401
|
Nafarzadeh S, Ejtehadi S, Amini Shakib P, Fereidooni M, Bijani A. Comparative study of expression of smad3 in oral lichen planus and normal oral mucosa. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2013; 2:194-8. [PMID: 24551812 PMCID: PMC3927385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/12/2013] [Indexed: 10/25/2022]
Abstract
Oral lichen planus (OLP) is a chronic inflammatory disease of the oral mucosa which is considered by the World Health Organization (WHO) as a premalignant condition. One step in malignant development is so called epithelial mesenchymal transition (EMT), a process whereby epithelial cells acquire mesenchymal characteristics. A factor known to induce EMT is the transforming growth factor-β (TGF-β), which uses the Smad proteins as mediators for its signaling. The aim of this study was to compare the expression of Smad 3 in Oral Lichen Planus and normal oral mucosa. This descriptive analytic study was performed on 30 patients with OLP (21 women and 9 men with mean age of 45.23± 2.44 years) and 20 normal oral mucosa (14 women and 6 men with mean age of 46.95± 2.21 years). The samples were studied by immunohistochemical staining. Data were analyzed with paired T-test and Wilcoxon test by SPSS software. Expression of Smad3 in OLP samples and normal oral mucosa was different. This difference was statistically significant (P<0.001). The apparently higher expression of Smad 3 in oral lichen planus compared to normal oral mucosa might help to discuss its higher potential for malignant transition.
Collapse
Affiliation(s)
- Shima Nafarzadeh
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Babol University of Medical Sciences, Babol, Iran.
| | | | - Pouyan Amini Shakib
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Babol University of Medical Sciences, Babol, Iran.,Corresponding author: Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Babol University of Medical Sciences, Babol, Iran. E-mail: ;
| | - Majid Fereidooni
- Department of Periodontology, Faculty of Dentistry, Babol University of Medical Sciences, Babol, Iran.
| | - Ali Bijani
- Non-Communicable Pediatric Diseases Research Center, Amirkola Hospital, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
402
|
Chiechi A, Waning DL, Stayrook KR, Buijs JT, Guise TA, Mohammad KS. Role of TGF- β in breast cancer bone metastases. ACTA ACUST UNITED AC 2013; 4:15-30. [PMID: 24558636 PMCID: PMC3928102 DOI: 10.4236/abb.2013.410a4003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Breast cancer is the most prevalent cancer among females worldwide leading to approximately 350,000 deaths each year. It has long been known that cancers preferentially metastasize to particular organs, and bone metastases occur in ~70% of patients with advanced breast cancer. Breast cancer bone metastases are predominantly osteolytic and accompanied by increased fracture risk, pain, nerve compression and hypercalcemia, causing severe morbidity. In the bone matrix, transforming growth factor-β (TGF-β) is one of the most abundant growth factors, which is released in active form upon tumor-induced osteoclastic bone resorption. TGF-β, in turn, stimulates bone metastatic tumor cells to secrete factors that further drive osteolytic bone destruction adjacent to the tumor. Thus, TGF-β is a crucial factor responsible for driving the feed-forward vicious cycle of cancer growth in bone. Moreover, TGF-β activates epithelial-to-mesenchymal transition, increases tumor cell invasiveness and angiogenesis and induces immunosuppression. Blocking the TGF-β signaling pathway to interrupt this vicious cycle between breast cancer and bone offers a promising target for therapeutic intervention to decrease skeletal metastasis. This review will describe the role of TGF-β in breast cancer and bone metastasis, and pre-clinical and clinical data will be evaluated for the potential use of TGF-β inhibitors in clinical practice to treat breast cancer bone metastases.
Collapse
Affiliation(s)
- Antonella Chiechi
- Division of Endocrinology, Department of Internal Medicine, Indiana University, Indianapolis, USA
| | - David L Waning
- Division of Endocrinology, Department of Internal Medicine, Indiana University, Indianapolis, USA
| | - Keith R Stayrook
- Division of Endocrinology, Department of Internal Medicine, Indiana University, Indianapolis, USA
| | - Jeroen T Buijs
- Division of Endocrinology, Department of Internal Medicine, Indiana University, Indianapolis, USA ; Department of Urology, Medical Center, Leiden University, Leiden, The Netherlands
| | - Theresa A Guise
- Division of Endocrinology, Department of Internal Medicine, Indiana University, Indianapolis, USA
| | - Khalid S Mohammad
- Division of Endocrinology, Department of Internal Medicine, Indiana University, Indianapolis, USA
| |
Collapse
|
403
|
Termén S, Tan EJ, Heldin CH, Moustakas A. p53 regulates epithelial-mesenchymal transition induced by transforming growth factor β. J Cell Physiol 2012; 228:801-13. [DOI: 10.1002/jcp.24229] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 09/18/2012] [Indexed: 12/30/2022]
|
404
|
Bao B, Azmi AS, Ali S, Ahmad A, Li Y, Banerjee S, Kong D, Sarkar FH. The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1826:272-96. [PMID: 22579961 PMCID: PMC3788359 DOI: 10.1016/j.bbcan.2012.04.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/25/2012] [Accepted: 04/28/2012] [Indexed: 12/13/2022]
Abstract
Hypoxia is one of the fundamental biological phenomena that are intricately associated with the development and aggressiveness of a variety of solid tumors. Hypoxia-inducible factors (HIF) function as a master transcription factor, which regulates hypoxia responsive genes and has been recognized to play critical roles in tumor invasion, metastasis, and chemo-radiation resistance, and contributes to increased cell proliferation, survival, angiogenesis and metastasis. Therefore, tumor hypoxia with deregulated expression of HIF and its biological consequence lead to poor prognosis of patients diagnosed with solid tumors, resulting in higher mortality, suggesting that understanding of the molecular relationship of hypoxia with other cellular features of tumor aggressiveness would be invaluable for developing newer targeted therapy for solid tumors. It has been well recognized that cancer stem cells (CSCs) and epithelial-to-mesenchymal transition (EMT) phenotypic cells are associated with therapeutic resistance and contribute to aggressive tumor growth, invasion, metastasis and believed to be the cause of tumor recurrence. Interestingly, hypoxia and HIF signaling pathway are known to play an important role in the regulation and sustenance of CSCs and EMT phenotype. However, the molecular relationship between HIF signaling pathway with the biology of CSCs and EMT remains unclear although NF-κB, PI3K/Akt/mTOR, Notch, Wnt/β-catenin, and Hedgehog signaling pathways have been recognized as important regulators of CSCs and EMT. In this article, we will discuss the state of our knowledge on the role of HIF-hypoxia signaling pathway and its kinship with CSCs and EMT within the tumor microenvironment. We will also discuss the potential role of hypoxia-induced microRNAs (miRNAs) in tumor development and aggressiveness, and finally discuss the potential effects of nutraceuticals on the biology of CSCs and EMT in the context of tumor hypoxia.
Collapse
Affiliation(s)
- Bin Bao
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Asfar S. Azmi
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Shadan Ali
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Aamir Ahmad
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Yiwei Li
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Sanjeev Banerjee
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Dejuan Kong
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Fazlul H. Sarkar
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|
405
|
Wang Y, Zhou BP. Epithelial-mesenchymal transition in breast cancer progression and metastasis. CHINESE JOURNAL OF CANCER 2012; 30:603-11. [PMID: 21880181 PMCID: PMC3702729 DOI: 10.5732/cjc.011.10226] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Breast cancer is the most common cancer in women, and approximately 90% of breast cancer deaths are caused by local invasion and distant metastasis of tumor cells. Epithelial-mesenchymal transition (EMT) is a vital process for large-scale cell movement during morphogenesis at the time of embryonic development. Tumor cells usurp this developmental program to execute the multi-step process of tumorigenesis and metastasis. Several transcription factors and signals are involved in these events. In this review, we summarize recent advances in breast cancer researches that have provided new insights in the molecular mechanisms underlying EMT regulation during breast cancer progression and metastasis. We especially focus on the molecular pathways that control EMT.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | | |
Collapse
|
406
|
Li Z, Wermuth PJ, Benn BS, Lisanti MP, Jimenez SA. Caveolin-1 deficiency induces spontaneous endothelial-to-mesenchymal transition in murine pulmonary endothelial cells in vitro. THE AMERICAN JOURNAL OF PATHOLOGY 2012. [PMID: 23195429 DOI: 10.1016/j.ajpath.2012.10.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It was previously demonstrated that transforming growth factor β (TGF-β) induces endothelial-to-mesenchymal transition (EndoMT) in murine lung endothelial cells (ECs) in vitro. Owing to the important role of caveolin-1 (CAV1) in TGF-β receptor internalization and TGF-β signaling, the participation of CAV1 in the induction of EndoMT in murine lung ECs was investigated. Pulmonary ECs were isolated from wild-type and Cav1 knockout mice using immunomagnetic methods with sequential anti-CD31 and anti-CD102 antibody selection followed by in vitro culture and treatment with TGF-β1. EndoMT was assessed by semiquantitative RT-PCR for Acta2, Col1a1, Snai1, and Snai2; by immunofluorescence for α-smooth muscle actin; and by Western blot analysis for α-smooth muscle actin, SNAIL1, SNAIL2, and the α2 chain of type I collagen. The same studies were performed in Cav1(-/-) pulmonary ECs after restoration of functional CAV1 domains using a cell-permeable CAV1 scaffolding domain peptide. Pulmonary ECs from Cav1 knockout mice displayed high levels of spontaneous Acta2, Col1A, Snai1, and Snai2 expression, which increased after TGF-β treatment. Spontaneous and TGF-β1-stimulated EndoMT were abrogated by the restoration of functional CAV1 domains using a cell-permeable peptide. The findings suggest that CAV1 regulation of EndoMT may play a role in the development of fibroproliferative vasculopathies.
Collapse
Affiliation(s)
- Zhaodong Li
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
407
|
Sidestream smoke exposure increases the susceptibility of airway epithelia to adenoviral infection. PLoS One 2012; 7:e49930. [PMID: 23166798 PMCID: PMC3499494 DOI: 10.1371/journal.pone.0049930] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 10/17/2012] [Indexed: 12/24/2022] Open
Abstract
Background Although significant epidemiological evidence indicates that cigarette smoke exposure increases the incidence and severity of viral infection, the molecular mechanisms behind the increased susceptibility of the respiratory tract to viral pathogens are unclear. Adenoviruses are non-enveloped DNA viruses and important causative agents of acute respiratory disease. The Coxsackievirus and adenovirus receptor (CAR) is the primary receptor for many adenoviruses. We hypothesized that cigarette smoke exposure increases epithelial susceptibility to adenovirus infection by increasing the abundance of apical CAR. Methodology and Findings Cultured human airway epithelial cells (CaLu-3) were used as a model to investigate the effect of sidestream cigarette smoke (SSS), mainstream cigarette smoke (MSS), or control air exposure on the susceptibility of polarized respiratory epithelia to adenoviral infection. Using a Cultex air-liquid interface exposure system, we have discovered novel differences in epithelial susceptibility between SSS and MSS exposures. SSS exposure upregulates an eight-exon isoform of CAR and increases adenoviral entry from the apical surface whilst MSS exposure is similar to control air exposure. Additionally, the level of cellular glycogen synthase kinase 3β (GSK3β) is downregulated by SSS exposure and treatment with a specific GSK3β inhibitor recapitulates the effects of SSS exposure on CAR expression and viral infection. Conclusions This is the first time that SSS exposure has been shown to directly enhance the susceptibility of a polarized epithelium to infection by a common respiratory viral pathogen. This work provides a novel understanding of the impact of SSS on the burden of respiratory viral infections and may lead to new strategies to alter viral infections. Moreover, since GSK3β inhibitors are under intense clinical investigation as therapeutics for a diverse range of diseases, studies such as these might provide insight to extend the use of clinically relevant therapeutics and increase the understanding of potential side effects.
Collapse
|
408
|
Danielsson K, Boldrup L, Rentoft M, Coates PJ, Ebrahimi M, Nylander E, Wahlin YB, Nylander K. Autoantibodies and decreased expression of the transcription factor ELF-3 together with increased chemokine pathways support an autoimmune phenotype and altered differentiation in lichen planus located in oral mucosa. J Eur Acad Dermatol Venereol 2012; 27:1410-6. [PMID: 23134363 DOI: 10.1111/jdv.12027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The pathogenesis of oral lichen planus (OLP), a chronic inflammatory disease, is not fully understood. It is known that OLP has autoimmune features, and it is suggested to be an autoimmune disease. ELF-3 is involved in differentiation of keratinocytes and deregulated in different tumours and inflammatory diseases. CXCR-3 and its ligands CXCL-10 and CXCL-11 are increased in autoimmune diseases and linked to Th-1 immune response. OBJECTIVES To analyse and compare expression of ELF-3, CXCR-3, CXCL-10 and CXCL-11 in OLP lesions and controls in whole and microdissected epithelium. METHODS Tissue biopsies from 20 patients clinically and histologically diagnosed with OLP and 20 healthy controls were studied using whole tissues or microdissected epithelium. By the use of qRT-PCR, mRNA levels of ELF-3, CXCR-3, CXCL-10 and CXCL-11 were studied. Western blot was used for analysis of ELF-3 protein expression. Sera from 19 OLP patients and 20 controls were analysed with ELISA in search for autoantibodies. Results The upregulation of CXCR-3, CXCL-10 and CXCL-11 found in OLP is similar to previous findings showing an autoimmune phenotype in lichen planus (LP) and lichen sclerosus. Decreased expression of the differentiation-related transcription factor ELF-3 was also seen in OLP lesions, and we further demonstrate presence of circulating autoantibodies against the ELF-3 protein in sera from 3 of 19 (16%) LP patients tested. CONCLUSIONS On the basis of these findings, we confirm that OLP shows features of an autoimmune disease and suggest deregulated differentiation of keratinocytes to be one of the causes of the disease phenotype.
Collapse
Affiliation(s)
- K Danielsson
- Department of Odontology, Umeå UniversityDepartment of Medical Biosciences, Umeå University, Umeå, SwedenTayside Tissue Bank/Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, UKDepartment of Clinical Medicine and Public Health/Dermatology and Venerology, Umeå University, Umeå, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
409
|
Perrot CY, Javelaud D, Mauviel A. Overlapping activities of TGF-β and Hedgehog signaling in cancer: therapeutic targets for cancer treatment. Pharmacol Ther 2012; 137:183-99. [PMID: 23063491 DOI: 10.1016/j.pharmthera.2012.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 09/28/2012] [Indexed: 12/11/2022]
Abstract
Recent advances in the field of cancer therapeutics come from the development of drugs that specifically recognize validated oncogenic or pro-metastatic targets. The latter may be mutated proteins with altered function, such as kinases that become constitutively active, or critical components of growth factor signaling pathways, whose deregulation leads to aberrant malignant cell proliferation and dissemination to metastatic sites. We herein focus on the description of the overlapping activities of two important developmental pathways often exacerbated in cancer, namely Transforming Growth Factor-β (TGF-β) and Hedgehog (HH) signaling, with a special emphasis on the unifying oncogenic role played by GLI1/2 transcription factors. The latter are the main effectors of the canonical HH pathway, yet are direct target genes of TGF-β/SMAD signal transduction. While tumor-suppressor in healthy and pre-malignant tissues, TGF-β is often expressed at high levels in tumors and contributes to tumor growth, escape from immune surveillance, invasion and metastasis. HH signaling regulates cell proliferation, differentiation and apoptosis, and aberrant HH signaling is found in a variety of cancers. We discuss the current knowledge on HH and TGF-β implication in cancer including cancer stem cell biology, as well as the current state, both successes and failures, of targeted therapeutics aimed at blocking either of these pathways in the pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Carole Y Perrot
- Institut Curie, Team TGF-β and Oncogenesis, 91400, Orsay, France; INSERM U1021, 91400, Orsay, France
| | | | | |
Collapse
|
410
|
Telomerase reverse transcriptase promotes epithelial-mesenchymal transition and stem cell-like traits in cancer cells. Oncogene 2012; 32:4203-13. [PMID: 23045275 DOI: 10.1038/onc.2012.441] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 08/09/2012] [Indexed: 12/20/2022]
Abstract
Telomerase activation through induction of telomerase reverse transcriptase (hTERT) contributes to malignant transformation by stabilizing telomeres. Clinical studies demonstrate that higher hTERT expression is associated with cancer progression and poor outcomes, but the underlying mechanism is unclear. Because epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) are key factors in cancer metastasis and relapse, and hTERT has been shown to exhibit multiple biological activities independently of its telomere-lengthening function, we address a potential role of hTERT in EMT and CSCs using gastric cancer (GC) as a model. hTERT overexpression promotes, whereas its inhibition suppresses, EMT and stemness of GC cells, respectively. Transforming growth factor (TGF)-β1 and β-catenin-mediated EMT was abolished by small interfering RNA depletion of hTERT expression. hTERT interacts with β-catenin, enhances its nuclear localization and transcriptional activity, and occupies the β-catenin target vimentin promoter. All these hTERT effects were independent of its telomere-lengthening function or telomerase activity. hTERT and EMT marker expression correlates positively in GC samples. Mouse experiments demonstrate the in vivo stimulation of hTERT on cancer cell colonization. Collectively, hTERT stimulates EMT and induces stemness of cancer cells, thereby promoting cancer metastasis and recurrence. Thus, targeting hTERT may prevent cancer progression by inhibiting EMT and CSCs.
Collapse
|
411
|
Tian Y, Guo XL, Wang LQ, Li Y. Emodin reduces intestinal fibrosis in rats with TNBS-induced colitis. Shijie Huaren Xiaohua Zazhi 2012; 20:2703-2708. [DOI: 10.11569/wcjd.v20.i28.2703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the anti-fibrotic effects of emodin in rats with experimental colitis, and to explore the possible mechanisms.
METHODS: Rats with colitis induced with trinitrobenzene sulphonic acid (TNBS) were used as the model of intestinal fibrosis. Thirty-four rats were randomly divided into normal group, model group and emodin group. Colitis was induced with TNBS in rats of the model group and emodin group. Rats in the emodin group were gavaged with 40 mg/kg of emodin daily, and the other groups were gavaged with an equal volume of 0.9% NaCl solution. Body weight loss and changes in stool and activities were observed, and DAI was calculated. At the end of the experiment, colon tissue samples were collected, and the general and histological scores were given. The injury and fibrosis of the colon were detected by HE staining and Masson collagen staining, respectively. Expression of transforming growth factor (TGF)-β1, collagenⅠ, collagen Ⅲ, Smad3 and α-SMA was determined by FQ-PCR.
RESULTS: Compared to the model group, the general condition, general and histological scores, and fibrosis were improved significantly in the emodin group. Expression of TGF-β1, collagenⅠ, collagen Ⅲ, Smad3 and α-SMA in colonic mucosa in the emodin group were significantly lower than that in the model group (1.27 ± 0.78 vs 4.56 ± 3.14; 0.60 ± 0.59 vs 2.15 ± 1.22; 0.92 ± 1.38 vs 3.34 ± 1.47; 3.11 ± 2.81 vs 8.77 ± 6.40; 0.87 ± 0.62 vs 2.40 ± 1.15, all P < 0.05), while expression of E-cad was higher in the emodin group (1.01 ± 0.34 vs 0.30 ± 0.23, P < 0.05).
CONCLUSION: Emodin reduces intestinal fibrosis in rats with TNBS-induced colitis possibly by down-regulation of TGF-β1/Smad3 signaling and inhibition of epithelial-mesenchymal transition.
Collapse
|
412
|
Alcaraz A, Mrowiec A, Insausti CL, García-Vizcaíno EM, Ruiz-Canada C, López-Martínez MC, Moraleda JM, Nicolás FJ. Autocrine TGF-β induces epithelial to mesenchymal transition in human amniotic epithelial cells. Cell Transplant 2012; 22:1351-67. [PMID: 23031712 DOI: 10.3727/096368912x657387] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human amniotic epithelial cells (hAECs) have been the object of intense research due to their potential therapeutic use. In this paper, we present molecular evidence of a bona fide epithelial to mesenchymal transition (EMT) undergone by hAECs. Amniotic membrane (AM)-derived hAECs showed the presence of typical epithelial markers such as E-cadherin and cytokeratins. hAECs in culture, however, underwent morphological changes acquiring a mesenchymal shape. Epithelial cell markers were lost and typical mesenchymal markers, such as vimentin and α-SMA, appeared. Several genes associated with EMT, such as SNAI1, MMP9, PAI1, or ACTA2, increased their expression. The expression of the transcription activators KLF4 or MTA3 was consistent with the downregulation of CDH1. We have shown that hAECs undergo EMT due to the autocrine production of TGF-β. Furthermore, the addition of the TGF-β receptor I (ALK5) inhibitor SB-431542 or TGF-β neutralizing antibody to hAECs prevented EMT and preserved the hAECs' epithelial phenotype. Altogether, these results suggest that cultured hAECs undergo EMT through the autocrine production of TGF-β.
Collapse
Affiliation(s)
- Antonia Alcaraz
- Oncología Molecular y TGF-β, Unidad de Investigación, Hospital Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
413
|
Sánchez-Tilló E, Liu Y, de Barrios O, Siles L, Fanlo L, Cuatrecasas M, Darling DS, Dean DC, Castells A, Postigo A. EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness. Cell Mol Life Sci 2012; 69:3429-56. [PMID: 22945800 PMCID: PMC11115078 DOI: 10.1007/s00018-012-1122-2] [Citation(s) in RCA: 385] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/20/2012] [Accepted: 08/09/2012] [Indexed: 12/13/2022]
Abstract
Cancer is a complex multistep process involving genetic and epigenetic changes that eventually result in the activation of oncogenic pathways and/or inactivation of tumor suppressor signals. During cancer progression, cancer cells acquire a number of hallmarks that promote tumor growth and invasion. A crucial mechanism by which carcinoma cells enhance their invasive capacity is the dissolution of intercellular adhesions and the acquisition of a more motile mesenchymal phenotype as part of an epithelial-to-mesenchymal transition (EMT). Although many transcription factors can trigger it, the full molecular reprogramming occurring during an EMT is mainly orchestrated by three major groups of transcription factors: the ZEB, Snail and Twist families. Upregulated expression of these EMT-activating transcription factors (EMT-ATFs) promotes tumor invasiveness in cell lines and xenograft mice models and has been associated with poor clinical prognosis in human cancers. Evidence accumulated in the last few years indicates that EMT-ATFs also regulate an expanding set of cancer cell capabilities beyond tumor invasion. Thus, EMT-ATFs have been shown to cooperate in oncogenic transformation, regulate cancer cell stemness, override safeguard programs against cancer like apoptosis and senescence, determine resistance to chemotherapy and promote tumor angiogenesis. This article reviews the expanding portfolio of functions played by EMT-ATFs in cancer progression.
Collapse
Affiliation(s)
- Ester Sánchez-Tilló
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, 08036 Barcelona, Spain
- CIBERehd (Gastrointestinal and Pancreatic Oncology), IDIBAPS, 08036 Barcelona, Spain
| | - Yongqing Liu
- James Graham Brown Cancer Center, Louisville Health Science Center, Louisville, KY 40202 USA
- Department of Ophthalmology and Birth Defects Center, Louisville Health Science Center, Louisville, KY 40202 USA
| | - Oriol de Barrios
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, 08036 Barcelona, Spain
| | - Laura Siles
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, 08036 Barcelona, Spain
| | - Lucia Fanlo
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, 08036 Barcelona, Spain
- Master Program in Biomedical Research, University Pompeu Fabra, 08003 Barcelona, Spain
| | - Miriam Cuatrecasas
- Department of Pathology, Hospital Clinic and IDIBAPS’ Tumor Bank, 08036 Barcelona, Spain
| | - Douglas S. Darling
- Department of Oral Health and Rehabilitation, Center for Genetics and Molecular Medicine, University of Louisville, Louisville, KY 40202 USA
| | - Douglas C. Dean
- James Graham Brown Cancer Center, Louisville Health Science Center, Louisville, KY 40202 USA
- Department of Ophthalmology and Birth Defects Center, Louisville Health Science Center, Louisville, KY 40202 USA
| | - Antoni Castells
- CIBERehd (Gastrointestinal and Pancreatic Oncology), IDIBAPS, 08036 Barcelona, Spain
- Institute of Digestive and Metabolic Diseases, Hospital Clinic, 08036 Barcelona, Spain
| | - Antonio Postigo
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, 08036 Barcelona, Spain
- CIBERehd (Gastrointestinal and Pancreatic Oncology), IDIBAPS, 08036 Barcelona, Spain
- James Graham Brown Cancer Center, Louisville Health Science Center, Louisville, KY 40202 USA
- ICREA, 08010 Barcelona, Spain
| |
Collapse
|
414
|
Moustakas A, Heldin CH. Induction of epithelial–mesenchymal transition by transforming growth factor β. Semin Cancer Biol 2012; 22:446-54. [DOI: 10.1016/j.semcancer.2012.04.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 04/16/2012] [Indexed: 11/29/2022]
|
415
|
Torzilli PA, Bourne JW, Cigler T, Vincent CT. A new paradigm for mechanobiological mechanisms in tumor metastasis. Semin Cancer Biol 2012; 22:385-95. [PMID: 22613484 PMCID: PMC3445741 DOI: 10.1016/j.semcancer.2012.05.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 05/13/2012] [Indexed: 12/24/2022]
Abstract
Tumor metastases and epithelial to mesenchymal transition (EMT) involve tumor cell invasion and migration through the dense collagen-rich extracellular matrix surrounding the tumor. Little is neither known about the mechanobiological mechanisms involved in this process, nor the role of the mechanical forces generated by the cells in their effort to invade and migrate through the stroma. In this paper we propose a new fundamental mechanobiological mechanism involved in cancer growth and metastasis, which can be both protective or destructive depending on the magnitude of the forces generated by the cells. This new mechanobiological mechanism directly challenges current paradigms that are focused mainly on biological and biochemical mechanisms associated with tumor metastasis. Our new mechanobiological mechanism describes how tumor expansion generates mechanical forces within the stroma to not only resist tumor expansion but also inhibit or enhance tumor invasion by, respectively, inhibiting or enhancing matrix metalloproteinase (MMP) degradation of the tensed interstitial collagen. While this mechanobiological mechanism has not been previously applied to the study of tumor metastasis and EMT, it may have the potential to broaden our understanding of the tumor invasive process and assist in developing new strategies for preventing or treating cancer metastasis.
Collapse
Affiliation(s)
- Peter A Torzilli
- Tissue Engineering, Regeneration and Repair Program, Hospital for Special Surgery, New York, NY 10021, United States.
| | | | | | | |
Collapse
|
416
|
Scherbakov AM, Andreeva OE, Shatskaya VA, Krasil'nikov MA. The relationships between snail1 and estrogen receptor signaling in breast cancer cells. J Cell Biochem 2012; 113:2147-55. [PMID: 22307688 DOI: 10.1002/jcb.24087] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The loss of hormonal dependency of breast tumor cells is often accompanied with the appearance of epithelial-mesenchymal transition (EMT) features and increase in cell metastasis and invasiveness. The central role in the EMT belongs to transcription factors Snail responded for the decrease in E-cadherin expression and cell contacts, stimulation of cell mobility and invasiveness. Aim was to study the relationships between estrogen receptor machinery and Snail1 signaling, and mechanism of Snail1 regulation in hormone-resistant breast cancer cells. The experiments were performed on the estrogen-dependent MCF-7 breast cancer cells, estrogen-hyposensitive MCF-7/LS subline generated through long-term cultivation of the parental cells in steroid-free medium, and ER-negative estrogen-resistant HBL-100 cells. Snail1, estrogen receptor, p65 NF-κB, E-cadherin levels were analyzed by Western blot. We found that decrease in the estrogen dependency is correlated with increase in Snail1 expression and activity, we demonstrated the Snail1 involvement in the negative regulation of ER, and showed that Snail1 inhibition partially restores the sensitivity of the estrogen-hyposensitive cells to antiestrogen tamoxifen. Furthermore, NF-κB was found to serve as a positive regulator of Snail1 in breast cancer cells, and simultaneous inhibition of NF-κB and Snail1 resulted in additional increase in cell response to tamoxifen. In general, the results obtained demonstrate the phenomenon of Snail1 activation in the hormone-resistant breast cancer cells, and show that Snail1 and NF-κB may serve as an important targets in the treatment of breast cancer, both estrogen-dependent and estrogen-independent tumors.
Collapse
Affiliation(s)
- Alexander M Scherbakov
- Laboratory of Clinical Biochemistry, Institute of Clinical Oncology, N.N. Blokhin Cancer Research Centre, Kashirskoye sh. 24, Moscow 115478, Russia.
| | | | | | | |
Collapse
|
417
|
Abstract
The basic elements of the transforming growth factor-β (TGFβ) pathway were revealed more than a decade ago. Since then, the concept of how the TGFβ signal travels from the membrane to the nucleus has been enriched with additional findings, and its multifunctional nature and medical relevance have relentlessly come to light. However, an old mystery has endured: how does the context determine the cellular response to TGFβ? Solving this question is key to understanding TGFβ biology and its many malfunctions. Recent progress is pointing at answers.
Collapse
Affiliation(s)
- Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
| |
Collapse
|
418
|
Asli NS, Harvey RP. Epithelial to mesenchymal transition as a portal to stem cell characters embedded in gene networks. Bioessays 2012; 35:191-200. [DOI: 10.1002/bies.201200089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
419
|
Herriges JC, Yi L, Hines EA, Harvey JF, Xu G, Gray P, Ma Q, Sun X. Genome-scale study of transcription factor expression in the branching mouse lung. Dev Dyn 2012; 241:1432-53. [PMID: 22711520 PMCID: PMC3529173 DOI: 10.1002/dvdy.23823] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2012] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Mammalian lung development consists of a series of precisely choreographed events that drive the progression from simple lung buds to the elaborately branched organ that fulfills the vital function of gas exchange. Strict transcriptional control is essential for lung development. Among the large number of transcription factors encoded in the mouse genome, only a small portion of them are known to be expressed and function in the developing lung. Thus a systematic investigation of transcription factors expressed in the lung is warranted. RESULTS To enrich for genes that may be responsible for regional growth and patterning, we performed a screen using RNA in situ hybridization to identify genes that show restricted expression patterns in the embryonic lung. We focused on the pseudoglandular stage during which the lung undergoes branching morphogenesis, a cardinal event of lung development. Using a genome-scale probe set that represents over 90% of the transcription factors encoded in the mouse genome, we identified 62 transcription factor genes with localized expression in the epithelium, mesenchyme, or both. Many of these genes have not been previously implicated in lung development. CONCLUSIONS Our findings provide new starting points for the elucidation of the transcriptional circuitry that controls lung development.
Collapse
Affiliation(s)
- John C. Herriges
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Lan Yi
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Elizabeth A. Hines
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Julie F. Harvey
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Guoliang Xu
- Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China 200031
| | - Paul Gray
- Department of Anatomy and Neurobiology, Washington University, St. Louis, MO 63110
| | - Qiufu Ma
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Xin Sun
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
420
|
Watari A, Yagi K, Kondoh M. A simple reporter assay for screening claudin-4 modulators. Biochem Biophys Res Commun 2012; 426:454-60. [PMID: 22960168 DOI: 10.1016/j.bbrc.2012.08.083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 01/09/2023]
Abstract
Claudin-4, a member of a tetra-transmembrane protein family that comprises 27 members, is a key functional and structural component of the tight junction-seal in mucosal epithelium. Modulation of the claudin-4-barrier for drug absorption is now of research interest. Disruption of the claudin-4-seal occurs during inflammation. Therefore, claudin-4 modulators (repressors and inducers) are promising candidates for drug development. However, claudin-4 modulators have never been fully developed. Here, we attempted to design a screening system for claudin-4 modulators by using a reporter assay. We prepared a plasmid vector coding a claudin-4 promoter-driven luciferase gene and established stable reporter gene-expressing cells. We identified thiabendazole, carotene and curcumin as claudin-4 inducers, and potassium carbonate as a claudin-4 repressor by using the reporter cells. They also increased or decreased, respectively, the integrity of the tight junction-seal in Caco-2 cells. This simple reporter system will be a powerful tool for the development of claudin-4 modulators.
Collapse
Affiliation(s)
- Akihiro Watari
- Laboratory of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
421
|
Xiao D, He J. Epithelial mesenchymal transition and lung cancer. J Thorac Dis 2012; 2:154-9. [PMID: 22263037 DOI: 10.3978/j.issn.2072-1439.2010.02.03.7] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 08/30/2010] [Indexed: 12/24/2022]
Abstract
Despite the therapeutic advances, lung cancer remains the leading cause of cancer-related death in the United States and worldwide. Metastasis and recurrence are considered to be responsible for the failure of treatment. Recent studies indicate Epithelial mesenchymal transition, an evolutionarily conserved process, plays an important role in the embryonic development and cancer progression and is involved in the metastasis, drug resistance and correlated with progression of many tumors. Of importance, EMT is also involved in the acquisition of stemness phenotype of tumor cells. Although a growing body of evidence supports the role of EMT in the progression of many cancers, and a number of signal pathways, transcriptional factors and microRNAs involved in EMT process have been identified. However, the role of EMT in lung cancer is elusive. In this review, we present the recent findings in EMT including the molecular mechanisms of EMT, and the involvement of EMT in cancer progression, cancer stem cells and drug resistance, especially focusing on the correlation of EMT and lung cancer.
Collapse
Affiliation(s)
- Dakai Xiao
- Department of Cardiothoracic Surgery, the First Affiliated Hospital of Guangzhou Medical College
| | | |
Collapse
|
422
|
Voutsadakis IA. Epithelial to mesenchymal transition in the pathogenesis of uterine malignant mixed Müllerian tumours: the role of ubiquitin proteasome system and therapeutic opportunities. Clin Transl Oncol 2012; 14:243-53. [PMID: 22484631 DOI: 10.1007/s12094-012-0792-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Malignant mixed Müllerian tumours (malignant mixed mesodermal tumours, MMMT) of the uterus are metaplastic carcinomas with a sarcomatous component and thus they are also called carcinosarcomas. It has now been accepted that the sarcomatous component is derived from epithelial elements that have undergone metaplasia. The process that produces this metaplasia is epithelial to mesenchymal transition (EMT), which has recently been described as a neoplasia-associated programme shared with embryonic development and enabling neoplastic cells to move and metastasise. The ubiquitin proteasome system (UPS) regulates the turnover and functions of hundreds of cellular proteins. It plays important roles in EMT by being involved in the regulation of several pathways participating in the execution of this metastasis-associated programme. In this review the specifi c role of UPS in EMT of MMMT is discussed and therapeutic opportunities from UPS manipulations are proposed.
Collapse
Affiliation(s)
- I A Voutsadakis
- Centre Pluridisciplinaire d'Oncologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| |
Collapse
|
423
|
Batlle R, Alba-Castellón L, Loubat-Casanovas J, Armenteros E, Francí C, Stanisavljevic J, Banderas R, Martin-Caballero J, Bonilla F, Baulida J, Casal JI, Gridley T, García de Herreros A. Snail1 controls TGF-β responsiveness and differentiation of mesenchymal stem cells. Oncogene 2012; 32:3381-9. [PMID: 22869142 PMCID: PMC3494751 DOI: 10.1038/onc.2012.342] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 06/08/2012] [Accepted: 06/24/2012] [Indexed: 01/02/2023]
Abstract
The Snail1 transcriptional repressor plays a key role in triggering epithelial to mesenchymal transition. Although Snail1 is widely expressed in early development, in adult animals it is limited to a subset of mesenchymal cells where it has a largely unknown function. Using a mouse model with inducible depletion of Snail1, here we demonstrate that Snail1 is required to maintain mesenchymal stem cells (MSCs). This effect is associated to the responsiveness to TGF-β1 which shows a strong Snail1 dependence. Snail1-depletion in conditional knock-out adult animals causes a significant decrease in the number of bone marrow-derived MSCs. In culture, Snail1-deficient MSCs prematurely differentiate to osteoblasts or adipocytes and, in contrast to controls, are resistant to the TGF-β1-induced differentiation block. These results demonstrate a new role for Snail1 in TGF-β response and MSC maintenance.
Collapse
Affiliation(s)
- R Batlle
- Programa de Recerca en Càncer, IMIM-Hospital del Mar, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
424
|
A comparison of epithelial-to-mesenchymal transition and re-epithelialization. Semin Cancer Biol 2012; 22:471-83. [PMID: 22863788 DOI: 10.1016/j.semcancer.2012.07.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 07/20/2012] [Indexed: 12/21/2022]
Abstract
Wound healing and cancer metastasis share a common starting point, namely, a change in the phenotype of some cells from stationary to motile. The term, epithelial-to-mesenchymal transition (EMT) describes the changes in molecular biology and cellular physiology that allow a cell to transition from a sedentary cell to a motile cell, a process that is relevant not only for cancer and regeneration, but also for normal development of multicellular organisms. The present review compares the similarities and differences in cellular response at the molecular level as tumor cells enter EMT or as keratinocytes begin the process of re-epithelialization of a wound. Looking toward clinical interventions that might modulate these processes, the mechanisms and outcomes of current and potential therapies are reviewed for both anti-cancer and pro-wound healing treatments related to the pathways that are central to EMT. Taken together, the comparison of re-epithelialization and tumor EMT serves as a starting point for the development of therapies that can selectively modulate different forms of EMT.
Collapse
|
425
|
Hill L, Browne G, Tulchinsky E. ZEB/miR-200 feedback loop: at the crossroads of signal transduction in cancer. Int J Cancer 2012; 132:745-54. [PMID: 22753312 DOI: 10.1002/ijc.27708] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/19/2012] [Indexed: 12/17/2022]
Abstract
Embryonic differentiation programs of epithelial-mesenchymal and mesenchymal-epithelial transition (EMT and MET) represent a mechanistic basis for epithelial cell plasticity implicated in cancer. Transcription factors of the ZEB protein family (ZEB1 and ZEB2) and several microRNA species (predominantly miR-200 family members) form a double negative feedback loop, which controls EMT and MET programs in both development and tumorigenesis. In this article, we review crosstalk between the ZEB/miR-200 axis and several signal transduction pathways activated at different stages of tumor development. The close association of ZEB proteins with these pathways is indirect evidence for the involvement of a ZEB/miR-200 loop in tumor initiation, progression and spread. Additionally, the configuration of signaling pathways involving ZEB/miR-200 loop suggests that ZEB1 and ZEB2 may have different, possibly even opposing, roles in some forms of human cancer.
Collapse
Affiliation(s)
- Louise Hill
- Department of Cancer Studies and Molecular Medicine, University of Leicester, United Kingdom
| | | | | |
Collapse
|
426
|
Zhang J, Liang Q, Lei Y, Yao M, Li L, Gao X, Feng J, Zhang Y, Gao H, Liu DX, Lu J, Huang B. SOX4 induces epithelial-mesenchymal transition and contributes to breast cancer progression. Cancer Res 2012; 72:4597-608. [PMID: 22787120 DOI: 10.1158/0008-5472.can-12-1045] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a developmental program, which is associated with breast cancer progression and metastasis. Here, we report that ectopic overexpression of SOX4 in immortalized human mammary epithelial cells is sufficient for acquisition of mesenchymal traits, enhanced cell migration, and invasion, along with epithelial stem cell properties defined by the presence of a CD44(high)/CD24(low) cell subpopulation. SOX4 positively regulated expression of known EMT inducers, also activating the TGF-β pathway to contribute to EMT. SOX4 itself was induced by TGF-β in mammary epithelial cells and was required for TGF-β-induced EMT. Murine xenograft experiments showed that SOX4 cooperated with oncogenic Ras to promote tumorigenesis in vivo. Finally, in clinical specimens of human breast cancer, we found that SOX4 was abnormally overexpressed and correlated with the triple-negative breast cancer subtype (ER(-)/PR(-)/HER2(-)). Our findings define an important function for SOX4 in the progression of breast cancer by orchestrating EMT, and they implicate this gene product as a marker of poor prognosis in this disease.
Collapse
Affiliation(s)
- Jianchao Zhang
- The Institute of Genetics and Cytology, The Second Hospital of Jilin University, Changchun, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
427
|
Runkle EA, Rice SJ, Qi J, Masser D, Antonetti DA, Winslow MM, Mu D. Occludin is a direct target of thyroid transcription factor-1 (TTF-1/NKX2-1). J Biol Chem 2012; 287:28790-801. [PMID: 22761434 DOI: 10.1074/jbc.m112.367987] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The thyroid transcription factor 1 gene (TTF-1 or NKX2-1) is essential to lung development; however, it is also a critical factor in lung cancer. TTF-1 is amplified in lung cancers, suggesting that it is a gain-of-function lung oncogene. Conversely, TTF-1 counters epithelial to mesenchymal transition in cell-based studies and inhibits progression of primary lung adenocarcinomas to metastases in an animal model of lung adenocarcinomas. The unifying theory regarding TTF-1 is that it exhibits both pro-oncogenic and anti-metastatic function depending on the cellular context. Occludin is the first discovered constituent of the epithelial tight junction; in recent years, a functional role of occludin as a tumor suppressor has begun to emerge. Here, we demonstrate that TTF-1 transactivated the expression of the epithelial tight junction molecules occludin (OCLN) and claudin-1 (CLDN1). We show that transcriptional activation occurred through a direct interaction of TTF-1 with the OCLN and CLDN1 promoters. Furthermore, in cells that lack TTF-1, exogenous TTF-1 expression dampened the inhibitory effect of TGF-β on occludin and claudin-1 content. Using cells derived from a genetically engineered mouse model of lung adenocarcinomas, we observed that silenced TTF-1 expression down-regulated occludin, which we supported with additional siRNA experiments. Finally, TTF-1 knockdown conferred human lung cancer cells resistance to anoikis, and expression of occludin restored cellular sensitivity to anoikis. Overexpression of occludin impeded migration and induced anoikis in lung carcinoma cells. Collectively, these data suggest that TTF-1 transcriptionally regulates occludin, which represents another avenue of TTF-1-mediated metastasis suppression.
Collapse
Affiliation(s)
- E Aaron Runkle
- Department of Pathology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | |
Collapse
|
428
|
Lee KW, Lee NK, Kim JH, Kang MS, Yoo HY, Kim HH, Um SH, Kim SH. Twist1 causes the transcriptional repression of claudin-4 with prognostic significance in esophageal cancer. Biochem Biophys Res Commun 2012; 423:454-60. [DOI: 10.1016/j.bbrc.2012.05.140] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 05/28/2012] [Indexed: 12/21/2022]
|
429
|
Masaki S, Masutani H, Yoshihara E, Yodoi J. Deficiency of thioredoxin binding protein-2 (TBP-2) enhances TGF-β signaling and promotes epithelial to mesenchymal transition. PLoS One 2012; 7:e39900. [PMID: 22768160 PMCID: PMC3387201 DOI: 10.1371/journal.pone.0039900] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 05/28/2012] [Indexed: 12/29/2022] Open
Abstract
Background Transforming growth factor beta (TGF-β) has critical roles in regulating cell growth, differentiation, apoptosis, invasion and epithelial-mesenchymal transition (EMT) of various cancer cells. TGF-β-induced EMT is an important step during carcinoma progression to invasion state. Thioredoxin binding protein-2 (TBP-2, also called Txnip or VDUP1) is downregulated in various types of human cancer, and its deficiency results in the earlier onset of cancer. However, it remains unclear how TBP-2 suppresses the invasion and metastasis of cancer. Principal Findings In this study, we demonstrated that TBP-2 deficiency increases the transcriptional activity in response to TGF-β and also enhances TGF-β-induced Smad2 phosphorylation levels. Knockdown of TBP-2 augmented the TGF-β-responsive expression of Snail and Slug, transcriptional factors related to TGF-β-mediated induction of EMT, and promoted TGF-β-induced spindle-like morphology consistent with the depletion of E-Cadherin in A549 cells. Conclusions/Significance Our results indicate that TBP-2 deficiency enhances TGF-β signaling and promotes TGF-β-induced EMT. The control of TGF-β-induced EMT is critical for the inhibition of the invasion and metastasis. Thus TBP-2, as a novel regulatory molecule of TGF-β signaling, is likely to be a prognostic indicator or a potential therapeutic target for preventing tumor progression.
Collapse
Affiliation(s)
- So Masaki
- Laboratory of Infection and Prevention, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Hiroshi Masutani
- Laboratory of Infection and Prevention, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Eiji Yoshihara
- Laboratory of Infection and Prevention, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Junji Yodoi
- Laboratory of Infection and Prevention, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto, Japan
- Department of Bioinspired Sciences, Center for Cell Signaling Research, Ewha Womans University, Seoul, South Korea
- * E-mail:
| |
Collapse
|
430
|
Wu CY, Tsai YP, Wu MZ, Teng SC, Wu KJ. Epigenetic reprogramming and post-transcriptional regulation during the epithelial-mesenchymal transition. Trends Genet 2012; 28:454-63. [PMID: 22717049 DOI: 10.1016/j.tig.2012.05.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/18/2012] [Accepted: 05/18/2012] [Indexed: 01/08/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is a developmental process that is important for organ development, metastasis, cancer stemness, and organ fibrosis. The EMT process is regulated by different signaling pathways as well as by various epigenetic and post-transcriptional mechanisms. Here, we review recent progress describing the role of different chromatin modifiers in various signaling events leading to EMT, including hypoxia, transforming growth factor (TGF)-β, Notch, and Wnt. We also discuss post-transcriptional mechanisms, such as RNA alternative splicing and the effects of miRNAs in EMT regulation. Furthermore, we highlight on-going and future work aimed at a detailed understanding of the epigenetic and post-transcriptional mechanisms that regulate EMT. This work will shed new light on the cellular and tumorigenic processes affected by EMT misregulation.
Collapse
Affiliation(s)
- Chung-Yin Wu
- Department of Occupational Medicine, Far Eastern Memorial Hospital, New Taipei City, 220, Taiwan
| | | | | | | | | |
Collapse
|
431
|
Fuxe J, Karlsson MCI. TGF-β-induced epithelial-mesenchymal transition: a link between cancer and inflammation. Semin Cancer Biol 2012; 22:455-61. [PMID: 22627188 DOI: 10.1016/j.semcancer.2012.05.004] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 05/10/2012] [Accepted: 05/13/2012] [Indexed: 01/23/2023]
Abstract
Metastatic spread of tumor cells to vital organs is the major cause of death in cancer. Accumulating data support an important role of infiltrating immune cells in promoting carcinoma progression into metastatic disease. Tumor-infiltrating immune cells produce and secrete cytokines, growth factors and proteases that re-activate latent developmental processes including epithelial-mesenchymal transition (EMT). EMT provides tumor cells with invasive, migratory and stem cell properties allowing them to disseminate and propagate at distant sites. Induction of EMT requires two criteria to be fulfilled: (i) cells are competent to undergo EMT (ii) an EMT-permissive microenvironment exists. The cytokine TGF-β, which is expressed by tumor-infiltrating immune cells, stands out as a master regulator of the pro-invasive tumor microenvironment. TGF-β cooperates with stem cell pathways, such as Wnt and Ras signaling, to induce EMT. In addition, TGF-β contributes to an EMT-permissive microenvironment by switching the phenotypes of tumor-infiltrating immune cells, which thereby mount pro-invasive and pro-metastatic immune responses. In this review, we discuss the role of TGF-β-induced EMT as a link between cancer and inflammation in the context of questions, which from our point of view are key to answer in order to understand the functionality of EMT in tumors.
Collapse
Affiliation(s)
- Jonas Fuxe
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institute, SE-17177 Stockholm, Sweden.
| | | |
Collapse
|
432
|
Talbot LJ, Bhattacharya SD, Kuo PC. Epithelial-mesenchymal transition, the tumor microenvironment, and metastatic behavior of epithelial malignancies. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 3:117-136. [PMID: 22773954 PMCID: PMC3388731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 04/02/2012] [Indexed: 06/01/2023]
Abstract
OBJECTIVE The mechanisms of cancer metastasis have been intensely studied recently and may provide vital therapeutic targets for metastasis prevention. We sought to review the contribution of epithelial-mesenchymal transition and the tumor microenvironment to cancer metastasis. SUMMARY BACKGROUND DATA Epithelial-mesenchymal transition is the process by which epithelial cells lose cell-cell junctions and baso-apical polarity and acquire plasticity, mobility, invasive capacity, stemlike characteristics, and resistance to apoptosis. This cell biology program is active in embryology, wound healing, and pathologically in cancer metastasis, and along with the mechanical and cellular components of the tumor microenvironment, provides critical impetus for epithelial malignancies to acquire metastatic capability. METHODS A literature review was performed using PubMed for "epithelial-mesenchymal transition", "tumor microenvironment", "TGF-β and cancer", "Wnt and epithelial-mesenchymal transition", "Notch and epithelial-mesenchymal transition", "Hedgehog and epithelial-mesenchymal transition" and "hypoxia and metastasis". Relevant primary studies and review articles were assessed. RESULTS Major signaling pathways involved in epithelial-mesenchymal transition include TGF-β, Wnt, Notch, Hedgehog, and others. These pathways converge on several transcription factors, including zinc finger proteins Snail and Slug, Twist, ZEB 1/2, and Smads. These factors interact with one another and others to provide crosstalk between the relevant signaling pathways. MicroRNA suppression and epigenetic changes also influence the changes involved in epithelial-mesenchymal transition. Cellular and mechanical components of the tumor microenvironment are also critical in determining metastatic potential. CONCLUSIONS While the mechanisms promoting metastasis are extremely wide ranging and still under intense investigation, the epithelial-mesenchymal transition program and the tumor microenvironment are both critically involved in the acquisition of metastatic potential. As our understanding of these complexities increases, the ability to target these processes for therapy will offer new promise in the treatment of epithelial malignancy and metastasis.
Collapse
Affiliation(s)
| | | | - Paul C Kuo
- Department of Surgery, Loyola University Medical CenterMaywood, IL
- Department of Molecular Pharmacology and Therapeutics, Loyola University Medical CenterMaywood, IL, USA
| |
Collapse
|
433
|
Sorbye SW, Kilvaer TK, Valkov A, Donnem T, Smeland E, Al-Shibli K, Bremnes RM, Busund LT. Prognostic impact of CD57, CD68, M-CSF, CSF-1R, Ki67 and TGF-beta in soft tissue sarcomas. BMC Clin Pathol 2012; 12:7. [PMID: 22554285 PMCID: PMC3408340 DOI: 10.1186/1472-6890-12-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 05/03/2012] [Indexed: 01/22/2023] Open
Abstract
Background Prognostic markers in curable STS may have the potential to guide therapy after surgical resection. The purpose of this study was to clarify the prognostic impact of the presence of cells and growth factors belonging to the innate immune system in soft tissue sarcomas (STS). The significance of macrophages (CD68), their growth factor macrophage colony-stimulating factor (M-CSF), its receptor colony-stimulating factor-1 receptor (CSF-1R), natural killer cells (CD57) and the general immunomodulating molecule (TGF-beta) are all controversial in STS. Herein, these markers are evaluated and compared to the cell proliferation marker Ki67. Methods Tissue microarrays from 249 patients with non-gastrointestinal (non-GIST) STS were constructed from duplicate cores of viable and representative neoplastic tumor areas and duplicate cores of peritumoral capsule. Immunohistochemistry was used to evaluate the expression of CD68, M-CSF, CSF-1R, CD57, TGF-beta and Ki67 in tumor and peritumoral capsule. Results In univariate analyses increased expression of M-CSF (P = 0.034), Ki67 (P < 0.001) and TGF-beta (P = 0.003) in tumor correlated with shorter disease-specific survival (DSS). Increased expression of CD68 in tumor correlated significantly with malignancy grade (P = 0.016), but not DSS (P = 0.270). Increased expression of Ki67 in peritumoral capsule tended to correlate with a shorter DSS (P = 0.057). In multivariate analyses, co-expression of M-CSF and TGF-beta (P = 0.022) in tumor and high expression of Ki67 (P = 0.019) in peritumoral capsule were independent negative prognostic factors for DSS. Conclusions Increased co-expression of M-CSF and TGF-beta in tumor in patients with STS, and increased expression of Ki67 in peritumoral capsule were independent negative prognostic factors for DSS.
Collapse
Affiliation(s)
- Sveinung W Sorbye
- Dept of Clinical Pathology, University Hospital of North Norway, Tromso, 9038, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
434
|
Mima K, Okabe H, Ishimoto T, Hayashi H, Nakagawa S, Kuroki H, Watanabe M, Beppu T, Tamada M, Nagano O, Saya H, Baba H. CD44s regulates the TGF-β-mediated mesenchymal phenotype and is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Res 2012; 72:3414-23. [PMID: 22552294 DOI: 10.1158/0008-5472.can-12-0299] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The prognosis for individuals diagnosed with hepatocellular carcinoma (HCC) remains poor because of the high frequency of invasive tumor growth, intrahepatic spread, and extrahepatic metastasis. Here, we investigated the role of the standard isoform of CD44 (CD44s), a major adhesion molecule of the extracellular matrix and a cancer stem cell marker, in the TGF-β-mediated mesenchymal phenotype of HCC. We found that CD44s was the dominant form of CD44 mRNA expressed in HCC cells. Overexpression of CD44s promoted tumor invasiveness and increased the expression of vimentin, a mesenchymal marker, in HCC cells. Loss of CD44s abrogated these changes. Also in the setting of CD44s overexpression, treatment with TGF-β1 induced the mesenchymal phenotype of HCC cells, which was characterized by low E-cadherin and high vimentin expression. Loss of CD44s inhibited TGF-β-mediated vimentin expression, mesenchymal spindle-like morphology, and tumor invasiveness. Clinically, overexpression of CD44s was associated with low expression of E-cadherin, high expression of vimentin, a high percentage of phospho-Smad2-positive nuclei, and poor prognosis in HCC patients, including reduced disease-free and overall survival. Together, our findings suggest that CD44s plays a critical role in the TGF-β-mediated mesenchymal phenotype and therefore represents a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Kosuke Mima
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Honjo, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
435
|
Saitoh M, Miyazawa K. Transcriptional and post-transcriptional regulation in TGF-β-mediated epithelial-mesenchymal transition. J Biochem 2012; 151:563-71. [PMID: 22528665 DOI: 10.1093/jb/mvs040] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a crucial event in appropriate embryonic development as well as in wound healing, tissue repair and cancer progression in adult tissues. EMT endows cells with migratory and invasive properties, inhibits apoptosis and senescence, contributes to immunosuppression and induces stress resistance and stem cell properties. Many secreted polypeptide factors act in a sequential or cooperative manner to elicit EMT. Transforming growth factor (TGF)-β can initiate and maintain EMT by activating intracellular signalling pathways. Recent studies have provided new insights into molecular mechanisms by which TGF-β mediates changes in transcription of EMT regulators and EMT marker proteins, as well as changes in alternative splicing controlled by epithelial splicing regulatory proteins 1 and 2. Here, we present some of the emerging molecular mechanisms that mediate EMT upon exposure to TGF-β.
Collapse
Affiliation(s)
- Masao Saitoh
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan.
| | | |
Collapse
|
436
|
Xue HT, Wang HG, Huang XD, Shen P, Ji GZ. Loss of Smad4 expression inhibits epithelial-mesenchymal transition in SMMC-7721 cells. Shijie Huaren Xiaohua Zazhi 2012; 20:923-929. [DOI: 10.11569/wcjd.v20.i11.923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the influence of loss of Smad4 expression on TGF-β1-induced epithelial-mesenchymal transition in the human hepatocellular carcinoma cell line SMMC-7721.
METHODS: The influence of loss of Smad4 expression on the expression of β-catenin and Vimentin mRNAs and proteins was evaluated by RT-PCR and Western blot. Immunofluorescence was used to analyze the location and fluorescence intensity of Smad4, β-catenin, Vimentin in non-transfected SMMC-7721 cells and those transfected with Smad-specific siRNAs (RNAi-Smad4-2 and RNAi-Smad4-12) or unspecific siRNA (RNAi-NC).
RESULTS: Compared to non-transfected SMMC-7721 cells and those tranfected with RNAi-NC, the expression of β-catenin mRNA and protein remarkably increased in SMMC-7721 cells transfected with RNAi-Smad4-2 or RNAi-Smad4-12 (all P < 0.05). Loss of Smad4 expression promoted β-catenin nuclear translocation. Immunofluorescence assay revealed that β-catenin fluorescence was located in the nuclei of non-transfected SMMC-7721 cells and those tranfected with RNAi-NC, but in the cytoplasm of SMMC-7721 cells transfected with RNAi-Smad4-2 or RNAi-Smad4-12. On the other hand, loss of Smad4 expression down-regulated Vimentin protein expression (P < 0.05) and cytoplasmic fluorescence intensity, but had no significant impact on Vimentin mRNA expression in SMMC-7721 cells and those transfected with different siRNAs.
CONCLUSION: Loss of Smad4 expression regulates β-catenin and Vimentin and therefore plays an important role in inhibiting epithelial-mesenchymal transition in SMMC-7721 cells.
Collapse
|
437
|
Smad2/Smad3 in endothelium is indispensable for vascular stability via S1PR1 and N-cadherin expressions. Blood 2012; 119:5320-8. [PMID: 22498737 DOI: 10.1182/blood-2011-12-395772] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Transforming growth factor-β (TGF-β) is involved in vascular formation through activin receptor-like kinase (ALK)1 and ALK5. ALK5, which is expressed ubiquitously, phosphorylates Smad2 and Smad3, whereas endothelial cell (EC)-specific ALK1 activates Smad1 and Smad5. Because ALK5 kinase activity is required for ALK1 to transduce TGF-β signaling via Smad1/5 in ECs, ALK5 knockout (KO) mice were not able to give us the precise mechanisms by which TGF-β/ALK5/Smad2/3 signaling is implicated in angiogenesis. To delineate the role of Smad2/3 signaling in endothelium, the Smad2 gene in Smad3 KO mice was selectively deleted in ECs using Tie2-Cre transgenic mice, termed EC-specific Smad2/3 double KO (EC-Smad2/3KO) mice. EC-Smad2/3KO embryos revealed hemorrhage leading to embryonic lethality around E12.5. EC-Smad2/3KO embryos exhibited no abnormality of vasculogenesis and angiogenesis in both the yolk sac and the whole embryo, whereas vascular maturation was incomplete because of inadequate assembly of mural cells in the vasculature. Wide gaps between ECs and mural cells could be observed in the vasculature of EC-Smad2/3KO mice because of reduced expression of N-cadherin and sphingosine-1-phosphate receptor-1 (S1PR1) in ECs from those mice. These results indicated that Smad2/3 signaling in ECs is indispensable for maintenance of vascular integrity via the fine-tuning of N-cadherin, VE-cadherin, and S1PR1 expressions in the vasculature.
Collapse
|
438
|
Luo WR, Li SY, Cai LM, Yao KT. High expression of nuclear Snail, but not cytoplasmic staining, predicts poor survival in nasopharyngeal carcinoma. Ann Surg Oncol 2012; 19:2971-9. [PMID: 22476819 DOI: 10.1245/s10434-012-2347-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Indexed: 12/19/2022]
Abstract
BACKGROUND Transcription factor Snail has been shown to promote tumor progression and metastasis in various cancers. However, its clinical significance in nasopharyngeal carcinoma (NPC) is still scanty. We have explored the clinical significance of Snail expression and its association with patient outcome in NPC. METHODS Immunohistochemistry was used to examine the expression levels of Snail in 122 patients with NPC. RESULTS Cytoplasmic Snail was detected in 37.7 %, and nuclear staining was detected in 49.2 % of primary tumors, respectively. No significant associations were found between cytoplasmic Snail and the clinicopathologic variables except lymph node metastasis (P = 0.042). However, nuclear Snail was significantly associated with tumor stage (P = 0.003), T classification (P = 0.045), lymph node metastasis (P = 0.019), distant metastasis (P = 0.003), and reduced E-cadherin expression (P = 0.021). Patients with high nuclear Snail expression, but not cytoplasmic staining, had significantly shorter survival than those with low expression (P < 0.001). Significantly, nuclear Snail was an independent prognostic predictor for NPC (P < 0.001). Furthermore, the prognostic impact was largely limited to stage III-IV patients. CONCLUSIONS We demonstrated first that nuclear Snail, but not cytoplasmic staining, predicts worse outcome. In addition, the prognostic value in stage III-IV suggests that nuclear Snail could be a potential therapeutic target for late stage of NPC patients.
Collapse
Affiliation(s)
- Wei-Ren Luo
- Cancer Research Institute, Southern Medical University, 1838 Guangzhou Road North, Guangzhou, People's Republic of China
| | | | | | | |
Collapse
|
439
|
Jin Y, Ratnam K, Chuang PY, Fan Y, Zhong Y, Dai Y, Mazloom A, Chen EY, D'Agati V, Xiong H, Ross M, Chen N, Ma'ayan A, He JC. A systems approach identifies HIPK2 as a key regulator of kidney fibrosis. Nat Med 2012; 18:580-8. [PMID: 22406746 PMCID: PMC3321097 DOI: 10.1038/nm.2685] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 01/23/2012] [Indexed: 12/19/2022]
Abstract
Kidney fibrosis is a common process that leads to the progression of various types of kidney disease. We used an integrated computational and experimental systems biology approach to identify protein kinases that regulate gene expression changes in the kidneys of human immunodeficiency virus (HIV) transgenic mice (Tg26 mice), which have both tubulointerstitial fibrosis and glomerulosclerosis. We identified homeo-domain interacting protein kinase 2 (HIPK2) as a key regulator of kidney fibrosis. HIPK2 was upregulated in the kidneys of Tg26 mice and in those of patients with various kidney diseases. HIV infection increased the protein concentrations of HIPK2 by promoting oxidative stress, which inhibited the seven in absentia homolog 1 (SIAH1)-mediated proteasomal degradation of HIPK2. HIPK2 induced apoptosis and the expression of epithelial-to-mesenchymal transition markers in kidney epithelial cells by activating the p53, transforming growth factor β (TGF-β)-SMAD family member 3 (Smad3) and Wnt-Notch pathways. Knockout of HIPK2 improved renal function and attenuated proteinuria and kidney fibrosis in Tg26 mice, as well as in other murine models of kidney fibrosis. We therefore conclude that HIPK2 is a potential target for anti-fibrosis therapy.
Collapse
Affiliation(s)
- Yuanmeng Jin
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, NY
- Department of Nephrology, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Krishna Ratnam
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, NY
| | - Peter Y. Chuang
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, NY
| | - Ying Fan
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, NY
| | - Yifei Zhong
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, NY
| | - Yan Dai
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, NY
| | - Amin Mazloom
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY
- Systems Biology Center New York (SBCNY), New York, NY
| | - Edward Y. Chen
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY
- Systems Biology Center New York (SBCNY), New York, NY
| | | | - Huabao Xiong
- Immunobiology Center, Mount Sinai School of Medicine, New York, NY
| | - Michael Ross
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, NY
| | - Nan Chen
- Department of Nephrology, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Avi Ma'ayan
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY
- Systems Biology Center New York (SBCNY), New York, NY
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, NY
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY
- James J. Peters Veteran Administration Medical Center, New York, NY
| |
Collapse
|
440
|
Ubiquitination and the Ubiquitin-Proteasome System as regulators of transcription and transcription factors in epithelial mesenchymal transition of cancer. Tumour Biol 2012; 33:897-910. [PMID: 22399444 DOI: 10.1007/s13277-012-0355-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/09/2012] [Indexed: 02/06/2023] Open
Abstract
Epithelial to Mesenchymal Transition (EMT) in cancer is a process that allows cancer cells to detach from neighboring cells, become mobile and metastasize and shares many signaling pathways with development. Several molecular mechanisms which regulate oncogenic properties in neoplastic cells such as proliferation, resistance to apoptosis and angiogenesis through transcription factors or other mediators are also regulators of EMT. These pathways and downstream transcription factors are, in their turn, regulated by ubiquitination and the Ubiquitin-Proteasome System (UPS). Ubiquitination, the covalent link of the small 76-amino acid protein ubiquitin to target proteins, serves as a signal for protein degradation by the proteasome or for other outcomes such as endocytosis, degradation by the lysosome or directing these proteins to specific cellular compartments. This review discusses aspects of the regulation of EMT by ubiquitination and the UPS and underlines its complexity focusing on transcription and transcription factors regulating EMT and are being regulated by ubiquitination.
Collapse
|
441
|
Reelin is involved in transforming growth factor-β1-induced cell migration in esophageal carcinoma cells. PLoS One 2012; 7:e31802. [PMID: 22393371 PMCID: PMC3290530 DOI: 10.1371/journal.pone.0031802] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Accepted: 01/17/2012] [Indexed: 12/14/2022] Open
Abstract
Reelin (RELN), which is a glycoprotein secreted by Cajal-Retzius cells of the developing cerebral cortex, plays an important role in neuronal migration, but its role in cell migration and cancer metastasis is largely unclear. Here, we showed that cell motility was significantly increased in KYSE-510 cells by TGF-β1 treatment. Moreover, TGF-β1 decreased RELN mRNA expression and overexpression of Reelin at least partly reversed TGF-β1-induced cell migration in KYSE-30 cells. Furthermore, this negative regulation of Reelin expression by TGF-β1 was through Snail, one transcription factor which was induced by TGF-β1 in KYSE-510 cells. RELN promoter activity was reduced in parallel with the induction of Snail after TGF-β1 treatment and Snail suppressed both RELN promoter activity and expression through binding to E-box sequences in the RELN promoter region in ESCC cells. Knockdown of RELN induced cell migration in KYSE-510 cells, together with the increase of mesenchymal markers expression. Taken together, Reelin is an essential negative regulator in the TGF-β1-induced cell migration process, and is suppressed by TGF-β pathway at the transcriptional level through Snail regulation. Therefore, the correlation of Reelin and TGF-β pathway was critical in cancer metastasis, and Reelin could be one potential anti-metastasis target in future clinical practice.
Collapse
|
442
|
Heldin CH, Vanlandewijck M, Moustakas A. Regulation of EMT by TGFβ in cancer. FEBS Lett 2012; 586:1959-70. [PMID: 22710176 DOI: 10.1016/j.febslet.2012.02.037] [Citation(s) in RCA: 388] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/21/2012] [Accepted: 02/21/2012] [Indexed: 12/17/2022]
Abstract
Transforming growth factor-β (TGFβ) suppresses tumor formation since it inhibits cell growth and promotes apoptosis. However, in advanced cancers TGFβ elicits tumor promoting effects through its ability to induce epithelial-mesenchymal transition (EMT) which enhances invasiveness and metastasis; in addition, TGFβ exerts tumor promoting effects on non-malignant cells of the tumor, including suppression of immune surveillance and stimulation of angiogenesis. TGFβ promotes EMT by transcriptional and posttranscriptional regulation of a group of transcription factors that suppresses epithelial features, such as expression of components of cell junctions and polarity complexes, and enhances mesenchymal features, such as production of matrix molecules and several cytokines and growth factors that stimulate cell migration. The EMT program has certain similarities with the stem cell program. Inducers and effectors of EMT are interesting targets for the development of improved diagnosis, prognosis and therapy of cancer.
Collapse
Affiliation(s)
- Carl-Henrik Heldin
- Ludwig Institute for Cancer Research, Uppsala University, Box 595, SE-751 24 Uppsala, Sweden.
| | | | | |
Collapse
|
443
|
Inhibition of transforming growth factor-activated kinase 1 (TAK1) blocks and reverses epithelial to mesenchymal transition of mesothelial cells. PLoS One 2012; 7:e31492. [PMID: 22384029 PMCID: PMC3288041 DOI: 10.1371/journal.pone.0031492] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 01/09/2012] [Indexed: 02/01/2023] Open
Abstract
Peritoneal fibrosis is a frequent complication of peritoneal dialysis following repeated low grade inflammatory and pro-fibrotic insults. This pathological process may lead to ultrafiltration failure and eventually to the discontinuing of the therapy. Fibrosis is linked to epithelial to mesenchymal transition (EMT) of the peritoneal mesothelial cells, which acquire invasive and fibrogenic abilities. Here, we analyzed the role of the transforming growth factor-activated kinase-1 (TAK1) in the EMT of primary mesothelial cells from human peritoneum. The inhibition of TAK1 in mesenchymal-like mesothelial cells from the effluents of patients undergoing peritoneal dialysis led to the reacquisition of the apical to basolateral polarity, to increased expression of epithelial and to down-regulation of mesenchymal markers. TAK1 inhibition also resulted in decreased migratory/invasive abilities of effluent-derived mesothelial cells. Simultaneous inhibition of ERK1/2 and TAK1 pathways did not lead to an additive effect in the reacquisition of the epithelial phenotype. Inhibition of TAK1 also blocked EMT in vitro and reduced the levels of PAI-1, which is involved in fibrosis and invasion. Analysis of signalling pathways downstream of TAK1 involved in EMT induction, showed that TAK1 inhibition reduced the transcriptional activity of NF-κB and Smad3, as well as the phosphorylation of c-jun, while enhancing Smad1–5–8 activity. These results demonstrate that TAK1 is a cross-point in a network including different pro-EMT transcription factors, such as NF-κB, Snail, AP-1 and Smads. The identification of TAK1 as a main biochemical mediator of EMT and fibrosis in mesothelial cells from human peritoneum and the study of signalling pathways induced by its activity may be relevant in the design of new therapies aimed to counteract peritoneal fibrosis.
Collapse
|
444
|
Acquisition of EMT phenotype in the gefitinib-resistant cells of a head and neck squamous cell carcinoma cell line through Akt/GSK-3β/snail signalling pathway. Br J Cancer 2012; 106:1196-204. [PMID: 22315058 PMCID: PMC3304404 DOI: 10.1038/bjc.2012.24] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Epithelial mesenchymal transition (EMT) is known to be associated with chemoresistance as well as increased invasion/metastasis. However, the relationship between EMT and resistance to an epidermal growth factor receptor (EGFR) -targeting drug in head and neck squamous cell carcinoma (HNSCC) remains unknown. In this study, we investigated the acquisition of EMT by gefitinib in HNSCC cell line (UMSCC81B). METHODS We isolated fibroblastoid variant (81B-Fb) from gefitinib-resistant UMSCC81B-GR3 cells obtained after increasing the doses of gefitinib treatment in vitro and examined EMT and its underlying mechanism. RESULT 81B-Fb cells exhibited fibroblast-like morphology, increased motility, loss of E-cadherin, acquisition of vimentin and snail expression. In 81B-Fb cells, downregulation of EGFR, which is mediated by increased ubiquitination, and activation of downstream protein kinase B (Akt), glycogen synthase kinase-beta (GSK-3β) signalling and upregulation of snail expression were observed compared with UMSCC81B cells. LY294002, but not U0126, suppressed foetal bovine serum or heregulin-β1-induced phosphorylation of Akt/GSK-3β and snail expression together with the inhibition of 81B-Fb cell motility. Furthermore, forced expression of EGFR resulted in partial restoration of gefitinib sensitivity and reversal of EMT. CONCLUSION These results suggest that EMT in the gefitinib-resistant cells is mediated by the downregulation of EGFR and compensatory activation of Akt/GSK-3β/snail pathway.
Collapse
|
445
|
D'Inzeo S, Nicolussi A, Donini CF, Zani M, Mancini P, Nardi F, Coppa A. A novel human Smad4 mutation is involved in papillary thyroid carcinoma progression. Endocr Relat Cancer 2012; 19:39-55. [PMID: 22109972 DOI: 10.1530/erc-11-0233] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Smad proteins are the key effectors of the transforming growth factor β (TGFβ) signaling pathway in mammalian cells. Smad4 plays an important role in human physiology, and its mutations were found with high frequency in wide range of human cancer. In this study, we have functionally characterized Smad4 C324Y mutation, isolated from a nodal metastasis of papillary thyroid carcinoma. We demonstrated that the stable expression of Smad4 C324Y in FRTL-5 cells caused a significant activation of TGFβ signaling, responsible for the acquisition of transformed phenotype and invasive behavior. The coexpression of Smad4 C324Y with Smad4 wild-type determined an increase of homo-oligomerization of Smad4 with receptor-regulated Smads and a lengthening of nuclear localization. FRTL-5 clones overexpressing Smad4 C324Y showed a strong reduction of response to antiproliferative action of TGFβ1, acquired the ability to grow in anchorage-independent conditions, showed a fibroblast-like appearance and a strong reduction of the level of E-cadherin, one crucial event of the epithelial-mesenchymal transition process. The acquisition of a mesenchymal phenotype gave the characteristics of increased cellular motility and a significant reduction in adhesion to substrates such as fibronectin and laminin. Overall, our results demonstrate that the Smad4 C324Y mutation plays an important role in thyroid carcinogenesis and can be considered as a new prognostic and therapeutic target for thyroid cancer.
Collapse
Affiliation(s)
- Sonia D'Inzeo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
446
|
García de Herreros A, Baulida J. Cooperation, amplification, and feed-back in epithelial-mesenchymal transition. Biochim Biophys Acta Rev Cancer 2012; 1825:223-8. [PMID: 22306657 DOI: 10.1016/j.bbcan.2012.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 01/16/2012] [Accepted: 01/18/2012] [Indexed: 12/11/2022]
Abstract
The epithelial to mesenchymal transition (EMT) consists of a rapid change of cell phenotype, characterized by the loss of epithelial traits and the acquisition of a more motile phenotype reminiscent of a fibroblast. The study of this process has received considerable attention because of its potential role in the acquisition of several cancer traits, particularly in cell invasion. In this article we describe the current knowledge of the molecular mechanisms governing this transition. In particular we discuss how initiation of EMT is dependent on the mutually exclusive levels of the transmembrane cell to cell adhesion molecule E-cadherin and its transcriptional repressor Snail1 and how Snail1 and other E-cadherin transcriptional repressors drive the EMT process. We focus on several new aspects of Snail1 regulation and propose a model for understanding the initiation and progression of this transition, based on the existence of feed-back mechanisms that limit or amplify the response to extracellular cues.
Collapse
|
447
|
Hsu YL, Chen CY, Lin IP, Tsai EM, Kuo PL, Hou MF. 4-Shogaol, an active constituent of dietary ginger, inhibits metastasis of MDA-MB-231 human breast adenocarcinoma cells by decreasing the repression of NF-κB/Snail on RKIP. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:852-61. [PMID: 22224671 DOI: 10.1021/jf2052515] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
4-Shogaol is one of the phytoconstituents isolated from dried red ginger, which is commercially available to consumers. Some active constituents from ginger have been found to have anti-inflammatory and antioxidant effects, but studies on 4-shogaol have been relatively rare. This is the first report describing the antimetastasis activities of 4-shogaol and the possible mechanisms. This study determined that 4-shogaol inhibits the migration and invasion of MDA-MB-231 and causes mesenchymal-epithelial transition (MET). In addition, 4-shogaol suppresses the activation of NF-κB and cell migration and invasion induced by TNF-α. Furthermore, 4-shogaol has been shown to inhibit the phosphorylation of IκB and the translocation of NF-κB/Snail in MDA-MB-231. This study shows that RKIP, an inhibitory molecule of IKK, is up-regulated after 4-shogaol treatment and prolongs the inhibitory effects of 4-shogaol. Inhibition of RKIP by shRNA transfection significantly decreases the inhibitory effect of 4-shogaol on the NF-κB/Snail pathway, together with cell migration and invasion, whereas overexpression of Snail suppresses 4-shogaol-mediated metastasis inhibition and E-cadherin upregulation. Finally, the animal model revealed that 4-shogaol effectively inhibits metastasis of MDA-MB-231 in mice. This study demonstrates that 4-shogaol may be a novel anticancer agent for the the treatment of metastasis in breast cancer.
Collapse
Affiliation(s)
- Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | | | | | | | | | | |
Collapse
|
448
|
Intratumoral macrophages contribute to epithelial-mesenchymal transition in solid tumors. BMC Cancer 2012; 12:35. [PMID: 22273460 PMCID: PMC3314544 DOI: 10.1186/1471-2407-12-35] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 01/24/2012] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Several stromal cell subtypes including macrophages contribute to tumor progression by inducing epithelial-mesenchymal transition (EMT) at the invasive front, a mechanism also linked to metastasis. Tumor associated macrophages (TAM) reside mainly at the invasive front but they also infiltrate tumors and in this process they mainly assume a tumor promoting phenotype. In this study, we asked if TAMs also regulate EMT intratumorally. We found that TAMs through TGF-β signaling and activation of the β-catenin pathway can induce EMT in intratumoral cancer cells. METHODS We depleted macrophages in F9-teratocarcinoma bearing mice using clodronate-liposomes and analyzed the tumors for correlations between gene and protein expression of EMT-associated and macrophage markers. The functional relationship between TAMs and EMT was characterized in vitro in the murine F9 and mammary gland NMuMG cells, using a conditioned medium culture approach. The clinical relevance of our findings was evaluated on a tissue microarray cohort representing 491 patients with non-small cell lung cancer (NSCLC). RESULTS Gene expression analysis of F9-teratocarcinomas revealed a positive correlation between TAM-densities and mesenchymal marker expression. Moreover, immunohistochemistry showed that TAMs cluster with EMT phenotype cells in the tumors. In vitro, long term exposure of F9-and NMuMG-cells to macrophage-conditioned medium led to decreased expression of the epithelial adhesion protein E-cadherin, activation of the EMT-mediating β-catenin pathway, increased expression of mesenchymal markers and an invasive phenotype. In a candidate based screen, macrophage-derived TGF-β was identified as the main inducer of this EMT-associated phenotype. Lastly, immunohistochemical analysis of NSCLC patient samples identified a positive correlation between intratumoral macrophage densities, EMT markers, intraepithelial TGF-β levels and tumor grade. CONCLUSIONS Data presented here identify a novel role for macrophages in EMT-promoted tumor progression. The observation that TAMs cluster with intra-epithelial fibroblastoid cells suggests that the role of macrophages in tumor-EMT extends beyond the invasive front. As macrophage infiltration and pronounced EMT tumor phenotype correlate with increased grade in NSCLC patients, we propose that TAMs also promote tumor progression by inducing EMT locally in tumors.
Collapse
|
449
|
Ber S, Lee C, Voiculescu O, Surani MA. Dedifferentiation of foetal CNS stem cells to mesendoderm-like cells through an EMT process. PLoS One 2012; 7:e30759. [PMID: 22276221 PMCID: PMC3262838 DOI: 10.1371/journal.pone.0030759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Accepted: 12/28/2011] [Indexed: 01/03/2023] Open
Abstract
Tissue-specific stem cells are considered to have a limited differentiation potential. Recently, this notion was challenged by reports that showed a broader differentiation potential of neural stem cells, in vitro and in vivo, although the molecular mechanisms that regulate plasticity of neural stem cells are unknown. Here, we report that neural stem cells derived from mouse embryonic cortex respond to Lif and serum in vitro and undergo epithelial to mesenchymal transition (EMT)-mediated dedifferentiation process within 48 h, together with transient upregulation of pluripotency markers and, more notably, upregulation of mesendoderm genes, Brachyury (T) and Sox17. These induced putative mesendoderm cells were injected into early gastrulating chick embryos, which revealed that they integrated more efficiently into mesoderm and endoderm lineages compared to non-induced cells. We also found that TGFβ and Jak/Stat pathways are necessary but not sufficient for the induction of mesendodermal phenotype in neural stem cells. These results provide insights into the regulation of plasticity of neural stem cells through EMT. Dissecting the regulatory pathways involved in these processes may help to gain control over cell fate decisions.
Collapse
Affiliation(s)
- Suzan Ber
- Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (SB); (MAS)
| | - Caroline Lee
- Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Cambridge, United Kingdom
| | - Octavian Voiculescu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - M. Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (SB); (MAS)
| |
Collapse
|
450
|
Basu S, Ma R, Moskal JR, Basu M, Banerjee S. Apoptosis of Breast Cancer Cells: Modulation of Genes for Glycoconjugate Biosynthesis and Targeted Drug Delivery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 749:233-55. [DOI: 10.1007/978-1-4614-3381-1_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|