401
|
Agca C, Boldt K, Gubler A, Meneau I, Corpet A, Samardzija M, Stucki M, Ueffing M, Grimm C. Expression of leukemia inhibitory factor in Müller glia cells is regulated by a redox-dependent mRNA stability mechanism. BMC Biol 2015; 13:30. [PMID: 25907681 PMCID: PMC4462110 DOI: 10.1186/s12915-015-0137-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/08/2015] [Indexed: 12/15/2022] Open
Abstract
Background Photoreceptor degeneration is a main hallmark of many blinding diseases making protection of photoreceptors crucial to prevent vision loss. Thus, regulation of endogenous neuroprotective factors may be key for cell survival and attenuation of disease progression. Important neuroprotective factors in the retina include H2O2 generated by injured photoreceptors, and leukemia inhibitory factor (LIF) expressed in Müller glia cells in response to photoreceptor damage. Results We present evidence that H2O2 connects to the LIF response by inducing stabilization of Lif transcripts in Müller cells. This process was independent of active gene transcription and p38 MAPK, but relied on AU-rich elements (AREs), which we identified within the highly conserved Lif 3′UTR. Affinity purification combined with quantitative mass spectrometry identified several proteins that bound to these AREs. Among those, interleukin enhancer binding factor 3 (ILF3) was confirmed to participate in the redox-dependent Lif mRNA stabilization. Additionally we show that KH-type splicing regulatory protein (KHSRP) was crucial for maintaining basal Lif expression levels in non-stressed Müller cells. Conclusions Our results suggest that H2O2-induced redox signaling increases Lif transcript levels through ILF3 mediated mRNA stabilization. Generation of H2O2 by injured photoreceptors may thus enhance stability of Lif mRNA and therefore augment neuroprotective LIF signaling during degenerative conditions in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0137-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cavit Agca
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Wagistrasse 14, Zurich, 8091, Switzerland. .,Present address: Department of Biomedicine, University Hospital Basel, Basel, 4031, Switzerland.
| | - Karsten Boldt
- Division of Experimental Ophthalmology and Medical Proteome Center, Centre for Ophthalmology, University of Tübingen, 72076, Tübingen, Germany.
| | - Andrea Gubler
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Wagistrasse 14, Zurich, 8091, Switzerland.
| | - Isabelle Meneau
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Wagistrasse 14, Zurich, 8091, Switzerland.
| | - Armelle Corpet
- Department of Gynecology, University of Zurich, Zurich, 8091, Switzerland. .,Present address: Center for Molecular and Cellular Physiology and Genetics, University Lyon I, Villeurbanne, France.
| | - Marijana Samardzija
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Wagistrasse 14, Zurich, 8091, Switzerland.
| | - Manuel Stucki
- Department of Gynecology, University of Zurich, Zurich, 8091, Switzerland.
| | - Marius Ueffing
- Division of Experimental Ophthalmology and Medical Proteome Center, Centre for Ophthalmology, University of Tübingen, 72076, Tübingen, Germany.
| | - Christian Grimm
- Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Wagistrasse 14, Zurich, 8091, Switzerland. .,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, 8091, Switzerland. .,Neuroscience Center (ZNZ), University of Zurich, Zurich, 8091, Switzerland.
| |
Collapse
|
402
|
Faissner A, Reinhard J. The extracellular matrix compartment of neural stem and glial progenitor cells. Glia 2015; 63:1330-49. [DOI: 10.1002/glia.22839] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/25/2015] [Accepted: 03/30/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology; Ruhr-University Bochum; Germany
| | - Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology; Ruhr-University Bochum; Germany
| |
Collapse
|
403
|
Acute retinal injury and the relationship between nerve growth factor, Notch1 transcription and short-lived dedifferentiation transient changes of mammalian Müller cells. Vision Res 2015; 110:107-17. [PMID: 25817714 DOI: 10.1016/j.visres.2015.01.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 01/10/2015] [Accepted: 01/23/2015] [Indexed: 11/22/2022]
Abstract
Our aim is to define related molecular events on how dormant Müller glia cells re-enter the cell cycle, proliferate and produce new retinal neurons from initial injury to glial scar formation. Sodium iodate (NaIO3) was used to induce acute retinal injury. Long-Evans rats were administered with NaIO3 or phosphate-buffered saline by intraperitoneal injection. The proliferation, dedifferentiation and neurogenesis of Müller cells were analyzed by double-labeled fluorescence immunohistochemistry with primary antibodies - against Müller cells and specific cell markers. Possible molecules that limit the regenerative potential of Müller cells were also determined by immunofluorescence staining, quantitative RT-PCR, protein array, ELISA and Western blot. In the first 3-7days after NaIO3 administration, Müller cells were activated and underwent a fate switch, including transient proliferation, dedifferentiation and neurogenesis. Nerve growth factor (NGF) signaling concomitantly increased with the downregulation of p27(Kip1) in Müller cells, which may promote Müller cells to re-enter the cell cycle. The transient increase of NGF signaling and the transient decrease of Notch signaling inhibited Hes1, which might enhance the neuronal differentiation of dedifferentiated Müller cells and suppress gliosis. Upregulated Notch and decreased NGF expressions limit dedifferentiation and neurogenesis, but induces retinal Müller cell gliosis at a later stage. We conclude that transient NGF upregulation and Notch1 downregulation may activate the transient proliferation, dedifferentiation and neurogenesis of Müller cells during NaIO3-induced acute retinal injury; which could be a therapeutic target for overcoming Müller cell gliosis. Such therapy could be potentially used for treating retinal-related diseases.
Collapse
|
404
|
Midkine-a protein localization in the developing and adult retina of the zebrafish and its function during photoreceptor regeneration. PLoS One 2015; 10:e0121789. [PMID: 25803551 PMCID: PMC4372396 DOI: 10.1371/journal.pone.0121789] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/05/2015] [Indexed: 12/31/2022] Open
Abstract
Midkine is a heparin binding growth factor with important functions in neuronal development and survival, but little is known about its function in the retina. Previous studies show that in the developing zebrafish, Midkine-a (Mdka) regulates cell cycle kinetics in retinal progenitors, and following injury to the adult zebrafish retina, mdka is strongly upregulated in Müller glia and the injury-induced photoreceptor progenitors. Here we provide the first data describing Mdka protein localization during different stages of retinal development and during the regeneration of photoreceptors in adults. We also experimentally test the role of Mdka during photoreceptor regeneration. The immuno-localization of Mdka reflects the complex spatiotemporal pattern of gene expression and also reveals the apparent secretion and extracellular trafficking of this protein. During embryonic retinal development the Mdka antibodies label all mitotically active cells, but at the onset of neuronal differentiation, immunostaining is also localized to the nascent inner plexiform layer. Starting at five days post fertilization through the juvenile stage, Mdka immunostaining labels the cytoplasm of horizontal cells and the overlying somata of rod photoreceptors. Double immunolabeling shows that in adult horizontal cells, Mdka co-localizes with markers of the Golgi complex. Together, these data are interpreted to show that Mdka is synthesized in horizontal cells and secreted into the outer nuclear layer. In adults, Mdka is also present in the end feet of Müller glia. Similar to mdka gene expression, Mdka in horizontal cells is regulated by circadian rhythms. After the light-induced death of photoreceptors, Mdka immuonolabeling is localized to Müller glia, the intrinsic stem cells of the zebrafish retina, and proliferating photoreceptor progenitors. Knockdown of Mdka during photoreceptor regeneration results in less proliferation and diminished regeneration of rod photoreceptors. These data suggest that during photoreceptor regeneration Mdka regulates aspects of injury-induced cell proliferation.
Collapse
|
405
|
|
406
|
Jayakody SA, Gonzalez-Cordero A, Ali RR, Pearson RA. Cellular strategies for retinal repair by photoreceptor replacement. Prog Retin Eye Res 2015; 46:31-66. [PMID: 25660226 DOI: 10.1016/j.preteyeres.2015.01.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 02/08/2023]
Abstract
Loss of photoreceptors due to retinal degeneration is a major cause of blindness in the developed world. While no effective treatment is currently available, cell replacement therapy, using pluripotent stem cell-derived photoreceptor precursor cells, may be a feasible future treatment. Recent reports have demonstrated rescue of visual function following the transplantation of immature photoreceptors and we have seen major advances in our ability to generate transplantation-competent donor cells from stem cell sources. Moreover, we are beginning to realise the possibilities of using endogenous populations of cells from within the retina itself to mediate retinal repair. Here, we present a review of our current understanding of endogenous repair mechanisms together with recent progress in the use of both ocular and pluripotent stem cells for the treatment of photoreceptor loss. We consider how our understanding of retinal development has underpinned many of the recent major advances in translation and moved us closer to the goal of restoring vision by cellular means.
Collapse
Affiliation(s)
- Sujatha A Jayakody
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK
| | - Anai Gonzalez-Cordero
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK
| | - Robin R Ali
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK; NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, City Road, London EC1V 2PD, UK
| | - Rachael A Pearson
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK.
| |
Collapse
|
407
|
Becker C, Becker T. Neuronal Regeneration from Ependymo-Radial Glial Cells: Cook, Little Pot, Cook! Dev Cell 2015; 32:516-27. [DOI: 10.1016/j.devcel.2015.01.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
408
|
Jian Q, Li Y, Yin ZQ. Rat BMSCs initiate retinal endogenous repair through NGF/TrkA signaling. Exp Eye Res 2015; 132:34-47. [PMID: 25584870 DOI: 10.1016/j.exer.2015.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 12/16/2014] [Accepted: 01/09/2015] [Indexed: 12/18/2022]
Abstract
Müller cells can completely repair retinal injury by acting as endogenous stem/progenitor cells in lower-order vertebrates. However, a safe and effective approach to activate progenitor potential of retinal Müller cells in higher-order vertebrates, which rarely re-enter the cell cycle, is a bottleneck problem. In the present study, Royal College of Surgeon's (RCS) rats were subjected to rat bone marrow mesenchymal stem cells (rBMSCs) subretinal space transplantation. Electroretinography (ERG) recordings showed that the b-wave amplitudes and ONL thicknesses statistically increased after transplantation. The number of Müller cells expressing proliferative, stem/progenitor and neuronal markers significantly increased after rBMSCs transplantation in vivo or after co-culturing with rBMSCs in vitro. The cultured rBMSCs could secrete nerve growth factor (NGF). In addition, we confirmed that NGF or NGF-neutralizing antibody could activate or depress Müller cells dedifferentiation, both in vivo and in vitro. Furthermore, Müller cells expressing high levels of the NGF receptor neurotrophic tyrosine kinase receptor type 1 (TrkA) were observed in the retinas of rats transplanted with rBMSCs. Moreover, the protein expression of downstream elements of NGF/TrkA signaling, such as p-PI3K, p-Akt and p-CREB, increased in Müller cells in the retinas of rBMSCs-treated rats in vivo or in Müller cells co-cultured with rBMSCs in vitro. Blocking TrkA with K-252a reduced the number of dedifferentiated Müller cells and the expression of NGF/TrkA signaling in vitro. Thus, rBMSCs might initiate endogenous regenerative mechanisms, which may constitute a new therapeutic strategy for retinal dystrophic diseases.
Collapse
Affiliation(s)
- Qian Jian
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Yaochen Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.
| |
Collapse
|
409
|
Kimura A, Namekata K, Guo X, Noro T, Harada C, Harada T. Valproic acid prevents NMDA-induced retinal ganglion cell death via stimulation of neuronal TrkB receptor signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 185:756-64. [PMID: 25542970 DOI: 10.1016/j.ajpath.2014.11.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/04/2014] [Accepted: 11/10/2014] [Indexed: 12/27/2022]
Abstract
Valproic acid (VPA) is widely prescribed for treatment of epilepsy, mood disorders, migraines, and neuropathic pain. It exerts its therapeutic benefits through multiple mechanisms, including enhancement of GABAergic activity, activation of prosurvival protein kinases, and inhibition of histone deacetylase. Increasing evidence suggests that VPA possesses neuroprotective properties. We examined neuroprotective effects of VPA in an N-methyl-d-aspartate (NMDA) excitotoxicity model, which mimics some of the pathological features of glaucoma. In vivo retinal imaging using optical coherence tomography revealed that NMDA-induced retinal degeneration was suppressed in the VPA-treated retina, and histological analyses confirmed that VPA reduced retinal ganglion cell death. In vivo electrophysiological analyses demonstrated that visual impairment was prevented in the VPA-treated retina, clearly establishing both histological and functional effects of VPA. Brain-derived neurotrophic factor (BDNF) expression was up-regulated in Müller glial cells, and neuroprotective effects of VPA on retinal ganglion cells were significantly reduced in a conditional knockout mouse strain with deletion of tropomyosin receptor kinase B (TrkB), a receptor for BDNF from retinal ganglion cells. The results show that VPA stimulates BDNF up-regulation in Müller glial cells and provides direct evidence that neuronal TrkB is important in VPA-mediated neuroprotection. Also, VPA suppresses oxidative stress induced by NMDA in the retina. Our findings raise intriguing possibilities that the widely prescribed drug VPA may be useful for treatment of glaucoma.
Collapse
Affiliation(s)
- Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takahiko Noro
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
410
|
Solin SL, Wang Y, Mauldin J, Schultz LE, Lincow DE, Brodskiy PA, Jones CA, Syrkin-Nikolau J, Linn JM, Essner JJ, Hostetter JM, Whitley EM, Cameron JD, Chou HH, Severin AJ, Sakaguchi DS, McGrail M. Molecular and cellular characterization of a zebrafish optic pathway tumor line implicates glia-derived progenitors in tumorigenesis. PLoS One 2014; 9:e114888. [PMID: 25485542 PMCID: PMC4259487 DOI: 10.1371/journal.pone.0114888] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/14/2014] [Indexed: 12/29/2022] Open
Abstract
In this study we describe the molecular and cellular characterization of a zebrafish mutant that develops tumors in the optic pathway. Heterozygous Tg(flk1:RFP)is18 transgenic adults develop tumors of the retina, optic nerve and optic tract. Molecular and genetic mapping demonstrate the tumor phenotype is linked to a high copy number transgene array integrated in the lincRNA gene lincRNAis18/Zv9_00007276 on chromosome 3. TALENs were used to isolate a 147kb deletion allele that removes exons 2–5 of the lincRNAis18 gene. Deletion allele homozygotes are viable and do not develop tumors, indicating loss of function of the lincRNAis18 locus is not the trigger for tumor onset. Optic pathway tumors in the Tg(flk1:RFP)is18 mutant occur with a penetrance of 80–100% by 1 year of age. The retinal tumors are highly vascularized and composed of rosettes of various sizes embedded in a fibrous matrix. Immunohistochemical analysis showed increased expression of the glial markers GFAP and BLBP throughout retinal tumors and in dysplastic optic nerve. We performed transcriptome analysis of pre-tumorous retina and retinal tumor tissue and found changes in gene expression signatures of radial glia and astrocytes (slc1a3), activated glia (atf3, blbp, apoeb), proliferating neural progenitors (foxd3, nestin, cdh2, her9/hes1), and glioma markers (S100β, vim). The transcriptome also revealed activation of cAMP, Stat3 and Wnt signal transduction pathways. qRT-PCR confirmed >10-fold overexpression of the Wnt pathway components hbegfa, ascl1a, and insm1a. Together the data indicate Müller glia and/or astrocyte-derived progenitors could contribute to the zebrafish Tg(flk1:RFP)is18 optic pathway tumors.
Collapse
Affiliation(s)
- Staci L. Solin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Ying Wang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Joshua Mauldin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Laura E. Schultz
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Deborah E. Lincow
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Pavel A. Brodskiy
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Crystal A. Jones
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Judith Syrkin-Nikolau
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Jasmine M. Linn
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Jeffrey J. Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Jesse M. Hostetter
- Department of Veterinary Pathology, Iowa State University, Ames, Iowa, United States of America
| | - Elizabeth M. Whitley
- Department of Veterinary Pathology, Iowa State University, Ames, Iowa, United States of America
| | - J. Douglas Cameron
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Hui-Hsien Chou
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Andrew J. Severin
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames, Iowa, United States of America
| | - Donald S. Sakaguchi
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Maura McGrail
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
411
|
Rajaram K, Harding RL, Bailey T, Patton JG, Hyde DR. Dynamic miRNA expression patterns during retinal regeneration in zebrafish: reduced dicer or miRNA expression suppresses proliferation of Müller glia-derived neuronal progenitor cells. Dev Dyn 2014; 243:1591-605. [PMID: 25220904 DOI: 10.1002/dvdy.24188] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 08/06/2014] [Accepted: 08/26/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Adult zebrafish spontaneously regenerate their retinas after damage. Although a number of genes and signaling pathways involved in regeneration have been identified, the exact mechanisms regulating various aspects of regeneration are unclear. microRNAs (miRNAs) were examined for their potential roles in regulating zebrafish retinal regeneration. RESULTS To investigate the requirement of miRNAs during zebrafish retinal regeneration, we knocked down the expression of Dicer in retinas prior to light-induced damage. Reduced Dicer expression significantly decreased the number of proliferating Müller glia-derived neuronal progenitor cells during regeneration. To identify individual miRNAs with roles in neuronal progenitor cell proliferation, we collected retinas at different stages of light damage and performed small RNA high-throughput sequencing. We identified subsets of miRNAs that were differentially expressed during active regeneration but returned to basal levels once regeneration was completed. We then knocked down five different miRNAs that increased in expression and assessed the effects on retinal regeneration. Reduction of miR-142b and miR-146a expression significantly reduced INL proliferation at 51 h of light treatment, while knockdown of miR-7a, miR-27c, and miR-31 expression significantly reduced INL proliferation at 72 h of constant light. CONCLUSIONS miRNAs exhibit dynamic expression profiles during retinal regeneration and are necessary for neuronal progenitor cell proliferation.
Collapse
Affiliation(s)
- Kamya Rajaram
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee
| | | | | | | | | |
Collapse
|
412
|
Savoy-Burke G, Gilels FA, Pan W, Pratt D, Que J, Gan L, White PM, Kiernan AE. Activated notch causes deafness by promoting a supporting cell phenotype in developing auditory hair cells. PLoS One 2014; 9:e108160. [PMID: 25264928 PMCID: PMC4180070 DOI: 10.1371/journal.pone.0108160] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/25/2014] [Indexed: 01/10/2023] Open
Abstract
Purpose To determine whether activated Notch can promote a supporting cell fate during sensory cell differentiation in the inner ear. Methods An activated form of the Notch1 receptor (NICD) was expressed in early differentiating hair cells using a Gfi1-Cre mouse allele. To determine the effects of activated Notch on developing hair cells, Gfi1-NICD animals and their littermate controls were assessed at 5 weeks for hearing by measuring auditory brainstem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs). The differentiation of NICD-expressing hair cells was assessed at postnatal day (P) 6, 11 and 20, using histological and molecular markers for hair cells, as well as supporting cells/progenitor cells. We also examined whether the effects of Notch were mediated by SOX2, a gene expressed in supporting cells and a likely downstream target of Notch, by crossing an inducible form of SOX2 to the Gfi1-Cre. Results Activation of Notch1 in developing auditory hair cells causes profound deafness. The NICD-expressing hair cells switch off a number of hair cell markers and lose their characteristic morphology. Instead, NICD-expressing hair cells adopt a morphology resembling supporting cells and upregulate a number of supporting cell markers. These effects do not appear to be mediated by SOX2, because although expression of SOX2 caused some hearing impairment, the SOX2-expressing hair cells did not downregulate hair cell markers nor exhibit a supporting cell-like phenotype. Conclusions Our data show that Notch signaling inhibits hair cell differentiation and promotes a supporting cell-like phenotype, and that these effects are unlikely to be mediated by SOX2.
Collapse
Affiliation(s)
- Grace Savoy-Burke
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Felicia A. Gilels
- Department of Neurobiology and Anatomy, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Wei Pan
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Diana Pratt
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jianwen Que
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Lin Gan
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Neurobiology and Anatomy, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Patricia M. White
- Department of Neurobiology and Anatomy, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Amy E. Kiernan
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
413
|
Liu B, Hunter DJ, Smith AA, Chen S, Helms JA. The capacity of neural crest-derived stem cells for ocular repair. ACTA ACUST UNITED AC 2014; 102:299-308. [DOI: 10.1002/bdrc.21077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/22/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Bo Liu
- Division of Plastic and Reconstructive Surgery; Department of Surgery School of Medicine; Stanford University; Stanford California
| | - Daniel J. Hunter
- Division of Plastic and Reconstructive Surgery; Department of Surgery School of Medicine; Stanford University; Stanford California
| | - Andrew A. Smith
- Division of Plastic and Reconstructive Surgery; Department of Surgery School of Medicine; Stanford University; Stanford California
| | - Serafine Chen
- Division of Plastic and Reconstructive Surgery; Department of Surgery School of Medicine; Stanford University; Stanford California
| | - Jill A. Helms
- Division of Plastic and Reconstructive Surgery; Department of Surgery School of Medicine; Stanford University; Stanford California
| |
Collapse
|