401
|
Rashid T, Banerjee M, Nikolic M. Phosphorylation of Pak1 by the p35/Cdk5 kinase affects neuronal morphology. J Biol Chem 2001; 276:49043-52. [PMID: 11604394 DOI: 10.1074/jbc.m105599200] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small GTPase Rac and its effectors, the Pak1 and p35/Cdk5 kinases, have been assigned important roles in regulating cytoskeletal dynamics in neurons. Our previous work revealed that the neuronal p35/Cdk5 kinase associates with Pak1 in a RacGTP-dependent manner, causing hyperphosphorylation and down-regulation of Pak1 kinase activity. We have now demonstrated direct phosphorylation of Pak1 on threonine 212 by the p35/Cdk5 kinase. In neuronal growth cones, Pak1 phosphorylated on Thr-212 localized to actin and tubulin-rich areas, suggesting a role in regulating growth cone dynamics. The expression of a non-phosphorylatable Pak1 mutant (Pak1A212) induced dramatic neurite disorganization. We also observed a strong association between p35/Cdk5 and the Pak1 C-terminal kinase domain. Overall, our data show that in neurons, membrane-associated, active Pak1 is regulated by the p35/Cdk5 kinase both by association and phosphorylation, which is essential for the proper regulation of the cytoskeleton during neurite outgrowth and remodeling.
Collapse
Affiliation(s)
- T Rashid
- Molecular and Developmental Neurobiology Medical Research Council Centre, New Hunt's House, King's College London, London, SE1 1UL, United Kingdom
| | | | | |
Collapse
|
402
|
Abstract
Nerve cells communicate with each other through two mechanisms, referred to as fast and slow synaptic transmission. Fast-acting neurotransmitters, e.g., glutamate (excitatory) and gamma-aminobutyric acid (GABA) (inhibitory), achieve effects on their target cells within one millisecond by virtue of opening ligand-operated ion channels. In contrast, all of the effects of the biogenic amine and peptide neurotransmitters, as well as many of the effects of glutamate and GABA, are achieved over hundreds of milliseconds to minutes by slow synaptic transmission. This latter process is mediated through an enormously more complicated sequence of biochemical steps, involving second messengers, protein kinases, and protein phosphatases. Slow-acting neurotransmitters control the efficacy of fast synaptic transmission by regulating the efficiency of neurotransmitter release from presynaptic terminals and by regulating the efficiency with which fast-acting neurotransmitters produce their effects on postsynaptic receptors.
Collapse
Affiliation(s)
- P Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| |
Collapse
|
403
|
Petersén A, Hansson O, Puschban Z, Sapp E, Romero N, Castilho RF, Sulzer D, Rice M, DiFiglia M, Przedborski S, Brundin P. Mice transgenic for exon 1 of the Huntington's disease gene display reduced striatal sensitivity to neurotoxicity induced by dopamine and 6-hydroxydopamine. Eur J Neurosci 2001; 14:1425-35. [PMID: 11722604 DOI: 10.1046/j.0953-816x.2001.01765.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Huntington's disease is an autosomal dominant hereditary neurodegenerative disorder characterized by severe striatal cell loss. Dopamine (DA) has been suggested to play a role in the pathogenesis of the disease. We have previously reported that transgenic mice expressing exon 1 of the human Huntington gene (R6 lines) are resistant to quinolinic acid-induced striatal toxicity. In this study we show that with increasing age, R6/1 and R6/2 mice develop partial resistance to DA- and 6-hydroxydopamine-mediated toxicity in the striatum. Using electron microscopy, we found that the resistance is localized to the cell bodies and not to the neuropil. The reduction of dopamine and cAMP regulated phosphoprotein of a molecular weight of 32 kDa (DARPP-32) in R6/2 mice does not provide the resistance, as DA-induced striatal lesions are not reduced in size in DARPP-32 knockout mice. Neither DA receptor antagonists nor a N-methyl-d-aspartate (NMDA) receptor blocker reduce the size of DA-induced striatal lesions, suggesting that DA toxicity is not dependent upon DA- or NMDA receptor-mediated pathways. Moreover, superoxide dismutase-1 overexpression, monoamine oxidase inhibition and the treatment with the free radical scavenging spin-trap agent phenyl-butyl-tert-nitrone (PBN) also did not block DA toxicity. Levels of the antioxidant molecules, glutathione and ascorbate were not increased in R6/1 mice. Because damage to striatal neurons following intrastriatal injection of 6-hydroxydopamine was also reduced in R6 mice, a yet-to-be identified antioxidant mechanism may provide neuroprotection in these animals. We conclude that striatal neurons of R6 mice develop resistance to DA-induced toxicity with age.
Collapse
Affiliation(s)
- A Petersén
- Section for Neuronal Survival, Wallenberg Neuroscience Center, Lund University, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
404
|
Berke JD, Sgambato V, Zhu PP, Lavoie B, Vincent M, Krause M, Hyman SE. Dopamine and glutamate induce distinct striatal splice forms of Ania-6, an RNA polymerase II-associated cyclin. Neuron 2001; 32:277-87. [PMID: 11683997 DOI: 10.1016/s0896-6273(01)00465-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Control of neuronal gene expression by drugs or neurotransmitters is a critical step in long-term neural plasticity. Here, we show that a gene induced in the striatum by cocaine or direct dopamine stimulation, ania-6, is a member of a novel family of cyclins with homology to cyclins K/T/H/C. Further, different types of neurotransmitter stimulation cause selective induction of distinct ania-6 isoforms, through alternative splicing. The longer Ania-6 protein colocalizes with nuclear speckles and is associated with key elements of the RNA elongation/processing complex, including the hyperphosphorylated form of RNA polymerase II, the splicing factor SC-35, and the p110 PITSLRE cyclin-dependent kinase. Distinct types of neuronal stimulation may therefore differentially modulate nuclear RNA processing, through altered transcription and splicing of ania-6.
Collapse
Affiliation(s)
- J D Berke
- Molecular Plasticity Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
405
|
Li BS, Sun MK, Zhang L, Takahashi S, Ma W, Vinade L, Kulkarni AB, Brady RO, Pant HC. Regulation of NMDA receptors by cyclin-dependent kinase-5. Proc Natl Acad Sci U S A 2001; 98:12742-7. [PMID: 11675505 PMCID: PMC60124 DOI: 10.1073/pnas.211428098] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2001] [Indexed: 11/18/2022] Open
Abstract
Members of the N-methyl-d-aspartate (NMDA) class of glutamate receptors (NMDARs) are critical for development, synaptic transmission, learning and memory; they are targets of pathological disorders in the central nervous system. NMDARs are phosphorylated by both serine/threonine and tyrosine kinases. Here, we demonstrate that cyclin dependent kinase-5 (Cdk5) associates with and phosphorylates NR2A subunits at Ser-1232 in vitro and in intact cells. Moreover, we show that roscovitine, a selective Cdk5 inhibitor, blocks both long-term potentiation induction and NMDA-evoked currents in rat CA1 hippocampal neurons. These results suggest that Cdk5 plays a key role in synaptic transmission and plasticity through its up-regulation of NMDARs.
Collapse
Affiliation(s)
- B S Li
- Laboratory of Neurochemistry, Laboratory of Adaptive Systems, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
406
|
Abstract
Since it was identified a decade ago, cyclin-dependent kinase 5 (CDK5) has emerged as a crucial regulator of neuronal migration in the developing central nervous system. CDK5 phosphorylates a diverse list of substrates, implicating it in the regulation of a range of cellular processes - from adhesion and motility, to synaptic plasticity and drug addiction. Recent evidence indicates that deregulation of this kinase is involved in the pathology of neurodegenerative diseases.
Collapse
Affiliation(s)
- R Dhavan
- Department of Pathology, Harvard Medical School, Howard Hughes Medical Institute, 200 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
407
|
Nestler EJ, Barrot M, Self DW. DeltaFosB: a sustained molecular switch for addiction. Proc Natl Acad Sci U S A 2001; 98:11042-6. [PMID: 11572966 PMCID: PMC58680 DOI: 10.1073/pnas.191352698] [Citation(s) in RCA: 469] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The longevity of some of the behavioral abnormalities that characterize drug addiction has suggested that regulation of neural gene expression may be involved in the process by which drugs of abuse cause a state of addiction. Increasing evidence suggests that the transcription factor DeltaFosB represents one mechanism by which drugs of abuse produce relatively stable changes in the brain that contribute to the addiction phenotype. DeltaFosB, a member of the Fos family of transcription factors, accumulates within a subset of neurons of the nucleus accumbens and dorsal striatum (brain regions important for addiction) after repeated administration of many kinds of drugs of abuse. Similar accumulation of DeltaFosB occurs after compulsive running, which suggests that DeltaFosB may accumulate in response to many types of compulsive behaviors. Importantly, DeltaFosB persists in neurons for relatively long periods of time because of its extraordinary stability. Therefore, DeltaFosB represents a molecular mechanism that could initiate and then sustain changes in gene expression that persist long after drug exposure ceases. Studies in inducible transgenic mice that overexpress either DeltaFosB or a dominant negative inhibitor of the protein provide direct evidence that DeltaFosB causes increased sensitivity to the behavioral effects of drugs of abuse and, possibly, increased drug seeking behavior. This work supports the view that DeltaFosB functions as a type of sustained "molecular switch" that gradually converts acute drug responses into relatively stable adaptations that contribute to the long-term neural and behavioral plasticity that underlies addiction.
Collapse
Affiliation(s)
- E J Nestler
- Department of Psychiatry and Center for Basic Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9070, USA.
| | | | | |
Collapse
|
408
|
Liu F, Ma XH, Ule J, Bibb JA, Nishi A, DeMaggio AJ, Yan Z, Nairn AC, Greengard P. Regulation of cyclin-dependent kinase 5 and casein kinase 1 by metabotropic glutamate receptors. Proc Natl Acad Sci U S A 2001; 98:11062-8. [PMID: 11572969 PMCID: PMC58683 DOI: 10.1073/pnas.191353898] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a multifunctional neuronal protein kinase that is required for neurite outgrowth and cortical lamination and that plays an important role in dopaminergic signaling in the neostriatum through phosphorylation of Thr-75 of DARPP-32 (dopamine and cAMP-regulated phosphoprotein, molecular mass 32 kDa). Casein kinase 1 (CK1) has been implicated in a variety of cellular functions such as DNA repair, circadian rhythm, and intracellular trafficking. In the neostriatum, CK1 has been found to phosphorylate Ser-137 of DARPP-32. However, first messengers for the regulation of Cdk5 or CK1 have remained unknown. Here we report that both Cdk5 and CK1 are regulated by metabotropic glutamate receptors (mGluRs) in neostriatal neurons. (S)-3,5-dihydroxyphenylglycine (DHPG), an agonist for group I mGluRs, increased Cdk5 and CK1 activities in neostriatal slices, leading to the enhanced phosphorylation of Thr-75 and Ser-137 of DARPP-32, respectively. The effect of DHPG on Thr-75, but not on Ser-137, was blocked by a Cdk5-specific inhibitor, butyrolactone. In contrast, the effects of DHPG on both Thr-75 and Ser-137 were blocked by CK1-7 and IC261, specific inhibitors of CK1, suggesting that activation of Cdk5 by mGluRs requires CK1 activity. In support of this possibility, the DHPG-induced increase in Cdk5 activity, measured in extracts of neostriatal slices, was abolished by CK1-7 and IC261. Treatment of acutely dissociated neurons with DHPG enhanced voltage-dependent Ca(2+) currents. This enhancement was eliminated by either butyrolactone or CK1-7 and was absent in DARPP-32 knockout mice. Together these results indicate that a CK1-Cdk5-DARPP-32 cascade may be involved in the regulation by mGluR agonists of Ca(2+) channels.
Collapse
Affiliation(s)
- F Liu
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10021, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
409
|
Lilja L, Yang SN, Webb DL, Juntti-Berggren L, Berggren PO, Bark C. Cyclin-dependent kinase 5 promotes insulin exocytosis. J Biol Chem 2001; 276:34199-205. [PMID: 11443123 DOI: 10.1074/jbc.m103776200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is widely expressed although kinase activity has been described preferentially in neuronal systems. Cdk5 has an impact on actin polymerization during neuronal migration and neurite outgrowth and deregulation of the kinase has been implicated in the promotion of neurodegeneration. Recently it was shown that Cdk5 modulates dopamine signaling in neurons by regulating DARPP-32 function. In addition, Cdk5 phosphorylates munc-18 and synapsin I, two essential components of the exocytotic machinery. We have shown by reverse transcriptase-polymerase chain reaction, immunocytochemistry, and Western blotting that Cdk5 is present in the insulin-secreting pancreatic beta-cell. Subcellular fractionation of isolated beta-cells revealed a glucose-induced translocation of membrane-bound Cdk5 protein to lower density fractions. Inhibition of Cdk5 with roscovitine reduced insulin secretion with approximately 35% compared with control after glucose stimulation and with approximately 65% after depolarization with glucose and KCl. Capacitance measurements performed on single beta-cells that expressed a dominant-negative Cdk5 mutant showed impaired exocytosis. The effect on exocytosis by Cdk5 appeared to be independent of changes in free cytoplasmic Ca(2+) concentration. Taken together these results show that Cdk5 is present in beta-cells and acts as a positive regulator of insulin exocytosis.
Collapse
Affiliation(s)
- L Lilja
- Rolf Luft Center for Diabetes Research, Department of Molecular Medicine, Karolinska Institutet, Karolinska Hospital, S-171 76 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
410
|
Tarricone C, Dhavan R, Peng J, Areces LB, Tsai LH, Musacchio A. Structure and regulation of the CDK5-p25(nck5a) complex. Mol Cell 2001; 8:657-69. [PMID: 11583627 DOI: 10.1016/s1097-2765(01)00343-4] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
CDK5 plays an indispensable role in the central nervous system, and its deregulation is involved in neurodegeneration. We report the crystal structure of a complex between CDK5 and p25, a fragment of the p35 activator. Despite its partial structural similarity with the cyclins, p25 displays an unprecedented mechanism for the regulation of a cyclin-dependent kinase. p25 tethers the unphosphorylated T loop of CDK5 in the active conformation. Residue Ser159, equivalent to Thr160 on CDK2, contributes to the specificity of the CDK5-p35 interaction. Its substitution with threonine prevents p35 binding, while the presence of alanine affects neither binding nor kinase activity. Finally, we provide evidence that the CDK5-p25 complex employs a distinct mechanism from the phospho-CDK2-cyclin A complex to establish substrate specificity.
Collapse
Affiliation(s)
- C Tarricone
- Structural Biology Unit, Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, I-20141 Milan, Italy
| | | | | | | | | | | |
Collapse
|
411
|
Hartmann AM, Rujescu D, Giannakouros T, Nikolakaki E, Goedert M, Mandelkow EM, Gao QS, Andreadis A, Stamm S. Regulation of alternative splicing of human tau exon 10 by phosphorylation of splicing factors. Mol Cell Neurosci 2001; 18:80-90. [PMID: 11461155 DOI: 10.1006/mcne.2001.1000] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tau is a microtubule-associated protein whose transcript undergoes regulated splicing in the mammalian nervous system. Exon 10 of the gene is an alternatively spliced cassette that is adult-specific and encodes a microtubule-binding domain. Mutations increasing the inclusion of exon 10 result in the production of tau protein which predominantly contains four microtubule-binding repeats and were shown to cause frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Here we show that exon 10 usage is regulated by CDC2-like kinases CLK1, 2, 3, and 4 that phosphorylate serine-arginine-rich proteins, which in turn regulate pre-mRNA splicing. Cotransfection experiments suggest that CLKs achieve this effect by releasing specific proteins from nuclear storage sites. Our results show that changing pre-mRNA-processing pathways through phosphorylation could be a new therapeutic concept for tauopathies.
Collapse
Affiliation(s)
- A M Hartmann
- Max Planck Institute of Neurobiology, Am Klopferspitz 18a, Martinsried, D-82152, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
412
|
Agarwal-Mawal A, Paudel HK. Neuronal Cdc2-like protein kinase (Cdk5/p25) is associated with protein phosphatase 1 and phosphorylates inhibitor-2. J Biol Chem 2001; 276:23712-8. [PMID: 11320080 DOI: 10.1074/jbc.m010002200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein phosphatase 1 (PP1) is complexed with inhibitor 2 (I-2) in the cytosol. In rabbit muscle extract PP1.I-2 is activated upon preincubation with ATP/Mg. This activation is caused by phosphorylation of I-2 on Thr(72) by glycogen synthase kinase 3 (GSK3). We have found that PP1.I-2 in bovine brain extract is also activated upon preincubation with ATP/Mg. However, blocking GSK3 action by LiCl inhibited only approximately 29% of PP1 activity and indicated that GSK3 is not the sole PP1.I-2 activator in the brain. When bovine brain extract was analyzed by gel filtration PP1.I-2 and neuronal Cdc2-like protein kinase (NCLK), a heterodimer of Cdk5 and the regulatory p25 subunit, co-eluted as a approximately 450-kDa size species. The NCLK from the eluted column fractions bound to PP1-specific microcystin-Sepharose and glutathione S-transferase (GST)-I-2-coated glutathione-agarose beads. Similarly, PP1 from the eluted column fractions was pulled down with GST-Cdk5-coated glutathione-agarose beads. In vitro, NCLK phosphorylated I-2 on Thr(72) and activated PP1.I-2 in an ATP/Mg-dependent manner. NCLK bound to PP1 through its Cdk5 subunit and the PP1 binding region was localized to Cdk5 residues 28-41. Our data demonstrate that in brain extract PP1.I-2 and NCLK are associated within a complex of approximately 450 kDa and suggest that NCLK is one of the PP1.I-2-activating kinases in the mammalian brain.
Collapse
Affiliation(s)
- A Agarwal-Mawal
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Quebec, H3T 1E2, Canada
| | | |
Collapse
|
413
|
Arendt T. Disturbance of neuronal plasticity is a critical pathogenetic event in Alzheimer's disease. Int J Dev Neurosci 2001; 19:231-45. [PMID: 11337192 DOI: 10.1016/s0736-5748(01)00007-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Brain areas affected by AD pathology are primarily those structures that are invovled in the regulation of "higher brain functions". The functions these areas subserve such as learning, memory, perception, self-awareness, and consciousness require a life-long re-fittng of synaptic contacts that allows for the acquistion of new epigenetic information, a process based on a particularly high degree of structural plasticity. Here, we outline a hypothesis that it is the "labile state fo differentiation" of a subset of neurons in the adult brain that allows for ongoing neuroplastic processes after development is completed but at the same time renders these neurons particularly vulnerable. Mechanisms of molecular and cellular control of neuronal differentiation and proliferation might, thus, not only play a role during development but critically involved in the pathogenesis of neurodegeneration.
Collapse
Affiliation(s)
- T Arendt
- Department of Neuranatomy, Paul Flechsig Institute of Brain Research, University of Leipzig, Jahnallee 59, D-04109, Leipzig, Germany.
| |
Collapse
|
414
|
Arendt T. Alzheimer's disease as a disorder of mechanisms underlying structural brain self-organization. Neuroscience 2001; 102:723-65. [PMID: 11182240 DOI: 10.1016/s0306-4522(00)00516-9] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mental function has as its cerebral basis a specific dynamic structure. In particular, cortical and limbic areas involved in "higher brain functions" such as learning, memory, perception, self-awareness and consciousness continuously need to be self-adjusted even after development is completed. By this lifelong self-optimization process, the cognitive, behavioural and emotional reactivity of an individual is stepwise remodelled to meet the environmental demands. While the presence of rigid synaptic connections ensures the stability of the principal characteristics of function, the variable configuration of the flexible synaptic connections determines the unique, non-repeatable character of an experienced mental act. With the increasing need during evolution to organize brain structures of increasing complexity, this process of selective dynamic stabilization and destabilization of synaptic connections becomes more and more important. These mechanisms of structural stabilization and labilization underlying a lifelong synaptic remodelling according to experience, are accompanied, however, by increasing inherent possibilities of failure and may, thus, not only allow for the evolutionary acquisition of "higher brain function" but at the same time provide the basis for a variety of neuropsychiatric disorders. It is the objective of the present paper to outline the hypothesis that it might be the disturbance of structural brain self-organization which, based on both genetic and epigenetic information, constantly "creates" and "re-creates" the brain throughout life, that is the defect that underlies Alzheimer's disease (AD). This hypothesis is, in particular, based on the following lines of evidence. (1) AD is a synaptic disorder. (2) AD is associated with aberrant sprouting at both the presynaptic (axonal) and postsynaptic (dendritic) site. (3) The spatial and temporal distribution of AD pathology follows the pattern of structural neuroplasticity in adulthood, which is a developmental pattern. (4) AD pathology preferentially involves molecules critical for the regulation of modifications of synaptic connections, i.e. "morphoregulatory" molecules that are developmentally controlled, such as growth-inducing and growth-associated molecules, synaptic molecules, adhesion molecules, molecules involved in membrane turnover, cytoskeletal proteins, etc. (5) Life events that place an additional burden on the plastic capacity of the brain or that require a particularly high plastic capacity of the brain might trigger the onset of the disease or might stimulate a more rapid progression of the disease. In other words, they might increase the risk for AD in the sense that they determine when, not whether, one gets AD. (6) AD is associated with a reactivation of developmental programmes that are incompatible with a differentiated cellular background and, therefore, lead to neuronal death. From this hypothesis, it can be predicted that a therapeutic intervention into these pathogenetic mechanisms is a particular challenge as it potentially interferes with those mechanisms that at the same time provide the basis for "higher brain function".
Collapse
Affiliation(s)
- T Arendt
- Paul Flechsig Institute of Brain Research, Department of Neuroanatomy, University of Leipzig, Jahnallee 59, D-04109, Leipzig, Germany.
| |
Collapse
|
415
|
Grant P, Sharma P, Pant HC. Cyclin-dependent protein kinase 5 (Cdk5) and the regulation of neurofilament metabolism. ACTA ACUST UNITED AC 2001. [PMID: 11248670 DOI: 10.1046/j.1432-1327.2001.02025.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5), a complex of Cdk5 and its activator p35 (Cdk5/p35), phosphorylates diverse substrates which have multifunctional roles in the nervous system. During development, it participates in neuronal differentiation, migration, axon outgrowth and synaptogenesis. Cdk5, acting together with other kinases, phosphorylates numerous KSPXK consensus motifs in diverse cytoskeletal protein target molecules, including neurofilaments, and microtubule associated proteins, tau and MAPs. Phosphorylation regulates the dynamic interactions of cytoskeletal proteins with one another during all aspects of neurogenesis and axon radial growth. In this review we shall focus on Cdk5 and its regulation as it modulates neurofilament metabolism in axon outgrowth, cytoskeletal stabilization and radial growth. We suggest that Cdk5/p35 forms compartmentalized macromolecular complexes of cytoskeletal substrates, other neuronal kinases, phosphatases and activators ('phosphorylation machines') which facilitate the dynamic molecular interactions that underlie these processes.
Collapse
Affiliation(s)
- P Grant
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
416
|
Bibb JA, Nishi A, O'Callaghan JP, Ule J, Lan M, Snyder GL, Horiuchi A, Saito T, Hisanaga S, Czernik AJ, Nairn AC, Greengard P. Phosphorylation of protein phosphatase inhibitor-1 by Cdk5. J Biol Chem 2001; 276:14490-7. [PMID: 11278334 DOI: 10.1074/jbc.m007197200] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein phosphatase inhibitor-1 is a prototypical mediator of cross-talk between protein kinases and protein phosphatases. Activation of cAMP-dependent protein kinase results in phosphorylation of inhibitor-1 at Thr-35, converting it into a potent inhibitor of protein phosphatase-1. Here we report that inhibitor-1 is phosphorylated in vitro at Ser-67 by the proline-directed kinases, Cdk1, Cdk5, and mitogen-activated protein kinase. By using phosphorylation state-specific antibodies and selective protein kinase inhibitors, Cdk5 was found to be the only kinase that phosphorylates inhibitor-1 at Ser-67 in intact striatal brain tissue. In vitro and in vivo studies indicated that phospho-Ser-67 inhibitor-1 was dephosphorylated by protein phosphatases-2A and -2B. The state of phosphorylation of inhibitor-1 at Ser-67 was dynamically regulated in striatal tissue by glutamate-dependent regulation of N-methyl-d-aspartic acid-type channels. Phosphorylation of Ser-67 did not convert inhibitor-1 into an inhibitor of protein phosphatase-1. However, inhibitor-1 phosphorylated at Ser-67 was a less efficient substrate for cAMP-dependent protein kinase. These results demonstrate regulation of a Cdk5-dependent phosphorylation site in inhibitor-1 and suggest a role for this site in modulating the amplitude of signal transduction events that involve cAMP-dependent protein kinase activation.
Collapse
Affiliation(s)
- J A Bibb
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10021-6399, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
417
|
Gupta A, Tsai LH. Neuroscience. A kinase to dampen the effects of cocaine? Science 2001; 292:236-7. [PMID: 11305318 DOI: 10.1126/science.292.5515.236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- A Gupta
- Department of Pathology, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA 02115, USA
| | | |
Collapse
|
418
|
Abstract
Cyclin-dependent kinase 5 (Cdk5) null mice exhibit a unique phenotype characterized by perinatal mortality, disrupted cerebral cortical layering attributable to abnormal neuronal migration, lack of cerebellar foliation, and chromatolytic changes of neurons in the brainstem and the spinal cord. Because Cdk5 is expressed in both neurons and astrocytes, it has been unclear whether this phenotype is primarily attributable to defects in neurons or in astrocytes. Herein we report reconstitution of Cdk5 expression in neurons in Cdk5 null mice and its effect on the null phenotype. Unlike the Cdk5 null mice, the reconstituted Cdk5 null mice that express the Cdk5 transgene under the p35 promoter (TgKO mice) were viable and fertile. Because Cdk5 expression is mainly limited to neurons in these mice and rescues the defects in the nervous system of the Cdk5 null phenotype, it clearly demonstrates that Cdk5 activity is necessary for normal development and survival of p35-expressing neurons.
Collapse
|
419
|
|
420
|
Bibb JA, Chen J, Taylor JR, Svenningsson P, Nishi A, Snyder GL, Yan Z, Sagawa ZK, Ouimet CC, Nairn AC, Nestler EJ, Greengard P. Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature 2001; 410:376-80. [PMID: 11268215 DOI: 10.1038/35066591] [Citation(s) in RCA: 360] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cocaine enhances dopamine-mediated neurotransmission by blocking dopamine re-uptake at axon terminals. Most dopamine-containing nerve terminals innervate medium spiny neurons in the striatum of the brain. Cocaine addiction is thought to stem, in part, from neural adaptations that act to maintain equilibrium by countering the effects of repeated drug administration. Chronic exposure to cocaine upregulates several transcription factors that alter gene expression and which could mediate such compensatory neural and behavioural changes. One such transcription factor is DeltaFosB, a protein that persists in striatum long after the end of cocaine exposure. Here we identify cyclin-dependent kinase 5 (Cdk5) as a downstream target gene of DeltaFosB by use of DNA array analysis of striatal material from inducible transgenic mice. Overexpression of DeltaFosB, or chronic cocaine administration, raised levels of Cdk5 messenger RNA, protein, and activity in the striatum. Moreover, injection of Cdk5 inhibitors into the striatum potentiated behavioural effects of repeated cocaine administration. Our results suggest that changes in Cdk5 levels mediated by DeltaFosB, and resulting alterations in signalling involving D1 dopamine receptors, contribute to adaptive changes in the brain related to cocaine addiction.
Collapse
Affiliation(s)
- J A Bibb
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
421
|
Induction of cyclin-dependent kinase 5 in the hippocampus by chronic electroconvulsive seizures: role of [Delta]FosB. J Neurosci 2001. [PMID: 11124971 DOI: 10.1523/jneurosci.20-24-08965.2000] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The transcription factor DeltaFosB is induced in the hippocampus and other brain regions by repeated electroconvulsive seizures (ECS), an effective antidepressant treatment. The unusually high stability of this protein makes it an attractive candidate to mediate some of the long-lasting changes in the brain caused by ECS treatment. To understand how DeltaFosB might alter brain function, we examined the gene expression profiles in the hippocampus of inducible transgenic mice that express DeltaFosB in this brain region by the use of cDNA expression arrays that contain 588 genes. Of the 430 genes detected, 20 genes were consistently upregulated, and 14 genes were downregulated, by >50%. One of the upregulated genes is cyclin-dependent kinase 5 (cdk5). On the basis of its purported role in regulating neuronal structure, we studied directly whether cdk5 is a true target for DeltaFosB. Upregulation of cdk5 immunoreactivity in the hippocampus was confirmed by Western blotting in the DeltaFosB-expressing transgenic mice as well as in rats treated chronically with ECS. Chronic ECS treatment also increased, in the hippocampus, the phosphorylation state of tau, a microtubule-associated protein that is a known substrate for cdk5. A 1.6 kb fragment of the cdk5 promoter was cloned, and activity of the promoter was found to be increased after overexpression of DeltaFosB in cell culture. Moreover, mutation of the single consensus activator protein-1 site contained within the cdk5 promoter fragment completely abolished activation of the promoter by DeltaFosB. Together, these results suggest that cdk5 is one target by which DeltaFosB produces some of its physiological effects in the hippocampus and thereby mediates certain long-term consequences of chronic ECS treatment.
Collapse
|
422
|
Dopamine and cAMP-regulated phosphoprotein 32 kDa controls both striatal long-term depression and long-term potentiation, opposing forms of synaptic plasticity. J Neurosci 2001. [PMID: 11069952 DOI: 10.1523/jneurosci.20-22-08443.2000] [Citation(s) in RCA: 263] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A complex chain of intracellular signaling events, critically important in motor control, is activated by the stimulation of D1-like dopamine (DA) receptors in striatal neurons. At corticostriatal synapses on medium spiny neurons, we provide evidence that the D1-like receptor-dependent activation of DA and cyclic adenosine 3',5' monophosphate-regulated phosphoprotein 32 kDa is a crucial step for the induction of both long-term depression (LTD) and long-term potentiation (LTP), two opposing forms of synaptic plasticity. In addition, formation of LTD and LTP requires the activation of protein kinase G and protein kinase A, respectively, in striatal projection neurons. These kinases appear to be stimulated by the activation of D1-like receptors in distinct neuronal populations.
Collapse
|
423
|
Abstract
Cellular genes that are mutated in neurodegenerative diseases code for proteins that are expressed throughout neural development. Genetic analysis suggests that these genes are essential for a broad range of normal neurodevelopmental processes. The proteins they code for interact with numerous other cellular proteins that are components of signaling pathways involved in patterning of the neural tube and in regional specification of neuronal subtypes. Further, pathogenetic mutations of these genes can cause progressive, sublethal alterations in the cellular homeostasis of evolving regional neuronal subpopulations, culminating in late-onset cell death. Therefore, as a consequence of the disease mutations, targeted cell populations may retain molecular traces of abnormal interactions with disease-associated proteins by exhibiting changes in a spectrum of normal cellular functions and enhanced vulnerability to a host of environmental stressors. These observations suggest that the normal functions of these disease-associated proteins are to ensure the fidelity and integration of developmental events associated with the progressive elaboration of neuronal subtypes as well as the maintenance of mature neuronal populations during adult life. The ability to identify alterations within vulnerable neuronal precursors present in pre-symptomatic individuals prior to the onset of irrevocable cellular injury may help foster the development of effective therapeutic interventions using evolving pharmacologic, gene and stem cell technologies.
Collapse
Affiliation(s)
- M F Mehler
- Laboratory of Developmental and Molecular Neuroscience, Department of Neurology, Rose F. Kennedy Center for Research in Mental Retardation and Developmental Disabilities, Albert Einstein College of Medicine, Bronx 10461, NY, USA.
| | | |
Collapse
|
424
|
Leclerc S, Garnier M, Hoessel R, Marko D, Bibb JA, Snyder GL, Greengard P, Biernat J, Wu YZ, Mandelkow EM, Eisenbrand G, Meijer L. Indirubins inhibit glycogen synthase kinase-3 beta and CDK5/p25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer's disease. A property common to most cyclin-dependent kinase inhibitors? J Biol Chem 2001; 276:251-60. [PMID: 11013232 DOI: 10.1074/jbc.m002466200] [Citation(s) in RCA: 564] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bis-indole indirubin is an active ingredient of Danggui Longhui Wan, a traditional Chinese medicine recipe used in the treatment of chronic diseases such as leukemias. The antitumoral properties of indirubin appear to correlate with their antimitotic effects. Indirubins were recently described as potent (IC(50): 50-100 nm) inhibitors of cyclin-dependent kinases (CDKs). We report here that indirubins are also powerful inhibitors (IC(50): 5-50 nm) of an evolutionarily related kinase, glycogen synthase kinase-3beta (GSK-3 beta). Testing of a series of indoles and bis-indoles against GSK-3 beta, CDK1/cyclin B, and CDK5/p25 shows that only indirubins inhibit these kinases. The structure-activity relationship study also suggests that indirubins bind to GSK-3 beta's ATP binding pocket in a way similar to their binding to CDKs, the details of which were recently revealed by crystallographic analysis. GSK-3 beta, along with CDK5, is responsible for most of the abnormal hyperphosphorylation of the microtubule-binding protein tau observed in Alzheimer's disease. Indirubin-3'-monoxime inhibits tau phosphorylation in vitro and in vivo at Alzheimer's disease-specific sites. Indirubins may thus have important implications in the study and treatment of neurodegenerative disorders. Indirubin-3'-monoxime also inhibits the in vivo phosphorylation of DARPP-32 by CDK5 on Thr-75, thereby mimicking one of the effects of dopamine in the striatum. Finally, we show that many, but not all, reported CDK inhibitors are powerful inhibitors of GSK-3 beta. To which extent these GSK-3 beta effects of CDK inhibitors actually contribute to their antimitotic and antitumoral properties remains to be determined. Indirubins constitute the first family of low nanomolar inhibitors of GSK-3 beta to be described.
Collapse
Affiliation(s)
- S Leclerc
- CNRS, Cell Cycle Group, Station Biologique, BP 74, Roscoff 29682 Cedex, Bretagne, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
425
|
Kesavapany S, Lau KF, McLoughlin DM, Brownlees J, Ackerley S, Leigh PN, Shaw CE, Miller CCJ. p35/cdk5 binds and phosphorylates beta-catenin and regulates beta-catenin/presenilin-1 interaction. Eur J Neurosci 2001. [DOI: 10.1046/j.1460-9568.2001.01376.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
426
|
Higuchi E, Nishi A, Higashi H, Ito Y, Kato H. Phosphorylation of protein phosphatase-1 inhibitors, inhibitor-1 and DARPP-32, in renal medulla. Eur J Pharmacol 2000; 408:107-16. [PMID: 11080516 DOI: 10.1016/s0014-2999(00)00767-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Inhibitor-1 and DARPP-32 (dopamine and cAMP-regulated phosphoprotein, Mr 32 kDa) are each phosphorylated by cAMP-dependent protein kinase, resulting in their conversion to potent inhibitors of protein phosphatase-1. Protein phosphatase-1 is involved in the regulation of Na(+) reabsorption from renal tubule by modulating the activity of Na(+),K(+)-ATPase. In this study, we have investigated the regulation of inhibitor-1 and DARPP-32 phosphorylation in slices of renal medulla. Activation of cAMP-dependent protein kinase by forskolin and 8-bromo-cAMP increased the level of phosphorylated inhibitor-1. Okadaic acid (1 microM), used to inhibit protein phosphatase-2A, increased the level of phosphorylated inhibitor-1, but cyclosporin A had no effect. DARPP-32, like inhibitor-1, was phosphorylated by cAMP-dependent protein kinase and dephosphorylated only by protein phosphatase-2A. These data demonstrate that the phosphorylation of inhibitor-1 and DARPP-32 is regulated by the balance of phosphorylation by cAMP-dependent protein kinase and dephosphorylation by protein phosphatase-2A in renal medulla. Furthermore, the phosphorylation step is regulated by pharmacological stimuli such as activation of beta(1)-adrenoceptors and dopamine D1 receptors.
Collapse
Affiliation(s)
- E Higuchi
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka 830-0011, Kurume, Japan
| | | | | | | | | |
Collapse
|
427
|
Nishi A, Bibb JA, Snyder GL, Higashi H, Nairn AC, Greengard P. Amplification of dopaminergic signaling by a positive feedback loop. Proc Natl Acad Sci U S A 2000; 97:12840-5. [PMID: 11050161 PMCID: PMC18851 DOI: 10.1073/pnas.220410397] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dopamine and cAMP-regulated phosphoprotein of M(r) 32,000 (DARPP-32) plays an obligatory role in most of the actions of dopamine. In resting neostriatal slices, cyclin-dependent kinase 5 (Cdk5) phosphorylates DARPP-32 at Thr-75, thereby reducing the efficacy of dopaminergic signaling. We report here that dopamine, in slices, and acute cocaine, in whole animals, decreases the state of phosphorylation of striatal DARPP-32 at Thr-75 and thereby removes this inhibitory constraint. This effect of dopamine is achieved through dopamine D1 receptor-mediated activation of cAMP-dependent protein kinase (PKA). The activated PKA, by decreasing the state of phosphorylation of DARPP-32-Thr-75, de-inhibits itself. Dopamine D2 receptor stimulation has the opposite effect. The ability of activated PKA to reduce the state of phosphorylation of DARPP-32-Thr-75 is apparently attributable to increased protein phosphatase-2A activity, with Cdk5 being unaffected. Together, these results indicate that via positive feedback mechanisms, Cdk5 signaling and PKA signaling are mutually antagonistic.
Collapse
Affiliation(s)
- A Nishi
- Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan.
| | | | | | | | | | | |
Collapse
|
428
|
Matsuura I, Bondarenko VA, Maeda T, Kachi S, Yamazaki M, Usukura J, Hayashi F, Yamazaki A. Phosphorylation by cyclin-dependent protein kinase 5 of the regulatory subunit of retinal cGMP phosphodiesterase. I. Identification of the kinase and its role in the turnoff of phosphodiesterase in vitro. J Biol Chem 2000; 275:32950-7. [PMID: 10884378 DOI: 10.1074/jbc.m000702200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic GMP phosphodiesterase (PDE) is an essential component in retinal phototransduction. PDE is regulated by Pgamma, the regulatory subunit of PDE, and GTP/Talpha, the GTP-bound alpha subunit of transducin. In previous studies (Tsuboi, S., Matsumoto, H. , Jackson, K. W., Tsujimoto, K., Williamas, T., and Yamazaki, A. (1994) J. Biol. Chem. 269, 15016-15023; Tsuboi, S., Matsumoto, H., and Yamazaki, A. (1994) J. Biol. Chem. 269, 15024-15029), we showed that Pgamma is phosphorylated by a previously unknown kinase (Pgamma kinase) in a GTP-dependent manner in photoreceptor outer segment membranes. We also showed that phosphorylated Pgamma loses its ability to interact with GTP/Talpha, but gains a 10-15 times higher ability to inhibit GTP/Talpha-activated PDE than that of nonphosphorylated Pgamma. Thus, we propose that the Pgamma phosphorylation is probably involved in the recovery phase of phototransduction through shut off of GTP/Talpha-activated PDE. Here we demonstrate that all known Pgammas preserve a consensus motif for cyclin-dependent protein kinase 5 (Cdk5), a protein kinase believed to be involved in neuronal cell development, and that Pgamma kinase is Cdk5 complexed with p35, a neuronal Cdk5 activator. Mutational analysis of Pgamma indicates that all known Pgammas contain a P-X-T-P-R sequence and that this sequence is required for the Pgamma phosphorylation by Pgamma kinase. In three different column chromatographies of a cytosolic fraction of frog photoreceptor outer segments, the Pgamma kinase activity exactly coelutes with Cdk5 and p35. The Pgamma kinase activity ( approximately 85%) is also immunoprecipitated by a Cdk5-specific antibody, and the immunoprecipitate phosphorylates Pgamma. Finally, recombinant Cdk5/p35, which were expressed using clones from a bovine retina cDNA library, phosphorylates Pgamma in frog outer segment membranes in a GTP-dependent manner. These observations suggest that Cdk5 is probably involved in the recovery phase of phototransduction through phosphorylation of Pgamma complexed with GTP/Talpha in mature vertebrate retinal photoreceptors.
Collapse
Affiliation(s)
- I Matsuura
- Departments of Ophthalmology and Pharmacology, the Kresge Eye Institute, Wayne State University, School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | |
Collapse
|
429
|
Leost M, Schultz C, Link A, Wu YZ, Biernat J, Mandelkow EM, Bibb JA, Snyder GL, Greengard P, Zaharevitz DW, Gussio R, Senderowicz AM, Sausville EA, Kunick C, Meijer L. Paullones are potent inhibitors of glycogen synthase kinase-3beta and cyclin-dependent kinase 5/p25. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:5983-94. [PMID: 10998059 DOI: 10.1046/j.1432-1327.2000.01673.x] [Citation(s) in RCA: 293] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Paullones constitute a new family of benzazepinones with promising antitumoral properties. They were recently described as potent, ATP-competitive, inhibitors of the cell cycle regulating cyclin-dependent kinases (CDKs). We here report that paullones also act as very potent inhibitors of glycogen synthase kinase-3beta (GSK-3beta) (IC50: 4-80 nM) and the neuronal CDK5/p25 (IC50: 20-200 nM). These two enzymes are responsible for most of the hyperphosphorylation of the microtubule-binding protein tau, a feature observed in the brains of patients with Alzheimer's disease and other neurodegenerative 'taupathies'. Alsterpaullone, the most active paullone, was demonstrated to act by competing with ATP for binding to GSK-3beta. Alsterpaullone inhibits the phosphorylation of tau in vivo at sites which are typically phosphorylated by GSK-3beta in Alzheimer's disease. Alsterpaullone also inhibits the CDK5/p25-dependent phosphorylation of DARPP-32 in mouse striatum slices in vitro. This dual specificity of paullones may turn these compounds into very useful tools for the study and possibly treatment of neurodegenerative and proliferative disorders.
Collapse
Affiliation(s)
- M Leost
- CNRS, Cell Cycle Group, Station Biologique, Roscoff, Bretagne, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
430
|
Calado A, Tomé FM, Brais B, Rouleau GA, Kühn U, Wahle E, Carmo-Fonseca M. Nuclear inclusions in oculopharyngeal muscular dystrophy consist of poly(A) binding protein 2 aggregates which sequester poly(A) RNA. Hum Mol Genet 2000; 9:2321-8. [PMID: 11001936 DOI: 10.1093/oxfordjournals.hmg.a018924] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disease characterized by progressive eyelid drooping, swallowing difficulties and proximal limb weakness. The autosomal dominant form of the disease is caused by short (GCG)(8-13) expansions in the PABP2 gene. This gene encodes the poly(A) binding protein 2 (PABP2), an abundant nuclear protein that binds with high affinity to nascent poly(A) tails, stimulating their extension and controlling their length. In this work we report that PABP2 is detected in filamentous nuclear inclusions, which are the pathological hallmark of OPMD. Using both immunoelectron microscopy and fluorescence confocal microscopy, the OPMD-specific nuclear inclusions appeared decorated by anti-PABP2 antibodies. In addition, the inclusions were labeled with antibodies directed against ubiquitin and the subunits of the proteasome and contained a form of PABP2 that was more resistant to salt extraction than the protein dispersed in the nucleoplasm. This suggests that the polyalanine expansions in PABP2 induce a misfolding and aggregation of the protein into insoluble inclusions, similarly to events in neurodegenerative diseases caused by CAG/polyglutamine expansions. No significant differences were observed in the steady-state poly(A) tail length in OPMD and normal myoblasts. However, the nuclear inclusions were shown to sequester poly(A) RNA. This raises the possibility that in OPMD the polyalanine expansions in the PABP2 protein may interfere with the cellular traffic of poly(A) RNA.
Collapse
Affiliation(s)
- A Calado
- Institute of Histology and Embryology, Faculty of Medicine, University of Lisbon, Avenida Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | | | | | | | | | | | | |
Collapse
|
431
|
Integrin alpha(1) beta(1)-mediated activation of cyclin-dependent kinase 5 activity is involved in neurite outgrowth and human neurofilament protein H Lys-Ser-Pro tail domain phosphorylation. J Neurosci 2000. [PMID: 10934255 DOI: 10.1523/jneurosci.20-16-06055.2000] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cellular adhesion to the extracellular matrix is mediated by a diverse class of alpha/beta heterodimeric receptors known as integrins, which transduce signals to activate multiple intracellular signal transduction pathways within the cells. The signaling pathway linking integrins to mediate neuronal process outgrowth is not well understood. Here, we have provided evidence that intracellular signaling by the alpha(1)beta(1) integrin-induced activation of cyclin-dependent kinase 5 (cdk5) is involved in neurite outgrowth and human neurofilament protein H (hNF-H) Lys-Ser-Pro (KSP) tail domain phosphorylation in differentiated human SH-SY5Y cells. The integrin alpha(1) and beta(1) monoclonal antibodies and BL-1, a specific cdk5 inhibitor, inhibited these effects. We also demonstrated that cdk5 activity and hNF-H KSP tail domain phosphorylation were increased in cdk5/p35 and hNF-H tail domain co-transfected HEK293 cells grown on laminin. This increased hNF-H tail domain phosphorylation was triggered by cdk5 activation. Taken together, these results indicated that cdk5 may play an important role in promoting neurite outgrowth and hNF-H tail KSP domain phosphorylation through the integrin alpha(1)beta(1) signaling pathway.
Collapse
|
432
|
Regulation of phosphorylation of the GluR1 AMPA receptor in the neostriatum by dopamine and psychostimulants in vivo. J Neurosci 2000. [PMID: 10844017 DOI: 10.1523/jneurosci.20-12-04480.2000] [Citation(s) in RCA: 198] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The activation of cAMP-dependent protein kinase regulates the physiological activity of AMPA-type glutamate receptors. In this study, phosphorylation of the AMPA receptor subunit GluR1 at Ser(845) was increased in neostriatal slices by activation of D1-type dopamine receptors and by inhibitors of protein phosphatase 1/protein phosphatase 2A. In contrast, Ser(831), a residue which, when phosphorylated by protein kinase C or calcium/calmodulin-dependent kinase II, increases AMPA receptor channel conductance, was unaffected by either D1 or D2 receptor agonists in neostriatal slices. The phosphorylation of Ser(845), but not Ser(831), was strongly increased in neostriatum in vivo in response to the psychostimulants cocaine and methamphetamine. The effects of dopamine and psychostimulants on the phosphorylation of GluR1 were attenuated in dopamine and cAMP-regulated phosphoprotein M(r) 32 kDa (DARPP-32) knock-out mice. These results identify DARPP-32 and AMPA-type glutamate receptors as likely essential cellular effectors for psychostimulant actions.
Collapse
|
433
|
Sobue K, Agarwal-Mawal A, Li W, Sun W, Miura Y, Paudel HK. Interaction of neuronal Cdc2-like protein kinase with microtubule-associated protein tau. J Biol Chem 2000; 275:16673-80. [PMID: 10749861 DOI: 10.1074/jbc.m000784200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal Cdc2-like protein kinase (NCLK), a approximately 58-kDa heterodimer, was isolated from neuronal microtubules (Ishiguro, K., Takamatsu, M., Tomizawa, K., Omori, A., Takahashi, M., Arioka, M., Uchida, T. and Imahori, K. (1992) J. Biol. Chem. 267, 10897-10901). The biochemical nature of NCLK-microtubule association is not known. In this study we found that NCLK is released from microtubules upon microtubule disassembly as a 450-kDa species. The 450-kDa species is an NCLK.tau complex, and NCLK-bound tau is in a nonphosphorylated state. Tau phosphorylation causes NCLK.tau complex dissociation, and phosphorylated tau does not bind to NCLK. In vitro, the Cdk5 subunit of NCLK binds to the microtubule-binding region of tau and NCLK associates with microtubules only in the presence of tau. Our data indicate that in brain extract NCLK is complexed with tau in a tau phosphorylation-dependent manner and that tau anchors NCLK to microtubules. Recently NCLK has been suggested to be aberrantly activated and to hyperphosphorylate tau in Alzheimer's disease brain (Patrick, G. N., Zukerberg, L., Nikolic, M., de la Monte, S., Dikkes, P, and Tsai, L.-H. (1999) Nature 402, 615-622). Our findings may explain why in Alzheimer's disease NCLK specifically hyperphosphorylates tau, although this kinase has a number of protein substrates in the brain.
Collapse
Affiliation(s)
- K Sobue
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3T 1E2, Canada
| | | | | | | | | | | |
Collapse
|
434
|
Flores-Hernandez J, Hernandez S, Snyder GL, Yan Z, Fienberg AA, Moss SJ, Greengard P, Surmeier DJ. D(1) dopamine receptor activation reduces GABA(A) receptor currents in neostriatal neurons through a PKA/DARPP-32/PP1 signaling cascade. J Neurophysiol 2000; 83:2996-3004. [PMID: 10805695 DOI: 10.1152/jn.2000.83.5.2996] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dopamine is a critical determinant of neostriatal function, but its impact on intrastriatal GABAergic signaling is poorly understood. The role of D(1) dopamine receptors in the regulation of postsynaptic GABA(A) receptors was characterized using whole cell voltage-clamp recordings in acutely isolated, rat neostriatal medium spiny neurons. Exogenous application of GABA evoked a rapidly desensitizing current that was blocked by bicuculline. Application of the D(1) dopamine receptor agonist SKF 81297 reduced GABA-evoked currents in most medium spiny neurons. The D(1) dopamine receptor antagonist SCH 23390 blocked the effect of SKF 81297. Membrane-permeant cAMP analogues mimicked the effect of D(1) dopamine receptor stimulation, whereas an inhibitor of protein kinase A (PKA; Rp-8-chloroadenosine 3',5' cyclic monophosphothioate) attenuated the response to D(1) dopamine receptor stimulation or cAMP analogues. Inhibitors of protein phosphatase 1/2A potentiated the modulation by cAMP analogues. Single-cell RT-PCR profiling revealed consistent expression of mRNA for the beta1 subunit of the GABA(A) receptor-a known substrate of PKA-in medium spiny neurons. Immunoprecipitation assays of radiolabeled proteins revealed that D(1) dopamine receptor stimulation increased phosphorylation of GABA(A) receptor beta1/beta3 subunits. The D(1) dopamine receptor-induced phosphorylation of beta1/beta3 subunits was attenuated significantly in neostriata from DARPP-32 mutants. Voltage-clamp recordings corroborated these results, revealing that the efficacy of the D(1) dopamine receptor modulation of GABA(A) currents was reduced in DARPP-32-deficient medium spiny neurons. These results argue that D(1) dopamine receptor stimulation in neostriatal medium spiny neurons reduces postsynaptic GABA(A) receptor currents by activating a PKA/DARPP-32/protein phosphatase 1 signaling cascade targeting GABA(A) receptor beta1 subunits.
Collapse
Affiliation(s)
- J Flores-Hernandez
- Department of Physiology and Institute for Neuroscience, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
435
|
Meijer L. Cyclin-dependent kinases inhibitors as potential anticancer, antineurodegenerative, antiviral and antiparasitic agents. Drug Resist Updat 2000; 3:83-88. [PMID: 11498372 DOI: 10.1054/drup.2000.0129] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cyclin-dependent kinases (CDKs) play a key role in the cell division cycle, in neuronal functions, in transcription and in apoptosis. Intensive screening with these kinases as targets has lead to the identification of highly selective and potent small - molecule inhibitors. Co-crystallization with CDK2 shows that these flat heterocyclic hydrophobic compounds bind through two or three hydrogen bonds with the side chains of two amino acids located in the ATP-binding pocket of the kinase. These inhibitors are anti-proliferative; they arrest cells in G1 and in G2/M phase. Furthermore they facilitate or even trigger apoptosis in proliferating cells while they protect neuronal cells and thymocytes from apoptosis. The potential use of these inhibitors is being extensively evaluated for cancer chemotherapy and also in other therapeutic areas: neurology (Alzheimer's disease), cardiovascular (restenosis, angiogenesis), nephrology (glomerulonephritis), parasitology (Plasmodium, Trypanosoma, Toxoplasma, etc.) and virology (cytomegalovirus, HIV, herpes virus). Copyright 2000 Harcourt Publishers Ltd.
Collapse
Affiliation(s)
- Laurent Meijer
- Station Biologique de Roscoff, CNRS UPR, Roscoff cedex, Bretagne, France
| |
Collapse
|
436
|
Abstract
Reversible protein phosphorylation is a major regulatory mechanism of intracellular signal transduction. Protein phosphatase 1 (PP1) is one of four major types of serine-threonine phosphatases mediating signaling pathways, but the means by which its activity is modulated has only recently begun to come into focus.
Collapse
Affiliation(s)
- J B Aggen
- Department of Chemistry, University of California, Advanced Medicine, Inc., Irvine, South San Francisco, CA 92697, USA
| | | | | |
Collapse
|
437
|
|
438
|
Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 1999; 402:615-22. [PMID: 10604467 DOI: 10.1038/45159] [Citation(s) in RCA: 1193] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5) is required for proper development of the mammalian central nervous system. To be activated, Cdk5 has to associate with its regulatory subunit, p35. We have found that p25, a truncated form of p35, accumulates in neurons in the brains of patients with Alzheimer's disease. This accumulation correlates with an increase in Cdk5 kinase activity. Unlike p35, p25 is not readily degraded, and binding of p25 to Cdk5 constitutively activates Cdk5, changes its cellular location and alters its substrate specificity. In vivo the p25/Cdk5 complex hyperphosphorylates tau, which reduces tau's ability to associate with microtubules. Moreover, expression of the p25/Cdk5 complex in cultured primary neurons induces cytoskeletal disruption, morphological degeneration and apoptosis. These findings indicate that cleavage of p35, followed by accumulation of p25, may be involved in the pathogenesis of cytoskeletal abnormalities and neuronal death in neurodegenerative diseases.
Collapse
Affiliation(s)
- G N Patrick
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|