401
|
Berzins SP, Ritchie DS. Natural killer T cells: drivers or passengers in preventing human disease? Nat Rev Immunol 2014; 14:640-6. [PMID: 25103356 DOI: 10.1038/nri3725] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Natural killer T (NKT) cells are credited with regulatory roles in immunity against cancers, autoimmune diseases, allergies, and bacterial and viral infections. Studies in mice and observational research in patient groups have suggested that NKT cell-based therapies could be used to prevent or treat these diseases, yet the translation into clinical settings has been disappointing. We support the view that NKT cells have regulatory characteristics that could be exploited in clinical settings, but there are doubts about the natural roles of NKT cells in vivo and whether NKT cell defects are fundamental drivers of disease in humans. In this Opinion article, we discuss the uncertainties and opportunities regarding NKT cells in humans, and the potential for NKT cells to be manipulated to prevent or treat disease.
Collapse
Affiliation(s)
- Stuart P Berzins
- School of Health Sciences, Federation University, Ballarat, Victoria 3350, Australia, the Fiona Elsey Cancer Research Institute, Ballarat, Victoria 3350, Australia, and the Department of Microbiology and Immunology, the Peter Doherty Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - David S Ritchie
- Department of Clinical Hematology and Bone Marrow Transplant Service, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia, and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
402
|
Ghigliotti G, Barisione C, Garibaldi S, Fabbi P, Brunelli C, Spallarossa P, Altieri P, Rosa G, Spinella G, Palombo D, Arsenescu R, Arsenescu V. Adipose tissue immune response: novel triggers and consequences for chronic inflammatory conditions. Inflammation 2014; 37:1337-53. [PMID: 24823865 PMCID: PMC4077305 DOI: 10.1007/s10753-014-9914-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adipose tissue inflammation mediates the association between excessive body fat accumulation and several chronic inflammatory diseases. A high prevalence of obesity-associated adipose tissue inflammation was observed not only in patients with cardiovascular conditions but also in patients with inflammatory bowel diseases, abdominal aortic aneurysm, or cardiorenal syndrome. In addition to excessive caloric intake, other triggers promote visceral adipose tissue inflammation followed by chronic, low-grade systemic inflammation. The infiltration and accumulation of immune cells in the inflamed and hypertrophied adipose tissue promote the production of inflammatory cytokines, contributing to target organ damages. This comorbidity seems to delimit subgroups of individuals with systemic adipose tissue inflammation and more severe chronic inflammatory diseases that are refractory to conventional treatment. This review highlights the association between adipose tissue immune response and the pathophysiology of visceral adiposity-related chronic inflammatory diseases, while suggesting several new therapeutic strategies.
Collapse
Affiliation(s)
- Giorgio Ghigliotti
- Division of Cardiology, IRCCS University Hospital San Martino, Research Centre of Cardiovascular Biology, University of Genoa, Genoa, Italy
| | - Chiara Barisione
- Division of Cardiology, IRCCS University Hospital San Martino, Research Centre of Cardiovascular Biology, University of Genoa, Genoa, Italy
| | - Silvano Garibaldi
- Division of Cardiology, IRCCS University Hospital San Martino, Research Centre of Cardiovascular Biology, University of Genoa, Genoa, Italy
| | - Patrizia Fabbi
- Division of Cardiology, IRCCS University Hospital San Martino, Research Centre of Cardiovascular Biology, University of Genoa, Genoa, Italy
| | - Claudio Brunelli
- Division of Cardiology, IRCCS University Hospital San Martino, Research Centre of Cardiovascular Biology, University of Genoa, Genoa, Italy
| | - Paolo Spallarossa
- Division of Cardiology, IRCCS University Hospital San Martino, Research Centre of Cardiovascular Biology, University of Genoa, Genoa, Italy
| | - Paola Altieri
- Division of Cardiology, IRCCS University Hospital San Martino, Research Centre of Cardiovascular Biology, University of Genoa, Genoa, Italy
| | - Gianmarco Rosa
- Division of Cardiology, IRCCS University Hospital San Martino, Research Centre of Cardiovascular Biology, University of Genoa, Genoa, Italy
| | - Giovanni Spinella
- Vascular and Endovascular Surgery Unit, University of Genoa, Genoa, Italy
| | - Domenico Palombo
- Vascular and Endovascular Surgery Unit, University of Genoa, Genoa, Italy
| | - Razvan Arsenescu
- IBD Center, Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University, Columbus, OH USA
| | - Violeta Arsenescu
- Mucosal Immunology IBD Laboratory, Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University, 400W 12 Ave., Wiseman Hall, Room 1024, Columbus, OH 43210 USA
| |
Collapse
|
403
|
Rakhshandehroo M, Gijzel SMW, Siersbæk R, Broekema MF, de Haar C, Schipper HS, Boes M, Mandrup S, Kalkhoven E. CD1d-mediated presentation of endogenous lipid antigens by adipocytes requires microsomal triglyceride transfer protein. J Biol Chem 2014; 289:22128-39. [PMID: 24966328 DOI: 10.1074/jbc.m114.551242] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Obesity-induced adipose tissue (AT) dysfunction results in a chronic low-grade inflammation that predisposes to the development of insulin resistance and type 2 diabetes. During the development of obesity, the AT-resident immune cell profile alters to create a pro-inflammatory state. Very recently, CD1d-restricted invariant (i) natural killer T (NKT) cells, a unique subset of lymphocytes that are reactive to so called lipid antigens, were implicated in AT homeostasis. Interestingly, recent data also suggest that human and mouse adipocytes can present such lipid antigens to iNKT cells in a CD1d-dependent fashion, but little is known about the lipid antigen presentation machinery in adipocytes. Here we show that CD1d, as well as the lipid antigen loading machinery genes pro-saposin (Psap), Niemann Pick type C2 (Npc2), α-galactosidase (Gla), are up-regulated in early adipogenesis, and are transcriptionally controlled by CCAAT/enhancer-binding protein (C/EBP)-β and -δ. Moreover, adipocyte-induced Th1 and Th2 cytokine release by iNKT cells also occurred in the absence of exogenous ligands, suggesting the display of endogenous lipid antigen-D1d complexes by 3T3-L1 adipocytes. Furthermore, we identified microsomal triglyceride transfer protein, which we show is also under the transcriptional regulation of C/EBPβ and -δ, as a novel player in the presentation of endogenous lipid antigens by adipocytes. Overall, our findings indicate that adipocytes can function as non-professional lipid antigen presenting cells, which may present an important aspect of adipocyte-immune cell communication in the regulation of whole body energy metabolism and immune homeostasis.
Collapse
Affiliation(s)
| | - Sanne M W Gijzel
- From the Molecular Cancer Research, Center for Molecular Medicine and
| | - Rasmus Siersbæk
- the Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark
| | | | - Colin de Haar
- the Department of Pediatric Immunology, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands and
| | - Henk S Schipper
- From the Molecular Cancer Research, Center for Molecular Medicine and the Department of Pediatric Immunology, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands and
| | - Marianne Boes
- the Department of Pediatric Immunology, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands and
| | - Susanne Mandrup
- the Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Eric Kalkhoven
- From the Molecular Cancer Research, Center for Molecular Medicine and
| |
Collapse
|
404
|
Zhu S, Bing Y, Wang X, Yu Q, Wang Y, Xu S, Song L, Wang X, Xia B, Zhu Y, Zhou R. CCL25/CCR9 interactions regulate the function of iNKT cells in oxazolone-induced colitis in mice. PLoS One 2014; 9:e100167. [PMID: 24936795 PMCID: PMC4061108 DOI: 10.1371/journal.pone.0100167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/22/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Natural killer T (NKT) cells share phenotypic and functional properties with both conventional natural killer cells and T cells. These cells might have an important role in the pathogenesis of ulcerative colitis (UC). The interaction of chemokine ligand 25 (CCL25) with chemokine receptor 9 (CCR9) is involved in gut-specific migration of leukocytes and induces regulatory T cells (Tregs) to migrate to the intestine in chronic ileitis. METHODOLOGY/FINDINGS In UC patients, NKT receptor CD161, CCL25, and CCR9 expression levels were evaluated by qRT-PCR. A murine model of oxazolone-induced colitis was induced in BALB/c mice. The mRNA levels of NK1.1, CCL25 and CCR9, and pro-inflammatory cytokines in mice were evaluated. The CCR9 expression on Type I or invariant NKT (iNKT) cells, and the iNKT cells chemotaxis are observed according to flow cytometry. NKT receptor CD161, CCL25 and CCR9 expression levels were significantly increased in UC patients. And, the mRNA expression levels of NK1.1, CCL25 and CCR9 were increased in oxazolone-induced colitis in mice. The production of pro-inflammatory cytokines was significantly increased, especially interleukin 4 (IL-4), IL-10 and IL-13. We observed significantly increased CCR9 expression on iNKT cells. Furthermore, we found an increased iNKT population and enhanced chemotaxis during oxazolone-induced colitis. CONCLUSIONS/SIGNIFICANCE Our study suggests that CCL25/CCR9 interactions may promote the induction and function of iNKT cells during oxazolone-induced colitis. These findings may have important implications for UC treatment and suggest a role for CCR9 inhibitors.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Blotting, Western
- Cells, Cultured
- Chemokines, CC/genetics
- Chemokines, CC/metabolism
- Colitis/chemically induced
- Colitis/immunology
- Colitis/metabolism
- Colitis, Ulcerative/immunology
- Colitis, Ulcerative/metabolism
- Colitis, Ulcerative/pathology
- Female
- Flow Cytometry
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Middle Aged
- Natural Killer T-Cells/drug effects
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Oxazolone/toxicity
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Receptors, CCR/genetics
- Receptors, CCR/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Young Adult
Collapse
Affiliation(s)
- Siying Zhu
- Department of Gastroenterology/Hepatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- The Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, Hubei, P. R. China
| | - Yuntao Bing
- The Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, Hubei, P. R. China
| | - Xiaobing Wang
- Department of Gastroenterology/Hepatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- The Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, Hubei, P. R. China
| | - Qiao Yu
- The Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, Hubei, P. R. China
| | - Yipeng Wang
- Department of Gastroenterology/Hepatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Shufang Xu
- Department of Gastroenterology/Hepatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- The Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, Hubei, P. R. China
| | - Lu Song
- Department of Gastroenterology/Hepatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- The Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, Hubei, P. R. China
| | - Xintao Wang
- Department of Gastroenterology/Hepatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- The Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, Hubei, P. R. China
| | - Bing Xia
- Department of Gastroenterology/Hepatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- The Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, Hubei, P. R. China
| | - Youqing Zhu
- Department of Gastroenterology/Hepatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- The Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, Hubei, P. R. China
- * E-mail: (RZ); (YZ)
| | - Rui Zhou
- Department of Gastroenterology/Hepatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- The Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, Hubei, P. R. China
- * E-mail: (RZ); (YZ)
| |
Collapse
|
405
|
Forsslund H, Mikko M, Karimi R, Grunewald J, Wheelock ÅM, Wahlström J, Sköld CM. Distribution of T-cell subsets in BAL fluid of patients with mild to moderate COPD depends on current smoking status and not airway obstruction. Chest 2014; 145:711-722. [PMID: 24264182 DOI: 10.1378/chest.13-0873] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND COPD is characterized by chronic inflammation. CD8+ T cells and CD4+ T cells have both been implicated in the inflammatory response. We investigated whether the lymphocyte and T-cell subpopulations in BAL differ between patients with COPD who are current smokers and those who are ex-smokers. METHODS Forty never smokers, 40 smokers with normal lung function, and 38 patients with COPD, GOLD (Global Initiative for Chronic Obstructive Pulmonary Disease) stage I-II (27 smokers and 11 ex-smokers) underwent BAL. Using flow cytometry, cells were analyzed from BAL and blood for T-cell subsets, B cells, natural killer cells, and natural killer T (NKT)-like cells. The differentiation status of CD4+ T cells was also determined. RESULTS Smokers with or without COPD had higher percentages of CD8+ T cells and NKT-like cells in BAL than did never smokers and ex-smokers with COPD. Most of the NKT-like cells were CD8+. In contrast, the percentages of CD4+ T cells were lower in the smoking than in the nonsmoking groups. In blood, the frequency of CD4+ T cells was increased in the two smoking groups. Current smokers also had increased numbers of activated (CD69+) naive and effector CD4+ T cells in BAL compared with nonsmokers, particularly in patients with COPD. In male smokers with COPD, the percentage of CD8+ T cells in BAL positively correlated with the number of cigarettes per day. CONCLUSIONS Current smoking status has a greater impact than airway obstruction on the distribution of T-cell subsets in BAL of patients with mild to moderate COPD. This fact must be considered when the role of T cells in COPD is evaluated. Our results stress the importance of subgrouping patients with COPD in terms of smoking.
Collapse
Affiliation(s)
- Helena Forsslund
- Respiratory Medicine Unit, Department of Medicine Solna and Centre for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden.
| | - Mikael Mikko
- Respiratory Medicine Unit, Department of Medicine Solna and Centre for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Reza Karimi
- Respiratory Medicine Unit, Department of Medicine Solna and Centre for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Johan Grunewald
- Respiratory Medicine Unit, Department of Medicine Solna and Centre for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Åsa M Wheelock
- Respiratory Medicine Unit, Department of Medicine Solna and Centre for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Jan Wahlström
- Respiratory Medicine Unit, Department of Medicine Solna and Centre for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - C Magnus Sköld
- Respiratory Medicine Unit, Department of Medicine Solna and Centre for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden
| |
Collapse
|
406
|
Huh JY, Park YJ, Ham M, Kim JB. Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. Mol Cells 2014; 37:365-71. [PMID: 24781408 PMCID: PMC4044307 DOI: 10.14348/molcells.2014.0074] [Citation(s) in RCA: 279] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 04/04/2014] [Accepted: 04/04/2014] [Indexed: 01/06/2023] Open
Abstract
Recent findings, notably on adipokines and adipose tissue inflammation, have revised the concept of adipose tissues being a mere storage depot for body energy. Instead, adipose tissues are emerging as endocrine and immunologically active organs with multiple effects on the regulation of systemic energy homeostasis. Notably, compared with other metabolic organs such as liver and muscle, various inflammatory responses are dynamically regulated in adipose tissues and most of the immune cells in adipose tissues are involved in obesity-mediated metabolic complications, including insulin resistance. Here, we summarize recent findings on the key roles of innate (neutrophils, macrophages, mast cells, eosinophils) and adaptive (regulatory T cells, type 1 helper T cells, CD8 T cells, B cells) immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. In particular, the roles of natural killer T cells, one type of innate lymphocyte, in adipose tissue inflammation will be discussed. Finally, a new role of adipocytes as antigen presenting cells to modulate T cell activity and subsequent adipose tissue inflammation will be proposed.
Collapse
Affiliation(s)
- Jin Young Huh
- School of Biological Science, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742,
Korea
| | | | - Mira Ham
- School of Biological Science, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742,
Korea
| | - Jae Bum Kim
- School of Biological Science, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742,
Korea
| |
Collapse
|
407
|
Fernandez CS, Kelleher AD, Finlayson R, Godfrey DI, Kent SJ. NKT cell depletion in humans during early HIV infection. Immunol Cell Biol 2014; 92:578-90. [PMID: 24777308 DOI: 10.1038/icb.2014.25] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/06/2014] [Accepted: 03/08/2014] [Indexed: 12/19/2022]
Abstract
Natural killer T (NKT) cells bridge across innate and adaptive immune responses and have an important role in chronic viral infections such as human immunodeficiency virus (HIV). NKT cells are depleted during chronic HIV infection, but the timing, drivers and implications of this NKT cell depletion are poorly understood. We studied human peripheral blood NKT cell levels, phenotype and function in 31 HIV-infected subjects not on antiretroviral treatment from a mean of 4 months to 2 years after HIV infection. We found that peripheral CD4(+) NKT cells were substantially depleted and dysfunctional by 4 months after HIV infection. The depletion of CD4(+) NKT cells was more marked than the depletion of total CD4(+) T cells. Further, the early depletion of NKT cells correlated with CD4(+) T-cell decline, but not HIV viral levels. Levels of activated CD4(+) T cells correlated with the loss of NKT cells. Our studies suggest that the early loss of NKT cells is associated with subsequent immune destruction during HIV infection.
Collapse
Affiliation(s)
- Caroline S Fernandez
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony D Kelleher
- 1] Kirby Institute, University of New South Wales, Kensington, New South Wales, Australia [2] St Vincent's Centre for Applied Medical Research, Sydney, New South Wales, Australia
| | - Robert Finlayson
- Taylor Square Private Clinic, Darlinghurst, New South Wales, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
408
|
Gherardin NA, Ritchie DS, Godfrey DI, Neeson PJ. OMIP-021: Simultaneous quantification of human conventional and innate-like T-cell subsets. Cytometry A 2014; 85:573-5. [PMID: 24757011 DOI: 10.1002/cyto.a.22475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 04/01/2014] [Accepted: 04/06/2014] [Indexed: 01/14/2023]
Affiliation(s)
- Nicholas A Gherardin
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Victoria, 3010, Australia; Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, 3002, Australia
| | | | | | | |
Collapse
|
409
|
Development of a qPCR method to rapidly assess the function of NKT cells. J Immunol Methods 2014; 407:82-9. [PMID: 24721393 DOI: 10.1016/j.jim.2014.03.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 01/02/2023]
Abstract
INTRODUCTION NKT cells comprise a rare, but important subset of T cells which account for ~0.2% of the total circulating T cell population. NKT cells are known to have anti-tumor functions and rapidly produce high levels of cytokines following activation. Several clinical trials have sought to exploit the effector functions of NKT cells. While some studies have shown promise, NKT cells are approximately 50% lower in cancer patients compared to healthy donors of the same age and gender, thus limiting their therapeutic efficacy. These studies indicate that baseline levels of activation should be assessed before initiating an NKT cell based immunotherapeutic strategy. AIM The goal of this study was to develop a sensitive method to rapidly assess NKT cell function. METHODS We utilized artificial antigen presenting cells in combination with qPCR in order to determine NKT cell function in peripheral blood mononuclear cells from healthy donors and breast cancer patients. RESULTS We found that NKT cell activation can be detected by qPCR, but not by ELISA, in healthy donors as well as in breast cancer patients following four hour stimulation. CONCLUSION This method utilizing CD1d-expressing aAPCs will enhance our knowledge of NKT cell biology and could potentially be used as a novel tool in adoptive immunotherapeutic strategies.
Collapse
|
410
|
The function of CD3+CD56+ NKT-like cells in HIV-infected individuals. BIOMED RESEARCH INTERNATIONAL 2014; 2014:863625. [PMID: 24779018 PMCID: PMC3977420 DOI: 10.1155/2014/863625] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/27/2014] [Indexed: 01/12/2023]
Abstract
CD3+CD56+ NKT-like cells are one of the critical effectors in the immune response to viral infection and tumors, but the functional features of NKT-like cells in HIV infection have been rarely reported. In this study, we observed and described the state of NKT-like cell functions in primary HIV-infected individuals (PHIs), chronic HIV-infected individuals (CHIs), long-term nonprogressors (LTNPs), and HIV-negative controls (NCs). The results showed that the percentage of IFN-γ+CD3+CD56+ NKT-like cells was notably higher in LTNPs compared with CHIs, and the proportion of CD3+CD56+ NKT-like cells with dual function (IFN-γ+CD107a+ NKT-like cells) in LTNPs was also much higher than in CHIs. Additionally, the percentages of IFN-γ+CD107a+ NKT-like cells negatively correlated with viral load. Taken together, our data demonstrated that good functions of CD3+CD56+ NKT-like cells in LTNPs likely occurred as a protective mechanism that slows down HIV disease progression.
Collapse
|
411
|
Bunn PT, Stanley AC, de Labastida Rivera F, Mulherin A, Sheel M, Alexander CE, Faleiro RJ, Amante FH, Montes De Oca M, Best SE, James KR, Kaye PM, Haque A, Engwerda CR. Tissue requirements for establishing long-term CD4+ T cell-mediated immunity following Leishmania donovani infection. THE JOURNAL OF IMMUNOLOGY 2014; 192:3709-18. [PMID: 24634490 DOI: 10.4049/jimmunol.1300768] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Organ-specific immunity is a feature of many infectious diseases, including visceral leishmaniasis caused by Leishmania donovani. Experimental visceral leishmaniasis in genetically susceptible mice is characterized by an acute, resolving infection in the liver and chronic infection in the spleen. CD4+ T cell responses are critical for the establishment and maintenance of hepatic immunity in this disease model, but their role in chronically infected spleens remains unclear. In this study, we show that dendritic cells are critical for CD4+ T cell activation and expansion in all tissue sites examined. We found that FTY720-mediated blockade of T cell trafficking early in infection prevented Ag-specific CD4+ T cells from appearing in lymph nodes, but not the spleen and liver, suggesting that early CD4+ T cell priming does not occur in liver-draining lymph nodes. Extended treatment with FTY720 over the first month of infection increased parasite burdens, although this associated with blockade of lymphocyte egress from secondary lymphoid tissue, as well as with more generalized splenic lymphopenia. Importantly, we demonstrate that CD4+ T cells are required for the establishment and maintenance of antiparasitic immunity in the liver, as well as for immune surveillance and suppression of parasite outgrowth in chronically infected spleens. Finally, although early CD4+ T cell priming appeared to occur most effectively in the spleen, we unexpectedly revealed that protective CD4+ T cell-mediated hepatic immunity could be generated in the complete absence of all secondary lymphoid tissues.
Collapse
Affiliation(s)
- Patrick T Bunn
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
412
|
Liang S, Webb T, Li Z. Probiotic antigens stimulate hepatic natural killer T cells. Immunology 2014; 141:203-10. [PMID: 24400795 DOI: 10.1111/imm.12180] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/12/2013] [Accepted: 10/02/2013] [Indexed: 12/22/2022] Open
Abstract
Increasing evidence suggests that gut flora play an important role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Our previous studies show that hepatic natural killer T (NKT) cells play a significant role in the pathogenesis of NAFLD. In this study, we explore the mechanism by which modification of gut flora leads to the alteration of hepatic NKT cells and improvement of steatosis. Mice were fed a high-fat (HF) diet to induce NAFLD. Some of them also received different doses of mixed-strain probiotics (VSL#3); single-strain probiotic (Bifidobacterium infantis) or antibiotics. Animal weight, glucose tolerance, liver steatosis and hepatic NKT cells were assessed. Lipid extracts from probiotics were tested for their ability to activate NKT cells. Toll-like receptor 4 (TLR4) knockout mice were also evaluated for their responses to HF diet. High-dose VSL#3 was more effective than low-dose VSL#3 and B. infantis for the improvement of hepatic NKT cell depletion and steatosis. The lipids extracted from VSL#3 stimulated NKT cells both in vivo and in vitro. In contrast, lipids from B. infantis decreased α-GalCer-mediated NKT cell activation in vitro, but were able to stimulate NKT cells. TLR4 knockout mice have a similar response to HF-diet-induced NKT cell depletion and obesity. These results suggest that alterations in the gut flora have profound effects on hepatic NKT cells and steatosis, which are both strain-specific and dose-dependent, but not through TLR4 signalling. Furthermore, these data suggest that probiotics may contain bacterial glycolipid antigens that directly modulate the effector functions of hepatic NKT cells.
Collapse
Affiliation(s)
- Shuwen Liang
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
413
|
Altboum Z, Steuerman Y, David E, Barnett-Itzhaki Z, Valadarsky L, Keren-Shaul H, Meningher T, Mendelson E, Mandelboim M, Gat-Viks I, Amit I. Digital cell quantification identifies global immune cell dynamics during influenza infection. Mol Syst Biol 2014; 10:720. [PMID: 24586061 PMCID: PMC4023392 DOI: 10.1002/msb.134947] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Hundreds of immune cell types work in coordination to maintain tissue homeostasis. Upon infection, dramatic changes occur with the localization, migration, and proliferation of the immune cells to first alert the body of the danger, confine it to limit spreading, and finally extinguish the threat and bring the tissue back to homeostasis. Since current technologies can follow the dynamics of only a limited number of cell types, we have yet to grasp the full complexity of global in vivo cell dynamics in normal developmental processes and disease. Here, we devise a computational method, digital cell quantification (DCQ), which combines genome‐wide gene expression data with an immune cell compendium to infer in vivo changes in the quantities of 213 immune cell subpopulations. DCQ was applied to study global immune cell dynamics in mice lungs at ten time points during 7 days of flu infection. We find dramatic changes in quantities of 70 immune cell types, including various innate, adaptive, and progenitor immune cells. We focus on the previously unreported dynamics of four immune dendritic cell subtypes and suggest a specific role for CD103+CD11b−DCs in early stages of disease and CD8+pDC in late stages of flu infection.
Collapse
Affiliation(s)
- Zeev Altboum
- Department of Immunology, Weizmann Institute, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
414
|
Laurent X, Bertin B, Renault N, Farce A, Speca S, Milhomme O, Millet R, Desreumaux P, Hénon E, Chavatte P. Switching Invariant Natural Killer T (iNKT) Cell Response from Anticancerous to Anti-Inflammatory Effect: Molecular Bases. J Med Chem 2014; 57:5489-508. [DOI: 10.1021/jm4010863] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xavier Laurent
- Faculté
de Médecine, Intestinal Biotech Development, Amphis J et K, Boulevard du Professeur Jules Leclerc, 59045 Lille Cedex, France
- Laboratoire
de Chimie Thérapeutique, EA 4481, Faculté des Sciences
Pharmaceutiques et Biologiques, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Benjamin Bertin
- Faculté
de
Médecine, Université Lille-Nord de France, Amphis J
et K, INSERM U995, Boulevard du Professeur
Jules Leclerc, 59045 Lille Cedex, France
| | - Nicolas Renault
- Laboratoire
de Chimie Thérapeutique, EA 4481, Faculté des Sciences
Pharmaceutiques et Biologiques, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Amaury Farce
- Laboratoire
de Chimie Thérapeutique, EA 4481, Faculté des Sciences
Pharmaceutiques et Biologiques, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Silvia Speca
- Faculté
de
Médecine, Université Lille-Nord de France, Amphis J
et K, INSERM U995, Boulevard du Professeur
Jules Leclerc, 59045 Lille Cedex, France
| | - Ophélie Milhomme
- Institut
de Chimie Pharmaceutique Albert Lespagnol, EA 4481, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Régis Millet
- Institut
de Chimie Pharmaceutique Albert Lespagnol, EA 4481, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Pierre Desreumaux
- Faculté
de
Médecine, Université Lille-Nord de France, Amphis J
et K, INSERM U995, Boulevard du Professeur
Jules Leclerc, 59045 Lille Cedex, France
| | - Eric Hénon
- Université
de Reims Champagne-Ardenne, UFR des Sciences Exactes et Naturelles,
BSMA-ICMR, UMR CNRS 6229, Moulin de
la Housse, BP 1039, 51687 Reims Cedex 2, France
| | - Philippe Chavatte
- Laboratoire
de Chimie Thérapeutique, EA 4481, Faculté des Sciences
Pharmaceutiques et Biologiques, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
- Institut
de Chimie Pharmaceutique Albert Lespagnol, EA 4481, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| |
Collapse
|
415
|
Chan AC, Neeson P, Leeansyah E, Tainton K, Quach H, Prince HM, Harrison SJ, Godfrey DI, Ritchie D, Berzins SP. Natural killer T cell defects in multiple myeloma and the impact of lenalidomide therapy. Clin Exp Immunol 2014; 175:49-58. [PMID: 24032527 DOI: 10.1111/cei.12196] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2013] [Indexed: 12/29/2022] Open
Abstract
The causes of multiple myeloma (MM) remain obscure and there are few known risk factors; however, natural killer T (NKT) cell abnormalities have been reported in patients with MM, and therapeutic targeting of NKT cells is promoted as a potential treatment. We characterized NKT cell defects in treated and untreated patients with MM and determined the impact of lenalidomide therapy on the NKT cell pool. Lenalidomide is an immunomodulatory drug with co-stimulatory effects on NKT cells in vitro and is an approved treatment for MM, although its mode of action in that context is not well defined. We find that patients with relapsed/progressive MM had a marked deficiency in NKT cell numbers. In contrast, newly diagnosed patients had relatively normal NKT cell frequency and function prior to treatment, although a specific NKT cell deficiency emerged after high-dose melphalan and autologous stem cell transplantation (ASCT) regimen. This also impacted NK cells and conventional T cells, but the recovery of NKT cells was considerably delayed, resulting in a prolonged, treatment-induced NKT cell deficit. Longitudinal analysis of individual patients revealed that lenalidomide therapy had no in-vivo impact on NKT cell numbers or cytokine production, either as induction therapy, or as maintenance therapy following ASCT, indicating that its clinical benefits in this setting are independent of NKT cell modulation.
Collapse
Affiliation(s)
- A C Chan
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Vic., Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
416
|
Abstract
Over the past 15 years, investigators have shown that T lymphocytes can recognize not only peptides in the context of MHC class I and class II molecules but also foreign and self-lipids in association with the nonclassical MHC class I-like molecules, CD1 proteins. In this review, we describe the most recent events in the field, with particular emphasis on (a) structural and functional aspects of lipid presentation by CD1 molecules, (b) the development of CD1d-restricted invariant natural killer T (iNKT) cells and transcription factors required for their differentiation, (c) the ability of iNKT cells to modulate innate and adaptive immune responses through their cross talk with lymphoid and myeloid cells, and (d) MR1-restricted and group I (CD1a, CD1b, and CD1c)-restricted T cells.
Collapse
Affiliation(s)
- Mariolina Salio
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom;
| | | | | | | |
Collapse
|
417
|
Martin-Murphy BV, You Q, Wang H, De La Houssaye BA, Reilly TP, Friedman JE, Ju C. Mice lacking natural killer T cells are more susceptible to metabolic alterations following high fat diet feeding. PLoS One 2014; 9:e80949. [PMID: 24465369 PMCID: PMC3896335 DOI: 10.1371/journal.pone.0080949] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 10/14/2013] [Indexed: 12/12/2022] Open
Abstract
Current estimates suggest that over one-third of the adult population has metabolic syndrome and three-fourths of the obese population has non-alcoholic fatty liver disease (NAFLD). Inflammation in metabolic tissues has emerged as a universal feature of obesity and its co-morbidities, including NAFLD. Natural Killer T (NKT) cells are a subset of innate immune cells that abundantly reside within the liver and are readily activated by lipid antigens. There is general consensus that NKT cells are pivotal regulators of inflammation; however, disagreement exists as to whether NKT cells exert pathogenic or suppressive functions in obesity. Here we demonstrate that CD1d−/− mice, which lack NKT cells, were more susceptible to weight gain and fatty liver following high fat diet (HFD) feeding. Compared with their WT counterparts, CD1d−/− mice displayed increased adiposity and greater induction of inflammatory genes in the liver suggestive of the precursors of NAFLD. Calorimetry studies revealed a significant increase in food intake and trends toward decreased metabolic rate and activity in CD1d−/− mice compared with WT mice. Based on these findings, our results suggest that NKT cells play a regulatory role that helps to prevent diet-induced obesity and metabolic dysfunction and may play an important role in mechanisms governing cross-talk between metabolism and the immune system to regulate energy balance and liver health.
Collapse
Affiliation(s)
- Brittany V. Martin-Murphy
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Qiang You
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Hong Wang
- Division of Endocrinology, Diabetes & Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Becky A. De La Houssaye
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Timothy P. Reilly
- Drug Safety Evaluation, Research & Development, Bristol-Myers Squibb Company, Princeton, New Jersey, United States of America
| | - Jacob E. Friedman
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Cynthia Ju
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
418
|
Niederkorn JY. Role of NKT cells in anterior chamber-associated immune deviation. Expert Rev Clin Immunol 2014; 5:137-144. [PMID: 20046994 DOI: 10.1586/1744666x.5.2.137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cells in the eye have a limited capacity for regeneration and, as such, immune-mediated inflammation can lead to blindness. The eye is designed to quench immune-mediated inflammation - a condition known as immune privilege. An important component of immune privilege is the dynamic immunoregulatory process termed anterior chamber-associated immune deviation (ACAID), which is initiated when antigens enter the eye. ACAID suppresses the initiation of antigen-specific inflammation in the eye and the effector stages of immune reactions. Four organ systems are crucial for the induction of ACAID: the eye, thymus, spleen and sympathetic nervous system. Multiple cell populations contribute to ACAID, with natural killer T cells playing a crucial role in the thymic and splenic phases of ACAID. Interactions between natural killer T cells and multiple cell populations in the spleen culminate in the tight regulation of immune-mediated inflammation in the eye and the preservation of vision.
Collapse
Affiliation(s)
- Jerry Y Niederkorn
- Department of Ophthalmology, University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA, Tel.: +1 214 648 3829, ,
| |
Collapse
|
419
|
Van Kaer L. Role of invariant natural killer T cells in immune regulation and as potential therapeutic targets in autoimmune disease. Expert Rev Clin Immunol 2014; 2:745-57. [DOI: 10.1586/1744666x.2.5.745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
420
|
Kadri N, Blomqvist M, Cardell SL. Type II natural killer T cells: a new target for immunomodulation? Expert Rev Clin Immunol 2014; 4:615-27. [DOI: 10.1586/1744666x.4.5.615] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
421
|
Terabe M, Berzofsky JA. The immunoregulatory role of type I and type II NKT cells in cancer and other diseases. Cancer Immunol Immunother 2014; 63:199-213. [PMID: 24384834 DOI: 10.1007/s00262-013-1509-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/08/2013] [Indexed: 12/26/2022]
Abstract
NKT cells are CD1d-restricted T cells that recognize lipid antigens. They also have been shown to play critical roles in the regulation of immune responses. In the immune responses against tumors, two subsets of NKT cells, type I and type II, play opposing roles and cross-regulate each other. As members of both the innate and adaptive immune systems, which form a network of multiple components, they also interact with other immune components. Here, we discuss the function of NKT cells in tumor immunity and their interaction with other regulatory cells, especially CD4(+)CD25(+)Foxp3(+) regulatory T cells.
Collapse
Affiliation(s)
- Masaki Terabe
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Building 41-Room D702, 41 Medlars Drive, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
422
|
Lameris R, Schneiders FL, de Gruijl TD, van der Vliet HJ. Exploiting the CD1d-iNKT cell axis for potentiation of DC-based cancer vaccines. Methods Mol Biol 2014; 1139:155-65. [PMID: 24619678 DOI: 10.1007/978-1-4939-0345-0_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Invariant natural killer T cells (iNKT) and dendritic cells (DC) play a central role in tumor immunity through downstream activation of immune effector cells by pro-inflammatory cytokines. Evidence is accumulating that the CD1d-iNKT cell axis can be effectively used to potentiate DC-based cancer vaccines. Here, we provide a detailed methodology for the generation of (CD1d-expressing) monocyte-derived DC (moDC) and their subsequent loading with the iNKT cell agonist α-galactosylceramide (α-GalCer) or their direct ligation by agonistic anti-CD1d monoclonal antibodies.
Collapse
Affiliation(s)
- Roeland Lameris
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
423
|
Singh AK, Gaur P, Das SN. Natural killer T cell anergy, co-stimulatory molecules and immunotherapeutic interventions. Hum Immunol 2013; 75:250-60. [PMID: 24373798 DOI: 10.1016/j.humimm.2013.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 10/28/2013] [Accepted: 12/15/2013] [Indexed: 01/05/2023]
Abstract
Natural killer T (NKT) cells are a unique subset of glycolipid-reactive T lymphocytes that share properties with natural killer (NK) cells. These lymphocytes can produce array of cytokines and chemokines that modulate the immune response, and play a pivotal role in cancer, autoimmunity, infection and inflammation. Owing to these properties, NKT cells have gained attentions for its potential use in antitumor immunotherapies. To date several NKT cell-based clinical trials have been performed in patients with cancer using its potent ligand α-galactosylceramide (α-GalCer). However, inconsistent therapeutic benefit, and inevitable health risks associated with drug dose and NKT cell activation have been observed. α-GalCer-activated NKT cells become anergic and produce both Th1 and Th2 cytokines that may function antagonistically, limiting the desired effector functions. Besides, various co-stimulatory and signaling molecules such as programmed death-1 (PD-1; CD279), casitas B-cell lymphoma-b (Cbl-b) and CARMA1 have been shown to be implicated in the induction of NKT cell anergy. In this review, we discuss the role of such key regulators and their functional mechanisms that may facilitate the development of improved approaches to overcome NKT cell anergy. In addition, we describe the evidences indicating that tailored-ligands can optimally activate NKT cells to obtain desired immune responses.
Collapse
Affiliation(s)
- Avadhesh Kumar Singh
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India.
| | - Poonam Gaur
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India.
| | - Satya N Das
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India.
| |
Collapse
|
424
|
Kadowaki T, Morishita A, Niki T, Hara J, Sato M, Tani J, Miyoshi H, Yoneyama H, Masaki T, Hattori T, Matsukawa A, Hirashima M. Galectin-9 prolongs the survival of septic mice by expanding Tim-3-expressing natural killer T cells and PDCA-1+ CD11c+ macrophages. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:R284. [PMID: 24321251 PMCID: PMC4056346 DOI: 10.1186/cc13147] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/26/2013] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Galectin-9 ameliorates various inflammatory conditions including autoimmune diseases by regulating T cell and macrophage/dendritic cell (DC) functions. However, the effect of galectin-9 on polymicrobial sepsis has not been assessed. METHODS We induced polymicrobial sepsis by cecal ligation and puncture (CLP) in mice. The survival rate was compared between galectin-9- and PBS-treated CLP mice. An ELISA was used to compare the levels of various cytokines in the plasma and culture supernatants. Fluorescence-activated cell sorting analysis was further performed to compare the frequencies of subpopulations of spleen cells. RESULTS Galectin-9 exhibited a protective effect in polymicrobial sepsis as demonstrated in galetin-9 transgenic mice and therapeutic galectin-9 administration. In contrast, such effect was not observed in nude mice, indicating the involvement of T cells in galectin-9-mediated survival prolongation. Galectin-9 decreased TNFα, IL-6, IL-10 and, high mobility group box 1 (HMGB1) and increased IL-15 and IL-17 plasma and spleen levels. Galectin-9 increased the frequencies of natural killer T (NKT) cells and PDCA-1+ CD11c+ macrophages (pDC-like macrophages) but did not change the frequency of CD4 or CD8 T cells, γδT cells or conventional DC. As expected, galectin-9 decreased the frequency of Tim-3+ CD4 T cells, most likely Th1 and Th17 cells. Intriguingly, many spleen NK1.1+ NKT cells and pDC-like macrophages expressed Tim-3. Galectin-9 increased the frequency of Tim-3-expressing NK1.1+ NKT cells and pDC-like macrophages. Galectin-9 further increased IL-17+ NK1.1+ NKT cells. CONCLUSION These data suggest that galectin-9 exerts therapeutic effects on polymicrobial sepsis, possibly by expanding NKT cells and pDC-like macrophages and by modulating the production of early and late proinflammatory cytokines.
Collapse
|
425
|
Fujii SI, Shimizu K, Okamoto Y, Kunii N, Nakayama T, Motohashi S, Taniguchi M. NKT cells as an ideal anti-tumor immunotherapeutic. Front Immunol 2013; 4:409. [PMID: 24348476 PMCID: PMC3845015 DOI: 10.3389/fimmu.2013.00409] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 11/11/2013] [Indexed: 12/28/2022] Open
Abstract
Human natural killer T (NKT) cells are characterized by their expression of an invariant T cell antigen receptor α chain variable region encoded by a Vα24Jα18 rearrangement. These NKT cells recognize α-galactosylceramide (α-GalCer) in conjunction with the MHC class I-like CD1d molecule and bridge the innate and acquired immune systems to mediate efficient and augmented immune responses. A prime example of one such function is adjuvant activity: NKT cells augment anti-tumor responses because they can rapidly produce large amounts of IFN-γ, which acts on NK cells to eliminate MHC negative tumors and also on CD8 cytotoxic T cells to kill MHC positive tumors. Thus, upon administration of α-GalCer-pulsed DCs, both MHC negative and positive tumor cells can be effectively eliminated, resulting in complete tumor eradication without tumor recurrence. Clinical trials have been completed in a cohort of 17 patients with advanced non-small cell lung cancers and 10 cases of head and neck tumors. Sixty percent of advanced lung cancer patients with high IFN-γ production had significantly prolonged median survival times of 29.3 months with only the primary treatment. In the case of head and neck tumors, 10 patients who completed the trial all had stable disease or partial responses 5 weeks after the combination therapy of α-GalCer-DCs and activated NKT cells. We now focus on two potential powerful treatment options for the future. One is to establish artificial adjuvant vector cells containing tumor mRNA and α-GalCer/CD1d. This stimulates host NKT cells followed by DC maturation and NK cell activation but also induces tumor-specific long-term memory CD8 killer T cell responses, suppressing tumor metastasis even 1 year after the initial single injection. The other approach is to establish induced pluripotent stem (iPS) cells that can generate unlimited numbers of NKT cells with adjuvant activity. Such iPS-derived NKT cells produce IFN-γ in vitro and in vivo upon stimulation with α-GalCer/DCs, and mediated adjuvant effects, suppressing tumor growth in vivo.
Collapse
Affiliation(s)
- Shin-Ichiro Fujii
- Laboratory for Immunotherapy, RCAI, RIKEN, Center for Integrative Medical Sciences (IMS-RCAI) , Yokohama , Japan
| | - Kanako Shimizu
- Laboratory for Immunotherapy, RCAI, RIKEN, Center for Integrative Medical Sciences (IMS-RCAI) , Yokohama , Japan
| | - Yoshitaka Okamoto
- Department of Otorhinolaryngology, Graduate School of Medicine, Chiba University , Chiba , Japan
| | - Naoki Kunii
- Department of Otorhinolaryngology, Graduate School of Medicine, Chiba University , Chiba , Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University , Chiba , Japan
| | - Shinichiro Motohashi
- Department of Medical Immunology, Graduate School of Medicine, Chiba University , Chiba , Japan
| | - Masaru Taniguchi
- Laboratory of Immune Regulation, RCAI, RIKEN, Center for Integrative Medical Sciences (IMS-RCAI) , Yokohama , Japan
| |
Collapse
|
426
|
Zeissig S, Blumberg RS. Commensal microbiota and NKT cells in the control of inflammatory diseases at mucosal surfaces. Curr Opin Immunol 2013; 25:690-6. [PMID: 24210255 PMCID: PMC3867259 DOI: 10.1016/j.coi.2013.09.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/09/2013] [Accepted: 09/18/2013] [Indexed: 12/13/2022]
Abstract
Natural Killer T (NKT) cells are a phenotypically and functionally diverse subset of T cells, which recognizes self- and microbial lipids in the context of the atypical MHC class I molecule CD1d. NKT cells exhibit potent effector functions and play critical roles in antimicrobial defense, cancer immunosurveillance and the modulation of immune-mediated disorders. Recent evidence has revealed extensive cross-regulation between the mucosal microbiota and CD1d as well as NKT cells. Microbial exposure at mucosal surfaces, particularly during early postnatal development, regulates NKT cell trafficking and function in the intestine and the lung and determines the susceptibility to NKT cell-mediated inflammatory disorders. Conversely, CD1d controls the composition of the intestinal microbiota; perhaps through the regulation of Paneth cell function. Here, we provide an overview of recent findings on the crosstalk between the microbiota and NKT cells and discuss the implication for mucosal homeostasis and its dysregulation in inflammatory disorders.
Collapse
Affiliation(s)
- Sebastian Zeissig
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Richard S. Blumberg
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
427
|
Rakhshandehroo M, Kalkhoven E, Boes M. Invariant natural killer T cells in adipose tissue: novel regulators of immune-mediated metabolic disease. Cell Mol Life Sci 2013; 70:4711-27. [PMID: 23835837 PMCID: PMC11113180 DOI: 10.1007/s00018-013-1414-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 12/14/2022]
Abstract
Adipose tissue (AT) represents a microenvironment where intersection takes place between immune processes and metabolic pathways. A variety of immune cells have been characterized in AT over the past decades, with the most recent addition of invariant natural killer T (iNKT) cells. As members of the T cell family, iNKT cells represent a subset that exhibits both innate and adaptive characteristics and directs ensuing immune responses. In disease conditions, iNKT cells have established roles that include disorders in the autoimmune spectrum in malignancies and infectious diseases. Recent work supports a role for iNKT cells in the maintenance of AT homeostasis through both immune and metabolic pathways. The deficiency of iNKT cells can result in AT metabolic disruptions and insulin resistance. In this review, we summarize recent work on iNKT cells in immune regulation, with an emphasis on AT-resident iNKT cells, and identify the potential mechanisms by which adipocytes can mediate iNKT cell activity.
Collapse
Affiliation(s)
- M. Rakhshandehroo
- Section Metabolic Diseases, Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E. Kalkhoven
- Section Metabolic Diseases, Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M. Boes
- Department of Pediatric Immunology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
| |
Collapse
|
428
|
Saposins modulate human invariant Natural Killer T cells self-reactivity and facilitate lipid exchange with CD1d molecules during antigen presentation. Proc Natl Acad Sci U S A 2013; 110:E4753-61. [PMID: 24248359 DOI: 10.1073/pnas.1310050110] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Lipid transfer proteins, such as molecules of the saposin family, facilitate extraction of lipids from biological membranes for their loading onto CD1d molecules. Although it has been shown that prosaposin-deficient mice fail to positively select invariant natural killer T (iNKT) cells, it remains unclear whether saposins can facilitate loading of endogenous iNKT cell agonists in the periphery during inflammatory responses. In addition, it is unclear whether saposins, in addition to loading, also promote dissociation of lipids bound to CD1d molecules. To address these questions, we used a combination of cellular assays and demonstrated that saposins influence CD1d-restricted presentation to human iNKT cells not only of exogenous lipids but also of endogenous ligands, such as the self-glycosphingolipid β-glucopyranosylceramide, up-regulated by antigen-presenting cells following bacterial infection. Furthermore, we demonstrated that in human myeloid cells CD1d-loading of endogenous lipids after bacterial infection, but not at steady state, requires trafficking of CD1d molecules through an endo-lysosomal compartment. Finally, using BIAcore assays we demonstrated that lipid-loaded saposin B increases the off-rate of lipids bound to CD1d molecules, providing important insights into the mechanisms by which it acts as a "lipid editor," capable of fine-tuning loading and unloading of CD1d molecules. These results have important implications in understanding how to optimize lipid-loading onto antigen-presenting cells, to better harness iNKT cells central role at the interface between innate and adaptive immunity.
Collapse
|
429
|
Mariani F, Sena P, Magnani G, Mancini S, Palumbo C, Ponz de Leon M, Roncucci L. PLZF expression during colorectal cancer development and in normal colorectal mucosa according to body size, as marker of colorectal cancer risk. ScientificWorldJournal 2013; 2013:630869. [PMID: 24348178 PMCID: PMC3848341 DOI: 10.1155/2013/630869] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 09/22/2013] [Indexed: 11/26/2022] Open
Abstract
Promyelocytic leukemia zinc finger protein (PLZF) is a protein involved in various signaling, growth regulatory, and differentiation pathways, including development/function of some T cells. Here, we aimed at the detection of PLZF during colorectal carcinogenesis, using immunofluorescence, and at the evaluation of the colocalization of PLZF with CD2 and CD56 positive cells (T, γ δ , NK, and NKT cells), using confocal-microscopy, along colorectal carcinogenesis, since its earliest stages, that is, dysplastic aberrant crypt foci (ACF). Furthermore, we analyzed PLZF in the normal colonic mucosa (NM) according to anthropometric parameters of the subject. NM exhibited strong CD56 fluorescent staining. This infiltration was lost in both ACF and colorectal carcinoma (CRC), while PLZF presence increased from NM to ACF and CRC. Strong association was found between CD56+ colonic mucosa cell infiltration and body mass index. Interestingly, an increased stromal PLZF-reactivity was present in NM of obese subjects. This study shows that overexpression of PLZF and exclusion of NK cells in dysplastic microenvironment are very early events in the stepwise sequence leading to CRC and that lower levels of CD56+ cells in NM, together with increased levels of PLZF+ cells, can be a reflection of colon cancer risk due to obesity.
Collapse
Affiliation(s)
- Francesco Mariani
- Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Paola Sena
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Giulia Magnani
- Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Stefano Mancini
- Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Carla Palumbo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Maurizio Ponz de Leon
- Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Luca Roncucci
- Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy
| |
Collapse
|
430
|
Mathan TSMM, Figdor CG, Buschow SI. Human plasmacytoid dendritic cells: from molecules to intercellular communication network. Front Immunol 2013; 4:372. [PMID: 24282405 PMCID: PMC3825182 DOI: 10.3389/fimmu.2013.00372] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 10/29/2013] [Indexed: 12/18/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a specific subset of naturally occurring dendritic cells, that secrete large amounts of Type I interferon and play an important role in the immune response against viral infection. Several studies have highlighted that they are also effective antigen presenting cells, making them an interesting target for immunotherapy against cancer. However, the modes of action of pDCs are not restricted to antigen presentation and IFN secretion alone. In this review we will highlight a selection of cell surface proteins expressed by human pDCs that may facilitate communication with other immune cells, and we will discuss the implications of these molecules for pDC-driven immune responses.
Collapse
Affiliation(s)
- Till S M Manuel Mathan
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands
| | | | | |
Collapse
|
431
|
Miyasaka T, Akahori Y, Toyama M, Miyamura N, Ishii K, Saijo S, Iwakura Y, Kinjo Y, Miyazaki Y, Oishi K, Kawakami K. Dectin-2-dependent NKT cell activation and serotype-specific antibody production in mice immunized with pneumococcal polysaccharide vaccine. PLoS One 2013; 8:e78611. [PMID: 24205278 PMCID: PMC3808275 DOI: 10.1371/journal.pone.0078611] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 09/14/2013] [Indexed: 01/26/2023] Open
Abstract
Although thymus-independent type 2 antigens generally do not undergo Ig class switching from IgM to IgG, pneumococcal polysaccharide vaccine (PPV) induces the production of serotype-specific IgG. How this happens remains unclear, however. In the present study, PPV immunization induced production of IgG as well as IgM specific for a serotype 3-pneumococcal polysaccharide in the sera of wild-type (WT) mice, but this phenomenon was significantly reduced in Dectin-2 knockout (KO) mice. Immunization with PPV caused IL-12p40 production in WT mice, but this response was significantly reduced in Dectin-2KO mice. Likewise, immunization with PPV activated natural killer T (NKT) cells in WT mice but not in Dectin-2KO mice. Furthermore, administration of α-galactosylceramide, recombinant (r)IL-12 or rIFN-γ improved the reduced IgG levels in Dectin-2KO mice, and treatment with neutralizing anti-IFN-γ mAb resulted in the reduction of IgG synthesis in PPV-immunized WT mice. Transfer of spleen cells from PPV-immunized WT mice conferred protection against pneumococcal infection on recipient mice, whereas this effect was cancelled when the transferred spleen cells were harvested from PPV-immunized Dectin-2KO mice. These results suggest that the detection of PPV antigens via Dectin-2 triggers IL-12 production, which induces IFN-γ synthesis by NKT cells and subsequently the production of serotype-specific IgG.
Collapse
Affiliation(s)
- Tomomitsu Miyasaka
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukiko Akahori
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masahiko Toyama
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Namiko Miyamura
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinobu Saijo
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Yoichiro Iwakura
- Division of Laboratory Animal, Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Yuki Kinjo
- Laboratory of Immune Regulation, Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshitsugu Miyazaki
- Laboratory of Immune Regulation, Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazunori Oishi
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
- * E-mail:
| |
Collapse
|
432
|
Deep sequencing of the T-cell receptor repertoire in CD8+ T-large granular lymphocyte leukemia identifies signature landscapes. Blood 2013; 122:4077-85. [PMID: 24149287 DOI: 10.1182/blood-2013-05-506386] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
New massively parallel sequencing technology enables, through deep sequencing of rearranged T-cell receptor (TCR) Vβ complementarity-determining region 3 (CDR3) regions, a previously inaccessible level of TCR repertoire analysis. The CDR3 repertoire diversity reflects clonal composition, the potential antigenic recognition spectrum, and the quantity of available T-cell responses. In this context, T-large granular lymphocyte (T-LGL) leukemia is a chronic clonal lymphoproliferation of cytotoxic T cells often associated with autoimmune diseases and various cytopenias. Using CD8(+) T-LGL leukemia as a model disease, we set out to evaluate and compare the TCR deep-sequencing spectra of both patients and healthy controls to better understand how TCR deep sequencing could be used in the diagnosis and monitoring of not only T-LGL leukemia but also reactive processes such as autoimmune disease and infection. Our data demonstrate, with high resolution, significantly decreased diversity of the T-cell repertoire in CD8(+) T-LGL leukemia and suggest that many T-LGL clonotypes may be private to the disease and may not be present in the general public, even at the basal level.
Collapse
|
433
|
Fernandez CS, Jegaskanda S, Godfrey DI, Kent SJ. In-vivo stimulation of macaque natural killer T cells with α-galactosylceramide. Clin Exp Immunol 2013; 173:480-92. [PMID: 23656283 DOI: 10.1111/cei.12132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2013] [Indexed: 12/14/2022] Open
Abstract
Natural killer T cells are a potent mediator of anti-viral immunity in mice, but little is known about the effects of manipulating NKT cells in non-human primates. We evaluated the delivery of the NKT cell ligand, α-galactosylceramide (α-GalCer), in 27 macaques by studying the effects of different dosing (1-100 μg), and delivery modes [directly intravenously (i.v.) or pulsed onto blood or peripheral blood mononuclear cells]. We found that peripheral NKT cells were depleted transiently from the periphery following α-GalCer administration across all delivery modes, particularly in doses of ≥10 μg. Furthermore, NKT cell numbers frequently remained depressed at i.v. α-GalCer doses of >10 μg. Levels of cytokine expression were also not enhanced after α-GalCer delivery to macaques. To evaluate the effects of α-GalCer administration on anti-viral immunity, we administered α-GalCer either together with live attenuated influenza virus infection or prior to simian immunodeficiency virus (SIV) infection of two macaques. There was no clear enhancement of influenza-specific T or B cell immunity following α-GalCer delivery. Further, there was no modulation of pathogenic SIVmac251 infection following α-GalCer delivery to a further two macaques in a pilot study. Accordingly, although macaque peripheral NKT cells are modulated by α-GalCer in vivo, at least for the dosing regimens tested in this study, this does not appear to have a significant impact on anti-viral immunity in macaque models.
Collapse
Affiliation(s)
- C S Fernandez
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Vic., Australia
| | | | | | | |
Collapse
|
434
|
Mossanen JC, Tacke F. Role of lymphocytes in liver cancer. Oncoimmunology 2013; 2:e26468. [PMID: 24498546 PMCID: PMC3906418 DOI: 10.4161/onci.26468] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) typically occurs in patients with chronic inflammatory liver diseases, such as viral hepatitis or (non-)alcoholic steatohepatitis. Inflammation appears indeed as a crucial factor in hepatocarcinogenesis. Nevertheless, sophisticated animal models and studies of human samples revealed that the HCC also elicits antitumor immune responses. Patrolling and infiltrating lymphocytes (e.g., NKT and T cells, respectively) can exert decisive functions in the transition from chronic hepatic inflammation to cancer as well as in antitumor immune responses. An improved understanding of the cellular and molecular mechanisms whereby inflammation promotes or restricts hepatocarcinogenesis will open new avenues for therapeutic approaches to liver cancer.
Collapse
Affiliation(s)
- Jana C Mossanen
- Department of Medicine III; RWTH-University Hospital Aachen; Aachen, Germany
| | - Frank Tacke
- Department of Medicine III; RWTH-University Hospital Aachen; Aachen, Germany
| |
Collapse
|
435
|
Scapigliati G. Functional aspects of fish lymphocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:200-208. [PMID: 23707785 DOI: 10.1016/j.dci.2013.05.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/15/2013] [Accepted: 05/15/2013] [Indexed: 06/02/2023]
Abstract
After almost 40 years of studies in comparative immunology, some light has been shed on the evolutive immunobiology of vertebrates, and experimental evidences have shown that acquired immunity, defined by somatic recombination of antigen-binding molecules and memory, is an achievement as ancient as jawless vertebrates. However, the molecular processes generating antigen receptors evolved independently between jawless and jawed fishes, and produced lymphocytic cells with similar functions but employing different sets of genes. In recent years, data have been provided describing some in vitro and in vivo functional responses of fish lymphocytes. After a long gap, the number of specific markers for fish lymphocytes is increasing, thus allowing a first characterisation of lymphocyte subsets. Overall, in the near future it will be possible to open a new chapter in fish immunology and investigate functional immunity of lymphocyte responses by combining the extensive knowledge on immune gene products with markers for molecules and cells. The present review summarizes current knowledge on functional features of fish lymphocytes.
Collapse
Affiliation(s)
- Giuseppe Scapigliati
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy.
| |
Collapse
|
436
|
Madonna R, Wu H, Shelat H, Geng YJ. CD1d-associated expression of NF-kB and cardiac dysfunction in diabetic and obese mice. Int J Immunopathol Pharmacol 2013; 26:59-73. [PMID: 23527709 DOI: 10.1177/039463201302600106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In patients with obesity and diabetes mellitus, abnormal production of inflammatory factors may result in cardiovascular dysfunction. In the current study, we tested the impact of CD1d-mediated innate immune responses on the expression and activation of NFkB in the hearts of adipose diabetic (db/db) mice. Splenocytes from adult db/db and CD1d-knockout mice of both genders and their wild-type, C57BL/6 and Balb/C counterparts were examined for tumor necrosis factor (TNF)-alpha and TNF-alpha receptor type 1. The percentage of natural killer T (NKT) cells in CD3+ T cells was compared with that in nondiabetic control mice. Despite the absence of inflammatory infiltrates, the hearts of db/db mice showed alterations in TNF-alpha receptor-1 and NFkB activity, including increased expression of both the NFkB p52 and p65 subunits. In the hearts of CD1d-knockout mice, p52 expression was reduced, while p65 expression remained largely unchanged. On echocardiography, the ratio of E to A transmitral flow velocities (an indicator of diastolic function) was significantly decreased in db/db mice after they swam for 30 minutes. These results provide evidence for CD1d-mediated NFkB activation and diastolic dysfunction in the hearts of db/db mice. Therefore, CD1d-associated abnormalities of innate immune responses and TNF-alpha production in splenic tissue may contribute to NFkB activation and cardiac dysfunction in type 2 diabetes.
Collapse
Affiliation(s)
- R Madonna
- The University of Texas Health Science Center, Houston, TX, USA
| | | | | | | |
Collapse
|
437
|
Luan YY, Dong N, Xie M, Xiao XZ, Yao YM. The significance and regulatory mechanisms of innate immune cells in the development of sepsis. J Interferon Cytokine Res 2013; 34:2-15. [PMID: 24006870 DOI: 10.1089/jir.2013.0042] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sepsis with subsequent multiple organ dysfunction is a pronounced systemic inflammatory response to concealed or known infection and is a leading cause of death in intensive care units. The survival rate of severe sepsis and septic shock has not markedly improved in recent decades despite a great number of receptors and molecules involved in its pathogenesis have been found and taken as therapeutic targets. It is essential to thoroughly understand the host cell-mediated immunity involved in the development of sepsis and sepsis-related organ injury. Recent studies indicate that innate immune cells (such as neutrophils, macrophages, dendritic cells, T lymphocytes, regulatory T cells, and natural killer T cells) play pivotal roles in the maintenance of peripheral homeostasis and regulation of immune responses during sepsis. Therefore, an understanding of the biological significance and pathophysiological roles of different cell populations might gain novel insights into the immunoregulatory mechanisms of sepsis. In this review, we focus on major immune cells that may play potential roles in the contribution of new therapeutic approaches for sepsis.
Collapse
Affiliation(s)
- Ying-Yi Luan
- 1 Department of Microbiology and Immunology, Burns Institute, First Hospital Affiliated to the Chinese PLA General Hospital , Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
438
|
|
439
|
Habbeddine M, Verbeke P, Delarbre C, Moutier R, Prieto S, Ojcius DM, Kanellopoulos-Langevin C. CD1d-restricted NKT cells modulate placental and uterine leukocyte populations during chlamydial infection in mice. Microbes Infect 2013; 15:928-38. [PMID: 23999314 DOI: 10.1016/j.micinf.2013.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 08/01/2013] [Accepted: 08/21/2013] [Indexed: 01/18/2023]
Abstract
Invariant CD1d-restricted natural killer T cells play an important immunoregulatory role and can influence a broad spectrum of immunological responses including against bacterial infections. They are present at the fetal-maternal interface and although it has been reported that experimental systemic iNKT cell activation can induce mouse abortion, their role during pregnancy remain poorly understood. In the present work, using a physiological Chlamydia muridarum infection model, we have shown that, in vaginally infected pregnant mice, C. muridarum is cleared similarly in C57BL/6 wild type (WT) and CD1d(-/-) mice. We have also shown that infected- as well as uninfected-CD1d(-/-) mice have the same litter size as WT counterparts. Thus, CD1d-restricted cells are required neither for the resolution of chlamydial infection of the lower-genital tract, nor for the maintenance of reproductive capacity. However, unexpected differences in T cell populations were observed in uninfected pregnant females, as CD1d(-/-) placentas contained significantly higher percentages of CD4(+) and CD8(+) T cells than WT counterparts. However, infection triggered a significant decrease in the percentages of CD4(+) T cells in CD1d(-/-) mice. In infected WT pregnant mice, the numbers of uterine CD4(+) and CD8(+) T cells, monocytes and granulocytes were greatly increased, changes not observed in infected CD1d(-/-) mice. An increase in the percentage of CD8(+) T cells seems independent of CD1d-restricted cells as it occurred in both WT and CD1d(-/-) mice. Thus, in the steady state, the lack of CD1d-restricted NKT cells affects leukocyte populations only in the placenta. In Chlamydia-infected pregnant mice, the immune response against Chlamydia is dampened in the uterus. Our results suggest that CD1d-restricted NKT cells play a role in the recruitment or homeostasis of leukocyte populations at the maternal-fetal interface in the presence or absence of Chlamydia infection.
Collapse
Affiliation(s)
- Mohamed Habbeddine
- Laboratory of Inflammation, Gestation and Autoimmunity, Jacques Monod Institute, CNRS and University Paris-Diderot, 15 rue Hélène Brion, 75205 Paris Cedex 13, France; Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University UM2, France; INSERM U1104 and CNRS UMR7280, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
440
|
Predisposed αβ T cell antigen receptor recognition of MHC and MHC-I like molecules? Curr Opin Immunol 2013; 25:653-9. [PMID: 23993410 DOI: 10.1016/j.coi.2013.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 07/28/2013] [Accepted: 07/30/2013] [Indexed: 12/11/2022]
Abstract
The diverse αβ T cell receptor (TCR) repertoire exhibits versatility in its ability to generate antigen (Ag) receptors capable of interacting with polymorphic Major Histocompatibility Complex (MHC) molecules and monomorphic MHC-I like molecules, including the CD1 and MR1 families. Collectively, these evolutionarily related Ag-presenting molecules present peptides, lipids and vitamin B metabolites for T cell surveillance. Interestingly, whilst common TCR gene usage can underpin recognition of these distinct classes of Ags, it is unclear whether the 'rules' that govern αβTCR-Ag MHC interactions are shared. We highlight recent observations in the context of TCR biases towards MHC and MHC-I like molecules.
Collapse
|
441
|
Sørensen JØ, Buschard K, Brogren CH. The preventive role of type 2 NKT cells in the development of type 1 diabetes. APMIS 2013; 122:167-82. [PMID: 23992281 DOI: 10.1111/apm.12140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 05/22/2013] [Indexed: 12/20/2022]
Abstract
In the last two decades, natural killer T (NKT) cells have emerged as an important factor in preventing type 1 diabetes (T1D) when investigated in the experimental non-obese diabetic (NOD) mouse model. So far, investigations have largely focused on type 1 NKT cells with invariant T-cell receptors, whereas the role of type 2 NKT cells with diverse T-cell receptors is less well understood. However, there have been several findings which indicate that in fact type 2 NKT cells may regulate the progression of type 1 diabetes in NOD mice, including a fraction of these cells which recognize β-cell-enriched sulfatide. Therefore, the focus for this review is to present the current evidence of the effect of type 2 NKT cells on the development of T1D. In general, there is still uncertainty surrounding the mechanism of activation and function of NKT cells. Here, we present two models of the effector mechanisms, respectively, Th1/Th2 polarization and the induction of tolerogenic dendritic cells (DC). In conclusion, this review points to the importance of immunoregulation by type 2 NKT cells in preventing the development of T1D and highlights the induction of tolerogenic DC as a likely mechanism. The possible therapeutic role of type 1 and type 2 NKT cells are evaluated and future experiments concerning type 2 NKT cells and T1D are proposed.
Collapse
Affiliation(s)
- Jakob Ørskov Sørensen
- The Bartholin Institute, Rigshospitalet, Copenhagen Biocenter, Ole Maaloesvej 5, Copenhagen, Denmark
| | | | | |
Collapse
|
442
|
IL-4 and IL-4 receptor expression is dispensable for the development and function of natural killer T cells. PLoS One 2013; 8:e71872. [PMID: 23990998 PMCID: PMC3753281 DOI: 10.1371/journal.pone.0071872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/10/2013] [Indexed: 12/24/2022] Open
Abstract
CD4 T cells acquire functional properties including cytokine production upon antigenic stimulation through the T cell receptor (TCR) and differentiate into T helper (Th) cells. Th1 cells produce interferon (IFN)-γ and Th2 cells produce interleukin (IL)-4. Th1 and 2 cells utilize IFN-γ and IL-4 for further maturation and maintenance, respectively. Promyelocytic leukemia zinc finger (PLZF)-expressing invariant natural killer T (iNKT) cells develop in the thymus and acquire functional ability to produce IL-4 and IFN-γ in the thymus in the absence of antigenic stimulation. In response to antigenic stimulation, iNKT cells rapidly produce IFN-γ and IL-4. However, it is still unknown as to whether iNKT cells require these cytokines for maturation or survival in vivo. In this study, using IL-4- and IL-4 receptor- (IL-4R) deficient mice, we demonstrate that IL-4 as well as IL-4R expression is dispensable for the development, function and maintenance of iNKT cells.
Collapse
|
443
|
O’Konek JJ, Kato S, Takao S, Izhak L, Xia Z, Illarionov P, Besra GS, Terabe M, Berzofsky JA. β-mannosylceramide activates type I natural killer t cells to induce tumor immunity without inducing long-term functional anergy. Clin Cancer Res 2013; 19:4404-11. [PMID: 23804426 PMCID: PMC3819527 DOI: 10.1158/1078-0432.ccr-12-2169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE Most studies characterizing antitumor properties of invariant natural killer T (iNKT) cells have used the agonist, α-galactosylceramide (α-GalCer). However, α-GalCer induces strong, long-lasting anergy of iNKT cells, which could be a major detriment for clinical therapy. A novel iNKT cell agonist, β-mannosylceramide (β-ManCer), induces strong antitumor immunity through a mechanism distinct from that of α-GalCer. The objective of this study was to determine whether β-ManCer induces anergy of iNKT cells. EXPERIMENTAL DESIGN Induction of anergy was determined by ex vivo analysis of splenocytes from mice pretreated with iNKT cell agonists as well as in the CT26 lung metastasis in vivo tumor model. RESULTS β-ManCer activated iNKT cells without inducing long-term anergy. The transience of anergy induction correlated with a shortened duration of PD-1 upregulation on iNKT cells activated with β-ManCer, compared with α-GalCer. Moreover, whereas mice pretreated with α-GalCer were unable to respond to a second glycolipid stimulation to induce tumor protection for up to 2 months, mice pretreated with β-ManCer were protected from tumors by a second stimulation equivalently to vehicle-treated mice. CONCLUSIONS The lack of long-term functional anergy induced by β-ManCer, which allows for a second dose to still give therapeutic benefit, suggests the strong potential for this iNKT cell agonist to succeed in settings where α-GalCer has failed.
Collapse
Affiliation(s)
- Jessica J. O’Konek
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20982
| | - Shingo Kato
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20982
| | - Satomi Takao
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20982
| | - Liat Izhak
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20982
| | - Zheng Xia
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20982
| | - Petr Illarionov
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Masaki Terabe
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20982
| | - Jay A. Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20982
| |
Collapse
|
444
|
Abstract
Patients with the dedicator of cytokinesis 8 (DOCK8) immunodeficiency syndrome suffer from recurrent viral and bacterial infections, hyper-immunoglobulin E levels, eczema, and greater susceptibility to cancer. Because natural killer T (NKT) cells have been implicated in these diseases, we asked if these cells were affected by DOCK8 deficiency. Using a mouse model, we found that DOCK8 deficiency resulted in impaired NKT cell development, principally affecting the formation and survival of long-lived, differentiated NKT cells. In the thymus, DOCK8-deficient mice lack a terminally differentiated subset of NK1.1(+) NKT cells expressing the integrin CD103, whereas in the liver, DOCK8-deficient NKT cells express reduced levels of the prosurvival factor B-cell lymphoma 2 and the integrin lymphocyte function-associated antigen 1. Although the initial NKT cell response to antigen is intact in the absence of DOCK8, their ongoing proliferative and cytokine responses are impaired. Importantly, a similar defect in NKT cell numbers was detected in DOCK8-deficient humans, highlighting the relevance of the mouse model. In conclusion, our data demonstrate that DOCK8 is required for the development and survival of mature NKT cells, consistent with the idea that DOCK8 mediates survival signals within a specialized niche. Accordingly, impaired NKT cell numbers and function are likely to contribute to the susceptibility of DOCK8-deficient patients to recurrent infections and malignant disease.
Collapse
|
445
|
Combination of intratumoral invariant natural killer T cells and interferon-gamma is associated with prognosis of hepatocellular carcinoma after curative resection. PLoS One 2013; 8:e70345. [PMID: 23940564 PMCID: PMC3734128 DOI: 10.1371/journal.pone.0070345] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/18/2013] [Indexed: 01/09/2023] Open
Abstract
Purpose To investigate the prognostic value of intratumoral invariant natural killer T (iNKT) cells and interferon-gamma (IFN-γ) in hepatocellular carcinoma (HCC) after curative resection. Experimental Design Expression of TRAV10, encoding the Vα24 domain of iNKT cells, and IFN-γ mRNA were assessed by quantitative real-time polymerase chain reaction in tumor from 224 HCC patients undergoing curative resection. The prognostic value of these two and other clinicopathologic factors was evaluated. Results Either intratumoral iNKT cells and IFN-γ alone or their combination was an independent prognostic factor for OS (P = 0.001) and RFS (P = 0.001) by multivariate Cox proportional hazards analysis. Patients with concurrent low levels of iNKT cells and IFN-γ had a hazard ratio (HR) of 2.784 for OS and 2.673 for RFS. The areas under the curve of iNKT cells, IFN-γand their combination were 0.618 vs 0.608 vs 0.654 for death and 0.591 vs 0.604 vs 0.633 for recurrence respectively by receiver operating characteristic curve analysis. The prognosis was the worst for HCC patients with concurrent low levels of iNKT cells and IFN-γ, which might be related with more advanced pTNM stage and more vascular invasion. Conclusions Combination of intratumoral iNKT cells and IFN-γ is a promising independent predictor for recurrence and survival in HCC, which has a better power to predict HCC patients’ outcome compared with intratumoral iNKT cells or IFN-γ alone.
Collapse
|
446
|
Kinjo Y, Kitano N, Kronenberg M. The role of invariant natural killer T cells in microbial immunity. J Infect Chemother 2013; 19:560-70. [PMID: 23846426 PMCID: PMC3822041 DOI: 10.1007/s10156-013-0638-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Indexed: 10/26/2022]
Abstract
Invariant natural killer T cells (iNKT cells) are unique lymphocytes with characteristic features, such as expression of an invariant T-cell antigen receptor (TCR) α-chain, recognition of glycolipid antigens presented by CD1d molecules, and ability to rapidly produce large amounts of cytokines, including interferon-γ (IFN-γ) and interleukin 4 (IL-4) upon TCR stimulation. Many studies have demonstrated that iNKT cells participate in immune response against diverse microbes, including bacteria, fungi, protozoan parasites, and viruses. Generally, these cells play protective roles in host defense against infections. However, in some contexts they play pathogenic roles, by inducing or augmenting inflammation. Recent reports show that iNKT cells recognize glycolipid antigens from pathogenic bacteria including Streptococcus pneumoniae, and they contribute to host defense against infection. iNKT cell responses to these microbial glycolipid antigens are highly conserved between rodents and humans, suggesting that iNKT cells are evolutionally conserved because their invariant TCR is useful in detecting certain pathogens. Furthermore, glycolipid-mediated iNKT cell activation during immunization has adjuvant activity, enhancing humoral and cell-mediated responses. Therefore, iNKT cell activation is an attractive target for developing new vaccines for infectious diseases.
Collapse
Affiliation(s)
- Yuki Kinjo
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo, 162-8640, Japan.
| | | | | |
Collapse
|
447
|
Viegas N, Andzinski L, Wu CF, Komoll RM, Gekara N, Dittmar KE, Weiss S, Jablonska J. IFN-γ production by CD27⁺ NK cells exacerbates Listeria monocytogenes infection in mice by inhibiting granulocyte mobilization. Eur J Immunol 2013; 43:2626-37. [PMID: 23818011 DOI: 10.1002/eji.201242937] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 06/07/2013] [Accepted: 06/27/2013] [Indexed: 11/10/2022]
Abstract
Natural killer (NK) cells are key components of the immune system involved in several immune reactions, including the clearance of intracellular pathogens. When activated, NK cells rapidly secrete particular cytokines that activate innate immunity and facilitate development of adaptive responses. Conflicting reports on the role of NK cells during infection by Listeria monocytogenes can be found in the literature. Here, we demonstrate that during lethal infection by L. monocytogenes, activation of NK cells via the costimulatory molecule CD27 leads to excessive IFN-γ production. This impairs innate anti-bacterial host defenses by inducing downregulation of CXCR2 on granulocytes and consequently inhibiting their recruitment to the sites of infection. The use of antibodies to block CD27 signaling or to deplete IFN-γ was sufficient to rescue mice from lethal challenge by L. monocytogenes. Our findings contribute to a better understanding of the importance of CD27 signaling in activation of NK cells and should provide new ways of interfering with infections.
Collapse
Affiliation(s)
- Nuno Viegas
- Molecular Immunology, Helmholtz Centre for Infection Research, HZI, Braunschweig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
448
|
Ryser S, Schuppli M, Gauthier B, Hernandez DR, Roye O, Hohl D, German B, Holzwarth JA, Moodycliffe AM. UVB-induced skin inflammation and cutaneous tissue injury is dependent on the MHC class I-like protein, CD1d. J Invest Dermatol 2013; 134:192-202. [PMID: 23867896 PMCID: PMC3898102 DOI: 10.1038/jid.2013.300] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/13/2013] [Accepted: 05/28/2013] [Indexed: 02/07/2023]
Abstract
CD1d is a major histocompatibility complex class 1–like molecule that regulates the function and development of natural killer T (NKT) cells. Previously, we identified a critical role for the CD1d-NKT cell arm of innate immunity in promoting the development of UVB-induced p53 mutations, immune suppression, and skin tumors. Sunburn, an acute inflammatory response to UVB-induced cutaneous tissue injury, represents a clinical marker for non-melanoma skin cancer (NMSC) risk. However, the innate immune mechanisms controlling sunburn development are not considered relevant in NMSC etiology, and remain poorly investigated. Here we found that CD1d knockout (CD1d−/−) mice resist UVB-induced cutaneous tissue injury and inflammation compared with wild-type (WT) mice. This resistance was coupled with a faster epithelial tissue healing response. In contrast, the skins of UVB-irradiated invariant NKT cell-knockout (Jα18−/−) and NKT cell–deficient (TCRα−/−) mice, which express CD1d but are deficient in CD1d-dependent NKT cells, exhibited as much cutaneous tissue injury and inflammation as WT mice. In the absence of NKT cells, CD1d-deficient keratinocytes, dendritic cells, and macrophages exhibited diminished basal and stress-induced levels of pro-inflammatory mediators. Thus, our findings identify an essential role for CD1d in promoting UVB-induced cutaneous tissue injury and inflammation. They also suggest sunburn and NMSC etiologies are immunologically linked.
Collapse
Affiliation(s)
- Stephan Ryser
- Department of Dermatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | | | | | - Dianelys R Hernandez
- Department of Dermatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Olivier Roye
- Galderma Research and Development, Les Templiers, Biot, France
| | - Daniel Hohl
- Department of Dermatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Bruce German
- Department of Lipid Nutrition, University of California, Davis, Davis, California, USA
| | - James A Holzwarth
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Angus M Moodycliffe
- Department of Dermatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
449
|
Mori G, D'Amelio P, Faccio R, Brunetti G. The Interplay between the bone and the immune system. Clin Dev Immunol 2013; 2013:720504. [PMID: 23935650 PMCID: PMC3725924 DOI: 10.1155/2013/720504] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/07/2013] [Indexed: 12/27/2022]
Abstract
In the last two decades, numerous scientists have highlighted the interactions between bone and immune cells as well as their overlapping regulatory mechanisms. For example, osteoclasts, the bone-resorbing cells, are derived from the same myeloid precursor cells that give rise to macrophages and myeloid dendritic cells. On the other hand, osteoblasts, the bone-forming cells, regulate hematopoietic stem cell niches from which all blood and immune cells are derived. Furthermore, many of the soluble mediators of immune cells, including cytokines and growth factors, regulate the activities of osteoblasts and osteoclasts. This increased recognition of the complex interactions between the immune system and bone led to the development of the interdisciplinary osteoimmunology field. Research in this field has great potential to provide a better understanding of the pathogenesis of several diseases affecting both the bone and immune systems, thus providing the molecular basis for novel therapeutic strategies. In these review, we reported the latest findings about the reciprocal regulation of bone and immune cells.
Collapse
Affiliation(s)
- Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy
| | - Patrizia D'Amelio
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Roberta Faccio
- Department of Orthopedics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Giacomina Brunetti
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| |
Collapse
|
450
|
Joshi SK, Lang ML. Fine tuning a well-oiled machine: Influence of NK1.1 and NKG2D on NKT cell development and function. Int Immunopharmacol 2013; 17:260-6. [PMID: 23800654 DOI: 10.1016/j.intimp.2013.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/10/2013] [Accepted: 05/24/2013] [Indexed: 01/06/2023]
Abstract
Natural killer T cells (NKT) represent a group of CD1d-restricted T-lineage cells that provide a functional interface between innate and adaptive immune responses in infectious disease, cancer, allergy and autoimmunity. There have been remarkable advances in understanding the molecular events that underpin NKT development in the thymus and in the complex array of functions in the periphery. Most functional studies have focused on activation of T cell antigen receptors expressed by NKT cells and their responses to CD1d presentation of glycolipid and related antigens. Receiving less attention has been several molecules that are hallmarks of Natural Killer (NK) cells, but nonetheless expressed by NKT cells. These include several activating and inhibitory receptors that may fine-tune NKT development and survival, as well as activation via antigen receptors. Herein, we review the possible roles of the NK1.1 and NKG2D receptors in regulating development and function of NKT cells in health and disease. We suggest that pharmacological alteration of NKT activity should consider the potential complexities commensurate with NK1.1 and NKG2D expression.
Collapse
Affiliation(s)
- Sunil K Joshi
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | | |
Collapse
|