401
|
Abstract
The loss of chromosomal integrity from DNA double-strand breaks introduced into mammalian cells by ionizing radiation results in the specific phosphorylation of histone H2AX on serine residue 139, yielding a specific modified form named gamma-H2AX. An antibody prepared to the unique region of human gamma-H2AX shows that H2AX homologues are phosphorylated not only in irradiated mammalian cells but also in irradiated cells from other species, including Xenopus laevis, Drosophila melanogaster, and Saccharomyces cerevisiae. The antibody reveals that gamma-H2AX appears as discrete nuclear foci within 1 min after exposure of cells to ionizing radiation. The numbers of these foci are comparable to the numbers of induced DNA double-strand breaks. When DNA double-strand breaks are introduced into specific partial nuclear volumes of cells by means of a pulsed microbeam laser, gamma-H2AX foci form at these sites. In mitotic cells from cultures exposed to nonlethal amounts of ionizing radiation, gamma-H2AX foci form band-like structures on chromosome arms and on the end of broken arms. These results offer direct visual confirmation that gamma-H2AX forms en masse at chromosomal sites of DNA double-strand breaks. The results further suggest the possible existence of units of higher order chromatin structure involved in monitoring DNA integrity.
Collapse
Affiliation(s)
- Emmy P. Rogakou
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Chye Boon
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Christophe Redon
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - William M. Bonner
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
402
|
Hurd YL, Yakovleva T, Nussenzweig A, Li GC, Terenius L, Bakalkin G. A novel neuron-specific DNA end-binding factor in the murine brain. Mol Cell Neurosci 1999; 14:213-24. [PMID: 10576891 DOI: 10.1006/mcne.1999.0782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To characterize the distribution of transcription factor AP-1 and YY1 DNA-binding activities in the rat brain, the labeled target oligonucleotides were loaded on brain sections and after incubation and washing, the residual signal was registered by autoradiography. The binding was predominantly associated with neurons and was regionally specific with highest levels in the cerebellum, hippocampus, and piriform cortex. The identified binding factor was not, however, sequence-specific, but apparently recognized DNA ends and was activated by long double-stranded DNA. UV cross-linking identified the molecular mass of the factor to be about 80 kDa. The factor was not found in soluble brain extracts, suggesting its association with membranes or the nuclear matrix. Despite apparent similarities with Ku protein, which targets DNA-ends, the DNA end-binding activity was present in brains of Ku86- and Ku70-deficient mice. Since DNA end-binding factors are generally involved in DNA repair, the same function may be suggested for the novel factor identified in the present study.
Collapse
Affiliation(s)
- Y L Hurd
- Section of Psychiatry, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
403
|
Yu W, Misulovin Z, Suh H, Hardy RR, Jankovic M, Yannoutsos N, Nussenzweig MC. Coordinate regulation of RAG1 and RAG2 by cell type-specific DNA elements 5' of RAG2. Science 1999; 285:1080-4. [PMID: 10446057 DOI: 10.1126/science.285.5430.1080] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
RAG1 and RAG2 are essential for V(D)J recombination and lymphocyte development. These genes are thought to encode a transposase derived from a mobile genetic element that was inserted into the vertebrate genome 450 million years ago. The regulation of RAG1 and RAG2 was investigated in vivo with bacterial artificial chromosome (BAC) transgenes containing a fluorescent indicator. Coordinate expression of RAG1 and RAG2 in B and T cells was found to be regulated by distinct genetic elements found on the 5' side of the RAG2 gene. This observation suggests a mechanism by which asymmetrically disposed cis DNA elements could influence the expression of the primordial transposon and thereby capture RAGs for vertebrate evolution.
Collapse
Affiliation(s)
- W Yu
- Laboratory of Molecular Immunology, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
404
|
Frasca D, Barattini P, Tirindelli D, Guidi L, Bartoloni C, Errani A, Costanzo M, Tricerri A, Pierelli L, Doria G. Effect of age on DNA binding of the ku protein in irradiated human peripheral blood mononuclear cells (PBMC). Exp Gerontol 1999; 34:645-58. [PMID: 10530790 DOI: 10.1016/s0531-5565(99)00026-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
DNA binding of the ku protein was investigated in peripheral blood mononuclear cells (PBMC) from 24 subjects of different ages (20-89 years old) displaying age-related changes in DNA repair, mitotic responsiveness, and cytokine production. Ku is an heterodimeric protein composed of two subunits of 70 and 80 kDa, which is involved in the earliest steps of DNA damage recognition. DNA binding of ku 70/80 was found unchanged in normal PBMC from aging subjects but progressively declined in x-ray-irradiated PBMC from young to adult, and elderly subjects. This finding was concomitant with the age-related fall of DNA repair in the whole population.
Collapse
Affiliation(s)
- D Frasca
- Laboratory of Immunology, AMB-PRO-TOSS, ENEA CR Cassaccia, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
405
|
Abstract
Products of the recombination-activating gene (RAG) play a crucial role in lymphoid cell development. During the past year, the functional properties of RAG protein domains have been better defined. Some mutations that alter the amino acid sequence of RAG1 or RAG2 have been shown to disturb B cell generation and to partially disturb T cell generation, resulting in Omenn syndrome in humans; moreover, peripheral re-expression of RAGs indicates their role in lymphoid cell homeostasis.
Collapse
Affiliation(s)
- L D Notarangelo
- Department of Pediatrics, University of Brescia, Spedali Civili, 25122, Brescia, Italy.
| | | | | |
Collapse
|
406
|
Koike M, Ikuta T, Miyasaka T, Shiomi T. The nuclear localization signal of the human Ku70 is a variant bipartite type recognized by the two components of nuclear pore-targeting complex. Exp Cell Res 1999; 250:401-13. [PMID: 10413594 DOI: 10.1006/excr.1999.4507] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ku protein is a complex of two subunits, Ku70 and Ku80. Ku is suspected to participate in both DNA double-strand break repair and transcription. Since both of these processes take place in the cell nucleus, we have been investigating the subcellular localization and nuclear transport of Ku proteins. In the present study, we analyzed the subcellular localization and nuclear localization signal (NLS) of Ku70. Fusion proteins of Ku70 and green fluorescent protein (GFP) transiently expressed in cells were clearly localized in the nuclei of interphase cells. Ku70 staining was distributed throughout both the nucleus and the cytoplasm in late telophase to early G1 phase cells. The NLS of Ku70 was located at the region composed of 18 amino acid residues (positions 539 to 556). This region overlapped with the Ku80-independent DNA-binding domain reported previously. The Ku70 NLS consisted of two basic subregions and a nonbasic intervening region. All the subregions were necessary for complete NLS activity. The amino acids in the nonbasic intervening region of Ku70 might be important for full NLS activity not only to provide sufficient length between the two separated clusters of basic amino acids but also to have an adequate amino acid sequence. All of the basic amino acid residues in the basic subregions were conserved among mammalian and avian homologues, confirming their importance in the nuclear translocation of Ku70. The structure of the Ku70 NLS resembled the consensus of a bipartite-type NLS. The Ku70 NLS was mediated to target to the nuclear rim by two components of the nuclear pore-targeting complex, PTAC58 and PTAC97.
Collapse
Affiliation(s)
- M Koike
- Genome Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | | | | | | |
Collapse
|
407
|
Abstract
Ku is a heterodimeric protein with high binding affinity for ends, nicks, and gaps in double-stranded DNA. Both in mammalian cells and in budding yeast, Ku plays a role in nonhomologous end joining in the double strand break repair pathway. However, Ku has a more significant role in DNA repair in mammalian cells compared with yeast, in which a homology-dependent pathway is the predominant one. Recently Ku has been shown to be a likely component of the telomeric complex in yeast, suggesting the possibility of a similar role for Ku at mammalian telomeres. However, long single-stranded G-rich overhangs are continuously present at mammalian but not at yeast telomeres. These overhangs have the potential to fold in vitro into G-G base-paired conformations, such as G-quartets, that might prevent Ku from recognizing telomeric ends and thus offer a mechanism to sequester the telomere from the prevalent double strand break repair pathway in mammals. We show here that Ku binds to mammalian telomeric DNA ends in vitro and that G-quartet conformations are unable to prevent Ku from binding with high affinity to the DNA. Our results indicate that the DNA binding characteristics of Ku are consistent with its direct interaction with telomeric DNA in mammalian cells and its proposed role as a telomere end factor.
Collapse
Affiliation(s)
- A Bianchi
- Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
408
|
Affiliation(s)
- A Pastink
- Department of Radiation Genetics and Chemical Mutagenesis, MGC, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL, Leiden, Netherlands.
| | | |
Collapse
|
409
|
Hennequin C, Giocanti N, Averbeck D, Favaudon V. [DNA-dependent protein kinase (DNA-PK), a key enzyme in the re-ligation of double-stranded DNA breaks]. Cancer Radiother 1999; 3:289-95. [PMID: 10486539 DOI: 10.1016/s1278-3218(99)80070-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Repair pathways of DNA are now better defined, and some important findings have been discovered in the last few years. DNA non-homologous end-joining (NEHJ) is a crucial process in the repair of radiation-induced double-strand breaks (DSBs). NHEJ implies at least three steps: the DNA free-ends must get closer, preparation of the free-ends by exonucleases and then a transient hybridisation in a region of DNA with weak homology. DNA-dependent protein kinase (DNA-PK) is the key enzyme in this process. DNA-PK is a nuclear serine/threonine kinase that comprises three components: a catlytic subunit (DNA-PKCS) and two regulatory subunits, DNA-binding proteins, Ku80 and Ku70. The severe combined immunodeficient (scid) mice are deficient in DNA-PKCS: this protein is involved both in DNA repair and in the V(D)J recombination of immunoglobulin and T-cell receptor genes. It is a protein-kinase of the P13-kinase family and which can phosphorylates Ku proteins, p53 and probably some other proteins still unknown. DNA-PK is an important actor of DSBs repair (induced by ionising radiations or by drugs like etoposide), but obviously it is not the only mechanism existing in the cell for this function. Some others, like homologous recombination, seem also to have a great importance for cell survival.
Collapse
Affiliation(s)
- C Hennequin
- Radiothérapie-oncologie, hôpital Saint-Louis, Paris, France
| | | | | | | |
Collapse
|
410
|
Jimenez GS, Bryntesson F, Torres-Arzayus MI, Priestley A, Beeche M, Saito S, Sakaguchi K, Appella E, Jeggo PA, Taccioli GE, Wahl GM, Hubank M. DNA-dependent protein kinase is not required for the p53-dependent response to DNA damage. Nature 1999; 400:81-3. [PMID: 10403253 DOI: 10.1038/21913] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Damage to DNA in the cell activates the tumour-suppressor protein p53, and failure of this activation leads to genetic instability and a predisposition to cancer. It is therefore crucial to understand the signal transduction mechanisms that connect DNA damage with p53 activation. The enzyme known as DNA-dependent protein kinase (DNA-PK) has been proposed to be an essential activator of p53, but the evidence for its involvement in this pathway is controversial. We now show that the p53 response is fully functional in primary mouse embryonic fibroblasts lacking DNA-PK: irradiation-induced DNA damage in these defective fibroblasts induces a normal response of p53 accumulation, phosphorylation of a p53 serine residue at position 15, nuclear localization and binding to DNA of p53. The upregulation of p53-target genes and cell-cycle arrest also occur normally. The DNA-PK-deficient cell line SCGR11 contains a homozygous mutation in the DNA-binding domain of p53, which may explain the defective response by p53 reported in this line. Our results indicate that DNA-PK activity is not required for cells to mount a p53-dependent response to DNA damage.
Collapse
Affiliation(s)
- G S Jimenez
- Gene Expression Laboratory, The Salk Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
411
|
Frit P, Canitrot Y, Muller C, Foray N, Calsou P, Marangoni E, Bourhis J, Salles B. Cross-resistance to ionizing radiation in a murine leukemic cell line resistant to cis-dichlorodiammineplatinum(II): role of Ku autoantigen. Mol Pharmacol 1999; 56:141-6. [PMID: 10385694 DOI: 10.1124/mol.56.1.141] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
cis-Dichlorodiammineplatinum(II) (CDDP; cisplatin) is commonly used in combination with ionizing radiation (IR) in the treatment of various malignancies. In vitro, many observations suggest that acquisition of CDDP resistance in cell lines confers cross-resistance to IR, but the molecular mechanisms involved have not been well documented yet. We report here the selection and characterization of a murine CDDP-resistant L1210 cell line (L1210/3R) that exhibits cross-resistance to IR because of an increased capacity to repair double-strand breaks compared with parental cells (L1210/P). In resistant cells, electrophoretic mobility shift assays revealed an increased DNA-end binding activity that could be ascribed, by supershifting the retardation complexes with antibodies, to the autoantigen Ku. The heterodimeric Ku protein, composed of 86-kDa (Ku80) and 70-kDa (Ku70) subunits, is the DNA-targeting component of DNA-dependent protein kinase (DNA-PK), which plays a critical role in mammalian DNA double-strand breaks repair. The increased Ku-binding activity in resistant cells was associated with an overexpression affecting specifically the Ku80 subunit. These data strongly suggest that the increase in Ku activity is responsible for the phenotype of cross-resistance to IR. In addition, these observations, along with previous results from DNA-PK- mutant cells, provide evidence in favor of a role of Ku/DNA-PK in resistance to CDDP. These results suggest that Ku activity may be an important molecular target in cancer therapy at the crossroad between cellular responses to CDDP and IR.
Collapse
Affiliation(s)
- P Frit
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Unité Propre de Recherche 9062, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
412
|
Luo G, Yao MS, Bender CF, Mills M, Bladl AR, Bradley A, Petrini JH. Disruption of mRad50 causes embryonic stem cell lethality, abnormal embryonic development, and sensitivity to ionizing radiation. Proc Natl Acad Sci U S A 1999; 96:7376-81. [PMID: 10377422 PMCID: PMC22093 DOI: 10.1073/pnas.96.13.7376] [Citation(s) in RCA: 298] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Mre11/Rad50 protein complex functions in diverse aspects of the cellular response to double-strand breaks (DSBs), including the detection of DNA damage, the activation of cell cycle checkpoints, and DSB repair. Whereas genetic analyses in Saccharomyces cerevisiae have provided insight regarding DSB repair functions of this highly conserved complex, the implication of the human complex in Nijmegen breakage syndrome reveals its role in cell cycle checkpoint functions. We established mRad50 mutant mice to examine the role of the mammalian Mre11/Rad50 protein complex in the DNA damage response. Early embryonic cells deficient in mRad50 are hypersensitive to ionizing radiation, consistent with a role for this complex in the repair of ionizing radiation-induced DSBs. However, the null mrad50 mutation is lethal in cultured embryonic stem cells and in early developing embryos, indicating that the mammalian Mre11/Rad50 protein complex mediates functions in normally growing cells that are essential for viability.
Collapse
Affiliation(s)
- G Luo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
413
|
Malissen B, Ardouin L, Lin SY, Gillet A, Malissen M. Function of the CD3 subunits of the pre-TCR and TCR complexes during T cell development. Adv Immunol 1999; 72:103-48. [PMID: 10361573 DOI: 10.1016/s0065-2776(08)60018-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- B Malissen
- Centre d'Immunologie INSERM-CNRS de Marseille-Luminy, France
| | | | | | | | | |
Collapse
|
414
|
Giffin W, Gong W, Schild-Poulter C, Haché RJ. Ku antigen-DNA conformation determines the activation of DNA-dependent protein kinase and DNA sequence-directed repression of mouse mammary tumor virus transcription. Mol Cell Biol 1999; 19:4065-78. [PMID: 10330147 PMCID: PMC104366 DOI: 10.1128/mcb.19.6.4065] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mouse mammary tumor virus (MMTV) transcription is repressed by DNA-dependent protein kinase (DNA-PK) through a DNA sequence element, NRE1, in the viral long terminal repeat that is a sequence-specific DNA binding site for the Ku antigen subunit of the kinase. While Ku is an essential component of the active kinase, how the catalytic subunit of DNA-PK (DNA-PKcs) is regulated through its association with Ku is only beginning to be understood. We report that activation of DNA-PKcs and the repression of MMTV transcription from NRE1 are dependent upon Ku conformation, the manipulation of DNA structure by Ku, and the contact of Ku80 with DNA. Truncation of one copy of the overlapping direct repeat that comprises NRE1 abrogated the repression of MMTV transcription by Ku-DNA-PKcs. Remarkably, the truncated element was recognized by Ku-DNA-PKcs with affinity similar to that of the full-length element but was unable to promote the activation of DNA-PKcs. Analysis of Ku-DNA-PKcs interactions with DNA ends, double- and single-stranded forms of NRE1, and the truncated NRE1 element revealed striking differences in Ku conformation that differentially affected the recruitment of DNA-PKcs and the activation of kinase activity.
Collapse
Affiliation(s)
- W Giffin
- Departments of Medicine, Microbiology and Immunology, The Loeb Health Research Institute at the Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
415
|
Martin SG, Laroche T, Suka N, Grunstein M, Gasser SM. Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell 1999; 97:621-33. [PMID: 10367891 DOI: 10.1016/s0092-8674(00)80773-4] [Citation(s) in RCA: 385] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Telomeric TG-rich repeats and their associated proteins protect the termini of eukaryotic chromosomes from end-to-end fusions. Associated with the cap structure at yeast telomeres is a subtelomeric domain of heterochromatin, containing the silent information regulator (SIR) complex. The Ku70/80 heterodimer (yKu) is associated both with the chromosome end and with subtelomeric chromatin. Surprisingly, both yKu and the chromatin-associated Rap1 and SIR proteins are released from telomeres in a RAD9-dependent response to DNA damage. yKu is recruited rapidly to double-strand cuts, while low levels of SIR proteins are detected near cleavage sites at later time points. Consistently, yKu- or SIR-deficient strains are hypersensitive to DNA-damaging agents. The release of yKu from telomeric chromatin may allow efficient scanning of the genome for DNA strand breaks.
Collapse
Affiliation(s)
- S G Martin
- Swiss Institute for Experimental Cancer Research, Epalinges
| | | | | | | | | |
Collapse
|
416
|
Abstract
The Ku protein binds to DNA ends and other types of discontinuity in double-stranded DNA. It is a tightly associated heterodimer of approximately 70 kDa and approximately 80 kDa subunits that together with the approximately 470 kDa catalytic subunit, DNA-PKcs, form the DNA-dependent protein kinase. This enzyme is involved in repairing DNA double-strand breaks (DSBs) caused, for example, by physiological oxidation reactions, V(D)J recombination, ionizing radiation and certain chemotherapeutic drugs. The Ku-dependent repair process, called illegitimate recombination or nonhomologous end joining (NHEJ), appears to be the main DNA DSB repair mechanism in mammalian cells. Ku itself is probably involved in stabilizing broken DNA ends, bringing them together and preparing them for ligation. Ku also recruits DNA-PKcs to the DSB, activating its kinase function. Targeted disruption of the genes encoding Ku70 and Ku80 has identified significant differences between Ku-deficient mice and DNA-PKcs-deficient mice. Although all three gene products are clearly involved in repairing ionizing radiation-induced damage and in V(D)J recombination, Ku-knockout mice are small, and their cells fail to proliferate in culture and show signs of premature senescence. Recent findings have implicated yeast Ku in telomeric structure in addition to NHEJ. Some of the phenotypes of the Ku-knockout mice may indicate a similar role for Ku at mammalian telomeres.
Collapse
Affiliation(s)
- C Featherstone
- Wellcome/Cancer Research Campaign Institute, Cambridge University, UK.
| | | |
Collapse
|
417
|
Kachnic LA, Wu B, Wunsch H, Mekeel KL, DeFrank JS, Tang W, Powell SN. The ability of p53 to activate downstream genes p21(WAF1/cip1) and MDM2, and cell cycle arrest following DNA damage is delayed and attenuated in scid cells deficient in the DNA-dependent protein kinase. J Biol Chem 1999; 274:13111-7. [PMID: 10224064 DOI: 10.1074/jbc.274.19.13111] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
scid mouse embryonic fibroblasts are deficient in DNA-dependent protein kinase activity due to a mutation in the C-terminal domain of the catalytic subunit (DNA-PKcs). When exposed to ionizing radiation, the increase in levels of p53 was the same as in normal mouse embryonic fibroblasts. However, the rise in p21(WAF1/cip1) and mdm2 was found to be delayed and attenuated, which correlated in time with delayed onset of G1/S arrest by flow cytometric analysis. The p53-dependent G1 checkpoint was not eliminated: inactivation of p53 by the E6 protein in scid cells resulted in the complete loss of detectable G1/S arrest after DNA damage. Immunofluorescence analysis of normal cells revealed p53 to be localized predominantly within the cytoplasm prior to irradiation and then translocate to the nucleus after irradiation. In contrast, scid cells show abnormal accumulation of p53 in the nucleus independent of irradiation, which was confirmed by immunoblot analysis of nuclear lysates. Taken together, these data suggest that loss of DNA-PK activity appears to attenuate the kinetics of p53 to activate downstream genes, implying that DNA-PK plays a role in post-translational modification of p53, without affecting the increase in levels of p53 in response to DNA damage.
Collapse
Affiliation(s)
- L A Kachnic
- Laboratory of Molecular and Cellular Radiation Biology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
418
|
Maizels N. Immunoglobulin class switch recombination: will genetics provide new clues to mechanism? Am J Hum Genet 1999; 64:1270-5. [PMID: 10205256 PMCID: PMC1377861 DOI: 10.1086/302393] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- N Maizels
- Departments of Molecular Biophysics and Biochemistry, and Genetics, Yale University School of Medicine, New Haven, CT 06520-8024, USA
| |
Collapse
|
419
|
Singleton BK, Torres-Arzayus MI, Rottinghaus ST, Taccioli GE, Jeggo PA. The C terminus of Ku80 activates the DNA-dependent protein kinase catalytic subunit. Mol Cell Biol 1999; 19:3267-77. [PMID: 10207052 PMCID: PMC84121 DOI: 10.1128/mcb.19.5.3267] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ku is a heterodimeric protein with double-stranded DNA end-binding activity that operates in the process of nonhomologous end joining. Ku is thought to target the DNA-dependent protein kinase (DNA-PK) complex to the DNA and, when DNA bound, can interact and activate the DNA-PK catalytic subunit (DNA-PKcs). We have carried out a 3' deletion analysis of Ku80, the larger subunit of Ku, and shown that the C-terminal 178 amino acid residues are dispensable for DNA end-binding activity but are required for efficient interaction of Ku with DNA-PKcs. Cells expressing Ku80 proteins that lack the terminal 178 residues have low DNA-PK activity, are radiation sensitive, and can recombine the signal junctions but not the coding junctions during V(D)J recombination. These cells have therefore acquired the phenotype of mouse SCID cells despite expressing DNA-PKcs protein, suggesting that an interaction between DNA-PKcs and Ku, involving the C-terminal region of Ku80, is required for DNA double-strand break rejoining and coding but not signal joint formation. To gain further insight into important domains in Ku80, we report a point mutational change in Ku80 in the defective xrs-2 cell line. This residue is conserved among species and lies outside of the previously reported Ku70-Ku80 interaction domain. The mutational change nonetheless abrogates the Ku70-Ku80 interaction and DNA end-binding activity.
Collapse
Affiliation(s)
- B K Singleton
- MRC Cell Mutation Unit, University of Sussex, Brighton BN1 9RR, United Kingdom
| | | | | | | | | |
Collapse
|
420
|
Van Dyck E, Stasiak AZ, Stasiak A, West SC. Binding of double-strand breaks in DNA by human Rad52 protein. Nature 1999; 398:728-31. [PMID: 10227297 DOI: 10.1038/19560] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Double-strand breaks (DSBs) in DNA are caused by ionizing radiation. These chromosomal breaks can kill the cell unless repaired efficiently, and inefficient or inappropriate repair can lead to mutation, gene translocation and cancer. Two proteins that participate in the repair of DSBs are Rad52 and Ku: in lower eukaryotes such as yeast, DSBs are repaired by Rad52-dependent homologous recombination, whereas vertebrates repair DSBs primarily by Ku-dependent non-homologous end-joining. The contribution of homologous recombination to vertebrate DSB repair, however, is important. Biochemical studies indicate that Ku binds to DNA ends and facilitates end-joining. Here we show that human Rad52, like Ku, binds directly to DSBs, protects them from exonuclease attack and facilitates end-to-end interactions. A model for repair is proposed in which either Ku or Rad52 binds the DSB. Ku directs DSBs into the non-homologous end-joining repair pathway, whereas Rad52 initiates repair by homologous recombination. Ku and Rad52, therefore, direct entry into alternative pathways for the repair of DNA breaks.
Collapse
Affiliation(s)
- E Van Dyck
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Herts, UK
| | | | | | | |
Collapse
|
421
|
Friedberg EC, Meira LB. Database of mouse strains carrying targeted mutations in genes affecting cellular responses to DNA damage: version 3. Mutat Res 1999; 433:69-87. [PMID: 10102034 DOI: 10.1016/s0921-8777(98)00068-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- E C Friedberg
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas 75235, USA.
| | | |
Collapse
|
422
|
Ruiz MT, Matheos D, Price GB, Zannis-Hadjopoulos M. OBA/Ku86: DNA binding specificity and involvement in mammalian DNA replication. Mol Biol Cell 1999; 10:567-80. [PMID: 10069804 PMCID: PMC25188 DOI: 10.1091/mbc.10.3.567] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/1998] [Accepted: 12/29/1998] [Indexed: 12/21/2022] Open
Abstract
Ors-binding activity (OBA) was previously semipurified from HeLa cells through its ability to interact specifically with the 186-basepair (bp) minimal replication origin of ors8 and support ors8 replication in vitro. Here, through competition band-shift analyses, using as competitors various subfragments of the 186-bp minimal ori, we identified an internal region of 59 bp that competed for OBA binding as efficiently as the full 186-bp fragment. The 59-bp fragment has homology to a 36-bp sequence (A3/4) generated by comparing various mammalian replication origins, including the ors. A3/4 is, by itself, capable of competing most efficiently for OBA binding to the 186-bp fragment. Band-shift elution of the A3/4-OBA complex, followed by Southwestern analysis using the A3/4 sequence as probe, revealed a major band of approximately 92 kDa involved in the DNA binding activity of OBA. Microsequencing analysis revealed that the 92-kDa polypeptide is identical to the 86-kDa subunit of human Ku antigen. The affinity-purified OBA fraction obtained using an A3/4 affinity column also contained the 70-kDa subunit of Ku and the DNA-dependent protein kinase catalytic subunit. In vitro DNA replication experiments in the presence of A3/4 oligonucleotide or anti-Ku70 and anti-Ku86 antibodies implicate Ku in mammalian DNA replication.
Collapse
Affiliation(s)
- M T Ruiz
- McGill Cancer Centre, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
423
|
Kurimasa A, Ouyang H, Dong LJ, Wang S, Li X, Cordon-Cardo C, Chen DJ, Li GC. Catalytic subunit of DNA-dependent protein kinase: impact on lymphocyte development and tumorigenesis. Proc Natl Acad Sci U S A 1999; 96:1403-8. [PMID: 9990036 PMCID: PMC15475 DOI: 10.1073/pnas.96.4.1403] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The DNA-dependent protein kinase (DNA-PK) consists of a heterodimer DNA-binding complex, Ku70 and Ku80, and a large catalytic subunit, DNA-PKcs. To examine the role of DNA-PKcs in lymphocyte development, radiation sensitivity, and tumorigenesis, we disrupted the mouse DNA-PKcs by homologous recombination. DNA-PKcs-null mice exhibit neither growth retardation nor a high frequency of T cell lymphoma development, but show severe immunodeficiency and radiation hypersensitivity. In contrast to the Ku70-/- and Ku80-/- phenotype, DNA-PKcs-null mice are blocked for V(D)J coding but not for signal-end joint formation. Furthermore, inactivation of DNA-PKcs leads to hyperplasia and dysplasia of the intestinal mucosa and production of aberrant crypt foci, suggesting a novel role of DNA-PKcs in tumor suppression.
Collapse
Affiliation(s)
- A Kurimasa
- Life Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | | | | | | | | | | | |
Collapse
|
424
|
Salles-Passador I, Fotedar A, Fotedar R. Cellular response to DNA damage. Link between p53 and DNA-PK. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 1999; 322:113-20. [PMID: 10196661 DOI: 10.1016/s0764-4469(99)80032-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cells which lack DNA-activated protein kinase (DNA-PK) are very susceptible to ionizing radiation and display an inability to repair double strand DNA breaks. DNA-PK is a member of a protein kinase family that includes ATR and ATM which have strong homology in their carboxy-terminal kinase domain with PL-3 kinase. ATM has been proposed to act upstream of p53 in cellular response to ionizing radiation. DNA-PK may similarly interact with p53 in cellular growth control and in mediation of the response to ionizing radiation.
Collapse
|
425
|
Lieber MR. The biochemistry and biological significance of nonhomologous DNA end joining: an essential repair process in multicellular eukaryotes. Genes Cells 1999; 4:77-85. [PMID: 10320474 DOI: 10.1046/j.1365-2443.1999.00245.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent progress over the past year has provided new insights into the proteins involved in nonhomologous end joining. The assembly of Ku and DNA-dependent protein kinase at DNA ends is now understood in greater detail. Murine genetic knockouts for DNA ligase IV and XRCC4 are embryonic lethal, indicating that nonhomologous end joining is essential for viability. Interestingly, neurones, in addition to lymphocytes, are particularly vulnerable to an absence of NHEJ.
Collapse
Affiliation(s)
- M R Lieber
- Norris Comprehensive Cancer Center, Department of Pathology, Los Angeles, CA 90033, USA.
| |
Collapse
|
426
|
Qin XF, Schwers S, Yu W, Papavasiliou F, Suh H, Nussenzweig A, Rajewsky K, Nussenzweig MC. Secondary V(D)J recombination in B-1 cells. Nature 1999; 397:355-9. [PMID: 9950428 DOI: 10.1038/16933] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
B-1 B cells are a self-renewing population of B cells that differ from conventional B cells (B-2 cells) in that they are particularly predisposed to auto-antibody production. Although much is known about the signalling pathways that control B-1-cell growth and development, less is known about why these cells are prone to produce autoreactive antibodies. Here we show that B-1 cells, like germinal-centre B cells, can express recombinase-activating genes 1 and 2 (RAG1 and RAG2) and undergo secondary V(D)J recombination of immunoglobulin genes. In addition, B cells from autoimmune-prone NZB mice show high levels of RAG messenger RNA and recombination. We propose that secondary immunoglobulin-gene rearrangements outside organized lymphoid organs may contribute to the development of autoreactive antibodies.
Collapse
Affiliation(s)
- X F Qin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
427
|
Muller C, Calsou P, Frit P, Salles B. Regulation of the DNA-dependent protein kinase (DNA-PK) activity in eukaryotic cells. Biochimie 1999; 81:117-25. [PMID: 10214916 DOI: 10.1016/s0300-9084(99)80044-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The DNA-dependent protein kinase (DNA-PK) is a trimeric nuclear serine/threonine protein kinase consisting of a large catalytic sub-unit and the Ku heterodimer that regulates kinase activity by its association with DNA. DNA-PK is a major component of the DNA double strand break repair apparatus, and cells deficient in one of its component are hypersensitive to ionizing radiation. DNA-PK is also required to lymphoid V(D)J recombination and its absence confers in mice a severe combined immunodeficiency phenotype. The purpose of this review is to summarize the current knowledge on the mechanisms that contribute to regulate DNA-PK activity in vivo or in vitro and relates them to the role of DNA-PK in cellular functions. Finally, the studies devoted to drug-inhibition of DNA-PK in order to enhance cancer therapy by DNA-damaging agents are presented.
Collapse
Affiliation(s)
- C Muller
- Institut de Pharmacologie et de Biologie Structurale, CNRS, UPR 906, Toulouse, France
| | | | | | | |
Collapse
|
428
|
Zdzienicka MZ. Mammalian X-ray-sensitive mutants which are defective in non-homologous (illegitimate) DNA double-strand break repair. Biochimie 1999; 81:107-16. [PMID: 10214915 DOI: 10.1016/s0300-9084(99)80043-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In all organisms multiple pathways to repair DNA double-strand breaks (DSB) have been identified. In mammalian cells DSB are repaired by two distinct pathways, homologous and non-homologous (illegitimate) recombination. X-ray-sensitive mutants have provided a tool for the identification and understanding of the illegitimate recombination pathway in mammalian cells. Two (sub-)pathways can be distinguished, the first mediated by DNA-PK-dependent protein kinase (DNA-PK), and the second directed by the hMre11/hRad50 complex. A variety of mutants impaired in DSB repair by illegitimate recombination, with mutations in Ku, DNA-PKcs, XRCC4 or nibrin, have been described. Herein, the characterization of these mutants with respect to the impaired cellular function and the molecular defect is provided. Further studies on these mutants, as well as on new mutants impaired in as-of-yet unidentified pathways, should be helpful to a better understanding of DSB repair and of the processes leading to genome instability and cancer.
Collapse
Affiliation(s)
- M Z Zdzienicka
- MGC, Department of Radiation Genetics and Chemical Mutagenesis, Leiden University-LUMC, The Netherlands
| |
Collapse
|
429
|
Woodard RL, Anderson MG, Dynan WS. Nuclear extracts lacking DNA-dependent protein kinase are deficient in multiple round transcription. J Biol Chem 1999; 274:478-85. [PMID: 9867868 DOI: 10.1074/jbc.274.1.478] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have compared levels of in vitro transcription in nuclear extracts from DNA-dependent protein kinase (DNA-PK)-deficient and DNA-PK-containing Chinese hamster ovary cell lines. DNA-PK-deficient cell lines are radiosensitive mutants lacking either the catalytic subunit or the 80-kDa subunit of the Ku protein regulatory component. Extracts from DNA-PK-deficient cell lines had a 2-7-fold decrease in the level of in vitro transcription when compared with matched controls. This decrease was observed with several promoters. Transcription could be restored to either of the deficient extracts by addition of small amounts of extract from the DNA-PK-containing cell lines. Transcription was not restored by addition of purified DNA-PK catalytic subunit, Ku protein, or individually purified general transcription factors. We conclude that extracts from DNA-PK-deficient cells lack a positively acting regulatory factor or a complex of factors not readily reconstituted with individual proteins. We have also investigated the mechanistic defect in the deficient extracts and have found that the observed differences in transcription levels between Ku-positive and Ku-negative cell lines can be attributed solely to a greater ability of the Ku-positive nuclear extracts to carry out secondary initiation events subsequent to the first round of transcription.
Collapse
Affiliation(s)
- R L Woodard
- Institute of Molecular Medicine and Genetics, Program in Gene Regulation, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | |
Collapse
|
430
|
Gao Y, Sun Y, Frank KM, Dikkes P, Fujiwara Y, Seidl KJ, Sekiguchi JM, Rathbun GA, Swat W, Wang J, Bronson RT, Malynn BA, Bryans M, Zhu C, Chaudhuri J, Davidson L, Ferrini R, Stamato T, Orkin SH, Greenberg ME, Alt FW. A critical role for DNA end-joining proteins in both lymphogenesis and neurogenesis. Cell 1998; 95:891-902. [PMID: 9875844 DOI: 10.1016/s0092-8674(00)81714-6] [Citation(s) in RCA: 562] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
XRCC4 was identified via a complementation cloning method that employed an ionizing radiation (IR)-sensitive hamster cell line. By gene-targeted mutation, we show that XRCC4 deficiency in primary murine cells causes growth defects, premature senescence, IR sensitivity, and inability to support V(D)J recombination. In mice, XRCC4 deficiency causes late embryonic lethality accompanied by defective lymphogenesis and defective neurogenesis manifested by extensive apoptotic death of newly generated postmitotic neuronal cells. We find similar neuronal developmental defects in embryos that lack DNA ligase IV, an XRCC4-associated protein. Our findings demonstrate that differentiating lymphocytes and neurons strictly require the XRCC4 and DNA ligase IV end-joining proteins and point to the general stage of neuronal development in which these proteins are necessary.
Collapse
Affiliation(s)
- Y Gao
- Howard Hughes Medical Institute, The Children's Hospital, Department of Genetics, Harvard University Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
431
|
Bogue MA, Jhappan C, Roth DB. Analysis of variable (diversity) joining recombination in DNAdependent protein kinase (DNA-PK)-deficient mice reveals DNA-PK-independent pathways for both signal and coding joint formation. Proc Natl Acad Sci U S A 1998; 95:15559-64. [PMID: 9861008 PMCID: PMC28082 DOI: 10.1073/pnas.95.26.15559] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous studies have suggested that ionizing radiation causes irreparable DNA double-strand breaks in mice and cell lines harboring mutations in any of the three subunits of DNA-dependent protein kinase (DNA-PK) (the catalytic subunit, DNA-PKcs, or one of the DNA-binding subunits, Ku70 or Ku86). In actuality, these mutants vary in their ability to resolve double-strand breaks generated during variable (diversity) joining [V(D)J] recombination. Mutant cell lines and mice with targeted deletions in Ku70 or Ku86 are severely compromised in their ability to form coding and signal joints, the products of V(D)J recombination. It is noteworthy, however, that severe combined immunodeficient (SCID) mice, which bear a nonnull mutation in DNA-PKcs, are substantially less impaired in forming signal joints than coding joints. The current view holds that the defective protein encoded by the murine SCID allele retains enough residual function to support signal joint formation. An alternative hypothesis proposes that DNA-PKcs and Ku perform different roles in V(D)J recombination, with DNA-PKcs required only for coding joint formation. To resolve this issue, we examined V(D)J recombination in DNA-PKcs-deficient (SLIP) mice. We found that the effects of this mutation on coding and signal joint formation are identical to the effects of the SCID mutation. Signal joints are formed at levels 10-fold lower than in wild type, and one-half of these joints are aberrant. These data are incompatible with the notion that signal joint formation in SCID mice results from residual DNA-PKcs function, and suggest a third possibility: that DNA-PKcs normally plays an important but nonessential role in signal joint formation.
Collapse
Affiliation(s)
- M A Bogue
- Department of Microbiology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
432
|
Barnes DE, Stamp G, Rosewell I, Denzel A, Lindahl T. Targeted disruption of the gene encoding DNA ligase IV leads to lethality in embryonic mice. Curr Biol 1998; 8:1395-8. [PMID: 9889105 DOI: 10.1016/s0960-9822(98)00021-9] [Citation(s) in RCA: 345] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DNA ligase IV is the most recently identified member of a family of enzymes joining DNA strand breaks in mammalian cell nuclei [1] [2]. The enzyme occurs in a complex with the XRCC4 gene product [3], an interaction mediated via its unique carboxyl terminus [4] [5]. Cells lacking XRCC4 are hypersensitive to ionising radiation and defective in V(D)J recombination [3] [6], implicating DNA ligase IV in the pathway of nonhomologous end-joining (NHEJ) of DNA double-strand breaks mediated by XRCC4, the Ku70/80 heterodimer and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) in mammalian cells (reviewed in [7]). The phenotype of a null mutant of the Saccharomyces cerevisiae DNA ligase IV homologue indicates that the enzyme is non-essential and functions in yeast NHEJ [8] [9] [10]. Unlike other mammalian DNA ligases for which cDNAs have been characterised, DNA ligase IV is encoded by an intronless gene (LIG4). Here, we show that targeted disruption of LIG4 in the mouse leads to lethality associated with extensive apoptotic cell death in the embryonic central nervous system. Thus, unlike Ku70/80 and DNA-PKcs [11] [12] [13] [14], DNA ligase IV has an essential function in early mammalian development.
Collapse
Affiliation(s)
- D E Barnes
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK
| | | | | | | | | |
Collapse
|
433
|
Frit P, Calsou P, Chen DJ, Salles B. Ku70/Ku80 protein complex inhibits the binding of nucleotide excision repair proteins on linear DNA in vitro. J Mol Biol 1998; 284:963-73. [PMID: 9837719 DOI: 10.1006/jmbi.1998.2257] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously reported that the incision efficiency of the nucleotide excision repair (NER) reaction measured in vitro with cell-free human protein extracts was reduced by up to 80% on a linearized damaged plasmid DNA substrate when compared to supercoiled damaged DNA. The inhibition stemed from the presence of the DNA-end binding Ku70/Ku80 heterodimer which is the regulatory subunit of the DNA-dependent protein kinase (DNA-PK). Here, the origin of the repair inhibition was assessed by a new in vitro assay in which circular or linear plasmid DNA, damaged or undamaged, was quantitatively adsorbed on sensitized microplate wells. The binding of two NER proteins, XPA and p62-TFIIH, indispensable for the incision step of the reaction, was quantified either directly in an ELISA-like reaction in the wells with specific antibodies or in Western blotting experiments on the DNA-bound fraction. We report a dramatic inhibition of XPA and p62-TFIIH association with UVC photoproducts on linear DNA. XPA and p62-TFIIH binding to DNA damage was regained when the reaction was performed with extracts lacking Ku activity (extracts from xrs6 rodent cells) whereas addition of purified human Ku complex to these extracts restored the inhibition. Despite the fact that DNA-PK was active during the NER reaction, the mechanism of inhibition relied on the sole Ku complex, since mutant protein extracts lacking the catalytic DNA-PK subunit (extracts from the human M059J glioma cells) exhibited a strong binding inhibition of XPA and p62-TFIIH proteins on linear damaged DNA, identical to the inhibition observed with the DNA-PK+ control extracts (from M059K cells).
Collapse
Affiliation(s)
- P Frit
- Institut de Pharmacologie et de Biologie Structurale, CNRS UPR 9062, 205 route de Narbonne, Toulouse, 31077, France
| | | | | | | |
Collapse
|
434
|
Besmer E, Mansilla-Soto J, Cassard S, Sawchuk DJ, Brown G, Sadofsky M, Lewis SM, Nussenzweig MC, Cortes P. Hairpin coding end opening is mediated by RAG1 and RAG2 proteins. Mol Cell 1998; 2:817-28. [PMID: 9885569 DOI: 10.1016/s1097-2765(00)80296-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Despite the importance of hairpin opening in antigen receptor gene assembly, the molecular machinery that mediates this reaction has not been defined. Here, we show that RAG1 plus RAG2 can open DNA hairpins. Hairpin opening by RAGs is not sequence specific, but in Mg2+, hairpin opening occurs only in the context of a regulated cleavage complex. The chemical mechanism of hairpin opening by RAGs resembles RSS cleavage and 3' end processing by HIV integrase and Mu transposase in that these reactions can proceed through alcoholysis. Mutations in either RAG1 or RAG2 that interfere with RSS cleavage also interfere with hairpin opening, suggesting that RAGs have a single active site that catalyzes several distinct DNA cleavage reactions.
Collapse
Affiliation(s)
- E Besmer
- Laboratory of Molecular Immunology, Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
435
|
Frank KM, Sekiguchi JM, Seidl KJ, Swat W, Rathbun GA, Cheng HL, Davidson L, Kangaloo L, Alt FW. Late embryonic lethality and impaired V(D)J recombination in mice lacking DNA ligase IV. Nature 1998; 396:173-7. [PMID: 9823897 DOI: 10.1038/24172] [Citation(s) in RCA: 459] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The DNA-end-joining reactions used for repair of double-strand breaks in DNA and for V(D)J recombination, the process by which immunoglobulin and T-cell antigen-receptor genes are assembled from multiple gene segments, use common factors. These factors include components of DNA-dependent protein kinase (DNA-PK), namely DNA-PKcs and the Ku heterodimer, Ku70-Ku80, and XRCC4. The precise function of XRCC4 is unknown, but it interacts with DNA ligase IV. Ligase IV is one of the three known mammalian DNA ligases; however, the in vivo functions of these ligases have not been determined unequivocally. Here we show that inactivation of the ligase IV gene in mice leads to late embryonic lethality. Lymphopoiesis in these mice is blocked and V(D)J joining does not occur. Ligase IV-deficient embryonic fibroblasts also show marked sensitivity to ionizing radiation, growth defects and premature senescence. All of these phenotypic characteristics, except embryonic lethality, resemble those associated with Ku70 and Ku80 deficiencies, indicating that they may result from an impaired end-joining process that involves both Ku subunits and ligase IV. However, Ku-deficient mice are viable, so ligase IV must also be required for processes and/or in cell types in which Ku is dispensable.
Collapse
Affiliation(s)
- K M Frank
- The Children's Hospital, Department of Genetics, Harvard University Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
436
|
Lieber MR. Warner-Lambert/Parke-Davis Award Lecture. Pathological and physiological double-strand breaks: roles in cancer, aging, and the immune system. THE AMERICAN JOURNAL OF PATHOLOGY 1998; 153:1323-32. [PMID: 9811320 PMCID: PMC1853386 DOI: 10.1016/s0002-9440(10)65716-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/13/1998] [Indexed: 12/01/2022]
Abstract
Pathological agents such as ionizing radiation and oxidative free radicals can cause breaks in both strands of the DNA at a given site (double-strand break). This is the most serious type of DNA damage because neither strand is able to provide physical integrity or information content, as would be the case for single-strand DNA damage where one strand of the duplex remains intact. The repair of such breaks usually results in an irreversible alteration of the DNA. Two physiological forms of intentional double-strand (ds) DNA breakage and rejoining occur during lymphoid differentiation. One is V(D)J recombination occurring during early B and T cell development, and the other is class switch recombination, occurring exclusively in mature B cells. The manner in which physiological and most pathological double-strand DNA breaks are rejoined to restore chromosomal integrity are the same. Defects during the phases in which pathological or physiological breaks are generated or in which they are joined can result in chromosomal translocations or loss of genetic information at the site of breakage. Such events are the first step in some cancers and may be a key contributor to changes in DNA with age. Inherited defects in this process can result in severe combined immune deficiency. Hence, pathological and physiological DNA double-strand breaks are related to immune defects and cancer and may be one of the key ways in which DNA is damaged during aging.
Collapse
Affiliation(s)
- M R Lieber
- Department of Pathology, Norris Comprehensive Cancer Center, University of Southern California School of Medicine, Los Angeles 91007, USA.
| |
Collapse
|
437
|
Grawunder U, Zimmer D, Fugmann S, Schwarz K, Lieber MR. DNA ligase IV is essential for V(D)J recombination and DNA double-strand break repair in human precursor lymphocytes. Mol Cell 1998; 2:477-84. [PMID: 9809069 DOI: 10.1016/s1097-2765(00)80147-1] [Citation(s) in RCA: 268] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Nonhomologous DNA end joining (NHEJ) is the major pathway for repairing double-strand DNA breaks. V(D)J recombination is a double-strand DNA breakage and rejoining process that relies on NHEJ for the joining steps. Here we show that the targeted disruption of both DNA ligase IV alleles in a human pre-B cell line renders the cells sensitive to ionizing radiation and ablates V(D)J recombination. This phenotype can only be reversed by complementation with DNA ligase IV but not by expression of either of the remaining two ligases, DNA ligase I or III. Hence, DNA ligase IV is the activity responsible for the ligation step in NHEJ and in V(D)J recombination.
Collapse
Affiliation(s)
- U Grawunder
- University of Southern California School of Medicine, Norris Comprehensive Cancer Center, Department of Pathology, Los Angeles 90033, USA
| | | | | | | | | |
Collapse
|
438
|
Muñoz P, Zdzienicka MZ, Blanchard JM, Piette J. Hypersensitivity of Ku-deficient cells toward the DNA topoisomerase II inhibitor ICRF-193 suggests a novel role for Ku antigen during the G2 and M phases of the cell cycle. Mol Cell Biol 1998; 18:5797-808. [PMID: 9742097 PMCID: PMC109166 DOI: 10.1128/mcb.18.10.5797] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ku antigen is a heterodimer, comprised of 86- and 70-kDa subunits, which binds preferentially to free DNA ends. Ku is associated with a catalytic subunit of 450 kDa in the DNA-dependent protein kinase (DNA-PK), which plays a crucial role in DNA double-strand break (DSB) repair and V(D)J recombination of immunoglobulin and T-cell receptor genes. We now demonstrate that Ku86 (86-kDa subunit)-deficient Chinese hamster cell lines are hypersensitive to ICRF-193, a DNA topoisomerase II inhibitor that does not produce DSB in DNA. Mutant cells were blocked in G2 at drug doses which had no effect on wild-type cells. Moreover, bypass of this G2 block by caffeine revealed defective chromosome condensation in Ku86-deficient cells. The hypersensitivity of Ku86-deficient cells toward ICRF-193 was not due to impaired in vitro decatenation activity or altered levels of DNA topoisomerase IIalpha or -beta. Rather, wild-type sensitivity was restored by transfection of a Ku86 expression plasmid into mutant cells. In contrast to cells deficient in the Ku86 subunit of DNA-PK, cells deficient in the catalytic subunit of the enzyme neither accumulated in G2/M nor displayed defective chromosome condensation at lower doses of ICRF-193 compared to wild-type cells. Our data suggests a novel role for Ku antigen in the G2 and M phases of the cell cycle, a role that is not related to its role in DNA-PK-dependent DNA repair.
Collapse
Affiliation(s)
- P Muñoz
- Institut de Génétique Moléculaire de Montpellier, CNRS, 34293 Montpellier Cedex 5, France.
| | | | | | | |
Collapse
|
439
|
Grawunder U, Zimmer D, Kulesza P, Lieber MR. Requirement for an interaction of XRCC4 with DNA ligase IV for wild-type V(D)J recombination and DNA double-strand break repair in vivo. J Biol Chem 1998; 273:24708-14. [PMID: 9733770 DOI: 10.1074/jbc.273.38.24708] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The XRCC4 gene is required for the repair of DNA double-strand breaks in mammalian cells. Without XRCC4, cells are hypersensitive to ionizing radiation and deficient for V(D)J recombination. It has been demonstrated that XRCC4 binds and stimulates DNA ligase IV, which has led to the hypothesis that DNA ligase IV is essential for both of these processes. In this study deletion mutants of XRCC4 were tested for their ability to associate with DNA ligase IV in vitro and for their ability to reconstitute XRCC4-deficient cells in vivo. We find that a central region of XRCC4 from amino acids 100-250 is necessary for DNA ligase IV binding and that deletions within this region functionally inactivates XRCC4. Deletions within the C-terminal 84 amino acids neither affect DNA ligase IV binding nor the in vivo function of XRCC4. The correlation between the ability or inability of XRCC4 to bind DNA ligase IV and its ability or failure to reconstitute wild-type DNA repair in vivo, respectively, demonstrates for the first time that the physical interaction with DNA ligase IV is crucial for the in vivo function of XRCC4. Deletions within the N-terminal 100 amino acids inactivate XRCC4 in vivo but leave DNA ligase IV binding unaffected. This indicates further DNA ligase IV-independent functions of XRCC4.
Collapse
Affiliation(s)
- U Grawunder
- University of Southern California School of Medicine, Norris Comprehensive Cancer Center, Department of Pathology, Los Angeles, California 90033, USA
| | | | | | | |
Collapse
|
440
|
Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M, Utsumi H, Yamaguchi-Iwai Y, Shinohara A, Takeda S. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J 1998; 17:5497-508. [PMID: 9736627 PMCID: PMC1170875 DOI: 10.1093/emboj/17.18.5497] [Citation(s) in RCA: 891] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic cells repair DNA double-strand breaks (DSBs) by at least two pathways, homologous recombination (HR) and non-homologous end-joining (NHEJ). Rad54 participates in the first recombinational repair pathway while Ku proteins are involved in NHEJ. To investigate the distinctive as well as redundant roles of these two repair pathways, we analyzed the mutants RAD54(-/-), KU70(-/-) and RAD54(-/-)/KU70(-/-), generated from the chicken B-cell line DT40. We found that the NHEJ pathway plays a dominant role in repairing gamma-radiation-induced DSBs during G1-early S phase while recombinational repair is preferentially used in late S-G2 phase. RAD54(-/-)/KU70(-/-) cells were profoundly more sensitive to gamma-rays than either single mutant, indicating that the two repair pathways are complementary. Spontaneous chromosomal aberrations and cell death were observed in both RAD54(-/-) and RAD54(-/-)/KU70(-/-) cells, with RAD54(-/-)/KU70(-/-) cells exhibiting significantly higher levels of chromosomal aberrations than RAD54(-/-) cells. These observations provide the first genetic evidence that both repair pathways play a role in maintaining chromosomal DNA during the cell cycle.
Collapse
Affiliation(s)
- M Takata
- Department of Molecular Immunology and Allergology, Kyoto University Medical School, Konoe Yoshida, Sakyo-ku, Kyoto 606-8315, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
441
|
Gao Y, Chaudhuri J, Zhu C, Davidson L, Weaver DT, Alt FW. A targeted DNA-PKcs-null mutation reveals DNA-PK-independent functions for KU in V(D)J recombination. Immunity 1998; 9:367-76. [PMID: 9768756 DOI: 10.1016/s1074-7613(00)80619-6] [Citation(s) in RCA: 338] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The DNA-dependent protein kinase (DNA-PK) consists of Ku70, Ku80, and a large catalytic subunit, DNA-PKcs. Targeted inactivation of the Ku70 or Ku80 genes results in elevated ionizing radiation (IR) sensitivity and inability to perform both V(D)J coding-end and signal (RS)-end joining in cells, with severe growth retardation plus immunodeficiency in mice. In contrast, we now demonstrate that DNA-PKcs-null mice generated by gene-targeted mutation, while also severely immunodeficient, exhibit no growth retardation. Furthermore, DNA-PKcs-null cells are blocked for V(D)J coding-end joining, but retain normal RS-end joining. Finally, while DNA-PK-null fibroblasts exhibited increased IR sensitivity, DNA-PKcs-deficient ES cells did not. We conclude that Ku70 and Ku80 may have functions in V(D)J recombination and DNA repair that are independent of DNA-PKcs.
Collapse
Affiliation(s)
- Y Gao
- Howard Hughes Medical Institute, The Children's Hospital, The Center for Blood Research and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
442
|
Nicolas N, Moshous D, Cavazzana-Calvo M, Papadopoulo D, de Chasseval R, Le Deist F, Fischer A, de Villartay JP. A human severe combined immunodeficiency (SCID) condition with increased sensitivity to ionizing radiations and impaired V(D)J rearrangements defines a new DNA recombination/repair deficiency. J Exp Med 1998; 188:627-34. [PMID: 9705945 PMCID: PMC2213354 DOI: 10.1084/jem.188.4.627] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The products of recombination activating gene (RAG)1 and RAG2 initiate the lymphoid-specific phase of the V(D)J recombination by creating a DNA double-strand break (dsb), leaving hairpin-sealed coding ends. The next step uses the general DNA repair machinery of the cells to resolve this dsb. Several genes involved in both V(D)J recombination and DNA repair have been identified through the analysis of in vitro mutants (Chinese hamster ovary cells) and in vivo situations of murine and equine severe combined immunodeficiency (scid). These studies lead to the description of the Ku-DNA-dependent protein kinase complex and the XRCC4 factor. A human SCID condition is characterized by an absence of B and T lymphocytes. One subset of these patients also demonstrates an increased sensitivity to the ionizing radiation of their fibroblasts and bone marrow precursor cells. This phenotype is accompanied by a profound defect in V(D)J recombination with a lack of coding joint formation, whereas signal joints are normal. Functional and genetic analyses distinguish these patients from the other recombination/repair mutants, and thus define a new group of mutants whose affected gene(s) is involved in sensitivity to ionizing radiation and V(D)J recombination.
Collapse
Affiliation(s)
- N Nicolas
- Institut National de la Santé et de la Recherche Médicale U429, Développement Normal et Pathologique du Système Immunitaire, Hôpital Necker-Enfants Malades, 75015 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
443
|
Torrance H, Giffin W, Rodda DJ, Pope L, Haché RJ. Sequence-specific binding of Ku autoantigen to single-stranded DNA. J Biol Chem 1998; 273:20810-9. [PMID: 9694826 DOI: 10.1074/jbc.273.33.20810] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucocorticoid-induced transcription of mouse mammary tumor virus is repressed by Ku antigen/DNA-dependent protein kinase (DNA-PK) through a DNA sequence element (NRE1) in the viral long terminal repeat. Nuclear factors binding to the separated single strands of NRE1 have been identified that may also be important for transcriptional regulation through this element. We report the separation of the upper-stranded NRE1 binding activity in Jurkat T cell nuclear extracts into two components. One component was identified as Ku antigen. The DNA sequence preference for Ku binding to single-stranded DNA closely paralleled the sequence requirements of Ku for double-stranded DNA. Recombinant Ku bound the single, upper strand of NRE1 with an affinity that was 3-4-fold lower than its affinity for double-stranded NRE1. Sequence-specific single-stranded Ku binding occurred rapidly (t1/2 on = 2.0 min) and was exceptionally stable, with an off rate of t1/2= 68 min. While Ku70 cross-linked to the upper strand of NRE1 when Ku was bound to double-stranded and single-stranded DNAs, the Ku80 subunit only cross-linked to single-stranded NRE1. Intriguingly, addition of Mg2+ and ATP, the cofactors required for Ku helicase activity, induced the cross-linking of Ku80 to a double-stranded NRE1-containing oligonucleotide, without completely unwinding the two strands.
Collapse
Affiliation(s)
- H Torrance
- Graduate Program in Biochemistry, University of Ottawa, Loeb Institute for Medical Research, Ottawa Civic Hospital, Ottawa, Ontario K1Y 4E9, Canada
| | | | | | | | | |
Collapse
|
444
|
Hempel WM, Stanhope-Baker P, Mathieu N, Huang F, Schlissel MS, Ferrier P. Enhancer control of V(D)J recombination at the TCRbeta locus: differential effects on DNA cleavage and joining. Genes Dev 1998; 12:2305-17. [PMID: 9694796 PMCID: PMC317053 DOI: 10.1101/gad.12.15.2305] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/1998] [Accepted: 06/03/1998] [Indexed: 12/30/2022]
Abstract
Deletion of the TCRbeta transcriptional enhancer (Ebeta) results in nearly complete inhibition of V(D)J recombination at the TCRbeta locus and a block in alpha beta T cell development. This result, along with previous work from many laboratories, has led to the hypothesis that transcriptional enhancers affect V(D)J recombination by regulating the accessibility of the locus to the recombinase. Here we test this hypothesis by performing a detailed analysis of the recombination defect in Ebeta-deleted (Ebeta-/-) mice using assays that detect various reaction intermediates and products. We found double-strand DNA breaks at recombination signal sequences flanking Dbeta and Jbeta gene segments in Ebeta-/- thymuses at about one-third to one-thirtieth the level found in thymuses with an unaltered TCRbeta locus. These sites are also subject to in vitro cleavage by the V(D)J recombinase in both Ebeta-/- and Ebeta+/+ thymocyte nuclei. However, the corresponding Dbeta-to-Jbeta coding joints are further reduced (by 100- to 300-fold) in Ebeta-/- thymuses. Formation of extrachromosomal Dbeta-to-Jbeta signal joints appears to be intermediately affected and nonstandard Dbeta-to-Dbeta joining occurs at the Ebeta-deleted alleles. These data indicate that, unexpectedly, loss of accessibility alone cannot explain the loss of TCRbeta recombination in the absence of the Ebeta element and suggest an additional function for Ebeta in the process of DNA repair at specific TCRbeta sites during the late phase of the recombination reaction.
Collapse
Affiliation(s)
- W M Hempel
- Centre d'Immunologie Institut National de la Santé et de la Recherche Médicale-Centre National de la Recherche Scientifique de Marseille-Luminy, Marseille Cedex 9, France
| | | | | | | | | | | |
Collapse
|
445
|
Abstract
For many years it has been evident that mammalian cells differ dramatically from yeast and rejoin the majority of their DNA DSBs by a nonhomologous mechanism, recently termed NHEJ. In the last few years a number of genes and proteins have been identified that operate in the pathway providing insights into the mechanism. These proteins include the three components of DNA-PK, DNA ligase IV, and XRCC4. In yeast Sir2, -3, and -4 proteins are also involved in the process and therefore are likely to play a role in higher organisms. Studies with yeast suggest that NHEJ is an error-free mechanism. Although the process is far from understood, it is likely that the DNA-PK complex or Ku alone acts in a complex with the Sir proteins possibly protecting the ends and preventing random rejoining. Further work is required to establish the details of this mechanism and to determine whether this represents an accurate rejoining process for a complex break induced by ionizing radiation. It will be intriguing to discover how the cell achieves efficient and accurate rejoining without the use of homology. Interactions between the components of DNA-PK and other proteins playing a central role in damage response mechanisms are beginning to emerge. Interestingly, there is evidence that DNA repair and damage response mechanisms overlap in lower organisms. The overlapping defects of the yeast Ku mutants, tell mutants, and AT cell lines in telomere maintenance further suggest overlapping functions or interacting mechanisms. A challenge for the future will be to establish how these different damage response mechanisms overlap and interact.
Collapse
Affiliation(s)
- P A Jeggo
- MRC Cell Mutation Unit, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
446
|
Abstract
Chromosome ends, or telomeres, are dynamic DNA structures maintained by a multisubunit telomerase and other proteins. New evidence indicates that proteins previously implicated in the repair of DNA doublestrand breaks also play an important role in the control of telomere organization and length.
Collapse
Affiliation(s)
- D T Weaver
- Center for Blood Research, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
447
|
Li GC, Ouyang H, Li X, Nagasawa H, Little JB, Chen DJ, Ling CC, Fuks Z, Cordon-Cardo C. Ku70: a candidate tumor suppressor gene for murine T cell lymphoma. Mol Cell 1998; 2:1-8. [PMID: 9702186 DOI: 10.1016/s1097-2765(00)80108-2] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We present evidence that inactivation of the Ku70 gene leads to a propensity for malignant transformation both in vitro and in vivo. In vitro, Ku70-/- mouse fibroblasts displayed an increased rate of sister chromatid exchange and a high frequency of spontaneous neoplastic transformation. In vivo, Ku70-/- mice, known to be defective in B but not T lymphocyte maturation, developed thymic and disseminated T cell lymphomas at a mean age of 6 months with CD4+CD8+ tumor cells. These findings directly demonstrate that Ku70 deficiency facilitates neoplastic growth and suggest a novel role of the Ku70 locus in tumor suppression.
Collapse
Affiliation(s)
- G C Li
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
448
|
Errami A, He DM, Friedl AA, Overkamp WJ, Morolli B, Hendrickson EA, Eckardt-Schupp F, Oshimura M, Lohman PH, Jackson SP, Zdzienicka MZ. XR-C1, a new CHO cell mutant which is defective in DNA-PKcs, is impaired in both V(D)J coding and signal joint formation. Nucleic Acids Res 1998; 26:3146-53. [PMID: 9628911 PMCID: PMC147672 DOI: 10.1093/nar/26.13.3146] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
DNA-dependent protein kinase (DNA-PK) plays an important role in DNA double-strand break (DSB) repair and V(D)J recombination. We have isolated a new X-ray-sensitive CHO cell line, XR-C1, which is impaired in DSB repair and which was assigned to complementation group 7, the group that is defective in the XRCC7 / SCID ( Prkdc ) gene encoding the catalytic subunit of DNA-PK (DNA-PKcs). Consistent with this complementation analysis, XR-C1 cells lackeddetectable DNA-PKcs protein, did not display DNA-PK catalytic activity and were complemented by the introduction of a single human chromosome 8 (providing the Prkdc gene). The impact of the XR-C1 mutation on V(D)J recombination was quite different from that found in most rodent cells defective in DNA-PKcs, which are preferentially blocked in coding joint formation, whereas XR-C1 cells were defective in forming both coding and signal joints. These results suggest that DNA-PKcs is required for both coding and signal joint formation during V(D)J recombination and that the XR-C1 mutant cell line may prove to be a useful tool in understanding this pathway.
Collapse
Affiliation(s)
- A Errami
- Department of Radiation Genetics and Chemical Mutagenesis, MGC, Leiden University-Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
449
|
Santagata S, Aidinis V, Spanopoulou E. The effect of Me2+ cofactors at the initial stages of V(D)J recombination. J Biol Chem 1998; 273:16325-31. [PMID: 9632694 DOI: 10.1074/jbc.273.26.16325] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
V(D)J site-specific recombination mediates the somatic assembly of the antigen receptor gene segments. This process is initiated by the recombination activating proteins RAG1 and RAG2, which recognize the recombination signal sequences (RSS) and cleave the DNA at the coding/RSS junction. In this study, we show that RAG1 and RAG2 have the ability to directly interact in solution before binding to the DNA. RAG1 forms a homodimer, which leads to the appearance of two distinct RAG1.RAG2 complexes bound to DNA. To investigate the properties of the two RAG1.RAG2 complexes in the presence of different Me2+ cofactors, we established an in vitro Mg2+-based cleavage reaction on a single RSS. Using this system, we found that Mg2+ confers a specific pattern of DNA binding and cleavage. In contrast, Mn2+ allows aberrant binding of RAG1.RAG2 to single-stranded RSS and permits cleavage independent of binding to the nonamer. To determine the contribution of Me2+ ions at the early stages of V(D)J recombination, we analyzed specific DNA recognition and cleavage by RAG1.RAG2 on phosphorothioated substrates. These experiments revealed that Me2+ ions directly coordinate the binding of RAG1.RAG2 to the RSS DNA.
Collapse
Affiliation(s)
- S Santagata
- Mount Sinai School of Medicine, Howard Hughes Medical Institute, Ruttenberg Cancer Center, New York, New York 10029, USA
| | | | | |
Collapse
|
450
|
Myung K, Braastad C, He DM, Hendrickson EA. KARP-1 is induced by DNA damage in a p53- and ataxia telangiectasia mutated-dependent fashion. Proc Natl Acad Sci U S A 1998; 95:7664-9. [PMID: 9636207 PMCID: PMC22716 DOI: 10.1073/pnas.95.13.7664] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The KARP-1 (Ku86 Autoantigen Related Protein-1) gene, which is expressed from the human Ku86 autoantigen locus, appears to play a role in mammalian DNA double-strand break repair as a regulator of the DNA-dependent protein kinase complex. Here we demonstrate that KARP-1 gene expression is significantly up-regulated following exposure of cells to DNA damage. KARP-1 mRNA induction was completely dependent on the ataxia telangiectasia and p53 gene products, consistent with the presence of a p53 binding site within the second intron of the KARP-1 locus. These observations link ataxia telangiectasia, p53, and KARP-1 in a common pathway.
Collapse
Affiliation(s)
- K Myung
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | | | | | | |
Collapse
|