostate cancer. It is becoming increasingly apparent that these pathways may intersect with developmentally important transcription factors such as the sex-determining region Y-box 4 (SOX4), homeobox C6, enhancer of zeste 2, and ETS-related gene, which are up-regulated in prostate cancers. For example, identification of the downstream targets of SOX4 and homeobox C6 suggests that these factors may cooperate to activate the Notch pathway and the PI3K/AKT pathway, possibly in response to Wnt signals. PI3K/AKT activation likely occurs indirectly via up-regulation of growth factor receptors, while Notch activation is secondary to up-regulation of Notch pathway components. In addition, SOX4 may affect terminal differentiation via regulation of other transcription factors such as NKX3.1 and MLL, and regulation of components of the microRNA pathway such as Dicer and Argonaute 1. The evidence supporting activation of these pathways in prostate cancer progression suggests that combinations of compounds targeting them may be of benefit to patients with aggressive, metastatic disease.
Collapse
Affiliation(s)
- Carlos S Moreno
- Department of Pathology and Laboratory Medicine, Winship Cancer Institute, Atlanta, GA 30322, USA.
| |
Collapse
|
407
|
N-cadherin negatively regulates osteoblast proliferation and survival by antagonizing Wnt, ERK and PI3K/Akt signalling. PLoS One 2009; 4:e8284. [PMID: 20011526 PMCID: PMC2788421 DOI: 10.1371/journal.pone.0008284] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 10/29/2009] [Indexed: 12/31/2022] Open
Abstract
Background Osteoblasts are bone forming cells that play an essential role in osteogenesis. The elucidation of the mechanisms that control osteoblast number is of major interest for the treatment of skeletal disorders characterized by abnormal bone formation. Canonical Wnt signalling plays an important role in the control of osteoblast proliferation, differentiation and survival. Recent studies indicate that the cell-cell adhesion molecule N-cadherin interacts with the Wnt co-receptors LRP5/6 to regulate osteoblast differentiation and bone accrual. The role of N-cadherin in the control of osteoblast proliferation and survival remains unknown. Methods and Principal Findings Using murine MC3T3-E1 osteoblastic cells and N-cadherin transgenic mice, we demonstrate that N-cadherin overexpression inhibits cell proliferation in vitro and in vivo. The negative effect of N-cadherin on cell proliferation results from decreased Wnt, ERK and PI3K/Akt signalling and is restored by N-cadherin neutralizing antibody that antagonizes N-cadherin-LRP5 interaction. Inhibition of Wnt signalling using DKK1 or Sfrp1 abolishes the ability of N-cadherin blockade to restore ERK and PI3K signalling and cell proliferation, indicating that the altered cell growth in N-cadherin overexpressing cells is in part secondary to alterations in Wnt signalling. Consistently, we found that N-cadherin overexpression inhibits the expression of Wnt3a ligand and its downstream targets c-myc and cyclin D1, an effect that is partially reversed by N-cadherin blockade. We also show that N-cadherin overexpression decreases osteoblast survival in vitro and in vivo. This negative effect on cell survival results from inhibition of PI3K/Akt signalling and increased Bax/Bcl-2, a mechanism that is rescued by Wnt3a. Conclusion The data show that N-cadherin negatively controls osteoblast proliferation and survival via inhibition of autocrine/paracrine Wnt3a ligand expression and attenuation of Wnt, ERK and PI3K/Akt signalling, which provides novel mechanisms by which N-cadherin regulates osteoblast number.
Collapse
|
408
|
Murrills RJ, Matteo JJ, Bhat BM, Coleburn VE, Allen KM, Chen W, Damagnez V, Bhat RA, Bex FJ, Bodine PV. A cell-based Dkk1 binding assay reveals roles for extracellular domains of LRP5 in Dkk1 interaction and highlights differences between wild-type and the high bone mass mutant LRP5(G171V). J Cell Biochem 2009; 108:1066-75. [DOI: 10.1002/jcb.22335] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
409
|
Choi HY, Dieckmann M, Herz J, Niemeier A. Lrp4, a novel receptor for Dickkopf 1 and sclerostin, is expressed by osteoblasts and regulates bone growth and turnover in vivo. PLoS One 2009; 4:e7930. [PMID: 19936252 PMCID: PMC2775917 DOI: 10.1371/journal.pone.0007930] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 10/27/2009] [Indexed: 12/14/2022] Open
Abstract
Lrp4 is a multifunctional member of the low density lipoprotein-receptor gene family and a modulator of extracellular cell signaling pathways in development. For example, Lrp4 binds Wise, a secreted Wnt modulator and BMP antagonist. Lrp4 shares structural elements within the extracellular ligand binding domain with Lrp5 and Lrp6, two established Wnt co-receptors with important roles in osteogenesis. Sclerostin is a potent osteocyte secreted inhibitor of bone formation that directly binds Lrp5 and Lrp6 and modulates both BMP and Wnt signaling. The anti-osteogenic effect of sclerostin is thought to be mediated mainly by inhibition of Wnt signaling through Lrp5/6 within osteoblasts. Dickkopf1 (Dkk1) is another potent soluble Wnt inhibitor that binds to Lrp5 and Lrp6, can displace Lrp5-bound sclerostin and is itself regulated by BMPs. In a recent genome-wide association study of bone mineral density a significant modifier locus was detected near the SOST gene at 17q21, which encodes sclerostin. In addition, nonsynonymous SNPs in the LRP4 gene were suggestively associated with bone mineral density. Here we show that Lrp4 is expressed in bone and cultured osteoblasts and binds Dkk1 and sclerostin in vitro. MicroCT analysis of Lrp4 deficient mutant mice revealed shortened total femur length, reduced cortical femoral perimeter, and reduced total femur bone mineral content (BMC) and bone mineral density (BMD). Lumbar spine trabecular bone volume per total volume (BV/TV) was significantly reduced in the mutants and the serum and urinary bone turnover markers alkaline phosphatase, osteocalcin and desoxypyridinoline were increased. We conclude that Lrp4 is a novel osteoblast expressed Dkk1 and sclerostin receptor with a physiological role in the regulation of bone growth and turnover, which is likely mediated through its function as an integrator of Wnt and BMP signaling pathways.
Collapse
Affiliation(s)
- Hong Y. Choi
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Marco Dieckmann
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- Institut für Physiologische Chemie und Pathobiochemie, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- * E-mail:
| | - Andreas Niemeier
- Department of Orthopaedics and IBMII: Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
410
|
Milat F, Ng KW. Is Wnt signalling the final common pathway leading to bone formation? Mol Cell Endocrinol 2009; 310:52-62. [PMID: 19524639 DOI: 10.1016/j.mce.2009.06.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/03/2009] [Accepted: 06/04/2009] [Indexed: 12/17/2022]
Abstract
Since the discovery of the link between mutations in the LRP5 gene and human bone mass, considerable progress has been made in our understanding of Wnt signalling and bone formation. The connection between canonical Wnt signalling and bone formation is convincing, and there is evidence of interaction between the Wnt signalling pathway and key growth factors, transcriptional factors and systemic hormones. More recently, the role of the non-canonical pathway in bone metabolism has also started to be explored as well as potential bone-gut interactions. This review focuses on the role of the Wnt pathway in osteoblast differentiation as well as the interplay between Wnt signalling and other pathways involved in bone formation.
Collapse
Affiliation(s)
- Frances Milat
- St Vincent's Institute, Fitzroy, Victoria 3065, Australia.
| | | |
Collapse
|
411
|
Chen M, Philipp M, Wang J, Premont RT, Garrison TR, Caron MG, Lefkowitz RJ, Chen W. G Protein-coupled receptor kinases phosphorylate LRP6 in the Wnt pathway. J Biol Chem 2009; 284:35040-8. [PMID: 19801552 PMCID: PMC2787365 DOI: 10.1074/jbc.m109.047456] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Wnt ligands conduct their functions in canonical Wnt signaling by binding to two receptors, the single transmembrane low density lipoprotein receptor-related proteins 5 and 6 (LRP5/6) and seven transmembrane (7TM) Frizzled receptors. Subsequently, phosphorylation of serine/threonine residues within five repeating signature PPPSP motifs on LRP6 is responsible for LRP6 activation. GSK3β, a cytosolic kinase for phosphorylation of a downstream effector β-catenin, was proposed to participate in such LRP6 phosphorylation. Here, we report a new class of membrane-associated kinases for LRP6 phosphorylation. We found that G protein-coupled receptor kinases 5 and 6 (GRK5/6), traditionally known to phosphorylate and desensitize 7TM G protein-coupled receptors, directly phosphorylate the PPPSP motifs on single transmembrane LRP6 and regulate Wnt/LRP6 signaling. GRK5/6-induced LRP6 activation is inhibited by the LRP6 antagonist Dickkopf. Depletion of GRK5 markedly reduces Wnt3A-stimulated LRP6 phosphorylation in cells. In zebrafish, functional knock-down of GRK5 results in reduced Wnt signaling, analogous to LRP6 knock-down, as assessed by decreased abundance of β-catenin and lowered expression of the Wnt target genes cdx4, vent, and axin2. Expression of GRK5 rescues the diminished β-catenin and axin2 response caused by GRK5 depletion. Thus, our findings identify GRK5/6 as novel kinases for the single transmembrane receptor LRP6 during Wnt signaling.
Collapse
Affiliation(s)
- Minyong Chen
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
412
|
Lin C, Jiang X, Dai Z, Guo X, Weng T, Wang J, Li Y, Feng G, Gao X, He L. Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling. J Bone Miner Res 2009; 24:1651-1661. [PMID: 19419300 DOI: 10.1359/jbmr.090411] [Citation(s) in RCA: 466] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Reduced mechanical stress leads to bone loss, as evidenced by disuse osteoporosis in bedridden patients and astronauts. Osteocytes have been identified as major cells responsible for mechanotransduction; however, the mechanism underlying the response of bone to mechanical unloading remains poorly understood. In this study, we found that mechanical unloading of wildtype mice caused decrease of Wnt/beta-catenin signaling activity accompanied by upregulation of Sost. To further analyze the causal relationship among these events, Sost gene targeting mice were generated. We showed that sclerostin selectively inhibited Wnt/beta-catenin in vivo, and sclerostin suppressed the activity of osteoblast and viability of osteoblasts and osteocytes. Interestingly, Sost(-/-) mice were resistant to mechanical unloading-induced bone loss. Reduction in bone formation in response to unloading was also abrogated in the mutant mice. Moreover, in contrast to wildtype mice, Wnt/beta-catenin signaling was not altered by unloading in Sost(-/-) mice. Those data implied that sclerostin played an essential role in mediating bone response to mechanical unloading, likely through Wnt/beta-catenin signaling. Our findings also indicated sclerostin is a promising target for preventing disuse osteoporosis.
Collapse
Affiliation(s)
- Chuwen Lin
- Bio-X Center, Key Laboratory of Developmental Genetics and Neuropsychiatric Diseases, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
413
|
Bajada S, Marshall MJ, Wright KT, Richardson JB, Johnson WEB. Decreased osteogenesis, increased cell senescence and elevated Dickkopf-1 secretion in human fracture non union stromal cells. Bone 2009; 45:726-35. [PMID: 19540374 DOI: 10.1016/j.bone.2009.06.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 05/09/2009] [Accepted: 06/14/2009] [Indexed: 12/28/2022]
Abstract
The delicately orchestrated process of bone fracture healing is not always successful and long term non union of fractured bone occurs in 5-20% of all cases. Atrophic fracture non unions have been described as the most difficult to treat and this is thought to arise through a cellular and local failure of osteogenesis. However, little is known about the presence and osteogenic proficiency of cells in the local area of non union tissue. We have examined the growth and differentiation potential of cells isolated from human non union tissues compared with normal human bone marrow mesenchymal stromal cells (BMSC). We report the isolation and culture expansion of a population of non union stromal cells (NUSC) which have a CD profile similar to that of BMSC, i.e. CD34-ve, CD45-ve and CD105+ve. The NUSC demonstrated multipotentiality and differentiated to some extent along chondrogenic, adipogenic and osteogenic lineages. However, and importantly, the NUSC showed significantly reduced osteogenic differentiation and mineralization in vitro compared to BMSC. We also found increased levels of cell senescence in NUSC compared to BMSC based on culture growth kinetics and cell positivity for senescence associated beta galactosidase (SA-beta-Gal) activity. The reduced capacity of NUSC to form osteoblasts was associated with significantly elevated secretion of Dickkopf-1 (Dkk-1) which is an important inhibitor of Wnt signalling during osteogenesis, compared to BMSC. Conversely, treating BMSC with levels of rhDkk-1 that were equivalent to those levels secreted by NUSC inhibited the capacity of BMSC to undergo osteogenesis. Treating BMSC with NUSC conditioned medium also inhibited the capacity of the BMSC to undergo osteogenic differentiation when compared to their treatment with BMSC conditioned medium. Our results suggest that the development of fracture non union is linked with a localised reduced capacity of cells to undergo osteogenesis, which in turn is associated with increased cell senescence and Dkk-1 secretion.
Collapse
Affiliation(s)
- Stefan Bajada
- Institute of Science and Technology in Medicine, Keele University, at the Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, SY10 7AG, UK
| | | | | | | | | |
Collapse
|
414
|
Koch S, Capaldo CT, Samarin S, Nava P, Neumaier I, Skerra A, Sacks DB, Parkos CA, Nusrat A. Dkk-1 inhibits intestinal epithelial cell migration by attenuating directional polarization of leading edge cells. Mol Biol Cell 2009; 20:4816-25. [PMID: 19776352 DOI: 10.1091/mbc.e09-05-0415] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Wnt signaling pathways regulate proliferation, motility, and survival in a variety of human cell types. Dickkopf-1 (Dkk-1) is a secreted Wnt antagonist that has been proposed to regulate tissue homeostasis in the intestine. In this report, we show that Dkk-1 is secreted by intestinal epithelial cells after wounding and that it inhibits cell migration by attenuating the directional orientation of migrating epithelial cells. Dkk-1 exposure induced mislocalized activation of Cdc42 in migrating cells, which coincided with a displacement of the polarity protein Par6 from the leading edge. Consequently, the relocation of the microtubule organizing center and the Golgi apparatus in the direction of migration was significantly and persistently inhibited in the presence of Dkk-1. Small interfering RNA-induced down-regulation of Dkk-1 confirmed that extracellular exposure to Dkk-1 was required for this effect. Together, these data demonstrate a novel role of Dkk-1 in the regulation of directional polarization of migrating intestinal epithelial cells, which contributes to the effect of Dkk-1 on wound closure in vivo.
Collapse
Affiliation(s)
- Stefan Koch
- Epithelial Pathobiology Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
415
|
Expression, purification and functional characterization of Wnt signaling co-receptors LRP5 and LRP6. Protein Expr Purif 2009; 70:39-47. [PMID: 19716419 DOI: 10.1016/j.pep.2009.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 08/21/2009] [Accepted: 08/24/2009] [Indexed: 11/21/2022]
Abstract
Activation of the Wnt signaling cascade plays a pivotal role during development and in various disease states. Wnt signals are transduced by seven-transmembrane Frizzled (Fz) proteins and the single-transmembrane LDL-receptor-related proteins 5 or 6 (LRP5/6). Genetic mutations resulting in a loss or gain of function of LRP5 in humans lead to osteopenia and bone formation, respectively. These findings demonstrate the genetic link between LRP5 signaling and the regeneration of bone mass. Herein we describe for the first time the production and characterization of soluble ectodomains of LRP5 and LRP6, (EC-LRP5, EC-LRP6). We have produced these proteins in amounts that are compatible with both in vitro and cell-based assays to study their binding properties. Purified EC-LRP5 and EC-LRP6 were able to interact with Wnt signaling components Dkk1 and Dkk2 and their functionality was confirmed in cell-based Wnt signaling assays. Hence, tools are now available to explore LRP5/6 interaction with other proteins and to screen for synthetic or natural compounds and biologics that might be novel therapeutics targeting the Wnt pathway.
Collapse
|
416
|
Gavriatopoulou M, Dimopoulos MA, Christoulas D, Migkou M, Iakovaki M, Gkotzamanidou M, Terpos E. Dickkopf-1: a suitable target for the management of myeloma bone disease. Expert Opin Ther Targets 2009; 13:839-48. [PMID: 19530987 DOI: 10.1517/14728220903025770] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bone disease remains a major problem in the management of patients with multiple myeloma (MM) and is characterized by the presence of lytic lesions due to increased osteoclastic activity and reduced osteoblast function. Wingless-type and integrase 1 (Wnt)/beta-catenin signaling is a central pathway for bone development and homeostasis. Dickkopf-1 (Dkk-1) is a soluble inhibitor of Wnt, which disrupts osteoblast differentiation and action. Dkk-1 is produced by myeloma cells and overexpressed in myeloma microenvironment of patients with extensive bone disease. In addition to its direct inhibitory effect of Dkk-1 on osteoblasts, Dkk-1 disrupts the Wnt3a-regulated osteoprotegerin and receptor activator of NF-kappaB ligand (RANKL) expression in osteoblasts and thus it indirectly enhances osteoclast function in MM. Dkk-1 serum and bone marrow plasma levels are increased in MM patients and correlated with advanced International Staging System stage and presence of osteolytic lesions. Preclinical studies in mouse myeloma models showed that targeting Dkk-1 with neutralizing anti-Dkk-1 antibodies resulted in increased numbers of osteoblasts, reduced numbers of multinucleated osteoclasts and increased bone volume. The bone anabolic effect of anti-Dkk-1 may also be associated with reduced myeloma burden. These data show that Dkk-1 has a pivotal role in bone health and disease and is a novel target for the management of myeloma patients with lytic bone disease.
Collapse
Affiliation(s)
- Maria Gavriatopoulou
- University of Athens School of Medicine, "Alexandra" University Hospital, Department of Clinical Therapeutics, 5 Marathonomahon street, Drossia 145-72, Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
417
|
Sheng SL, Huang G, Yu B, Qin WX. Clinical significance and prognostic value of serum Dickkopf-1 concentrations in patients with lung cancer. Clin Chem 2009; 55:1656-64. [PMID: 19628661 DOI: 10.1373/clinchem.2009.125641] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Dickkopf-1 (DKK1), a secreted protein, is known as a negative regulator of the Wnt signaling pathway, which has been implicated in the development of several types of cancers. Clinical significance of serum DKK1 in lung cancer remains to be determined. METHODS A novel time-resolved immunofluorometric assay was developed. By use of this method, we investigated the serum concentrations of DKK1 in 592 patients with malignancies, 72 patients with benign lung disease, and 120 healthy controls. Serum cytokeratin 19 fragment and neuron-specific enolase values were obtained. RESULTS Serum DKK1 concentrations were significantly higher in patients with lung cancer than in patients with other malignant tumors or benign lung diseases and healthy controls. Serum concentrations of DKK1 were decreased significantly in groups of patients with gastric cancer, colorectal cancer, ovarian cancer, and cervical adenocarcinoma compared with healthy controls. Application of both DKK1 and cytokeratin 19 fragment increased sensitivity, correctly identifying 89.6% of the non-small cell lung cancer patients as positive. The use of both DKK1 and neuron-specific enolase increased sensitivity to detect small cell lung cancer to 86.2%. DKK1 concentrations increased with stage, tumor class, and presence of lymph node and distant metastases, regardless of histology and patient age and sex. Patients with a DKK1 concentration of 22.6 microg/L or higher had a statistically significantly diminished survival compared with patients whose DKK1 values were lower. CONCLUSIONS DKK1 was preferentially expressed in lung cancer. Increasing concentrations of DKK1were significantly associated with tumor progression and decreased survival in patients with lung cancer. .
Collapse
Affiliation(s)
- Shi Le Sheng
- Department of Nuclear Medicine, Renji hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | |
Collapse
|
418
|
Feigenson K, Reid M, See J, Crenshaw EB, Grinspan JB. Wnt signaling is sufficient to perturb oligodendrocyte maturation. Mol Cell Neurosci 2009; 42:255-65. [PMID: 19619658 DOI: 10.1016/j.mcn.2009.07.010] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 06/24/2009] [Accepted: 07/09/2009] [Indexed: 01/06/2023] Open
Abstract
The development of oligodendrocytes, the myelinating cells of the central nervous system, is temporally and spatially controlled by local signaling factors acting as inducers or inhibitors. Dorsal spinal cord tissue has been shown to contain inhibitors of oligodendrogliogenesis, although their identity is not completely known. We have studied the actions of one family of dorsal signaling molecules, the Wnts, on oligodendrocyte development. Using tissue culture models, we have shown that canonical Wnt activity through beta-catenin activation inhibits oligodendrocyte maturation, independently of precursor proliferation, cell death, or diversion to an alternate cell fate. Mice in which Wnt/beta-catenin signaling was constitutively activated in cells of the oligodendrocyte lineage had equal numbers of oligodendrocyte precursors relative to control littermates, but delayed appearance of mature oligodendrocytes, myelin protein, and myelinated axons during development, although these differences largely disappeared by adulthood. These results indicate that activating the Wnt/beta-catenin pathway delays the development of myelinating oligodendrocytes.
Collapse
Affiliation(s)
- Keith Feigenson
- Department of Research Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
419
|
Marshall MJ, Evans SF, Sharp CA, Powell DE, McCarthy HS, Davie MW. Increased circulating Dickkopf-1 in Paget's disease of bone. Clin Biochem 2009; 42:965-9. [DOI: 10.1016/j.clinbiochem.2009.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 03/20/2009] [Accepted: 04/07/2009] [Indexed: 12/17/2022]
|
420
|
Abstract
It has been two decades since investigators discovered the link between the Drosophila wingless (Wg) gene and the vertebrate oncogene int-1, thus establishing the family of signaling proteins known as Wnts. Since the inception of the Wnt signaling field, there have been 19 Wnt isoforms identified in humans. These secreted glycoproteins can activate at least two distinct signaling pathways in vertebrate cells, leading to cellular changes that regulate a vast array of biological processes, including embryonic development, cell fate, cell proliferation, cell migration, stem cell maintenance, tumor suppression, and oncogenesis. In certain contexts, one subset of Wnt isoforms activates the canonical Wnt/beta-catenin pathway that is characterized by the activation of certain beta-catenin-responsive target genes in response to the binding of Wnt ligand to its cognate receptors. Similarly, a second subset of Wnt isoforms activates beta-catenin-independent pathways, including the Wnt/calcium (Wnt/Ca) pathway and the Wnt/planar cell polarity (Wnt/PCP) pathway, in certain cellular contexts. In addition, research has identified several secreted proteins known to regulate Wnt signaling, including the Dickkopf (DKK) family, secreted Frizzled-related proteins (sFRPs), and Wnt inhibitory factor-1 (WIF-1). The advent of technologies that can provide genome-wide expression data continues to implicate Wnts and proteins that regulate Wnt signaling pathways in a growing number of disease processes. The aim of this review is to provide a context on the Wnt field that will facilitate the interpretation and study of Wnt signaling in the context of human disease.
Collapse
Affiliation(s)
- Andy J Chien
- The University of Washington School of Medicine, Department of Medicine and the Institute for Stem Cell and Regenerative Medicine, Seattle, Washington 98109, USA.
| | | | | |
Collapse
|
421
|
Kunke D, Bryja V, Mygland L, Arenas E, Krauss S. Inhibition of canonical Wnt signaling promotes gliogenesis in P0-NSCs. Biochem Biophys Res Commun 2009; 386:628-33. [PMID: 19545542 DOI: 10.1016/j.bbrc.2009.06.084] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 06/13/2009] [Indexed: 01/29/2023]
Abstract
Wnt signaling plays an essential role in the development of mammalian central nervous system. We investigated the impact of activation/inhibition of the Wnt signaling pathway on neuronal/glial differentiation in neurospheres derived from neonatal mouse forebrains. For short term alterations, neurospheres were stimulated with recombinant Wnt-3a, Wnt-5a and the Wnt inhibitor Dickkopf-1 (Dkk1). Furthermore, neurospheres were transduced with retroviral vectors encoding Wnt-3a, Wnt-7a and their inhibitors Dkk1 and soluble Frizzled related protein-5 (sFRP5). Long-term activation of Wnt pathway by Wnt-7a or by treatment with GSK3 inhibitors promoted a moderate increase of the neuronal differentiation and blocked gliogenesis. In contrast, Wnt pathway inhibition in neurospheres, induced by retroviral overexpression of either Dkk1 or sFRP5, robustly increased the gliogenesis at the expense of neurogenesis. In summary, our data demonstrate that activation or inhibition of Wnt/beta-catenin signaling in neurospheres regulates neuronal and glial differentiation, respectively. Thus, our results suggest that Wnt signaling may also contribute to regulate these processes in the neonatal brain.
Collapse
Affiliation(s)
- David Kunke
- Centre for Molecular Biology and Neuroscience and Institute of Medical Microbiology, Rikshospitalet, 0027 Oslo, Norway.
| | | | | | | | | |
Collapse
|
422
|
Zhang HH, Walker F, Kiflemariam S, Whitehead RH, Williams D, Phillips WA, Mikeska T, Dobrovic A, Burgess AW. Selective inhibition of proliferation in colorectal carcinoma cell lines expressing mutant APC or activated B-Raf. Int J Cancer 2009; 125:297-307. [PMID: 19378335 DOI: 10.1002/ijc.24289] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tumor-derived cell lines are indispensable tools for understanding the contribution of activated signaling pathways to the cancer phenotype and for the design and testing of targeted signal therapies. In our study, we characterize 10 colorectal carcinoma cell lines for the presence of mutations in the wnt, Ras/MAPK, PI3K and p53 pathways. The mutational spectrum found in this panel of cell lines is similar to that detected in primary CRC, albeit with higher frequency of mutation in the beta-catenin and B-Raf genes. We have monitored activation of the wnt and Ras/MAPK pathways in these cells and analyzed their sensitivity to selective signaling inhibitors. Using beta-catenin subcellular distribution as a marker, we show that cells harboring APC mutations have low-level activated wnt signaling, which can be blocked by the extracellular wnt inhibitor DKK-1, suggesting autocrine activation of this pathway; proliferation of these cells is also blocked by DKK-1. In contrast, cells with beta-catenin mutations are unresponsive to extracellular wnt inhibition. Constitutive phosphorylation of MAPK is present in the majority of the cell lines and correlates with B-Raf but not K-Ras mutations; correspondingly, the proliferation of cells harboring mutations in B-Raf, but not K-Ras, is exquisitely sensitive inhibition of the MAPK pathway. We find no correlation between PI3K mutation or loss of PTEN expression and increased sensitivity to PI3K inhibitors. Our study discloses clear-cut differences in responsiveness to signaling inhibitors between individual mutations within an activated signaling pathway and suggests likely targets for signal-directed therapy of colorectal carcinomas.
Collapse
Affiliation(s)
- Hui-Hua Zhang
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Centre for Medical Research, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
423
|
Li SJ, Yen TY, Endo Y, Klauzinska M, Baljinnyam B, Macher B, Callahan R, Rubin JS. Loss-of-function point mutations and two-furin domain derivatives provide insights about R-spondin2 structure and function. Cell Signal 2009; 21:916-25. [PMID: 19385064 PMCID: PMC2813491 DOI: 10.1016/j.cellsig.2009.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
R-spondins (Rspos) potentiate Wnt/beta-catenin signaling, an important pathway in embryonic development that is constitutively active in many cancers. To analyze Rspo structure and function, we expressed full-length wild-type Rspo2 and Rspo2 point mutants corresponding to Rspo4 variants that have been linked to developmental defects. The Rspo2 mutants had markedly reduced potency relative to the wild-type protein,demonstrating for the first time specific amino acid residues in Rspos that are critical for beta-catenin signaling. The diminished activity of Rspo2/C78Y and Rspo2/C113R was attributable to a defect in their secretion, while Rspo2/Q70R exhibited a decrease in its intrinsic activity. Cysteine assignments in a Rspo2 derivative containing only the two furin-like domains (Rspo2-2F) provided the first information about the disulfide bonding pattern of this motif, which was characterized by multiple short loops and unpaired cysteine residues, and established that the loss-of-function cysteine mutants disrupted disulfide bond formation. Moreover, Rspo2-2F demonstrated potent activity and synergized strongly with Wnt-3a in a beta-catenin reporter assay. In contrast, an Rspo2-2F derivative containing the Q70R substitution showed significantly reduced activity, although it still synergized with Wnt-3a in the reporter assay. Rspo2-2F derivatives elicited an unusually sustained phosphorylation (20 h) of the Wnt co-receptor, low density lipoprotein receptor-related protein 6 (LRP6), as well as an increase in cell surface LRP6. Co-immunoprecipitation experiments involving LRP6 and Kremens suggested that these associations contribute to Rspo2 activity, although the lack of major differences between wild-type and Q70R derivatives implied that additional interactions may be important.
Collapse
Affiliation(s)
- Sheng-Jian Li
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD 20892
| | - Ten-Yang Yen
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA 94132
| | - Yoshimi Endo
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD 20892
| | - Malgorzata Klauzinska
- Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute, Bethesda, MD 20892
| | - Bolormaa Baljinnyam
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD 20892
| | - Bruce Macher
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA 94132
| | - Robert Callahan
- Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute, Bethesda, MD 20892
| | - Jeffrey S. Rubin
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD 20892
| |
Collapse
|
424
|
Ledgard A, Lee RSF, Couldrey C, Peterson J. Dickkopf-1 expression during early bovine placentation and its down-regulation in somatic cell nuclear transfer (SCNT) pregnancies. J Reprod Dev 2009; 55:467-74. [PMID: 19444005 DOI: 10.1262/jrd.20142] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The precise role of Dickkopf-1 (Dkk-1) during early bovine trophoblast development and subsequent placentation is not fully understood. Using somatic cell nuclear transfer (SCNT) generated pregnancies as a model of poor placentation we have found that mean levels of Dkk-1 mRNA were 1.5 fold lower in SCNT fetal cotyledon tissue at Day 50 of gestation than those resulting from artificial insemination (AI) and 2 fold lower at Days 100 and 150 (P<0.004). Dkk-1 expression in cotyledon tissue was localized by in situ hybridization to fetal binucleate cells (BNCs). Examining conceptuses from blastocyst stage we show that Dkk-1 mRNA was first evident between Days 15-20 of gestation in trophoblast tissue (when BNCs first appear) prior to the initial expression of the BNC specific bovine placental lactogen (bPL) on Day 20. Dkk-1 mRNA levels were higher than bPL in trophoblast tissue throughout the pre-attachment period (Days 24-31), however, this reversed during cotyledon development with only a subset of the bPL immunoreactive BNCs also containing Dkk-1 protein, suggesting a specific role for Dkk-1 during early placentation. One function of Dkk-1 is as an antagonist of the Wnt signaling pathway and, although Wnt5A and Wnt7A mRNAs were expressed in Day 50 bovine cotyledons, their expression levels were similar between AI and SCNT. In addition, the nuclear localization of beta-catenin, which is an indicator of activation of the Wnt pathway, was also similar between AI and SCNT cotyledon tissue. Transcriptional control of Dkk-1 was not due to changes in DNA methylation levels in the promoter region as methylation levels were no different when comparing AI and SCNT tissues. The decreased expression of Dkk-1 in SCNT cotyledons that are prone to abnormal placentation suggests a role in cotyledon formation but the mechanism and regulatory control is yet to be revealed.
Collapse
Affiliation(s)
- Anita Ledgard
- AgResearch, Reproductive Technologies Section, Ruakura Research Centre, Hamilton3240, New Zealand.
| | | | | | | |
Collapse
|
425
|
Poon R, Nik SA, Ahn J, Slade L, Alman BA. Beta-catenin and transforming growth factor beta have distinct roles regulating fibroblast cell motility and the induction of collagen lattice contraction. BMC Cell Biol 2009; 10:38. [PMID: 19432963 PMCID: PMC2691404 DOI: 10.1186/1471-2121-10-38] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 05/11/2009] [Indexed: 12/28/2022] Open
Abstract
Background β-catenin and transforming growth factor β signaling are activated in fibroblasts during wound healing. Both signaling pathways positively regulate fibroblast proliferation during this reparative process, and the effect of transforming growth factor β is partially mediated by β-catenin. Other cellular processes, such as cell motility and the induction of extracellular matrix contraction, also play important roles during wound repair. We examined the function of β-catenin and its interaction with transforming growth factor β in cell motility and the induction of collagen lattice contraction. Results Floating three dimensional collagen lattices seeded with cells expressing conditional null and stabilized β-catenin alleles, showed a modest negative relationship between β-catenin level and the degree of lattice contraction. Transforming growth factor β had a more dramatic effect, positively regulating lattice contraction. In contrast to the situation in the regulation of cell proliferation, this effect of transforming growth factor β was not mediated by β-catenin. Treating wild-type cells or primary human fibroblasts with dickkopf-1, which inhibits β-catenin, or lithium, which stimulates β-catenin produced similar results. Scratch wound assays and Boyden chamber motility studies using these same cells found that β-catenin positively regulated cell motility, while transforming growth factor β had little effect. Conclusion This data demonstrates the complexity of the interaction of various signaling pathways in the regulation of cell behavior during wound repair. Cell motility and the induction of collagen lattice contraction are not always coupled, and are likely regulated by different intracellular mechanisms. There is unlikely to be a single signaling pathway that acts as master regulator of fibroblast behavior in wound repair. β-catenin plays dominant role regulating cell motility, while transforming growth factor β plays a dominant role regulating the induction of collagen lattice contraction.
Collapse
Affiliation(s)
- Raymond Poon
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
| | | | | | | | | |
Collapse
|
426
|
Zuklys S, Gill J, Keller MP, Hauri-Hohl M, Zhanybekova S, Balciunaite G, Na KJ, Jeker LT, Hafen K, Tsukamoto N, Amagai T, Taketo MM, Krenger W, Holländer GA. Stabilized beta-catenin in thymic epithelial cells blocks thymus development and function. THE JOURNAL OF IMMUNOLOGY 2009; 182:2997-3007. [PMID: 19234195 DOI: 10.4049/jimmunol.0713723] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Thymic T cell development is dependent on a specialized epithelial microenvironment mainly composed of cortical and medullary thymic epithelial cells (TECs). The molecular programs governing the differentiation and maintenance of TECs remain largely unknown. Wnt signaling is central to the development and maintenance of several organ systems but a specific role of this pathway for thymus organogenesis has not yet been ascertained. In this report, we demonstrate that activation of the canonical Wnt signaling pathway by a stabilizing mutation of beta-catenin targeted exclusively to TECs changes the initial commitment of endodermal epithelia to a thymic cell fate. Consequently, the formation of a correctly composed and organized thymic microenvironment is prevented, thymic immigration of hematopoietic precursors is restricted, and intrathymic T cell differentiation is arrested at a very early developmental stage causing severe immunodeficiency. These results suggest that a precise regulation of canonical Wnt signaling in thymic epithelia is essential for normal thymus development and function.
Collapse
Affiliation(s)
- Saulius Zuklys
- Department of Clinical-Biological Sciences, Laboratory of Pediatric Immunology, University of Basel, and Basel University Children's Hospital, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
427
|
Liu CC, Pearson C, Bu G. Cooperative folding and ligand-binding properties of LRP6 beta-propeller domains. J Biol Chem 2009; 284:15299-307. [PMID: 19339249 DOI: 10.1074/jbc.m807285200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Wnt/beta-catenin signaling controls cell growth during development, and its misregulation in adults can cause human diseases. LRP6, the essential co-receptor for the Wnt pathway, consists of four beta-propeller domains flanked by epidermal growth factor repeats in its extracellular region. To understand the maturation and ligand-binding properties of individual BP domains, we generated soluble receptor consisting of individual BPs, as well as combinations of these domains. We show that BP1, BP2, and BP4 each can be folded and secreted, and their secretion was enhanced by co-expression of Mesd, a molecular chaperone essential for LRP6 folding and maturation. BP3 is not secreted when expressed on its own or in combination with BP2 or BP1 and 2 (BP12); however, folding and secretion of BP3 is vastly enhanced when expressed together with BP4. Similar cooperative folding and maturation was observed between BP1 and BP2. These results suggest that BP1 forms a functional folding unit with BP2, whereas BP3 folds together with BP4. Using these BP constructs, we also found that BP12 and BP34 constitute independent ligand-binding domains capable of binding Wnt3a, Dkk1, and Mesd. The ability of Mesd to block the binding of both Wnt3a and Dkk1 to LRP6 enables this specialized chaperone to function as a Wnt signaling modulator. Together, our studies reveal unique properties of the LRP6 BP domains and provide novel tools to understand LRP6 function in ligand binding and Wnt signaling. Our results also support the development of soluble LRP6 receptors and Mesd as potential therapeutic molecules that target Wnt signaling.
Collapse
Affiliation(s)
- Chia-Chen Liu
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
428
|
Königshoff M, Eickelberg O. WNT signaling in lung disease: a failure or a regeneration signal? Am J Respir Cell Mol Biol 2009; 42:21-31. [PMID: 19329555 DOI: 10.1165/rcmb.2008-0485tr] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The WNT family of signaling proteins is essential to organ development in general and lung morphogenesis in particular. Originally identified as a developmentally active signaling pathway, the WNT pathway has recently been linked to the pathogenesis of important lung diseases, in particular lung cancer and pulmonary fibrosis. This review summarizes our current understanding about WNT signaling in lung development and disease, and is structured into three chapters. The first chapter presents an introduction to WNT signaling, outlining WNT proteins, their receptors and signaling intermediates, as well as the regulation of this complex pathway. The second chapter focuses on the role of WNT signaling in the normal embryonic and adult lung, and highlights recent findings of altered WNT signaling in lung diseases, such as lung cancer, pulmonary fibrosis, or pulmonary arterial hypertension. In the last chapter, we will discuss novel data and ideas about the biological effects of WNT signaling on the cellular level, highlighting pleiotropic effects induced by WNT ligands on distinct cell types, and how these cellular effects may be relevant to the pathogenesis of the aforementioned diseases.
Collapse
Affiliation(s)
- Melanie Königshoff
- Comprehensive Pneumology Center, Ludwig Maximilians University München and Helmholtz Zentrum München, Institute of Lung Biology and Disease, Ingolstädter Landstrasse 1, Munich, Germany.
| | | |
Collapse
|
429
|
Abstract
Fracture repair is a complex regenerative process initiated in response to injury, resulting in optimal restoration of skeletal function. Although histology characteristics at various phases of fracture repair are clear and well established, much remains to be understood about the process of bone healing, particularly at the molecular signaling level. During the past decade, secreted signaling molecules of the Wnt family have been widely investigated and found to play a central role in controlling embryonic development processes. Wnt signaling pathway also plays a pivotal role in the regulation of bone mass. Recent published data reveal that Wnt signaling pathway is activated during postnatal bone regenerative events, such as ectopic endochondral bone formation and fracture repair. Dysregulation of this pathway greatly inhibits bone formation and healing process. Interestingly, activation of Wnt pathway has potential to improve bone healing, but only utilized after mesenchymal cells have become committed to the osteoblast lineage. These advances suggest an essential role of Wnt pathway in bone regeneration.
Collapse
Affiliation(s)
- Yan Chen
- Program in Developmental & Stem Cell Biology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
430
|
Zhang Z, Deb A, Zhang Z, Pachori A, He W, Guo J, Pratt R, Dzau VJ. Secreted frizzled related protein 2 protects cells from apoptosis by blocking the effect of canonical Wnt3a. J Mol Cell Cardiol 2009; 46:370-7. [PMID: 19109969 PMCID: PMC2710029 DOI: 10.1016/j.yjmcc.2008.11.016] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 11/13/2008] [Indexed: 01/08/2023]
Abstract
We have demonstrated that mesenchymal stem cells overexpressing the survival gene Akt can confer paracrine protection to ischemic myocytes both in vivo and in vitro through the release of secreted frizzled related protein 2 (Sfrp2). However, the mechanisms mediating these effects of Sfrp2 have not been fully elucidated. In this study, we studied rat cardiomyoblasts subjected to hypoxia reoxygenation (HR) injury to test the hypothesis that Sfrp2 exerts anti-apoptotic effect by antagonizing pro-apoptotic properties of specific Wnt ligands. We examined the effect of Wnt3a and Sfrp2 on HR-induced apoptosis. Wnt3a significantly increased cellular caspase activities and TUNEL staining in response to HR. Sfrp2 attenuated significantly Wnt3a-induced caspase activities in a concentration dependent fashion. Using a solid phase binding assay, our data demonstrates that Sfrp2 physically binds to Wnt3a. In addition, we observed that Sfrp2 dramatically inhibits the beta-catenin/TCF transcriptional activities induced by Wnt3a. Impressively, Dickkopf-1, a protein that binds to the Wnt coreceptor LRP, significantly inhibited the Wnt3a-activated caspase and transcriptional activities. Similarly, siRNA against beta-catenin markedly inhibited the Wnt3a-activated caspase activities. Consistent with this, significantly fewer TUNEL positive cells were observed in siRNA transfected cells than in control cells. Together, our data provide strong evidence to support the notion that Wnt3a is a canonical Wnt with pro-apoptotic action whose cellular activity is prevented by Sfrp2 through, at least in part, the direct binding of these molecules. These results can explain the in vivo protective effect of Sfrp2 and highlight its therapeutic potential for the ischemic heart.
Collapse
Affiliation(s)
- Zhongyan Zhang
- Edna and Fred L. Mandel, Jr. Center for Hypertension and Atherosclerosis Research, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
431
|
Chen Q, Zhang Y, Lu J, Wang Q, Wang S, Cao Y, Wang H, Duan E. Embryo-uterine cross-talk during implantation: the role of Wnt signaling. Mol Hum Reprod 2009; 15:215-21. [PMID: 19223336 DOI: 10.1093/molehr/gap009] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
During mammalian pregnancy, it has been demonstrated that the quality of embryo implantation determines the quality of ongoing pregnancy and fetal development. Recent studies have provided increasing evidence that differential Wnt signaling plays diverse roles in multiple peri-implantation events. This review focuses on recent progress on various aspects of Wnt signaling in preimplantation embryo development, blastocyst activation for implantation and uterine decidualization. Future studies with conditional deletion of Wnt family members are hoped to provide deeper insight on the pathophysiological significance of Wnt proteins on early pregnancy events.
Collapse
Affiliation(s)
- Qi Chen
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
432
|
Kikuchi A, Yamamoto H, Sato A. Selective activation mechanisms of Wnt signaling pathways. Trends Cell Biol 2009; 19:119-29. [PMID: 19208479 DOI: 10.1016/j.tcb.2009.01.003] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 01/06/2009] [Accepted: 01/06/2009] [Indexed: 01/11/2023]
Abstract
Wnts comprise a large family of secreted, hydrophobic glycoproteins that control a variety of developmental and adult processes in all metazoan organisms, including cellular proliferation, differentiation, migration and polarity. Wnts have many receptors that are present on a variety of cell types, partly specifying which Wnt pathways are activated. Recently, evidence has been accumulating that specificity of activation downstream of Wnt is also regulated by receptor-mediated endocytosis and the presence of cofactors such as heparan sulfate proteoglycans, in addition to the formation of specific ligand-receptor pairs. Here, we describe how the different endocytic routes of Wnt receptors through caveolin and clathrin determine specificity of Wnt signaling in vertebrates.
Collapse
Affiliation(s)
- Akira Kikuchi
- Department of Biochemistry, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | | | | |
Collapse
|
433
|
Mastroiacovo F, Busceti CL, Biagioni F, Moyanova SG, Meisler MH, Battaglia G, Caricasole A, Bruno V, Nicoletti F. Induction of the Wnt antagonist, Dickkopf-1, contributes to the development of neuronal death in models of brain focal ischemia. J Cereb Blood Flow Metab 2009; 29:264-76. [PMID: 18827832 DOI: 10.1038/jcbfm.2008.111] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inhibition of the canonical Wnt pathway has been implicated in the pathophysiology of neuronal death. Here, we report that the secreted Wnt antagonist, Dickkopf-1 (Dkk-1) is rapidly induced in neurons after induction of focal brain ischemia. In rats undergoing transient focal ischemia in response to brain infusion of endothelin-1, Dkk-1 was induced in neurons of the ischemic core and the penumbra region. Induction of Dkk-1 was associated with a reduced expression of beta-catenin (a downstream signaling molecule of the canonical Wnt pathway), and was not observed in neurons expressing the protective protein, heat shock protein-70. Treatment with lithium ions, which, inter alia, rescue the canonical Wnt pathway, was highly protective against ischemic damage. Dkk-1 was also induced in cortical neurons of mice undergoing permanent middle cerebral artery (MCA) occlusion. This model allowed us to compare wild-type mice with doubleridge mice, which are characterized by a reduced expression of Dkk-1. Doubleridge mice showed an attenuated reduction of beta-catenin and a reduced infarct volume in response to MCA occlusion, providing a direct demonstration that Dkk-1 contributes to the pathophysiology of ischemic neuronal damage. These data rise the interesting possibility that Dkk-1 antagonists or drugs that rescue the Wnt pathway might be neuroprotective in stroke.
Collapse
|
434
|
Björklund P, Svedlund J, Olsson AK, Åkerström G, Westin G. The internally truncated LRP5 receptor presents a therapeutic target in breast cancer. PLoS One 2009; 4:e4243. [PMID: 19158955 PMCID: PMC2627768 DOI: 10.1371/journal.pone.0004243] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 12/09/2008] [Indexed: 01/11/2023] Open
Abstract
Background Breast cancer is a common malignant disease, which may be caused by a number of genes deregulated by genomic or epigenomic events. Deregulated WNT/β-catenin signaling with accumulation of β-catenin is common in breast tumors, but mutations in WNT signaling pathway components have been rare. An aberrantly spliced internally truncated LRP5 receptor (LRP5Δ666–809, LRP5Δ) was shown recently to be resistant to DKK1 inhibition, and was required for β-catenin accumulation in hyperparathyroid tumors and parathyroid tumor growth. Methodology/Principal Findings Here we show, by reverse transcription PCR and Western blot analysis, that LRP5Δ is frequently expressed in breast tumors of different cancer stage (58–100%), including carcinoma in situ and metastatic carcinoma. LRP5Δ was required in MCF7 breast cancer cells for the non-phosphorylated active β-catenin level, transcription activity of β-catenin, cell growth in vitro, and breast tumor growth in a xenograft SCID mouse model. WNT3 ligand, but not WNT1 and WNT3A augmented the endogenous β-catenin activity of MCF7 cells in a DKK1-insensitive manner. Furthermore, an anti-LRP5 antibody attenuated β-catenin activity, inhibited cell growth, and induced apoptosis in LRP5Δ-positive MCF7 and T-47D breast cancer cells, but not in control cells. Conclusions/Significance Our results suggest that the LRP5Δ receptor is strongly implicated in mammary gland tumorigenesis and that its aberrant expression present an early event during disease progression. LRP5 antibody therapy may have a significant role in the treatment of breast cancer.
Collapse
Affiliation(s)
- Peyman Björklund
- Department of Surgical Sciences, Endocrine Unit, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Jessica Svedlund
- Department of Surgical Sciences, Endocrine Unit, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala Biomedical Center, Uppsala, Sweden
| | - Göran Åkerström
- Department of Surgical Sciences, Endocrine Unit, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Gunnar Westin
- Department of Surgical Sciences, Endocrine Unit, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
435
|
Lee EJ, Jo M, Rho SB, Park K, Yoo YN, Park J, Chae M, Zhang W, Lee JH. Dkk3, downregulated in cervical cancer, functions as a negative regulator of β-catenin. Int J Cancer 2009; 124:287-97. [DOI: 10.1002/ijc.23913] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
436
|
Dakhova O, O'Day D, Kinet N, Yucer N, Wiese M, Shetty G, Ducy P. Dickkopf-like1 regulates postpubertal spermatocyte apoptosis and testosterone production. Endocrinology 2009; 150:404-12. [PMID: 18818293 DOI: 10.1210/en.2008-0673] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dickkopf-like1 (Dkkl1) encodes a glycoprotein secreted by postmeiotic male germ cells. We report here that adult Dkkl1-deficient males have elevated sperm counts caused by a decrease in postpubertal spermatocyte apoptosis and display, upon aging, increased local production of testosterone. Molecular analyses identified the Fas death ligand (FasL) as a target for Dkkl1 pro-apoptotic activity in adult mice. Accordingly, adult FasL-deficient gld mice display an increased sperm count and decreased spermatocyte apoptosis phenotype similar to the one observed in Dkkl1-deficient mice. We also show that the elevated testosterone level observed in aging Dkkl1-deficient males is secondary to increased expression in Leydig cells of CYP11A and CYP17, two genes implicated in steroidogenesis. Furthermore, treatment of Leydig cells with Dkkl1 decreases DNA binding and transcriptional activity of steroidogenic factor 1, a pivotal regulator of gene expression in testis. Thus, this study establishes Dkkl1 as a negative regulator of adult testis homeostasis and identifies a novel, Dkkl1/FasL-dependent, regulation that specifically controls the number of postpubertal spermatocytes.
Collapse
Affiliation(s)
- Olga Dakhova
- Department of Molecular and Human Genetics, Baylor College of Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
437
|
Sen M, Ghosh G. Transcriptional outcome of Wnt-Frizzled signal transduction in inflammation: evolving concepts. THE JOURNAL OF IMMUNOLOGY 2008; 181:4441-5. [PMID: 18802045 DOI: 10.4049/jimmunol.181.7.4441] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Wnt-Frizzled signaling was first identified as a key event in Drosophila development. Over the years, ample evidence has accumulated regarding the multiple roles of Wnt-Frizzled signaling in mammalian cell differentiation and tissue/organ morphogenesis. It is thus not surprising that variations in the regulatory network of the Wnt signaling scheme would lead to alterations in cellular organization and cell activation and to the development of pathogenic conditions. Several reports have accordingly implied the involvement of Wnt-Frizzled signaling in the activation of proinflammatory mediators in inflammatory disorders. We will discuss how Wnt-Frizzled signaling may initiate/augment inflammation, focusing on its transcriptional outcome.
Collapse
Affiliation(s)
- Malini Sen
- Division of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, Kolkata, India.
| | | |
Collapse
|
438
|
Ahn SM, Byun K, Kim D, Lee K, Yoo JS, Kim SU, Jho EH, Simpson RJ, Lee B. Olig2-induced neural stem cell differentiation involves downregulation of Wnt signaling and induction of Dickkopf-1 expression. PLoS One 2008; 3:e3917. [PMID: 19093005 PMCID: PMC2602983 DOI: 10.1371/journal.pone.0003917] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 11/07/2008] [Indexed: 01/17/2023] Open
Abstract
Understanding stem cell-differentiation at the molecular level is important for clinical applications of stem cells and for finding new therapeutic approaches in the context of cancer stem cells. To investigate genome-wide changes involved in differentiation, we have used immortalized neural stem cell (NSC) line (HB1.F3) and Olig2-induced NSC differentiation model (F3.Olig2). Using microarray analysis, we revealed that Olig2-induced NSC differentiation involves downregulation of Wnt pathway, which was further confirmed by TOPflash/FOPflash reporter assay, RT-PCR analysis, immunoblots, and immunocytochemistry. Furthermore, we found that Olig2-induced differentiation induces the expression of Dickkopf-1(Dkk1), a potent antagonist of Wnt signaling. Dkk1 treatment blocked Wnt signaling in HB1.F3 in a dosage-dependent manner, and induced differentiation into astrocytes, oligodendrocytes, and neurons. Our results support cancer stem cell hypothesis which implies that signaling pathway for self-renewal and proliferation of stem cells is maintained till the late stage of differentiation. In our proposed model, Dkk1 may play an important role in downregulating self-renewal and proliferation pathway of stem cells at the late stage of differentiation, and its failure may lead to carcinogenesis.
Collapse
Affiliation(s)
- Sung-Min Ahn
- Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Korea
| | - Kyunghee Byun
- Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Korea
| | - Deokhoon Kim
- Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Korea
| | - Kiyoung Lee
- Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Korea
| | - Jong Shin Yoo
- Mass Spectrometry Analysis Group, Korea Basic Science Institute, Daejeon, Korea
| | - Seung U. Kim
- Gachon Institute for Regenerative Medicine, Gachon University of Medicine and Science, Incheon, Korea
- Department of Medicine, University of British Columbia, Vancouver, Canada
- * E-mail: (SUK); (RJS); (BL)
| | - Eek-hoon Jho
- Department of Life Science, The University of Seoul, Dongdaemun-gu, Seoul, Korea
| | - Richard J. Simpson
- Joint Proteomics Laboratory, Ludwig Institute for Cancer Research & the Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- * E-mail: (SUK); (RJS); (BL)
| | - Bonghee Lee
- Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Korea
- * E-mail: (SUK); (RJS); (BL)
| |
Collapse
|
439
|
Park JR, Jung JW, Lee YS, Kang KS. The roles of Wnt antagonists Dkk1 and sFRP4 during adipogenesis of human adipose tissue-derived mesenchymal stem cells. Cell Prolif 2008; 41:859-874. [PMID: 19040566 DOI: 10.1111/j.1365-2184.2008.00565.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES The canonical Wnt signalling pathway performs an important function in the control of adipogenesis. However, the mechanisms and mediators underlying these interactions have yet to be defined in detail. Thus, this study was performed in order to elucidate the roles of the Wnt family during adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (hAMSCs). MATERIALS AND METHODS We assessed several members of the Frizzled (FZD) family, the receptors of Wnts, inhibitors including the secreted frizzled-related protein (sFRP) family and Dickkopfs (Dkks), and the downstream factor, beta-catenin. Expressional levels of adipogenic markers regulated by the small interfering RNA of Dkk1 (siDkk1) and sFRP4 (sisFRP4) were assessed using real-time quantitative PCR and Western blot analysis. RESULTS The mRNA level of Dkk1 was expressed abundantly in the early stages of adipogenesis and decreased rapidly during the late stages of adipogenesis. However, sFRP4 mRNA was up-regulated gradually during adipogenic differentiation in hAMSCs. Expression of FZD1, FZD7 and beta-catenin were reduced during adipogenic differentiation. Transfection of hAMSCs with siDkk1 or sisFRP4 partially inhibited differentiation of hAMSCs into adipocytes and restored levels of beta-catenin. CONCLUSIONS We determined that Dkk1 was up-regulated transiently in the early stages of adipogenesis, and that sFRP4 levels increased gradually during adipogeneis via inhibition of Wnt signalling. Collectively, these results show that Dkk1 and sFRP4 perform an important function in adipogenesis in hAMSCs.
Collapse
Affiliation(s)
- J-R Park
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea, andLaboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University, Seoul, South Korea
| | - J-W Jung
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea, andLaboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Y-S Lee
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea, andLaboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University, Seoul, South Korea
| | - K-S Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea, andLaboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University, Seoul, South Korea
| |
Collapse
|
440
|
N-cadherin interacts with axin and LRP5 to negatively regulate Wnt/beta-catenin signaling, osteoblast function, and bone formation. Mol Cell Biol 2008; 29:953-64. [PMID: 19075000 DOI: 10.1128/mcb.00349-08] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Wnt signaling plays an important role in the regulation of bone formation and bone mass. The mechanisms that regulate canonical Wnt signaling in osteoblasts are not fully understood. We show here a novel mechanism by which the adhesion molecule N-cadherin interacts with the Wnt coreceptor LRP5 and regulates canonical Wnt/beta-catenin signaling in osteoblasts. We demonstrate that N-cadherin, besides associating with beta-catenin at the membrane, forms a molecular complex with axin and LRP5 involving the LRP5 cytoplasmic tail domain. N-cadherin overexpression in osteoblasts increases N-cadherin-LRP5 interaction, causing increased beta-catenin degradation and altered TCF/LEF transcription in response to Wnt3a. This mechanism results in decreased osteoblast gene expression and osteogenesis in basal conditions and in response to Wnt3a. Consistent with a functional mechanism, silencing N-cadherin expression in control cells increases TCF/LEF transcription and enhances the response to Wnt3a. Using N-cadherin transgenic mice, we show that increased N-cadherin-LRP5 interaction resulting from targeted overexpression of N-cadherin in osteoblasts causes increased beta-catenin ubiquitination and results in cell-autonomous defective osteoblast function, reduced bone formation, and delayed bone mass acquisition. These data indicate that a previously unrecognized N-cadherin-axin-LRP5 interaction negatively regulates Wnt/beta-catenin signaling and is critical in the regulation of osteoblast function, bone formation, and bone mass.
Collapse
|
441
|
Solberg N, Machon O, Krauss S. Effect of canonical Wnt inhibition in the neurogenic cortex, hippocampus, and premigratory dentate gyrus progenitor pool. Dev Dyn 2008; 237:1799-811. [PMID: 18521945 DOI: 10.1002/dvdy.21586] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Canonical Wnt signaling is crucial for the correct development of both cortical and hippocampal structures in the dorsal telencephalon. In this study, we examined the role of the canonical Wnt signaling in the dorsal telencephalon of mouse embryos at defined time periods by inhibition of the pathway with ectopic expression of Dkk1. Transgenic mice with the D6-driven Dkk1 gene exhibited reduced canonical Wnt signaling in the cortex and hippocampus. As a result, all hippocampal fields were reduced in size. Neurogenesis in the dentate gyrus was severely reduced both in the premigratory and migratory progenitor pool. The lower number of progenitors in the dentate gyrus was not rescued after migration to the subgranular zone and thus the dentate gyrus lacked the entire internal blade and a part of the external blade from postnatal to adult stages.
Collapse
Affiliation(s)
- Nina Solberg
- Section for Cellular and Genetic Therapy, Institute of Microbiology, Rikshospitalet, Oslo, Norway.
| | | | | |
Collapse
|
442
|
Dickkopf (Dkk) 1 promotes the differentiation of mouse embryonic stem cells toward neuroectoderm. In Vitro Cell Dev Biol Anim 2008; 45:185-93. [PMID: 19057969 DOI: 10.1007/s11626-008-9157-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Accepted: 10/16/2008] [Indexed: 12/31/2022]
Abstract
Wnt signaling has been demonstrated to have extensive roles during embryogenesis. The Wnt family is highly conserved. In mice, there are 19 Wnt genes. Dickkopf (Dkk), through its interactions with Wnt co-receptors, low-density lipoprotein receptor-related protein (LRP), Frizzled and Kremen, can act as a negative regulator to block the Wnt-signaling pathway. There are four Dkk genes in the human genome, and three in that of the mouse. Dkk1 is involved in a variety of craniofacial developmental processes and behaves as a strong head inducer and limb regulator. Dkk1 mutant mice are embryonic-lethal. Here, we investigated the effects of Dkk1 on the differentiation of murine ESCs in both the ESC and embryoid body (EB) states. The results demonstrate that Dkk1 overexpression can initiate the differentiation program of ESCs toward neuroectoderm. We believe this finding can augment our understanding of mouse ESC differentiation.
Collapse
|
443
|
Tevosian SG, Manuylov NL. To beta or not to beta: canonical beta-catenin signaling pathway and ovarian development. Dev Dyn 2008; 237:3672-80. [PMID: 18985752 PMCID: PMC2837360 DOI: 10.1002/dvdy.21784] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The mammalian embryonic gonad is a unique organ primordium in that it can adopt two different developmental fates-namely, differentiate as either a testis or an ovary-with dramatic consequences for an individual. While a molecular cascade culminating in testis development is well characterized, the ovarian pathways still remain enigmatic. The canonical Wnt/beta-catenin signaling implements a conserved mechanism of regulating gene expression that is integral to development of all metazoans. In this review, we summarize the recent evidence that suggests a central role for this signaling pathway in the development of the mammalian female.
Collapse
Affiliation(s)
- Sergei G. Tevosian
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA
- Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH 03755, USA
| | | |
Collapse
|
444
|
Manuylov NL, Smagulova FO, Leach L, Tevosian SG. Ovarian development in mice requires the GATA4-FOG2 transcription complex. Development 2008; 135:3731-43. [DOI: 10.1242/dev.024653] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have demonstrated previously that mammalian sexual differentiation requires both the GATA4 and FOG2 transcriptional regulators to assemble the functioning testis. Here we have determined that the sexual development of female mice is profoundly affected by the loss of GATA4-FOG2 interaction. We have also identified the Dkk1 gene, which encodes a secreted inhibitor of canonical β-catenin signaling, as a target of GATA4-FOG2 repression in the developing ovary. The tissue-specific ablation of theβ-catenin gene in the gonads disrupts female development. In Gata4ki/ki; Dkk1-/- or Fog2-/-;Dkk1-/- embryos, the normal ovarian gene expression pattern is partially restored. Control of ovarian development by the GATA4-FOG2 complex presents a novel insight into the cross-talk between transcriptional regulation and extracellular signaling that occurs in ovarian development.
Collapse
Affiliation(s)
| | | | - Lyndsay Leach
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755,USA
| | | |
Collapse
|
445
|
Cha SW, Tadjuidje E, Tao Q, Wylie C, Heasman J. Wnt5a and Wnt11 interact in a maternal Dkk1-regulated fashion to activate both canonical and non-canonical signaling in Xenopus axis formation. Development 2008; 135:3719-29. [DOI: 10.1242/dev.029025] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wnt signaling in development and adult tissue homeostasis requires tight regulation to prevent patterning abnormalities and tumor formation. Here, we show that the maternal Wnt antagonist Dkk1 downregulates both the canonical and non-canonical signaling that are required for the correct establishment of the axes of the Xenopus embryo. We find that the target Wnts of Dkk activity are maternal Wnt5a and Wnt11, and that both Wnts are essential for canonical and non-canonical signaling. We determine that Wnt5a and Wnt11 form a previously unrecognized complex. This work suggests a new aspect of Wnt signaling: two Wnts acting in a complex together to regulate embryonic patterning.
Collapse
Affiliation(s)
- Sang-Wook Cha
- Division of Developmental Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Emmanuel Tadjuidje
- Division of Developmental Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Qinghua Tao
- Division of Developmental Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Christopher Wylie
- Division of Developmental Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Janet Heasman
- Division of Developmental Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
446
|
Veeck J, Noetzel E, Bektas N, Jost E, Hartmann A, Knüchel R, Dahl E. Promoter hypermethylation of the SFRP2 gene is a high-frequent alteration and tumor-specific epigenetic marker in human breast cancer. Mol Cancer 2008; 7:83. [PMID: 18990230 PMCID: PMC2613402 DOI: 10.1186/1476-4598-7-83] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Accepted: 11/06/2008] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND We have previously reported that expression of the Wnt antagonist genes SFRP1 and SFRP5 is frequently silenced by promoter hypermethylation in breast cancer. SFRP2 is a further Wnt inhibitor whose expression was recently found being downregulated in various malignancies. Here we investigated whether SFRP2 is also implicated in human breast cancer, and if so whether SFRP2 promoter methylation might serve as a potential tumor biomarker. METHODS We analyzed SFRP2 mRNA expression and SFRP2 promoter methylation in 10 breast cell lines, 199 primary breast carcinomas, 20 matched normal breast tissues and 17 cancer-unrelated normal breast tissues using RT-PCR, realtime PCR, methylation-specific PCR and Pyrosequencing, respectively. SFRP2 protein expression was assessed by immunohistochemistry on a tissue microarray. Proliferation assays after transfection with an SFRP2 expression vector were performed with mammary MCF10A cells. Statistical evaluations were accomplished with SPSS 14.0 software. RESULTS Of the cancerous breast cell lines, 7/8 (88%) lacked SFRP2 mRNA expression due to SFRP2 promoter methylation (P < 0.001). SFRP2 expression was substantially restored in most breast cell lines after treatment with 5-aza-2'-deoxycytidine and trichostatin A. In primary breast carcinomas SFRP2 protein expression was strongly reduced in 93 of 125 specimens (74%). SFRP2 promoter methylation was detected in 165/199 primary carcinomas (83%) whereas all cancer-related and unrelated normal breast tissues were not affected by SFRP2 methylation. SFRP2 methylation was not associated with clinicopathological factors or clinical patient outcome. However, loss of SFRP2 protein expression showed a weak association with unfavorable patient overall survival (P = 0.071). Forced expression of SFRP2 in mammary MCF10A cells substantially inhibited proliferation rates (P = 0.045). CONCLUSION The SFRP2 gene is a high-frequent target of epigenetic inactivation in human breast cancer. Its methylation leads to abrogation of SFRP2 expression, conferring a growth advantage to epithelial mammary cells. This altogether supports a tumor suppressive function of SFRP2. Although clinical patient outcome was not associated with SFRP2 methylation, the high frequency of this epimutation and its putative specificity to neoplastic cells may qualify SFRP2 promoter methylation as a potential candidate screening marker helping to improve early breast cancer detection.
Collapse
Affiliation(s)
- Jürgen Veeck
- Molecular Oncology Group, Institute of Pathology, University Hospital of the RWTH Aachen, Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
447
|
Wan M, Yang C, Li J, Wu X, Yuan H, Ma H, He X, Nie S, Chang C, Cao X. Parathyroid hormone signaling through low-density lipoprotein-related protein 6. Genes Dev 2008; 22:2968-79. [PMID: 18981475 PMCID: PMC2577789 DOI: 10.1101/gad.1702708] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 09/04/2008] [Indexed: 01/30/2023]
Abstract
Intermittent administration of PTH stimulates bone formation, but the precise mechanisms responsible for PTH responses in osteoblasts are only incompletely understood. Here we show that binding of PTH to its receptor PTH1R induced association of LRP6, a coreceptor of Wnt, with PTH1R. The formation of the ternary complex containing PTH, PTH1R, and LRP6 promoted rapid phosphorylation of LRP6, which resulted in the recruitment of axin to LRP6, and stabilization of beta-catenin. Activation of PKA is essential for PTH-induced beta-catenin stabilization, but not for Wnt signaling. In vivo studies confirmed that PTH treatment led to phosphorylation of LRP6 and an increase in amount of beta-catenin in osteoblasts with a concurrent increase in bone formation in rat. Thus, LRP6 coreceptor is a key element of the PTH signaling that regulates osteoblast activity.
Collapse
Affiliation(s)
- Mei Wan
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Chaozhe Yang
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
- Shihezi Medical College, Shihezi Univeristy, Xinjiang 832002, China
| | - Jun Li
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
- Shihezi Medical College, Shihezi Univeristy, Xinjiang 832002, China
| | - Xiangwei Wu
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
- Shihezi Medical College, Shihezi Univeristy, Xinjiang 832002, China
| | - Hongling Yuan
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
- Shihezi Medical College, Shihezi Univeristy, Xinjiang 832002, China
| | - Hairong Ma
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
- Shihezi Medical College, Shihezi Univeristy, Xinjiang 832002, China
| | - Xi He
- The Neurobiology Program, Children’s Hospital Boston and Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Shuyi Nie
- Department of Cell Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Chenbei Chang
- Department of Cell Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Xu Cao
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| |
Collapse
|
448
|
Zhang B, Luo S, Wang Q, Suzuki T, Xiong WC, Mei L. LRP4 serves as a coreceptor of agrin. Neuron 2008; 60:285-97. [PMID: 18957220 PMCID: PMC2743173 DOI: 10.1016/j.neuron.2008.10.006] [Citation(s) in RCA: 427] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 10/09/2008] [Accepted: 10/08/2008] [Indexed: 11/17/2022]
Abstract
Neuromuscular junction (NMJ) formation requires agrin, a factor released from motoneurons, and MuSK, a transmembrane tyrosine kinase that is activated by agrin. However, how signal is transduced from agrin to MuSK remains unclear. We report that LRP4, a low-density lipoprotein receptor (LDLR)-related protein, is expressed specifically in myotubes and binds to neuronal agrin. Its expression enables agrin binding and MuSK signaling in cells that otherwise do not respond to agrin. Suppression of LRP4 expression in muscle cells attenuates agrin binding, agrin-induced MuSK tyrosine phosphorylation, and AChR clustering. LRP4 also forms a complex with MuSK in a manner that is stimulated by agrin. Finally, we showed that LRP4 becomes tyrosine-phosphorylated in agrin-stimulated muscle cells. These observations indicate that LRP4 is a coreceptor of agrin that is necessary for MuSK signaling and AChR clustering and identify a potential target protein whose mutation and/or autoimmunization may cause muscular dystrophies.
Collapse
Affiliation(s)
- Bin Zhang
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | - Shiwen Luo
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | - Qiang Wang
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | - Tatsuo Suzuki
- Department of Neuroplasticity, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Wen C. Xiong
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | - Lin Mei
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912, USA
| |
Collapse
|
449
|
Abstract
Although progress has been made in understanding the role of growth factors and their receptors in angiogenesis, little is known about how the Wnt family of growth factors function in the vasculature. Wnts are multifunctional factors that act through the frizzled receptors to regulate proliferation, apoptosis, branching morphogenesis, inductive processes, and cell polarity. All of these processes must occur as developing vascular structures are formed and maintained. Recent evidence has linked the Wnt/Frizzled signaling pathway to proper vascular growth in murine and human retina. Here we review the literature describing the angiogenic functions for Wnt signaling and focus on a newly discovered angiogenic factor, Norrin, which acts through the Wnt receptor, Frizzled4.
Collapse
Affiliation(s)
- Nancy L Parmalee
- Department of Genetics and Development, Irving Research Center, NY, NY 10032, USA
| | | |
Collapse
|
450
|
Amantea CM, Kim WK, Meliton V, Tetradis S, Parhami F. Oxysterol-induced osteogenic differentiation of marrow stromal cells is regulated by Dkk-1 inhibitable and PI3-kinase mediated signaling. J Cell Biochem 2008; 105:424-36. [PMID: 18613030 PMCID: PMC2574814 DOI: 10.1002/jcb.21840] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Osteoporosis and its complications cause morbidity and mortality in the aging population, and result from increased bone resorption by osteoclasts in parallel with decreased bone formation by osteoblasts. A widely accepted strategy for improving bone health is targeting osteoprogenitor cells in order to stimulate their osteogenic differentiation and bone forming properties through the use of osteoinductive/anabolic factors. We previously reported that specific naturally occurring oxysterols have potent osteoinductive properties, mediated in part through activation of hedgehog signaling in osteoprogenitor cells. In the present report, we further demonstrate the molecular mechanism(s) by which oxysterols induce osteogenesis. In addition to activating the hedgehog signaling pathway, oxysterol-induced osteogenic differentiation is mediated through a Wnt signaling-related, Dkk-1-inhibitable mechanism. Bone marrow stromal cells (MSC) treated with oxysterols demonstrated increased expression of osteogenic differentiation markers, along with selective induced expression of Wnt target genes. These oxysterol effects, which occurred in the absence of beta-catenin accumulation or TCF/Lef activation, were inhibited by the hedgehog pathway inhibitor, cyclopamine, and/or by the Wnt pathway inhibitor, Dkk-1. Furthermore, the inhibitors of PI3-Kinase signaling, LY 294002 and wortmanin, inhibited oxysterol-induced osteogenic differentiation and induction of Wnt signaling target genes. Finally, activators of canonical Wnt signaling, Wnt3a and Wnt1, inhibited spontaneous, oxysterol-, and Shh-induced osteogenic differentiation of bone marrow stromal cells, suggesting the involvement of a non-canonical Wnt pathway in pro-osteogenic differentiation events. Osteogenic oxysterols are, therefore, important small molecule modulators of critical signaling pathways in pluripotent mesenchymal cells that regulate numerous developmental and post-developmental processes.
Collapse
Affiliation(s)
- Christopher M. Amantea
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California 90095
| | - Woo-Kyun Kim
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California 90095
| | - Vicente Meliton
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California 90095
| | | | - Farhad Parhami
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California 90095
| |
Collapse
|