401
|
Kaushik G, Ponnusamy MP, Batra SK. Concise Review: Current Status of Three-Dimensional Organoids as Preclinical Models. Stem Cells 2018; 36:1329-1340. [PMID: 29770526 DOI: 10.1002/stem.2852] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/10/2018] [Accepted: 05/01/2018] [Indexed: 12/15/2022]
Abstract
Three-dimensional (3D) cultures use the property of some cells to self-organize in matrices and generate structures that can be programmed to represent an organ or a pathology. Organoid cultures are the 3D cultivation of source tissue (ranging from cells to tissue fragments) in a support matrix and specialized media that nearly resembles the physiological environment. Depending on the source tissue, growth factors, and inhibitors provided, organoids can be programmed to recapitulate the biology of a system and progression of pathology. Organoids are genetically stable, and genetically amenable, making them very suitable tools to study tissue homeostasis and cancer. In this Review, we focus on providing recent technical advances from published literature to efficiently use organoids as a tool for disease modeling and therapeutics. Also, we discuss stem cell biology principles used to generate multiple organoids and their characteristics, with a brief description of methodology. A major theme of this review is to expand organoid applications to the study disease progression and drug response in different cancers. We also discuss shortcomings, limitations, and advantages of developed 3D cultures, with the rationale behind the methodology. Stem Cells 2018;36:1329-1340.
Collapse
Affiliation(s)
- Garima Kaushik
- Department of Biochemistry and Molecular Biology, Omaha, Nebraska, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, Omaha, Nebraska, USA.,Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, Omaha, Nebraska, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, Omaha, Nebraska, USA.,Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, Omaha, Nebraska, USA.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
402
|
Tharp KM, Weaver VM. Modeling Tissue Polarity in Context. J Mol Biol 2018; 430:3613-3628. [PMID: 30055167 DOI: 10.1016/j.jmb.2018.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/27/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022]
Abstract
Polarity is critical for development and tissue-specific function. However, the acquisition and maintenance of tissue polarity is context dependent. Thus, cell and tissue polarity depend on cell adhesion which is regulated by the cytoskeleton and influenced by the biochemical composition of the extracellular microenvironment and modified by biomechanical cues within the tissue. These biomechanical cues include fluid flow induced shear stresses, cell-density and confinement-mediated compression, and cellular actomyosin tension intrinsic to the tissue or induced in response to morphogens or extracellular matrix stiffness. Here, we discuss how extracellular matrix stiffness and fluid flow influence cell-cell and cell-extracellular matrix adhesion and alter cytoskeletal organization to modulate cell and tissue polarity. We describe model systems that when combined with state of the art molecular screens and high-resolution imaging can be used to investigate how force modulates cell and tissue polarity.
Collapse
Affiliation(s)
- Kevin M Tharp
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA; Department of Radiation Oncology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
403
|
Abstract
The recent advances in in vitro 3D culture technologies, such as organoids, have opened new avenues for the development of novel, more physiological human cancer models. Such preclinical models are essential for more efficient translation of basic cancer research into novel treatment regimens for patients with cancer. Wild-type organoids can be grown from embryonic and adult stem cells and display self-organizing capacities, phenocopying essential aspects of the organs they are derived from. Genetic modification of organoids allows disease modelling in a setting that approaches the physiological environment. Additionally, organoids can be grown with high efficiency from patient-derived healthy and tumour tissues, potentially enabling patient-specific drug testing and the development of individualized treatment regimens. In this Review, we evaluate tumour organoid protocols and how they can be utilized as an alternative model for cancer research.
Collapse
Affiliation(s)
- Jarno Drost
- Princess Máxima Centre for Paediatric Oncology, Utrecht, Netherlands.
| | - Hans Clevers
- Princess Máxima Centre for Paediatric Oncology, Utrecht, Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
404
|
Calcinotto A, Spataro C, Zagato E, Di Mitri D, Gil V, Crespo M, De Bernardis G, Losa M, Mirenda M, Pasquini E, Rinaldi A, Sumanasuriya S, Lambros MB, Neeb A, Lucianò R, Bravi CA, Nava-Rodrigues D, Dolling D, Prayer-Galetti T, Ferreira A, Briganti A, Esposito A, Barry S, Yuan W, Sharp A, de Bono J, Alimonti A. IL-23 secreted by myeloid cells drives castration-resistant prostate cancer. Nature 2018; 559:363-369. [PMID: 29950727 DOI: 10.1038/s41586-018-0266-0] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 05/29/2018] [Indexed: 01/25/2023]
Abstract
Patients with prostate cancer frequently show resistance to androgen-deprivation therapy, a condition known as castration-resistant prostate cancer (CRPC). Acquiring a better understanding of the mechanisms that control the development of CRPC remains an unmet clinical need. The well-established dependency of cancer cells on the tumour microenvironment indicates that the microenvironment might control the emergence of CRPC. Here we identify IL-23 produced by myeloid-derived suppressor cells (MDSCs) as a driver of CRPC in mice and patients with CRPC. Mechanistically, IL-23 secreted by MDSCs can activate the androgen receptor pathway in prostate tumour cells, promoting cell survival and proliferation in androgen-deprived conditions. Intra-tumour MDSC infiltration and IL-23 concentration are increased in blood and tumour samples from patients with CRPC. Antibody-mediated inactivation of IL-23 restored sensitivity to androgen-deprivation therapy in mice. Taken together, these results reveal that MDSCs promote CRPC by acting in a non-cell autonomous manner. Treatments that block IL-23 can oppose MDSC-mediated resistance to castration in prostate cancer and synergize with standard therapies.
Collapse
Affiliation(s)
- Arianna Calcinotto
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Clarissa Spataro
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Elena Zagato
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Diletta Di Mitri
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Veronica Gil
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Mateus Crespo
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Gaston De Bernardis
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Marco Losa
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Michela Mirenda
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Emiliano Pasquini
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Semini Sumanasuriya
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Maryou B Lambros
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Antje Neeb
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Roberta Lucianò
- Division of Oncology, Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Carlo A Bravi
- Division of Oncology, Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Daniel Nava-Rodrigues
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - David Dolling
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | | | - Ana Ferreira
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Alberto Briganti
- Division of Oncology, Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Antonio Esposito
- Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
| | - Simon Barry
- IMED Oncology AstraZeneca, Li Ka Shing Centre, Cambridge, UK
| | - Wei Yuan
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Adam Sharp
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Johann de Bono
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona, Switzerland. .,Università della Svizzera italiana, Faculty of Biomedical Sciences, Lugano, Switzerland. .,Faculty of Biology and Medicine, University of Lausanne UNIL, Lausanne, Switzerland. .,Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy.
| |
Collapse
|
405
|
Puca L, Bareja R, Prandi D, Shaw R, Benelli M, Karthaus WR, Hess J, Sigouros M, Donoghue A, Kossai M, Gao D, Cyrta J, Sailer V, Vosoughi A, Pauli C, Churakova Y, Cheung C, Deonarine LD, McNary TJ, Rosati R, Tagawa ST, Nanus DM, Mosquera JM, Sawyers CL, Chen Y, Inghirami G, Rao RA, Grandori C, Elemento O, Sboner A, Demichelis F, Rubin MA, Beltran H. Patient derived organoids to model rare prostate cancer phenotypes. Nat Commun 2018; 9:2404. [PMID: 29921838 PMCID: PMC6008438 DOI: 10.1038/s41467-018-04495-z] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/25/2018] [Indexed: 12/25/2022] Open
Abstract
A major hurdle in the study of rare tumors is a lack of existing preclinical models. Neuroendocrine prostate cancer is an uncommon and aggressive histologic variant of prostate cancer that may arise de novo or as a mechanism of treatment resistance in patients with pre-existing castration-resistant prostate cancer. There are few available models to study neuroendocrine prostate cancer. Here, we report the generation and characterization of tumor organoids derived from needle biopsies of metastatic lesions from four patients. We demonstrate genomic, transcriptomic, and epigenomic concordance between organoids and their corresponding patient tumors. We utilize these organoids to understand the biologic role of the epigenetic modifier EZH2 in driving molecular programs associated with neuroendocrine prostate cancer progression. High-throughput organoid drug screening nominated single agents and drug combinations suggesting repurposing opportunities. This proof of principle study represents a strategy for the study of rare cancer phenotypes.
Collapse
Affiliation(s)
- Loredana Puca
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
| | - Rohan Bareja
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Davide Prandi
- Center for Integrative Biology, University of Trento, 38123, Trento, Italy
| | - Reid Shaw
- Cure First and SEngine Precision Medicine, Seattle, WA, 98109, USA
| | - Matteo Benelli
- Center for Integrative Biology, University of Trento, 38123, Trento, Italy
| | - Wouter R Karthaus
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Judy Hess
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Michael Sigouros
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Adam Donoghue
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Myriam Kossai
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Dong Gao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Joanna Cyrta
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
| | - Verena Sailer
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
| | - Aram Vosoughi
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
| | - Chantal Pauli
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
| | - Yelena Churakova
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
| | - Cynthia Cheung
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
| | | | - Terra J McNary
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
| | - Rachele Rosati
- Cure First and SEngine Precision Medicine, Seattle, WA, 98109, USA
| | - Scott T Tagawa
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA
| | - David M Nanus
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Juan Miguel Mosquera
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Rema A Rao
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
| | - Carla Grandori
- Cure First and SEngine Precision Medicine, Seattle, WA, 98109, USA
| | - Olivier Elemento
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Andrea Sboner
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Francesca Demichelis
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
- Center for Integrative Biology, University of Trento, 38123, Trento, Italy
| | - Mark A Rubin
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Himisha Beltran
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA.
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA.
- Englander Institute for Precision Medicine,, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, 10021, USA.
| |
Collapse
|
406
|
Shafi AA, Schiewer MJ, de Leeuw R, Dylgjeri E, McCue PA, Shah N, Gomella LG, Lallas CD, Trabulsi EJ, Centenera MM, Hickey TE, Butler LM, Raj G, Tilley WD, Cukierman E, Knudsen KE. Patient-derived Models Reveal Impact of the Tumor Microenvironment on Therapeutic Response. Eur Urol Oncol 2018; 1:325-337. [PMID: 30467556 DOI: 10.1016/j.euo.2018.04.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Androgen deprivation therapy is a first-line treatment for disseminated prostate cancer (PCa). However, virtually all tumors become resistant and recur as castration-resistant PCa, which has no durable cure. One major hurdle in the development of more effective therapies is the lack of preclinical models that adequately recapitulate the heterogeneity of PCa, significantly hindering the ability to accurately predict therapeutic response. Objective To leverage the ex vivo culture method termed patient-derived explant (PDE) to examine the impact of PCa therapeutics on a patient-by-patient basis. Design setting and participants Fresh PCa tissue from patients who underwent radical prostatectomy was cultured as PDEs to examine therapeutic response. Outcome measurements and statistical analysis The impact of genomic and chemical perturbations in PDEs was assessed using various parameters (eg, AR levels, Ki67 staining, and desmoplastic indices). Results and limitations PDE maintained the integrity of the native tumor microenvironment (TME), tumor tissue morphology, viability, and endogenous hormone signaling. Tumor cells in this model system exhibited de novo proliferative capacity. Examination of the native TME in the PDE revealed a first-in-field insight into patient-specific desmoplastic stromal indices and predicted responsiveness to AR-directed therapeutics. Conclusions The PDE model allows for a comprehensive evaluation of individual tumors in their native TME to ultimately develop more effective therapeutic regimens tailored to individuals. Discernment of novel stromal markers may provide a basis for applying precision medicine in treating advanced PCa, which would have a transformative effect on patient outcomes. Patient summary In this study, an innovative model system was used to more effectively mimic human disease. The patient-derived explant (PDE) system can be used to predict therapeutic response and identify novel targets in advanced disease. Thus, the PDE will be an asset for the development of novel metrics for the implementation of precision medicine in prostate cancer.The patient-derived explant (PDE) model allows for a comprehensive evaluation of individual human tumors in their native tumor microenvironment (TME). TME analysis revealed first-in-field insight into predicted tumor responsiveness to AR-directed therapeutics through evaluation of patient-specific desmoplastic stromal indices.
Collapse
Affiliation(s)
- Ayesha A Shafi
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthew J Schiewer
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Renée de Leeuw
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Emanuela Dylgjeri
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Peter A McCue
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Neelima Shah
- Cancer Biology, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, USA
| | - Leonard G Gomella
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Costas D Lallas
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Edouard J Trabulsi
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Margaret M Centenera
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Prostate Cancer Research Centre and Freemason's Foundation Centre for Men's Health, School of Medicine, University of Adelaide, Adelaide, Australia.,South Australian Health and Medician Research Institute, Adelaide, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Prostate Cancer Research Centre and Freemason's Foundation Centre for Men's Health, School of Medicine, University of Adelaide, Adelaide, Australia
| | - Lisa M Butler
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Prostate Cancer Research Centre and Freemason's Foundation Centre for Men's Health, School of Medicine, University of Adelaide, Adelaide, Australia.,South Australian Health and Medician Research Institute, Adelaide, Australia
| | - Ganesh Raj
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Prostate Cancer Research Centre and Freemason's Foundation Centre for Men's Health, School of Medicine, University of Adelaide, Adelaide, Australia
| | - Edna Cukierman
- Cancer Biology, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, USA
| | - Karen E Knudsen
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.,Departments of Cancer Biology and Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
407
|
Nguyen HG, Conn CS, Kye Y, Xue L, Forester CM, Cowan JE, Hsieh AC, Cunningham JT, Truillet C, Tameire F, Evans MJ, Evans CP, Yang JC, Hann B, Koumenis C, Walter P, Carroll PR, Ruggero D. Development of a stress response therapy targeting aggressive prostate cancer. Sci Transl Med 2018; 10:eaar2036. [PMID: 29720449 PMCID: PMC6045425 DOI: 10.1126/scitranslmed.aar2036] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/24/2018] [Accepted: 04/06/2018] [Indexed: 12/23/2022]
Abstract
Oncogenic lesions up-regulate bioenergetically demanding cellular processes, such as protein synthesis, to drive cancer cell growth and continued proliferation. However, the hijacking of these key processes by oncogenic pathways imposes onerous cell stress that must be mitigated by adaptive responses for cell survival. The mechanism by which these adaptive responses are established, their functional consequences for tumor development, and their implications for therapeutic interventions remain largely unknown. Using murine and humanized models of prostate cancer (PCa), we show that one of the three branches of the unfolded protein response is selectively activated in advanced PCa. This adaptive response activates the phosphorylation of the eukaryotic initiation factor 2-α (P-eIF2α) to reset global protein synthesis to a level that fosters aggressive tumor development and is a marker of poor patient survival upon the acquisition of multiple oncogenic lesions. Using patient-derived xenograft models and an inhibitor of P-eIF2α activity, ISRIB, our data show that targeting this adaptive brake for protein synthesis selectively triggers cytotoxicity against aggressive metastatic PCa, a disease for which presently there is no cure.
Collapse
Affiliation(s)
- Hao G Nguyen
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
| | - Crystal S Conn
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA.
| | - Yae Kye
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
| | - Lingru Xue
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
| | - Craig M Forester
- Division of Pediatric Allergy, Immunology and Bone Marrow Transplantation, UCSF, San Francisco, CA 94158, USA
| | - Janet E Cowan
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
| | - Andrew C Hsieh
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
| | - John T Cunningham
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
| | - Charles Truillet
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA 94158, USA
| | - Feven Tameire
- Department of Radiation Oncology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Evans
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA 94158, USA
| | - Christopher P Evans
- Department of Urology, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Joy C Yang
- Department of Urology, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Byron Hann
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA 94158, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter Walter
- Department of Biochemistry and Biophysics, UCSF, Howard Hughes Medical Institute, San Francisco, CA 94158, USA
| | - Peter R Carroll
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
| | - Davide Ruggero
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA.
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA 94158, USA
| |
Collapse
|
408
|
Rodenhizer D, Dean T, D'Arcangelo E, McGuigan AP. The Current Landscape of 3D In Vitro Tumor Models: What Cancer Hallmarks Are Accessible for Drug Discovery? Adv Healthc Mater 2018; 7:e1701174. [PMID: 29350495 DOI: 10.1002/adhm.201701174] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/16/2017] [Indexed: 12/11/2022]
Abstract
Cancer prognosis remains a lottery dependent on cancer type, disease stage at diagnosis, and personal genetics. While investment in research is at an all-time high, new drugs are more likely to fail in clinical trials today than in the 1970s. In this review, a summary of current survival statistics in North America is provided, followed by an overview of the modern drug discovery process, classes of models used throughout different stages, and challenges associated with drug development efficiency are highlighted. Then, an overview of the cancer hallmarks that drive clinical progression is provided, and the range of available clinical therapies within the context of these hallmarks is categorized. Specifically, it is found that historically, the development of therapies is limited to a subset of possible targets. This provides evidence for the opportunities offered by novel disease-relevant in vitro models that enable identification of novel targets that facilitate interactions between the tumor cells and their surrounding microenvironment. Next, an overview of the models currently reported in literature is provided, and the cancer biology they have been used to explore is highlighted. Finally, four priority areas are suggested for the field to accelerate adoption of in vitro tumour models for cancer drug discovery.
Collapse
Affiliation(s)
- Darren Rodenhizer
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto 200 College Street Toronto M5S 3E5 Canada
| | - Teresa Dean
- Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto 200 College Street Toronto M5S 3E5 Canada
| | - Elisa D'Arcangelo
- Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto 200 College Street Toronto M5S 3E5 Canada
| | - Alison P. McGuigan
- Department of Chemical Engineering and Applied Chemistry & Institute of Biomaterials and Biomedical EngineeringUniversity of Toronto 200 College Street Toronto M5S 3E5 Canada
| |
Collapse
|
409
|
Welti J, Sharp A, Yuan W, Dolling D, Nava Rodrigues D, Figueiredo I, Gil V, Neeb A, Clarke M, Seed G, Crespo M, Sumanasuriya S, Ning J, Knight E, Francis JC, Hughes A, Halsey WS, Paschalis A, Mani RS, Raj GV, Plymate SR, Carreira S, Boysen G, Chinnaiyan AM, Swain A, de Bono JS. Targeting Bromodomain and Extra-Terminal (BET) Family Proteins in Castration-Resistant Prostate Cancer (CRPC). Clin Cancer Res 2018; 24:3149-3162. [PMID: 29555663 DOI: 10.1158/1078-0432.ccr-17-3571] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/23/2018] [Accepted: 03/14/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Persistent androgen receptor (AR) signaling drives castration-resistant prostate cancer (CRPC) and confers resistance to AR-targeting therapies. Novel therapeutic strategies to overcome this are urgently required. We evaluated how bromodomain and extra-terminal (BET) protein inhibitors (BETi) abrogate aberrant AR signaling in CRPC.Experimental Design: We determined associations between BET expression, AR-driven transcription, and patient outcome; and the effect and mechanism by which chemical BETi (JQ1 and GSK1210151A; I-BET151) and BET family protein knockdown regulates AR-V7 expression and AR signaling in prostate cancer models.Results: Nuclear BRD4 protein expression increases significantly (P ≤ 0.01) with castration resistance in same patient treatment-naïve (median H-score; interquartile range: 100; 100-170) and CRPC (150; 110-200) biopsies, with higher expression at diagnosis associating with worse outcome (HR, 3.25; 95% CI, 1.50-7.01; P ≤ 0.001). BRD2, BRD3, and BRD4 RNA expression in CRPC biopsies correlates with AR-driven transcription (all P ≤ 0.001). Chemical BETi, and combined BET family protein knockdown, reduce AR-V7 expression and AR signaling. This was not recapitulated by C-MYC knockdown. In addition, we show that BETi regulates RNA processing thereby reducing alternative splicing and AR-V7 expression. Furthermore, BETi reduce growth of prostate cancer cells and patient-derived organoids with known AR mutations, AR amplification and AR-V7 expression. Finally, BETi, unlike enzalutamide, decreases persistent AR signaling and growth (P ≤ 0.001) of a patient-derived xenograft model of CRPC with AR amplification and AR-V7 expression.Conclusions: BETi merit clinical evaluation as inhibitors of AR splicing and function, with trials demonstrating their blockade in proof-of-mechanism pharmacodynamic studies. Clin Cancer Res; 24(13); 3149-62. ©2018 AACR.
Collapse
Affiliation(s)
- Jonathan Welti
- The Institute for Cancer Research, London, United Kingdom
| | - Adam Sharp
- The Institute for Cancer Research, London, United Kingdom.,The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Wei Yuan
- The Institute for Cancer Research, London, United Kingdom
| | - David Dolling
- The Institute for Cancer Research, London, United Kingdom
| | | | | | - Veronica Gil
- The Institute for Cancer Research, London, United Kingdom
| | - Antje Neeb
- The Institute for Cancer Research, London, United Kingdom
| | - Matthew Clarke
- The Institute for Cancer Research, London, United Kingdom
| | - George Seed
- The Institute for Cancer Research, London, United Kingdom
| | - Mateus Crespo
- The Institute for Cancer Research, London, United Kingdom
| | - Semini Sumanasuriya
- The Institute for Cancer Research, London, United Kingdom.,The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Jian Ning
- The Institute for Cancer Research, London, United Kingdom
| | - Eleanor Knight
- The Institute for Cancer Research, London, United Kingdom
| | | | | | | | - Alec Paschalis
- The Institute for Cancer Research, London, United Kingdom.,The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Ram S Mani
- The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ganesh V Raj
- The University of Texas Southwestern Medical Center, Dallas, Texas
| | | | | | | | | | - Amanda Swain
- The Institute for Cancer Research, London, United Kingdom
| | - Johann S de Bono
- The Institute for Cancer Research, London, United Kingdom. .,The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | |
Collapse
|
410
|
Metabolic Reprogramming and the Recovery of Physiological Functionality in 3D Cultures in Micro-Bioreactors. Bioengineering (Basel) 2018. [PMID: 29518979 PMCID: PMC5874888 DOI: 10.3390/bioengineering5010022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The recovery of physiological functionality, which is commonly seen in tissue mimetic three-dimensional (3D) cellular aggregates (organoids, spheroids, acini, etc.), has been observed in cells of many origins (primary tissues, embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and immortal cell lines). This plurality and plasticity suggest that probably several basic principles promote this recovery process. The aim of this study was to identify these basic principles and describe how they are regulated so that they can be taken in consideration when micro-bioreactors are designed. Here, we provide evidence that one of these basic principles is hypoxia, which is a natural consequence of multicellular structures grown in microgravity cultures. Hypoxia drives a partial metabolic reprogramming to aerobic glycolysis and an increased anabolic synthesis. A second principle is the activation of cytoplasmic glutaminolysis for lipogenesis. Glutaminolysis is activated in the presence of hypo- or normo-glycaemic conditions and in turn is geared to the hexosamine pathway. The reducing power needed is produced in the pentose phosphate pathway, a prime function of glucose metabolism. Cytoskeletal reconstruction, histone modification, and the recovery of the physiological phenotype can all be traced to adaptive changes in the underlying cellular metabolism. These changes are coordinated by mTOR/Akt, p53 and non-canonical Wnt signaling pathways, while myc and NF-kB appear to be relatively inactive. Partial metabolic reprogramming to aerobic glycolysis, originally described by Warburg, is independent of the cell’s rate of proliferation, but is interwoven with the cells abilities to execute advanced functionality needed for replicating the tissues physiological performance.
Collapse
|
411
|
Broders-Bondon F, Nguyen Ho-Bouldoires TH, Fernandez-Sanchez ME, Farge E. Mechanotransduction in tumor progression: The dark side of the force. J Cell Biol 2018; 217:1571-1587. [PMID: 29467174 PMCID: PMC5940296 DOI: 10.1083/jcb.201701039] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 01/19/2018] [Accepted: 02/01/2018] [Indexed: 12/11/2022] Open
Abstract
Broders-Bondon et al. review the pathological mechanical properties of tumor tissues and how abnormal mechanical signals result in oncogenic biochemical signals during tumor progression. Cancer has been characterized as a genetic disease, associated with mutations that cause pathological alterations of the cell cycle, adhesion, or invasive motility. Recently, the importance of the anomalous mechanical properties of tumor tissues, which activate tumorigenic biochemical pathways, has become apparent. This mechanical induction in tumors appears to consist of the destabilization of adult tissue homeostasis as a result of the reactivation of embryonic developmental mechanosensitive pathways in response to pathological mechanical strains. These strains occur in many forms, for example, hypervascularization in late tumors leads to high static hydrodynamic pressure that can promote malignant progression through hypoxia or anomalous interstitial liquid and blood flow. The high stiffness of tumors directly induces the mechanical activation of biochemical pathways enhancing the cell cycle, epithelial–mesenchymal transition, and cell motility. Furthermore, increases in solid-stress pressure associated with cell hyperproliferation activate tumorigenic pathways in the healthy epithelial cells compressed by the neighboring tumor. The underlying molecular mechanisms of the translation of a mechanical signal into a tumor inducing biochemical signal are based on mechanically induced protein conformational changes that activate classical tumorigenic signaling pathways. Understanding these mechanisms will be important for the development of innovative treatments to target such mechanical anomalies in cancer.
Collapse
Affiliation(s)
- Florence Broders-Bondon
- Mechanics and Genetics of Embryonic and Tumor Development Group, Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR168, Inserm, Sorbonne Universities, Paris, France
| | - Thanh Huong Nguyen Ho-Bouldoires
- Mechanics and Genetics of Embryonic and Tumor Development Group, Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR168, Inserm, Sorbonne Universities, Paris, France
| | - Maria-Elena Fernandez-Sanchez
- Mechanics and Genetics of Embryonic and Tumor Development Group, Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR168, Inserm, Sorbonne Universities, Paris, France
| | - Emmanuel Farge
- Mechanics and Genetics of Embryonic and Tumor Development Group, Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR168, Inserm, Sorbonne Universities, Paris, France
| |
Collapse
|
412
|
Davies AH, Wang Y, Zoubeidi A. Patient-derived xenografts: A platform for accelerating translational research in prostate cancer. Mol Cell Endocrinol 2018; 462:17-24. [PMID: 28315377 DOI: 10.1016/j.mce.2017.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 03/01/2017] [Accepted: 03/13/2017] [Indexed: 11/19/2022]
Abstract
Recently, there has been renewed interest in the development and characterization of patient-derived tumour xenograft (PDX) models. Numerous PDX models have been established for prostate cancer and, importantly, retain the principal molecular, genetic, and histological characteristics of the donor tumour. As such, these models provide significant improvements over standard cell line xenograft models for biological studies, preclinical drug development, and personalized medicine strategies. This review summarizes the current state of the art in this field, illustrating the opportunities and limitations of PDX models in translational prostate cancer research.
Collapse
Affiliation(s)
- Alastair H Davies
- Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
413
|
Kulasinghe A, Kenny L, Perry C, Thiery JP, Jovanovic L, Vela I, Nelson C, Punyadeera C. Impact of label-free technologies in head and neck cancer circulating tumour cells. Oncotarget 2018; 7:71223-71234. [PMID: 27655722 PMCID: PMC5342074 DOI: 10.18632/oncotarget.12086] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/31/2016] [Indexed: 12/19/2022] Open
Abstract
Background The ability to identify high risk head and neck cancer (HNC) patients with disseminated disease prior to presenting with clinically detectable metastases holds remarkable potential. A fraction of circulating tumour cells (CTCs) are invasive cancer cells which mediate metastasis by intravasation, survival and extravasation from the blood stream to metastatic sites. CTCs have been cleared by the FDA for use as surrogate markers of overall survival and progression free survival for breast, prostate and colorectal cancers using the CellSearch® system. However, the clinical significance of CTCs in head and neck cancer patients has yet to be determined. There has been a significant shift in CTC enrichment platforms, away from exclusively single marker selection, to epitope-independent systems. Methods The aim of this study was to screen advanced stage HNC patients by the CellSearch® platform and utilise two other epitope-independent approaches, ScreenCell® (microfiltration device) and RosetteSep™ (negative enrichment), to determine how a shift to such methodologies would enable CTC enrichment and detection. Results In advanced stage HNC patients, single CTCs were detected in 8/43 (18.6%) on CellSearch®, 13/28 (46.4%) on ScreenCell® and 16/25 (64.0%) by RosetteSep™ (the latter could also detect CTC clusters). Notably, in patients with suspicious lung nodules, too small to biopsy, CTCs were found upon presentation. Moreover, CTCs were readily detected in advanced stage HNC patients. Conclusion The epitope-independent platforms detected higher CTC numbers and clusters. Further studies are needed to ascertain whether CTCs can be used as independent prognostic markers for HNCs.
Collapse
Affiliation(s)
- Arutha Kulasinghe
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Liz Kenny
- School of Medicine, University of Queensland, Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia
| | - Chris Perry
- Department of Otolaryngology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Jean-Paul Thiery
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lidija Jovanovic
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Ian Vela
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Department of Urology, Princess Alexandra Hospital, Wolloongabba, Queensland, Australia
| | - Colleen Nelson
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Chamindie Punyadeera
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| |
Collapse
|
414
|
Wang H, Yang X, Liu A, Wang G, Bosland MC, Yang CS. δ-Tocopherol inhibits the development of prostate adenocarcinoma in prostate specific Pten-/- mice. Carcinogenesis 2018; 39:158-169. [PMID: 29121168 PMCID: PMC5862254 DOI: 10.1093/carcin/bgx128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The PTEN/PI3K/AKT axis plays a critical role in regulating cell growth, differentiation and survival. Activation of this signaling pathway is frequently found in human cancers. Our previous studies demonstrated that δ-tocopherol (δ-T) attenuates the activation of AKT by growth factor in prostate cancer cell lines, leading to inhibition of proliferation and induction of apoptosis. Herein, we investigated whether δ-T inhibits the development of prostate adenocarcinoma in prostate-specific Pten-/- (Ptenp-/-) mice in which the activation of AKT is the major driving force for tumorigenesis. By feeding Ptenp-/- mice with AIN93M or 0.2% δ-T supplemented diet starting at the age of 6 or 12 weeks, we found that δ-T treatment reduced prostate adenocarcinoma multiplicity at the age of 40 weeks by 53.3 and 42.7%, respectively. Immunohistochemical (IHC) analysis demonstrated that the phosphorylation of AKT (T308) was reduced in the prostate of the mice administered the δ-T diet. Consistently, proliferation was reduced and apoptosis was increased in prostate lesions of mice on the δ-T diet. Oxidative stress, as determined by IHC staining of 8-OH-dG, was not altered during prostate tumorigenesis, nor was it affected by administration of δ-T. In contrast, α-tocopherol (α-T) at 0.2% in the diet did not affect prostate adenocarcinoma multiplicity in the Ptenp-/- mice. This finding is consistent with data from our previous study that δ-T, but not α-T, inhibits the activation of AKT and the growth of prostate cancer cells. Together, these results demonstrate that δ-T inhibits the development of prostate adenocarcinoma in Ptenp-/- mice, mainly through inhibition of AKT activation.
Collapse
Affiliation(s)
- Hong Wang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, USA
| | - Xu Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, USA
| | - Anna Liu
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, USA
| | - Guocan Wang
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, USA
| | - Maarten C Bosland
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, USA
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, USA
| |
Collapse
|
415
|
The Use of Endometrial Cancer Patient-Derived Organoid Culture for Drug Sensitivity Testing Is Feasible. Int J Gynecol Cancer 2018; 27:1701-1707. [PMID: 28683005 PMCID: PMC5627540 DOI: 10.1097/igc.0000000000001061] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Supplemental digital content is available in the text. Objective Patient-derived organoids (PDOs), used in multiple tumor types, have allowed evaluation of tumor characteristics from individual patients. This study aimed to assess the feasibility of applying PDO in vitro culture for endocrine-based and drug sensitivity testing in endometrial cancer. Methods Endometrial cancer cells were enzymatically dissociated from tumors retrieved from fresh hysterectomy specimens and cultured within basement membrane extract in serum-free medium. An organoid growth assay was developed to assess the inhibitory effects of a variety of drugs including endocrine treatments. Organoid cultures were also prepared for histological and immunohistochemical comparison to the tumors of origin. Results Fifteen endometrial cancer specimens were successfully cultured as PDOs. Small spherical structures formed within 24 hours, and many continued to grow to larger, denser organoids, providing the basis for an organoid growth assay. The STAT3 transcription factor inhibitor, BBI608 (Napabucasin), strongly inhibited growth in almost all PDO cultures, suggesting that stemness programing is involved in organoid formation and/or growth. Inhibition by different growth factor receptor tyrosine kinase inhibitors was observed in several PDO specimens. Four cultures were inhibited by fulvestrant, implying the importance of estrogen-receptor signaling in some PDO cultures. Organoids closely resembled their tumors of origin in both histomorphology and immunohistochemical expression. Conclusions The use of endometrial cancer PDO cultures for development of drug sensitivity testing for individual patient tumors is feasible. The potential value of the PDO model for clinical decision making will require clinical trial evaluation.
Collapse
|
416
|
Jin MZ, Han RR, Qiu GZ, Ju XC, Lou G, Jin WL. Organoids: An intermediate modeling platform in precision oncology. Cancer Lett 2018; 414:174-180. [PMID: 29174804 DOI: 10.1016/j.canlet.2017.11.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 02/06/2023]
Abstract
Cancer harbors variable heterogeneity and plasticity. Thus far, our comprehension is greatly based on cell lines, organoids, and patient-derived tumor xenografts (PDTXs). Organoids are a three-dimensional in vitro culture platform constructed from self-organizing stem cells. They can almost accurately recapitulate tumor heterogeneity and microenvironment "in a dish," which surpass established cell lines and are not as expensive and time-consuming as PDTXs. As an intermediate model, tumor organoids are also used to study the fundamental issues of tumorigenesis and metastasis. They are specifically applied for drug testing and stored as "living biobanks." In this review, we highlight the translational applications of organoid technologies in tumor research and precision medicine, discuss the advantages and limitations compared with other mentioned methods, and provide our outlook on its future.
Collapse
Affiliation(s)
- Ming-Zhu Jin
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Run-Run Han
- Department of Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Guan-Zhong Qiu
- Department of Neurosurgery, General Hospital of Jinan Military Command, Jinan 250031, PR China
| | - Xiang-Chun Ju
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China.
| | - Ge Lou
- Department of Gynecology Oncology, The Tumor Hospital, Harbin Medical University, Harbin, 150086, PR China.
| | - Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shaanxi Key Laboratory of Brain Disorders and School of Basic Medical Sciences, Xi'an Medical University, Xi'an 710021, PR China.
| |
Collapse
|
417
|
Bezzi M, Seitzer N, Ishikawa T, Reschke M, Chen M, Wang G, Mitchell C, Ng C, Katon J, Lunardi A, Signoretti S, Clohessy JG, Zhang J, Pandolfi PP. Diverse genetic-driven immune landscapes dictate tumor progression through distinct mechanisms. Nat Med 2018; 24:165-175. [PMID: 29309058 DOI: 10.1038/nm.4463] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 11/29/2017] [Indexed: 12/23/2022]
Abstract
Multiple immune-cell types can infiltrate tumors and promote progression and metastasis through different mechanisms, including immunosuppression. How distinct genetic alterations in tumors affect the composition of the immune landscape is currently unclear. Here, we characterized the immune-cell composition of prostate cancers driven by the loss of the critical tumor suppressor gene Pten, either alone or in combination with the loss of Trp53, Zbtb7a or Pml. We observed a striking quantitative and qualitative heterogeneity that was directly dependent on the specific genetic events in the tumor and ranged from 'cold', noninflamed tumors to massively infiltrated landscapes-results with important therapeutic implications. Further, we showed these qualitative differences in transcriptomic analysis of human prostate cancer samples. These data suggest that patient stratification on the basis of integrated genotypic-immunophenotypic analyses may be necessary for successful clinical trials and tailored precision immunological therapies.
Collapse
Affiliation(s)
- Marco Bezzi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Nina Seitzer
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Tomoki Ishikawa
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Markus Reschke
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ming Chen
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Guocan Wang
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Caitlin Mitchell
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher Ng
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jesse Katon
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrea Lunardi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - John G Clohessy
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Preclinical Murine Pharmacogenetics Facility, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jiangwen Zhang
- School of Biological Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
418
|
Praharaj PP, Bhutia SK, Nagrath S, Bitting RL, Deep G. Circulating tumor cell-derived organoids: Current challenges and promises in medical research and precision medicine. Biochim Biophys Acta Rev Cancer 2018; 1869:117-127. [PMID: 29360544 PMCID: PMC6054479 DOI: 10.1016/j.bbcan.2017.12.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 12/11/2022]
Abstract
Traditional 2D cell cultures do not accurately recapitulate tumor heterogeneity, and insufficient human cell lines are available. Patient-derived xenograft (PDX) models more closely mimic clinical tumor heterogeneity, but are not useful for high-throughput drug screening. Recently, patient-derived organoid cultures have emerged as a novel technique to fill this critical need. Organoids maintain tumor tissue heterogeneity and drug-resistance responses, and thus are useful for high-throughput drug screening. Among various biological tissues used to produce organoid cultures, circulating tumor cells (CTCs) are promising, due to relative ease of ascertainment. CTC-derived organoids could help to acquire relevant genetic and epigenetic information about tumors in real time, and screen and test promising drugs. This could reduce the need for tissue biopsies, which are painful and may be difficult depending on the tumor location. In this review, we have focused on advances in CTC isolation and organoid culture methods, and their potential applications in disease modeling and precision medicine.
Collapse
Affiliation(s)
- Prakash P Praharaj
- Wake Forest Baptist Medical Center, Department of Cancer Biology, Winston-Salem, NC, United States; Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Sujit K Bhutia
- Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Sunitha Nagrath
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Rhonda L Bitting
- Hematology and Oncology Department, United States; Wake Forest Baptist Comprehensive Cancer Center, United States
| | - Gagan Deep
- Wake Forest Baptist Medical Center, Department of Cancer Biology, Winston-Salem, NC, United States; Wake Forest Baptist Comprehensive Cancer Center, United States; Department of Urology, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States.
| |
Collapse
|
419
|
Aboulkheyr Es H, Montazeri L, Aref AR, Vosough M, Baharvand H. Personalized Cancer Medicine: An Organoid Approach. Trends Biotechnol 2018; 36:358-371. [PMID: 29366522 DOI: 10.1016/j.tibtech.2017.12.005] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 01/10/2023]
Abstract
Personalized cancer therapy applies specific treatments to each patient. Using personalized tumor models with similar characteristics to the original tumors may result in more accurate predictions of drug responses in patients. Tumor organoid models have several advantages over pre-existing models, including conserving the molecular and cellular composition of the original tumor. These advantages highlight the tremendous potential of tumor organoids in personalized cancer therapy, particularly preclinical drug screening and predicting patient responses to selected treatment regimens. Here, we highlight the advantages, challenges, and translational potential of tumor organoids in personalized cancer therapy and focus on gene-drug associations, drug response prediction, and treatment selection. Finally, we discuss how microfluidic technology can contribute to immunotherapy drug screening in tumor organoids.
Collapse
Affiliation(s)
- Hamidreza Aboulkheyr Es
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Leila Montazeri
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
420
|
Fumagalli A, Suijkerbuijk SJE, Begthel H, Beerling E, Oost KC, Snippert HJ, van Rheenen J, Drost J. A surgical orthotopic organoid transplantation approach in mice to visualize and study colorectal cancer progression. Nat Protoc 2018; 13:235-247. [DOI: 10.1038/nprot.2017.137] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
421
|
Corrò C, Moch H. Biomarker discovery for renal cancer stem cells. J Pathol Clin Res 2018; 4:3-18. [PMID: 29416873 PMCID: PMC5783955 DOI: 10.1002/cjp2.91] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/27/2017] [Accepted: 12/13/2017] [Indexed: 12/17/2022]
Abstract
Characterised by high intra- and inter-tumor heterogeneity, metastatic renal cell carcinoma (RCC) is resistant to chemo- and radiotherapy. Therefore, the development of new prognostic and diagnostic markers for RCC patients is needed. Cancer stem cells (CSCs) are a small population of neoplastic cells within a tumor which present characteristics reminiscent of normal stem cells. CSCs are characterised by unlimited cell division, maintenance of the stem cell pool (self-renewal), and capability to give rise to all cell types within a tumor; and contribute to metastasis in vivo (tumourigenicity), treatment resistance and recurrence. So far, many studies have tried to establish unique biomarkers to identify CSC populations in RCC. At the same time, different approaches have been developed with the aim to isolate CSCs. Consequently, several markers were found to be specifically expressed in CSCs and cancer stem-like cells derived from RCC such as CD105, ALDH1, OCT4, CD133, and CXCR4. However, the contribution of genetic and epigenetic mechanisms, and tumor microenvironment, to cellular plasticity have made the discovery of unique biomarkers a very difficult task. In fact, contrasting results regarding the applicability of such markers to the isolation of renal CSCs have been reported in the literature. Therefore, a better understanding of the mechanism underlying CSC may help dissecting tumor heterogeneity and drug treatment efficiency.
Collapse
Affiliation(s)
- Claudia Corrò
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichSwitzerland
| | - Holger Moch
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichSwitzerland
| |
Collapse
|
422
|
Pakula H, Linn DE, Schmidt DR, Van Gorsel M, Vander Heiden MG, Li Z. Protocols for Studies on TMPRSS2/ERG in Prostate Cancer. Methods Mol Biol 2018; 1786:131-151. [PMID: 29786791 DOI: 10.1007/978-1-4939-7845-8_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
TMPRSS2/ERG is the most common type of gene fusions found in human prostate cancer. There are two important features of TMPRSS2/ERG fusions. One is that these gene fusions lead to ectopic expression of ERG, an ETS family transcription factor, in prostate epithelial cells from the 5' control region of an androgen/estrogen dual-responsive gene, TMPRSS2; the other is that ~60% of these fusions are generated via intrachromosomal deletion of the interstitial region between TMPRSS2 and ERG. To recapitulate these important aspects of TMPRSS2/ERG fusions, we generated several TMPRSS2/ERG knockin mouse models based on the endogenous Tmprss2 locus. We found that TMPRSS2/ERG represents an early event in prostate tumorigenesis, by sensitizing prostate cells for cooperation with other oncogenic events, such as PTEN-deficiency. We also found that the interstitial region between TMPRSS2 and ERG harbors at least one prostate tumor suppressor, ETS2, whose loss contributes to prostate cancer progression. In this protocol, we describe how these knockin mouse models can be utilized to study roles of TMPRSS2/ERG fusions in prostate cancer development both in vivo and in vitro.
Collapse
Affiliation(s)
- Hubert Pakula
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Douglas E Linn
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Marit Van Gorsel
- Department of Biology, The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew G Vander Heiden
- Department of Biology, The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhe Li
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
423
|
Alves-Lopes JP, Stukenborg JB. Testicular organoids: a new model to study the testicular microenvironment in vitro? Hum Reprod Update 2017; 24:176-191. [PMID: 29281008 DOI: 10.1093/humupd/dmx036] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In recent decades, a broad range of strategies have been applied to model the testicular microenvironment in vitro. These models have been utilized to study testicular physiology and development. However, a system that allows investigations into testicular organogenesis and its impact in the spermatogonial stem-cell (SSC) niche in vitro has not been developed yet. Recently, the creation of tissue-specific organ-like structures called organoids has resurged, helping researchers to answer scientific questions that previous in vitro models could not help to elucidate. So far, a small number of publications have concerned the generation of testicular organoids and their application in the field of reproductive medicine and biology. OBJECTIVE AND RATIONALE Here, we aim to elucidate whether testicular organoids might be useful in answering current scientific questions about the regulation and function of the SSC niche as well as germ cell proliferation and differentiation, and whether or not the existing in vitro models are already sufficient to address them. Moreover, we would like to discuss how an organoid system can be a better solution to address these prominent scientific problems in our field, by the creation of a rationale parallel to those in other areas where organoid systems have been successfully utilized. SEARCH METHODS We comprehensively reviewed publications regarding testicular organoids and the methods that most closely led to the formation of these organ-like structures in vitro by searching for the following terms in both PubMed and the Web of Science database: testicular organoid, seminiferous tubule 3D culture, Sertoli cell 3D culture, testicular cord formation in vitro, testicular morphogenesis in vitro, germ cell 3D culture, in vitro spermatogenesis, testicular de novo morphogenesis, seminiferous tubule de novo morphogenesis, seminiferous tubule-like structures, testicular in vitro model and male germ cell niche in vitro, with no restrictions to any publishing year. The inclusion criteria were based on the relation with the main topic (i.e. testicular organoids, testicular- and seminiferous-like structures as in vitro models), methodology applied (i.e. in vitro culture, culture dimensions (2D, 3D), testicular cell suspension or fragments) and outcome of interest (i.e. organization in vitro). Publications about grafting of testicular tissue, germ-cell transplantation and female germ-cell culture were excluded. OUTCOMES The application of organoid systems is making its first steps in the field of reproductive medicine and biology. A restricted number of publications have reported and characterized testicular organoids and even fewer have denominated such structures by this method. However, we detected that a clear improvement in testicular cell reorganization is recognized when 3D culture conditions are utilized instead of 2D conditions. Depending on the scientific question, testicular organoids might offer a more appropriate in vitro model to investigate testicular development and physiology because of the easy manipulation of cell suspensions (inclusion or exclusion of a specific cell population), the fast reorganization of these structures and the controlled in vitro conditions, to the same extent as with other organoid strategies reported in other fields. WIDER IMPLICATIONS By way of appropriate research questions, we might use testicular organoids to deepen our basic understanding of testicular development and the SSC niche, leading to new methodologies for male infertility treatment.
Collapse
Affiliation(s)
- João Pedro Alves-Lopes
- Department of Women's and Children's Health, NORDFERTIL Research Lab Stockholm, Paediatric Endocrinology Unit, Q2:08, Karolinska Institutet and Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Jan-Bernd Stukenborg
- Department of Women's and Children's Health, NORDFERTIL Research Lab Stockholm, Paediatric Endocrinology Unit, Q2:08, Karolinska Institutet and Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
424
|
Hill DR, Huang S, Tsai YH, Spence JR, Young VB. Real-time Measurement of Epithelial Barrier Permeability in Human Intestinal Organoids. J Vis Exp 2017:56960. [PMID: 29286482 PMCID: PMC5755602 DOI: 10.3791/56960] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Advances in 3D culture of intestinal tissues obtained through biopsy or generated from pluripotent stem cells via directed differentiation, have resulted in sophisticated in vitro models of the intestinal mucosa. Leveraging these emerging model systems will require adaptation of tools and techniques developed for 2D culture systems and animals. Here, we describe a technique for measuring epithelial barrier permeability in human intestinal organoids in real-time. This is accomplished by microinjection of fluorescently-labeled dextran and imaging on an inverted microscope fitted with epifluorescent filters. Real-time measurement of the barrier permeability in intestinal organoids facilitates the generation of high-resolution temporal data in human intestinal epithelial tissue, although this technique can also be applied to fixed timepoint imaging approaches. This protocol is readily adaptable for the measurement of epithelial barrier permeability following exposure to pharmacologic agents, bacterial products or toxins, or live microorganisms. With minor modifications, this protocol can also serve as a general primer on microinjection of intestinal organoids and users may choose to supplement this protocol with additional or alternative downstream applications following microinjection.
Collapse
Affiliation(s)
- David R Hill
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan;
| | - Sha Huang
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan
| | - Yu-Hwai Tsai
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan
| | - Jason R Spence
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan; Department of Cell and Developmental Biology, University of Michigan
| | - Vincent B Young
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan; Department of Internal Medicine, Division of Infectious Disease, University of Michigan
| |
Collapse
|
425
|
Measuring mutation accumulation in single human adult stem cells by whole-genome sequencing of organoid cultures. Nat Protoc 2017; 13:59-78. [DOI: 10.1038/nprot.2017.111] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
426
|
Ma L, Li J, Nie Q, Zhang Q, Liu S, Ge D, You Z. Organoid culture of human prostate cancer cell lines LNCaP and C4-2B. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2017; 5:25-33. [PMID: 29181435 PMCID: PMC5698596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
Organoids mimic the architecture and functions of a small organ. Organoid culture technique has been rapidly accepted by all research communities during the past decade to study stem cells, organ development and function, and patient-specific diseases. A protocol for organoid culture of human and mouse prostate epithelial and cancer tissues has been reported. However, organoid culture of the commonly used human prostate cancer cell lines has yet to be established. We followed the published protocol and performed organoid culture of LNCaP and C4-2B cells in MatrigelTM and organoid culture medium for 14 days. We found that both LNCaP and C4-2B cell lines formed organoids that presented glandular structures. The cells within the organoids were androgen receptor-positive adenocarcinoma cells, but not p63-positive basal cells. The cells in the organoids responded to interleukin-17A treatment differently from the cells in the monolayer culture. The present study suggests that LNCaP and C4-2B cells are able to form organoids under the defined organoid culture conditions.
Collapse
Affiliation(s)
- Lin Ma
- Department of Structural & Cellular Biology, Tulane UniversityNew Orleans, LA, USA
- Department of Thoracic Surgery, West China Hospital, Sichuan UniversityChengdu, China
| | - Jingwu Li
- Department of Structural & Cellular Biology, Tulane UniversityNew Orleans, LA, USA
- Department of Gastroenterological Surgery, Tangshan People’s HospitalTangshan, China
| | - Qiang Nie
- Department of Structural & Cellular Biology, Tulane UniversityNew Orleans, LA, USA
- Lung Cancer Research Institute and Cancer Center, Guangdong General HospitalGuangzhou, China
| | - Qiuyang Zhang
- Department of Structural & Cellular Biology, Tulane UniversityNew Orleans, LA, USA
| | - Sen Liu
- Department of Structural & Cellular Biology, Tulane UniversityNew Orleans, LA, USA
| | - Dongxia Ge
- Department of Structural & Cellular Biology, Tulane UniversityNew Orleans, LA, USA
| | - Zongbing You
- Department of Structural & Cellular Biology, Tulane UniversityNew Orleans, LA, USA
- Department of Orthopaedic Surgery, Tulane UniversityNew Orleans, LA, USA
- Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane UniversityNew Orleans, LA, USA
- Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane UniversityNew Orleans, LA, USA
- Tulane Center for Aging, Tulane UniversityNew Orleans, LA, USA
| |
Collapse
|
427
|
Usui T, Sakurai M, Nishikawa S, Umata K, Nemoto Y, Haraguchi T, Itamoto K, Mizuno T, Noguchi S, Mori T, Iwai S, Nakagawa T, Yamawaki H, Ohama T, Sato K. Establishment of a dog primary prostate cancer organoid using the urine cancer stem cells. Cancer Sci 2017; 108:2383-2392. [PMID: 29024204 PMCID: PMC5715251 DOI: 10.1111/cas.13418] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/30/2017] [Accepted: 10/02/2017] [Indexed: 12/17/2022] Open
Abstract
Dog spontaneously develop prostate cancer (PC) like humans. Because most dogs with PC have a poor prognosis, they could be used as a translational model for advanced PC in humans. Stem cell‐derived 3‐D organoid culture could recapitulate organ structures and physiology. Using patient tissues, a human PC organoid culture system was established. Recent study has shown that urine cells also possess the characteristic of stem cells. However, urine cell‐derived PC organoids have never been produced. Therefore, we generated PC organoids using the dog urine samples. Urine organoids were successfully generated from each dog with PC. Each organoid showed cystic structures and resembled the epithelial structures of original tissues. Expression of an epithelial cell marker, E‐cadherin, and a myofibloblast marker, α‐SMA, was observed in the urine organoids. The organoids also expressed a basal cell marker, CK5, and a luminal cell marker, CK8. CD49f‐sorted basal cell organoids rapidly grew compared with CD24‐sorted luminal cell organoids. The population of CD44‐positive cells was the highest in both organoids and the original urine cells. Tumors were successfully formed with the injection of the organoids into immunodeficient mice. Treatment with a microtubule inhibitor, docetaxel, but not a cyclooxygenase inhibitor, piroxicam, and an mTOR inhibitor, rapamycin, decreased the cell viability of organoids. Treatment with a Hedgehog signal inhibitor, GANT61, increased the radiosensitivity in the organoids. These findings revealed that PC organoids using urine might become a useful tool for investigating the mechanisms of the pathogenesis and treatment of PC in dogs.
Collapse
Affiliation(s)
- Tatsuya Usui
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Masashi Sakurai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Shimpei Nishikawa
- Department of Small Animal Clinical Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Koji Umata
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yuki Nemoto
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Tomoya Haraguchi
- Department of Small Animal Clinical Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Kazuhito Itamoto
- Department of Small Animal Clinical Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Takuya Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Shunsuke Noguchi
- Laboratory of Veterinary Radiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Takashi Mori
- Laboratory of Veterinary Clinical Oncology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Satomi Iwai
- Laboratory of Small Animal Surgery 2, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Takashi Ohama
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Koichi Sato
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
428
|
Pearl ML, Dong H, Zhao Q, Tulley S, Dombroff MK, Chen WT. iCTC drug resistance (CDR) Testing ex vivo for evaluation of available therapies to treat patients with epithelial ovarian cancer. Gynecol Oncol 2017; 147:426-432. [DOI: 10.1016/j.ygyno.2017.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/08/2017] [Accepted: 08/16/2017] [Indexed: 12/20/2022]
|
429
|
Conditionally reprogrammed normal and primary tumor prostate epithelial cells: a novel patient-derived cell model for studies of human prostate cancer. Oncotarget 2017; 8:22741-22758. [PMID: 28009986 PMCID: PMC5410259 DOI: 10.18632/oncotarget.13937] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/22/2016] [Indexed: 01/16/2023] Open
Abstract
Our previous study demonstrated that conditional reprogramming (CR) allows the establishment of patient-derived normal and tumor epithelial cell cultures from a variety of tissue types including breast, lung, colon and prostate. Using CR, we have established matched normal and tumor cultures, GUMC-29 and GUMC-30 respectively, from a patient's prostatectomy specimen. These CR cells proliferate indefinitely in vitro and retain stable karyotypes. Most importantly, only tumor-derived CR cells (GUMC-30) produced tumors in xenografted SCID mice, demonstrating maintenance of the critical tumor phenotype. Characterization of cells with DNA fingerprinting demonstrated identical patterns in normal and tumor CR cells as well as in xenografted tumors. By flow cytometry, both normal and tumor CR cells expressed basal, luminal, and stem cell markers, with the majority of the normal and tumor CR cells expressing prostate basal cell markers, CD44 and Trop2, as well as luminal marker, CD13, suggesting a transit-amplifying phenotype. Consistent with this phenotype, real time RT-PCR analyses demonstrated that CR cells predominantly expressed high levels of basal cell markers (KRT5, KRT14 and p63), and low levels of luminal markers. When the CR tumor cells were injected into SCID mice, the expression of luminal markers (AR, NKX3.1) increased significantly, while basal cell markers dramatically decreased. These data suggest that CR cells maintain high levels of proliferation and low levels of differentiation in the presence of feeder cells and ROCK inhibitor, but undergo differentiation once injected into SCID mice. Genomic analyses, including SNP and INDEL, identified genes mutated in tumor cells, including components of apoptosis, cell attachment, and hypoxia pathways. The use of matched patient-derived cells provides a unique in vitro model for studies of early prostate cancer.
Collapse
|
430
|
Galletti G, Worroll D, Nanus DM, Giannakakou P. Using circulating tumor cells to advance precision medicine in prostate cancer. JOURNAL OF CANCER METASTASIS AND TREATMENT 2017; 3:190-205. [PMID: 29707651 PMCID: PMC5913755 DOI: 10.20517/2394-4722.2017.45] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The field of CTC enrichment has seen many emerging technologies in recent years, which have resulted in the identification and monitoring of clinically relevant, CTC-based biomarkers that can be analyzed routinely without invasive procedures. Several molecular platforms have been used to investigate the molecular profile of the disease, from high throughput gene expression analyses down to single cell biological dissection. The established presence of CTC heterogeneity nevertheless constitutes a challenge for cell isolation as the several subpopulations can potentially display different molecular characteristics; in this scenario, careful consideration must be given to the isolation approach, whereas methods that discriminate against certain subpopulations may result in the exclusion of CTCs that carry biological relevance. In the context of prostate cancer (PC), CTC molecular interrogation can enable longitudinal monitoring of key biological features during treatment with substantial clinical impact, as several biomarkers could predict tumor response to AR signaling inhibitors (abiraterone, enzalutamide) or standard chemotherapy (taxanes). Thus, CTCs represent a valuable opportunity to personalize medicine in current clinical practice.
Collapse
Affiliation(s)
- Giuseppe Galletti
- Department of Medicine, Hematology/Oncology, Weill Cornell Medicine, New York, NY
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Daniel Worroll
- Department of Medicine, Hematology/Oncology, Weill Cornell Medicine, New York, NY
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - David M Nanus
- Department of Medicine, Hematology/Oncology, Weill Cornell Medicine, New York, NY
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Paraskevi Giannakakou
- Department of Medicine, Hematology/Oncology, Weill Cornell Medicine, New York, NY
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY
| |
Collapse
|
431
|
Picollet-D'hahan N, Dolega ME, Freida D, Martin DK, Gidrol X. Deciphering Cell Intrinsic Properties: A Key Issue for Robust Organoid Production. Trends Biotechnol 2017; 35:1035-1048. [PMID: 28927991 DOI: 10.1016/j.tibtech.2017.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/18/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023]
Abstract
We highlight the disposition of various cell types to self-organize into complex organ-like structures without necessarily the support of any stromal cells, provided they are placed into permissive 3D culture conditions. The goal of generating organoids reproducibly and efficiently has been hampered by poor understanding of the exact nature of the intrinsic cell properties at the origin of organoid generation, and of the signaling pathways governing their differentiation. Using microtechnologies like microfluidics to engineer organoids would create opportunities for single-cell genomics and high-throughput functional genomics to exhaustively characterize cell intrinsic properties. A more complete understanding of the development of organoids would enhance their relevance as models to study organ morphology, function, and disease and would open new avenues in drug development and regenerative medicine.
Collapse
Affiliation(s)
| | - Monika E Dolega
- Université Grenoble Alpes, INSERM, CEA, BIG, F-38000 Grenoble, France
| | - Delphine Freida
- Université Grenoble Alpes, INSERM, CEA, BIG, F-38000 Grenoble, France
| | - Donald K Martin
- Université Grenoble Alpes, F-38000 Grenoble, France; TIMC-IMAG/CNRS UMR 5525, F-38041 Grenoble, France
| | - Xavier Gidrol
- Université Grenoble Alpes, INSERM, CEA, BIG, F-38000 Grenoble, France.
| |
Collapse
|
432
|
Shah N, Wang P, Wongvipat J, Karthaus WR, Abida W, Armenia J, Rockowitz S, Drier Y, Bernstein BE, Long HW, Freedman ML, Arora VK, Zheng D, Sawyers CL. Regulation of the glucocorticoid receptor via a BET-dependent enhancer drives antiandrogen resistance in prostate cancer. eLife 2017; 6:e27861. [PMID: 28891793 PMCID: PMC5593504 DOI: 10.7554/elife.27861] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 08/24/2017] [Indexed: 12/18/2022] Open
Abstract
In prostate cancer, resistance to the antiandrogen enzalutamide (Enz) can occur through bypass of androgen receptor (AR) blockade by the glucocorticoid receptor (GR). In contrast to fixed genomic alterations, here we show that GR-mediated antiandrogen resistance is adaptive and reversible due to regulation of GR expression by a tissue-specific enhancer. GR expression is silenced in prostate cancer by a combination of AR binding and EZH2-mediated repression at the GR locus, but is restored in advanced prostate cancers upon reversion of both repressive signals. Remarkably, BET bromodomain inhibition resensitizes drug-resistant tumors to Enz by selectively impairing the GR signaling axis via this enhancer. In addition to revealing an underlying molecular mechanism of GR-driven drug resistance, these data suggest that inhibitors of broadly active chromatin-readers could have utility in nuanced clinical contexts of acquired drug resistance with a more favorable therapeutic index.
Collapse
Affiliation(s)
- Neel Shah
- Human Oncology and Pathogenesis ProgramMemorial Sloan Kettering Cancer CenterNew YorkUnited States
- The Louis V. Gerstner Graduate School of Biomedical Sciences, Sloan Kettering InstituteMemorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Ping Wang
- Department of Neurology, Genetics and NeuroscienceAlbert Einstein College of MedicineBronxUnited States
| | - John Wongvipat
- Human Oncology and Pathogenesis ProgramMemorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Wouter R Karthaus
- Human Oncology and Pathogenesis ProgramMemorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Wassim Abida
- Department of MedicineMemorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Joshua Armenia
- Human Oncology and Pathogenesis ProgramMemorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Shira Rockowitz
- Department of Neurology, Genetics and NeuroscienceAlbert Einstein College of MedicineBronxUnited States
| | - Yotam Drier
- Department of PathologyMassachusetts General Hospital and Harvard Medical SchoolBostonUnited States
| | - Bradley E Bernstein
- Department of PathologyMassachusetts General Hospital and Harvard Medical SchoolBostonUnited States
| | - Henry W Long
- Department of Medical OncologyDana-Farber Cancer Institute and Harvard Medical SchoolBostonUnited States
| | - Matthew L Freedman
- Department of Medical OncologyDana-Farber Cancer Institute and Harvard Medical SchoolBostonUnited States
| | - Vivek K Arora
- Division of Medical OncologyWashington University School of MedicineSt LouisUnited States
| | - Deyou Zheng
- Department of Neurology, Genetics and NeuroscienceAlbert Einstein College of MedicineBronxUnited States
| | - Charles L Sawyers
- Human Oncology and Pathogenesis ProgramMemorial Sloan Kettering Cancer CenterNew YorkUnited States
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| |
Collapse
|
433
|
Mohr L, Carceles-Cordon M, Woo J, Cordon-Cardo C, Domingo-Domenech J, Rodriguez-Bravo V. Generation of Prostate Cancer Cell Models of Resistance to the Anti-mitotic Agent Docetaxel. J Vis Exp 2017. [PMID: 28930981 PMCID: PMC5607877 DOI: 10.3791/56327] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Microtubule targeting agents (MTAs) are a mainstay in the treatment of a wide range of tumors. However, acquired resistance to chemotherapeutic drugs is a common mechanism of disease progression and a prognostic-determinant feature of malignant tumors. In prostate cancer (PC), resistance to MTAs such as the taxane Docetaxel dictates treatment failure as well as progression towards lethal stages of disease that are defined by a poor prognosis and high mortality rates. Though studied for decades, the array of mechanisms contributing to acquired resistance are not completely understood, and thus pose a significant limitation to the development of new therapeutic strategies that could benefit patients in these advanced stages of disease. In this protocol, we describe the generation of Docetaxel-resistant prostate cancer cell lines that mimic lethal features of late-stage prostate cancer, and therefore can be used to study the mechanisms by which acquired chemoresistance arises. Despite potential limitations intrinsic to a cell based model, such as the loss of resistance properties over time, the Docetaxel-resistant cell lines produced by this method have been successfully used in recent studies and offer the opportunity to advance our molecular understanding of acquired chemoresistance in lethal prostate cancer.
Collapse
Affiliation(s)
- Lisa Mohr
- Department of Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai
| | - Marc Carceles-Cordon
- Department of Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai
| | - Jungreem Woo
- Department of Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai
| | - Carlos Cordon-Cardo
- Department of Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai
| | - Josep Domingo-Domenech
- Department of Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai
| | - Veronica Rodriguez-Bravo
- Department of Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai;
| |
Collapse
|
434
|
Moad M, Hannezo E, Buczacki SJ, Wilson L, El-Sherif A, Sims D, Pickard R, Wright NA, Williamson SC, Turnbull DM, Taylor RW, Greaves L, Robson CN, Simons BD, Heer R. Multipotent Basal Stem Cells, Maintained in Localized Proximal Niches, Support Directed Long-Ranging Epithelial Flows in Human Prostates. Cell Rep 2017; 20:1609-1622. [PMID: 28813673 PMCID: PMC5565638 DOI: 10.1016/j.celrep.2017.07.061] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/24/2017] [Accepted: 07/21/2017] [Indexed: 12/15/2022] Open
Abstract
Sporadic mitochondrial DNA mutations serve as clonal marks providing access to the identity and lineage potential of stem cells within human tissues. By combining quantitative clonal mapping with 3D reconstruction of adult human prostates, we show that multipotent basal stem cells, confined to discrete niches in juxta-urethral ducts, generate bipotent basal progenitors in directed epithelial migration streams. Basal progenitors are then dispersed throughout the entire glandular network, dividing and differentiating to replenish the loss of apoptotic luminal cells. Rare lineage-restricted luminal stem cells, and their progeny, are confined to proximal ducts and provide only minor contribution to epithelial homeostasis. In situ cell capture from clonal maps identified delta homolog 1 (DLK1) enrichment of basal stem cells, which was validated in functional spheroid assays. This study establishes significant insights into niche organization and function of prostate stem and progenitor cells, with implications for disease.
Collapse
Affiliation(s)
- Mohammad Moad
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4AD, UK
| | - Edouard Hannezo
- Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Simon J Buczacki
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Laura Wilson
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4AD, UK
| | - Amira El-Sherif
- Department of Histopathology, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, UK; Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - David Sims
- Computational Genomics Analysis and Training (CGAT), MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Robert Pickard
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Nicholas A Wright
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Stuart C Williamson
- Clinical and Experimental Pharmacology Group, University of Manchester, Manchester M13 9PL, UK
| | - Doug M Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Newcastle Centre for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Laura Greaves
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Newcastle Centre for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Craig N Robson
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4AD, UK
| | - Benjamin D Simons
- Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Wellcome Trust/Medical Research Council Stem Cell Institute, Cambridge CB2 1QR, UK.
| | - Rakesh Heer
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4AD, UK.
| |
Collapse
|
435
|
Prostate cancer-associated SPOP mutations confer resistance to BET inhibitors through stabilization of BRD4. Nat Med 2017; 23:1063-1071. [PMID: 28805820 PMCID: PMC5625299 DOI: 10.1038/nm.4378] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 06/29/2017] [Indexed: 12/15/2022]
Abstract
The bromodomain and extra-terminal (BET) family of proteins, comprised of four members including BRD2, BRD3, BRD4 and the testis-specific isoform BRDT, largely function as transcriptional co-activators 1–3 and play critical roles in various cellular processes, including cell cycle, apoptosis, migration and invasion 4,5. As such, BET proteins enhance the oncogenic functions of major cancer drivers by either elevating their expression such as c-Myc in leukemia 6,7 or by promoting transcriptional activities of oncogenic factors such as AR and ERG in the prostate cancer setting 8. Pathologically, BET proteins are frequently overexpressed and clinically linked to various types of human cancers 5,9,10, therefore pursued as attractive therapeutic targets for selective inhibition in patients. To this end, a number of bromodomain inhibitors, including JQ1 and I-BET, have been developed 11,12 and shown promising outcomes in early clinical trials. Despite resistance to BET inhibitor has been documented in pre-clinical models 13–15 the molecular mechanisms underlying acquired resistance are largely unknown. Here, we report that Cullin 3SPOP earmarks BET proteins including BRD2, BRD3 and BRD4 for ubiquitination-mediated degradation. Pathologically, prostate cancer-associated SPOP mutants fail to interact with and promote the destruction of BET proteins, leading to their elevated abundance in SPOP-deficient prostate cancer. As a result, prostate cancer cells and prostate cancer patient-derived organoids harboring SPOP mutations are more resistant to BET inhibitor-induced cell growth arrest and apoptosis. Therefore, our results elucidate the tumor suppressor role of SPOP in prostate cancer by negatively controlling BET protein stability, and also provide a molecular mechanism for BET inhibitor resistance in prostate cancer patients bearing SPOP mutations.
Collapse
|
436
|
Intrinsic BET inhibitor resistance in SPOP-mutated prostate cancer is mediated by BET protein stabilization and AKT-mTORC1 activation. Nat Med 2017; 23:1055-1062. [PMID: 28805822 PMCID: PMC5653288 DOI: 10.1038/nm.4379] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 06/29/2017] [Indexed: 12/19/2022]
Abstract
Bromodomain and extraterminal domain (BET) protein inhibitors are emerging as promising anticancer therapies. The gene encoding the E3 ubiquitin ligase substrate-binding adaptor speckle-type POZ protein (SPOP) is the most frequently mutated in primary prostate cancer. Here we demonstrate that wild-type SPOP binds to and induces ubiquitination and proteasomal degradation of BET proteins (BRD2, BRD3 and BRD4) by recognizing a degron motif common among them. In contrast, prostate cancer-associated SPOP mutants show impaired binding to BET proteins, resulting in decreased proteasomal degradation and accumulation of these proteins in prostate cancer cell lines and patient specimens and causing resistance to BET inhibitors. Transcriptome and BRD4 cistrome analyses reveal enhanced expression of the GTPase RAC1 and cholesterol-biosynthesis-associated genes together with activation of AKT-mTORC1 signaling as a consequence of BRD4 stabilization. Our data show that resistance to BET inhibitors in SPOP-mutant prostate cancer can be overcome by combination with AKT inhibitors and further support the evaluation of SPOP mutations as biomarkers to guide BET-inhibitor-oriented therapy in patients with prostate cancer.
Collapse
|
437
|
Flaig TW, Kamat AM, Hansel D, Ingersoll MA, Barton Grossman H, Mendelsohn C, DeGraff D, Liao JC, Taylor JA. Proceedings of the 3rd Annual Albert Institute for Bladder Cancer Research Symposium. Bladder Cancer 2017; 3:211-223. [PMID: 28824949 PMCID: PMC5545918 DOI: 10.3233/blc-170111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Third Annual Albert Institute Bladder Symposium was held on September 8–10th, 2016, in Denver Colorado. Participants discussed several critical topics in the field of bladder cancer: 1) Best practices for tissue analysis and use to optimize correlative studies, 2) Modeling bladder cancer to facilitate understanding and innovation, 3) Targeted therapies for bladder cancer, 4) Tumor phylogeny in bladder cancer, 5) New Innovations in bladder cancer diagnostics. Our understanding of and approach to treating urothelial carcinoma is undergoing rapid advancement. Preclinical models of bladder cancer have been leveraged to increase our basic and mechanistic understanding of the disease. With the approval of immune checkpoint inhibitors for the treatment of advanced urothelial carcinoma, the treatment approach for these patients has quickly changed. In this light, molecularly-defined subtypes of bladder cancer and appropriate pre-clinical models are now essential to the further advancement and appropriate application of these therapeutic improvements. The optimal collection and processing of clinical urothelial carcinoma tissues samples will also be critical in the development of predictive biomarkers for therapeutic selection. Technological advances in other areas including optimal imaging technologies and micro/nanotechnologies are being applied to bladder cancer, especially in the localized setting, and hold the potential for translational impact in the treatment of bladder cancer patients. Taken together, advances in several basic science and clinical areas are now converging in bladder cancer. These developments hold the promise of shaping and improving the clinical care of those with the disease.
Collapse
Affiliation(s)
- Thomas W Flaig
- Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Ashish M Kamat
- Department of Urology, MD Anderson Cancer Center, Houston, TX, USA
| | - Donna Hansel
- Department of Pathology, University ofCalifornia San Diego, San Diego, CA, USA
| | | | | | - Cathy Mendelsohn
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - David DeGraff
- Department of Pathology, Penn State University, Hershey, PA, USA
| | - Joseph C Liao
- Department of Urology, Stanford University, Stanford, CA, USA
| | - John A Taylor
- University of Kansas, Department of Urology, Kansas City, KS, USA
| |
Collapse
|
438
|
Abstract
Technical advances in the development of organoid systems enable cell lines, primary adult cells, or stem or progenitor cells to develop into diverse, multicellular entities, which can self-renew, self-organize, and differentiate. These 3D organoid cultures have proven to be of value in increasing our understanding of the biology of disease and offer the potential of regenerative and genetic therapies. The successful application of 3D organoids derived from adult tissue into urological cancer research can further our understanding of these diseases and could also provide preclinical cancer models to realize the precision medicine paradigm by therapeutic screening of individual patient samples ex vivo. Kidney organoids derived from induced pluripotent stem cells provide personalized biomarkers, which can be correlated with genetic and clinical information. Organoid models can also improve our comprehension of aspects of particular diseases; for example, in prostate cancer, 3D organoids can aid in the identification of tumour-initiating cells from an epithelial cell lineage. Furthermore, kidney organoid differentiation from human pluripotent stem cells enables gene editing to model disease in kidney tubular epithelial cells. State-of-the-art human organoid cultures have potential as tools in basic and clinical research in renal, bladder, and prostatic diseases.
Collapse
Affiliation(s)
- Shangqian Wang
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA.,Urology Department, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Dong Gao
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA.,Key Laboratory of Systems Biology,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA.,Genitourinary Oncology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.,Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, USA
| |
Collapse
|
439
|
Haq S, Samuel V, Haxho F, Akasov R, Leko M, Burov SV, Markvicheva E, Szewczuk MR. Sialylation facilitates self-assembly of 3D multicellular prostaspheres by using cyclo-RGDfK(TPP) peptide. Onco Targets Ther 2017; 10:2427-2447. [PMID: 28496342 PMCID: PMC5422540 DOI: 10.2147/ott.s133563] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Prostaspheres-based three dimensional (3D) culture models have provided insight into prostate cancer (PCa) biology, highlighting the importance of cell–cell interactions and the extracellular matrix (EMC) in the tumor microenvironment. Although these 3D classical spheroid platforms provide a significant advance over 2D models mimicking in vivo tumors, the limitations involve no control of assembly and structure with only limited spatial or glandular organization. Here, matrix-free prostaspheres from human metastatic prostate carcinoma PC3 and DU145 cell lines and their respective gemcitabine resistant (GemR) variants were generated by using cyclic Arg-Gly-Asp-D-Phe-Lys peptide modified with 4-carboxybutyl-triphenylphosphonium bromide (cyclo-RGDfK(TPP)). Materials and methods Microscopic imaging, immunocytochemistry (ICC), flow cytometry, sialidase, and WST-1 cell viability assays were used to evaluate the formation of multicellular tumor spheroid (MCTS), cell survival, morphologic changes, and expression levels of α2,6 and α2,3 sialic acid (SA) and E- and N-cadherin in DU145, PC3, and their GemR variants. Results By using the cyclo-RGDfK(TPP) peptide platform in a dose- and time-dependent manner, both DU145 and DU145GemR cells formed small MCTS. In contrast, PC3 and PC3GemR cells formed irregular multicellular aggregates at all concentrations of cyclo-RGDfK(TPP) peptide, even after 6 days of incubation. ICC and flow cytometry results revealed that DU145 cells expressed higher amounts of E-cadherin but lower N-cadherin compared with PC3 cells. By using Maackia amurensis (α2,3-SA-specific MAL-II) and Sambucus nigra (α2,6-SA specific SNA) lectin-based cytochemistry staining and flow cytometry, it was found that DU145 and DU145GemR cells expressed 5 times more α2,6-SA than α2,3-SA on the cell surface. PC3 cells expressed 4 times more α2,3-SA than α2,6-SA, and the PC3GemR cells showed 1.4 times higher α2,6-SA than α2,3-SA. MCTS volume was dose-dependently reduced following pretreatment with α2,6-SA-specific neuraminidase (Vibrio cholerae). Oseltamivir phosphate enhanced cell aggregation and compaction of 3D MCTS formed with PC3 cells. Conclusion The relative levels of specific sialoglycan structures on the cell surface correlate with the ability of PCa cells to form avascular multicellular prostaspheres.
Collapse
Affiliation(s)
- Sabah Haq
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Vanessa Samuel
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Fiona Haxho
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Roman Akasov
- Polymers for Biology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences.,Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow
| | - Maria Leko
- Synthesis of Peptides and Polymer Microspheres Laboratory, Institute of Macromolecular Compounds, Russian Academy of Sciences, St Petersburg, Russia
| | - Sergey V Burov
- Synthesis of Peptides and Polymer Microspheres Laboratory, Institute of Macromolecular Compounds, Russian Academy of Sciences, St Petersburg, Russia
| | - Elena Markvicheva
- Polymers for Biology Laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
| | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
440
|
Nguyen HM, Vessella RL, Morrissey C, Brown LG, Coleman IM, Higano CS, Mostaghel EA, Zhang X, True LD, Lam H, Roudier M, Lange PH, Nelson PS, Corey E. LuCaP Prostate Cancer Patient-Derived Xenografts Reflect the Molecular Heterogeneity of Advanced Disease an--d Serve as Models for Evaluating Cancer Therapeutics. Prostate 2017; 77:654-671. [PMID: 28156002 PMCID: PMC5354949 DOI: 10.1002/pros.23313] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/06/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Metastatic prostate cancer is a common and lethal disease for which there are no therapies that produce cures or long-term durable remissions. Clinically relevant preclinical models are needed to increase our understanding of biology of this malignancy and to evaluate new agents that might provide effective treatment. Our objective was to establish and characterize patient-derived xenografts (PDXs) from advanced prostate cancer (PC) for investigation of biology and evaluation of new treatment modalities. METHODS Samples of advanced PC obtained from primary prostate cancer obtained at surgery or from metastases collected at time of death were implanted into immunocompromised mice to establish PDXs. Established PDXs were propagated in vivo. Genomic, transcriptomic, and STR profiles were generated. Responses to androgen deprivation and docetaxel in vivo were characterized. RESULTS We established multiple PDXs (LuCaP series), which represent the major genomic and phenotypic features of the disease in humans, including amplification of androgen receptor, PTEN deletion, TP53 deletion and mutation, RB1 loss, TMPRSS2-ERG rearrangements, SPOP mutation, hypermutation due to MSH2/MSH6 genomic aberrations, and BRCA2 loss. The PDX models also exhibit variation in intra-tumoral androgen levels. Our in vivo results show heterogeneity of response to androgen deprivation and docetaxel, standard therapies for advanced PC, similar to the responses of patients to these treatments. CONCLUSIONS The LuCaP PDX series reflects the diverse molecular composition of human castration-resistant PC and allows for hypothesis-driven cause-and-effect studies of mechanisms underlying treatment response and resistance. Prostate 77: 654-671, 2017. © 2017 The Authors. The Prostate Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Holly M. Nguyen
- Department of UrologyUniversity of WashingtonSeattleWashington
| | - Robert L. Vessella
- Department of UrologyUniversity of WashingtonSeattleWashington
- Puget Sound Veteran AdministrationSeattleWashington
| | - Colm Morrissey
- Department of UrologyUniversity of WashingtonSeattleWashington
| | - Lisha G. Brown
- Department of UrologyUniversity of WashingtonSeattleWashington
| | - Ilsa M. Coleman
- Division of Human BiologyFred Hutchinson Cancer Research CenterSeattleWashington
| | - Celestia S. Higano
- Division of Clinical ResearchFred Hutchinson Cancer Research CenterSeattleWashington
- Division of OncologyDepartment of MedicineUniversity of WashingtonSeattleWashington
| | - Elahe A. Mostaghel
- Division of Clinical ResearchFred Hutchinson Cancer Research CenterSeattleWashington
| | - Xiaotun Zhang
- Department of UrologyUniversity of WashingtonSeattleWashington
| | - Lawrence D. True
- Department of PathologyUniversity of WashingtonSeattleWashington
| | - Hung‐Ming Lam
- Department of UrologyUniversity of WashingtonSeattleWashington
| | - Martine Roudier
- Department of UrologyUniversity of WashingtonSeattleWashington
| | - Paul H. Lange
- Department of UrologyUniversity of WashingtonSeattleWashington
| | - Peter S. Nelson
- Department of UrologyUniversity of WashingtonSeattleWashington
- Division of Human BiologyFred Hutchinson Cancer Research CenterSeattleWashington
- Department of PathologyUniversity of WashingtonSeattleWashington
| | - Eva Corey
- Department of UrologyUniversity of WashingtonSeattleWashington
| |
Collapse
|
441
|
Kahounová Z, Kurfürstová D, Bouchal J, Kharaishvili G, Navrátil J, Remšík J, Šimečková Š, Študent V, Kozubík A, Souček K. The fibroblast surface markers FAP, anti-fibroblast, and FSP are expressed by cells of epithelial origin and may be altered during epithelial-to-mesenchymal transition. Cytometry A 2017; 93:941-951. [PMID: 28383825 DOI: 10.1002/cyto.a.23101] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/13/2017] [Accepted: 03/07/2017] [Indexed: 12/15/2022]
Abstract
The identification of fibroblasts and cancer-associated fibroblasts from human cancer tissue using surface markers is difficult, especially because the markers used currently are usually not expressed solely by fibroblasts, and the identification of fibroblast-specific surface molecules is still under investigation. It was aimed to compare three commercially available antibodies in the detection of different surface epitopes of fibroblasts (anti-fibroblast, fibroblast activation protein α, and fibroblast surface protein). The specificity of their expression, employing fibroblast cell lines and tumor-derived fibroblasts from breast and prostate tissues was investigated. Both the established fibroblast cell line HFF-1 and ex vivo primary fibroblasts isolated from breast and prostate cancer tissues expressed the tested surface markers to different degrees. Surprisingly, those markers were expressed also by permanent cell lines of epithelial origin, both benign and cancer-derived (breast-cell lines MCF 10A, HMLE and prostate-cell lines BPH-1, DU 145, and PC-3). The expression of fibroblast activation protein α increased on the surface of previously described models of epithelial cells undergoing epithelial-to-mesenchymal transition in response to treatment with TGF-β1. To prove the co-expression of the fibroblast markers on cells of epithelial origin, we used freshly dissociated human prostate and breast cancer tissues. The results confirmed the co-expression of anti-fibroblast and fibroblast surface protein on CD31/CD45-negative/EpCAM-positive epithelial cells. In summary, our data support the findings that the tested fibroblast markers are not fibroblast specific and may be expressed also by cells of epithelial origin (e.g., cells undergoing EMT). Therefore, the expression of these markers should be interpreted with caution, and the combination of several epitopes for both positive (anti-fibroblast or fibroblast activation protein α) and negative (EpCAM) identification of fibroblasts from breast and prostate tumor tissues is advised. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Zuzana Kahounová
- Department of Cytokinetics, Institute of Biophysics of the CAS, v.v.i, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Daniela Kurfürstová
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Gvantsa Kharaishvili
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jiří Navrátil
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ján Remšík
- Department of Cytokinetics, Institute of Biophysics of the CAS, v.v.i, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Šárka Šimečková
- Department of Cytokinetics, Institute of Biophysics of the CAS, v.v.i, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vladimír Študent
- Department of Urology, University Hospital Olomouc, Olomouc, Czech Republic
| | - Alois Kozubík
- Department of Cytokinetics, Institute of Biophysics of the CAS, v.v.i, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics of the CAS, v.v.i, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
442
|
Driehuis E, Clevers H. CRISPR-Induced TMPRSS2-ERG Gene Fusions in Mouse Prostate Organoids. JSM BIOTECHNOLOGY & BIOMEDICAL ENGINEERING 2017; 4:1076. [PMID: 30542657 PMCID: PMC6287496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
TMPRSS2-ERG fusions are common genetic events in prostate cancer. Until now, this genetic alteration was modelled by ERG overexpression. In this short communication, we report the creation of mouse prostate organoids that have undergone gene fusion through a CRISPR/Cas9-based strategy. The genetic fusion of TMPRSS2 and ERG results in ERG overexpression. This effect is androgen receptor-mediated, as expression of the fusion transcript can be restored to wildtype ERG levels by treatment with the androgen receptor antagonist Nilutamide.
Collapse
Affiliation(s)
- Else Driehuis
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), The Netherlands
- University Medical Center (UMC) Utrecht, The Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), The Netherlands
- Princess Maxima Center, The Netherlands
| |
Collapse
|
443
|
Disease Modeling in Stem Cell-Derived 3D Organoid Systems. Trends Mol Med 2017; 23:393-410. [PMID: 28341301 DOI: 10.1016/j.molmed.2017.02.007] [Citation(s) in RCA: 529] [Impact Index Per Article: 66.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/31/2017] [Accepted: 02/21/2017] [Indexed: 02/06/2023]
Abstract
Organoids are 3D in vitro culture systems derived from self-organizing stem cells. They can recapitulate the in vivo architecture, functionality, and genetic signature of original tissues. Thus, organoid technology has been rapidly applied to understanding stem cell biology, organogenesis, and various human pathologies. The recent development of human patient-derived organoids has enabled disease modeling with precision, highlighting their great potential in biomedical applications, translational medicine, and personalized therapy. In light of recent breakthroughs using organoids, it is only apt that we appreciate the advantages and shortcomings of this technology to exploit its full potential. We discuss recent advances in the application of organoids in studying cancer and hereditary diseases, as well as in the examination of host cell-microorganism interactions.
Collapse
|
444
|
Drost J, Clevers H. Translational applications of adult stem cell-derived organoids. Development 2017; 144:968-975. [DOI: 10.1242/dev.140566] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ABSTRACT
Adult stem cells from a variety of organs can be expanded long-term in vitro as three-dimensional organotypic structures termed organoids. These adult stem cell-derived organoids retain their organ identity and remain genetically stable over long periods of time. The ability to grow organoids from patient-derived healthy and diseased tissue allows for the study of organ development, tissue homeostasis and disease. In this Review, we discuss the generation of adult stem cell-derived organoid cultures and their applications in in vitro disease modeling, personalized cancer therapy and regenerative medicine.
Collapse
Affiliation(s)
- Jarno Drost
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584CT, The Netherlands
- Cancer Genomics Netherlands, UMC Utrecht, Utrecht 3584CG, The Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584CT, The Netherlands
- Cancer Genomics Netherlands, UMC Utrecht, Utrecht 3584CG, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht 3584CT, The Netherlands
| |
Collapse
|
445
|
|
446
|
Tricoli L, Berry DL, Albanese C. A Rapid Filter Insert-based 3D Culture System for Primary Prostate Cell Differentiation. J Vis Exp 2017. [PMID: 28287583 DOI: 10.3791/55279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Conditionally reprogrammed cells (CRCs) provide a sustainable method for primary cell culture and the ability to develop extensive "living biobanks" of patient derived cell lines. For many types of epithelial cells, various three dimensional (3D) culture approaches have been described that support an improved differentiated state. While CRCs retain their lineage commitment to the tissue from which they are isolated, they fail to express many of the differentiation markers associated with the tissue of origin when grown under normal two dimensional (2D) culture conditions. To enhance the application of patient-derived CRCs for prostate cancer research, a 3D culture format has been defined that enables a rapid (2 weeks total) luminal cell differentiation in both normal and tumor-derived prostate epithelial cells. Herein, a filter insert-based format is described for the culturing and differentiation of both normal and malignant prostate CRCs. A detailed description of the procedures required for cell collection and processing for immunohistochemical and immunofluorescent staining are provided. Collectively the 3D culture format described, combined with the primary CRC lines, provides an important medium- to high- throughput model system for biospecimen-based prostate research.
Collapse
Affiliation(s)
- Lucas Tricoli
- Department of Oncology, Lombardi Comprehensive Cancer Center
| | - Deborah L Berry
- Department of Oncology, Georgetown University Medical Center
| | - Chris Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center;
| |
Collapse
|
447
|
Boj SF, Vonk AM, Statia M, Su J, Vries RRG, Beekman JM, Clevers H. Forskolin-induced Swelling in Intestinal Organoids: An In Vitro Assay for Assessing Drug Response in Cystic Fibrosis Patients. J Vis Exp 2017. [PMID: 28287550 DOI: 10.3791/55159] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recently-developed cystic fibrosis transmembrane conductance regulator (CFTR)-modulating drugs correct surface expression and/or function of the mutant CFTR channel in subjects with cystic fibrosis (CF). Identification of subjects that may benefit from these drugs is challenging because of the extensive heterogeneity of CFTR mutations, as well as other unknown factors that contribute to individual drug efficacy. Here, we describe a simple and relatively rapid assay for measuring individual CFTR function and response to CFTR modulators in vitro. Three dimensional (3D) epithelial organoids are grown from rectal biopsies in standard organoid medium. Once established, the organoids can be bio-banked for future analysis. For the assay, 30-80 organoids are seeded in 96-well plates in basement membrane matrix and are then exposed to drugs. One day later, the organoids are stained with calcein green, and forskolin-induced swelling is monitored by confocal live cell microscopy at 37 °C. Forskolin-induced swelling is fully CFTR-dependent and is sufficiently sensitive and precise to allow for discrimination between the drug responses of individuals with different and even identical CFTR mutations. In vitro swell responses correlate with the clinical response to therapy. This assay provides a cost-effective approach for the identification of drug-responsive individuals, independent of their CFTR mutations. It may also be instrumental in the development of future CFTR modulators.
Collapse
Affiliation(s)
| | - Annelotte M Vonk
- Department of Pediatric Pulmonology, Regenerative Medicine Centre Utrecht, Wilhelmina Children's Hospital, University Medical Centre Utrecht
| | | | - Jinyi Su
- Foundation Hubrecht Organoid Technology
| | | | - Jeffrey M Beekman
- Department of Pediatric Pulmonology, Regenerative Medicine Centre Utrecht, Wilhelmina Children's Hospital, University Medical Centre Utrecht;
| | - Hans Clevers
- Foundation Hubrecht Organoid Technology; Hubrecht Institute for Developmental Biology and Stem Cell Research, University Medical Centre Utrecht;
| |
Collapse
|
448
|
Pakula H, Xiang D, Li Z. A Tale of Two Signals: AR and WNT in Development and Tumorigenesis of Prostate and Mammary Gland. Cancers (Basel) 2017; 9:E14. [PMID: 28134791 PMCID: PMC5332937 DOI: 10.3390/cancers9020014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/19/2017] [Accepted: 01/24/2017] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers and among the leading causes of cancer deaths for men in industrialized countries. It has long been recognized that the prostate is an androgen-dependent organ and PCa is an androgen-dependent disease. Androgen action is mediated by the androgen receptor (AR). Androgen deprivation therapy (ADT) is the standard treatment for metastatic PCa. However, almost all advanced PCa cases progress to castration-resistant prostate cancer (CRPC) after a period of ADT. A variety of mechanisms of progression from androgen-dependent PCa to CRPC under ADT have been postulated, but it remains largely unclear as to when and how castration resistance arises within prostate tumors. In addition, AR signaling may be modulated by extracellular factors among which are the cysteine-rich glycoproteins WNTs. The WNTs are capable of signaling through several pathways, the best-characterized being the canonical WNT/β-catenin/TCF-mediated canonical pathway. Recent studies from sequencing PCa genomes revealed that CRPC cells frequently harbor mutations in major components of the WNT/β-catenin pathway. Moreover, the finding of an interaction between β-catenin and AR suggests a possible mechanism of cross talk between WNT and androgen/AR signaling pathways. In this review, we discuss the current knowledge of both AR and WNT pathways in prostate development and tumorigenesis, and their interaction during development of CRPC. We also review the possible therapeutic application of drugs that target both AR and WNT/β-catenin pathways. Finally, we extend our review of AR and WNT signaling to the mammary gland system and breast cancer. We highlight that the role of AR signaling and its interaction with WNT signaling in these two hormone-related cancer types are highly context-dependent.
Collapse
Affiliation(s)
- Hubert Pakula
- Division of Genetics, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Room 466, Boston, MA 02115, USA.
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - Dongxi Xiang
- Division of Genetics, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Room 466, Boston, MA 02115, USA.
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - Zhe Li
- Division of Genetics, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Room 466, Boston, MA 02115, USA.
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
449
|
Dissecting cell-type-specific roles of androgen receptor in prostate homeostasis and regeneration through lineage tracing. Nat Commun 2017; 8:14284. [PMID: 28112153 PMCID: PMC5264212 DOI: 10.1038/ncomms14284] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 12/12/2016] [Indexed: 01/01/2023] Open
Abstract
Androgen signals through androgen receptor (AR) to influence prostate development and cancer. How stromal and epithelial AR regulate prostate homeostasis remains unclear. Using genetic lineage tracing, we systematically investigated the role of cell-autonomous AR in different prostate epithelial cell types. Here we show that AR is dispensable for basal cell maintenance, but is cell-autonomously required for the luminal differentiation of rare basal stem cells. In contrast, AR deletion in luminal cells alters cell morphology and induces transient over-proliferation, without affecting androgen-mediated luminal cell survival or regeneration. However, AR is selectively required for the maintenance of daughter cells produced by castration-resistant Nkx3.1-expressing luminal stem cells (CARNs). Notably, Pten loss can override AR-loss effects in both basal and luminal compartments to initiate tumours. Our data reveal distinct cell-type-specific roles of epithelial AR in orchestrating prostate homeostasis, and question the notion that epithelial AR serves as a tumour suppressor in early cancer initiation. Androgen receptor is an important regulator of prostate development and cancer. In this study, the authors use genetic lineage tracing in mice to clarify the role of AR in different prostate epithelial cells.
Collapse
|
450
|
Navone NM, Labanca E. Modeling Cancer Metastasis. PATIENT-DERIVED XENOGRAFT MODELS OF HUMAN CANCER 2017. [DOI: 10.1007/978-3-319-55825-7_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|