401
|
Dima D, Lopetegui‐Lia N, Ogbue O, Osantowski B, Ullah F, Jia X, Song JM, Gastman B, Isaacs J, Kennedy LB, Funchain P. Real-world outcomes of patients with resected stage III melanoma treated with adjuvant therapies. Cancer Med 2024; 13:e7257. [PMID: 39031560 PMCID: PMC11190025 DOI: 10.1002/cam4.7257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/28/2023] [Accepted: 04/27/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND Both immunotherapy (IO) and targeted therapy (TT) are used as adjuvant (adj) treatment for stage III melanoma, however, data describing real-world outcomes are limited. In addition, a significant proportion of patients relapse, for whom best management is unclear. The aim of our study was to assess the efficacy, and safety of adj anti-PD1 IO and TT in a real-world cohort of patients with resected stage III melanoma, and further delineate patterns of recurrence and treatment strategies. METHODS We retrospectively analyzed 130 patients who received adj therapy (100 anti-PD1 IO and 30 TT). RESULTS At a median follow-up of 30 months, median relapse-free survival (RFS) was 24.6 (95% CI, 17-not reached [NR]) versus 64 (95% CI, 29.5-NR) months for the TT and IO groups, respectively (p = 0.26). Median overall survival (OS) was NR for either subgroup. At data cutoff, 77% and 82% of patients in TT and IO arms were alive. A higher number of grade ≥3 treatment-related adverse events (AEs) were noted in the IO group (11% vs. 3%), however, a higher proportion of patients permanently discontinued adj therapy in the TT group (43% vs. 11%) due to toxicity. Strategies at relapse and outcomes were variable based on location and timing of recurrence. A significant number of patients who relapsed after adj IO received a second round of IO. Among them, patients who were off adj IO at relapse had superior second median RFS (mRFS2), compared to those who relapsed while on adj IO; mRFS2 was NR versus 5.1 months (95% CI, 2.5-NR), respectively, p = 0.02. CONCLUSION In summary, both TT and IO yielded prolonged RFS in a real-world setting, however, longer follow-up is needed to determine any potential OS benefit. Adj therapy, particularly TT, may not be as well tolerated as suggested in clinical trials, with lower completion rates (59% vs. 74%) in a real-life setting. Overall, patients who relapse during adj therapy have poor outcomes, while patients who relapse after discontinuation of adj IO therapy appear to benefit from IO re-treatment.
Collapse
Affiliation(s)
- Danai Dima
- Department of Hematology‐OncologyTaussig Cancer Institute, Cleveland Clinic FoundationClevelandOhioUSA
| | - Nerea Lopetegui‐Lia
- Department of Hematology‐OncologyTaussig Cancer Institute, Cleveland Clinic FoundationClevelandOhioUSA
| | - Olisaemeka Ogbue
- Department of Internal MedicineCleveland Clinic FoundationClevelandOhioUSA
| | - Bennett Osantowski
- Department of Internal MedicineCleveland Clinic FoundationClevelandOhioUSA
| | - Fauzia Ullah
- Department of Hematology‐OncologyTaussig Cancer Institute, Cleveland Clinic FoundationClevelandOhioUSA
| | - Xuefei Jia
- Department of BiostatisticsCleveland Clinic FoundationClevelandOhioUSA
| | - Jung Min Song
- Department of Hematology‐OncologyTaussig Cancer Institute, Cleveland Clinic FoundationClevelandOhioUSA
| | - Brian Gastman
- Department of Plastic SurgeryCleveland Clinic FoundationClevelandOhioUSA
| | - James Isaacs
- Department of Hematology‐OncologyTaussig Cancer Institute, Cleveland Clinic FoundationClevelandOhioUSA
| | - Lucy Boyce Kennedy
- Department of Hematology‐OncologyTaussig Cancer Institute, Cleveland Clinic FoundationClevelandOhioUSA
| | - Pauline Funchain
- Department of Hematology‐OncologyTaussig Cancer Institute, Cleveland Clinic FoundationClevelandOhioUSA
- Division of Oncology, Stanford Cancer InstituteStanford University School of MedicineStanfordCaliforniaUSA
| |
Collapse
|
402
|
Chan PY, Corrie PG. Curing Stage IV Melanoma: Where Have We Been and Where Are We? Am Soc Clin Oncol Educ Book 2024; 44:e438654. [PMID: 38669609 DOI: 10.1200/edbk_438654] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Little more than 10 years ago, metastatic melanoma was considered to have one of the poorest cancer outcomes, associated with a median overall survival of 6-8 months. Cytotoxic chemotherapy offered modest response rates of 20%-30%, but no clear survival benefit. Patients were routinely enrolled in clinical trials as their first-line therapy in the search for effective novel therapeutics. Remarkable developments in molecular biology, cancer genomics, immunology, and drug discovery have dominated the early part of the 21st century, and nowhere have the benefits been better realized than in the transformation of outcomes for patients with metastatic melanoma: since 2011, 14 new agents have been approved that significantly increase survival, with long-term remissions and, possibly now, potential for cure. Even so, there is still much work to be done, given that most treated patients still die of their disease. Although most survival gains have so far been realized for cutaneous melanoma, improving treatment options for those 10% of patients with rarer, noncutaneous melanomas is a high priority. Key novel therapeutic approaches aimed at improving outcomes with potential for curing patients with melanoma are considered.
Collapse
Affiliation(s)
- Pui Ying Chan
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Pippa G Corrie
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
403
|
Butterfield LH, Najjar YG. Immunotherapy combination approaches: mechanisms, biomarkers and clinical observations. Nat Rev Immunol 2024; 24:399-416. [PMID: 38057451 PMCID: PMC11460566 DOI: 10.1038/s41577-023-00973-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
The approval of the first immune checkpoint inhibitors provided a paradigm shift for the treatment of malignancies across a broad range of indications. Whereas initially, single-agent immune checkpoint inhibition was used, increasing numbers of patients are now treated with combination immune checkpoint blockade, where non-redundant mechanisms of action of the individual agents generally lead to higher response rates. Furthermore, immune checkpoint therapy has been combined with various other therapeutic modalities, including chemotherapy, radiotherapy and other immunotherapeutics such as vaccines, adoptive cellular therapies, cytokines and others, in an effort to maximize clinical efficacy. Currently, a large number of clinical trials test combination therapies with an immune checkpoint inhibitor as a backbone. However, proceeding without inclusion of broad, if initially exploratory, biomarker investigations may ultimately slow progress, as so far, few combinations have yielded clinical successes based on clinical data alone. Here, we present the rationale for combination therapies and discuss clinical data from clinical trials across the immuno-oncology spectrum. Moreover, we discuss the evolution of biomarker approaches and highlight the potential new directions that comprehensive biomarker studies can yield.
Collapse
Affiliation(s)
- Lisa H Butterfield
- University of California San Francisco, Microbiology and Immunology, San Francisco, CA, USA.
| | | |
Collapse
|
404
|
Mascaretti F, Haider S, Amoroso C, Caprioli F, Ramai D, Ghidini M. Role of the Microbiome in the Diagnosis and Management of Gastroesophageal Cancers. J Gastrointest Cancer 2024; 55:662-678. [PMID: 38411876 DOI: 10.1007/s12029-024-01021-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/28/2024]
Abstract
PURPOSE Stomach and esophageal cancers are among the highest mortality from cancers worldwide. Microbiota has an interplaying role within the human gastrointestinal (GI) tract. Dysbiosis occurs when a disruption of the balance between the microbiota and the host happens. With this narrative review, we discuss the main alterations in the microbiome of gastroesophageal cancer, revealing its potential role in the pathogenesis, early detection, and treatment. RESULTS Helicobacter pylori plays a major role the development of a cascade of preneoplastic conditions ranging from atrophic gastritis to metaplasia and dysplasia, ultimately culminating in gastric cancer, while other pathogenic agents are Fusobacterium nucleatum, Bacteroides fragilis, Escherichia coli, and Lactobacillus. Campylobacter species (spp.)'s role in the progression of esophageal adenocarcinoma may parallel that of Helicobacter pylori in the context of gastric cancer, with other esophageal carcinogenic agents being Escherichia coli, Bacteroides fragilis, and Fusobacterium nucleatum. Moreover, gut microbiome could significantly alter the outcomes of chemotherapy and immunotherapy. The gut microbiome can be modulated through interventions such as antibiotics, probiotics, or prebiotics intake. Fecal microbiota transplantation has emerged as a therapeutic strategy as well. CONCLUSIONS Nowadays, it is widely accepted that changes in the normal gut microbiome causing dysbiosis and immune dysregulation play a role gastroesophageal cancer. Different interventions, including probiotics and prebiotics intake are being developed to improve therapeutic outcomes and mitigate toxicities associated with anticancer treatment. Further studies are required in order to introduce the microbiome among the available tools of precision medicine in the field of anticancer treatment.
Collapse
Affiliation(s)
- Federica Mascaretti
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Salman Haider
- Department of Internal Medicine, Brooklyn Hospital Center, Brooklyn, New York, NY, USA
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Daryl Ramai
- Division of Gastroenterology and Hepatology, University of Utah Health, Salt Lake City, UT, USA
| | - Michele Ghidini
- Medical Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Via Sforza 28, Milan, Italy.
| |
Collapse
|
405
|
Costa Svedman F, Liapi M, Månsson-Broberg A, Chatzidionysiou K, Egyhazi Brage S. Effect of glucocorticoids for the management of immune-related adverse events on outcome in melanoma patients treated with immunotherapy-a retrospective and biomarker study. IMMUNO-ONCOLOGY TECHNOLOGY 2024; 22:100713. [PMID: 38952418 PMCID: PMC11215956 DOI: 10.1016/j.iotech.2024.100713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Background Immune-related adverse events (IRAEs) during therapy with immune checkpoint inhibitors (ICIs) are common, and their management sometimes requires glucocorticoids (GCs). Predictors for development of IRAEs and data about the impact of GCs on clinical outcome are missing. We evaluated the impact of GCs to treat IRAEs on clinical outcome, and plasmatic inflammatory proteins as predictors for IRAEs. Patients and methods Patients with melanoma (n = 98) treated with ICIs at Karolinska University Hospital were included. Clinical information and data regarding prescription of systemic GCs were collected. Baseline plasma samples (n = 57) were analyzed for expression of 92 inflammatory proteins. Results Forty-four patients developed at least one IRAE requiring systemic GCs and the most common was hypocortisolemia (n = 11). A median overall survival of 72.8 months for patients developing IRAEs requiring GCs, 17.7 months for those who did not, and 1.4 months for individuals receiving GCs at baseline was observed in Kaplan-Meier curves (P = 0.001). In immortal time bias adjusted analysis, patients receiving steroids to treat IRAE survived slightly longer, even though this time trend was not statistically significant. The median overall survival was 29 months for those treated with GCs within 60 days after ICIs start and was not reached for patients receiving GCs later. The number of ICI cycles was higher in subjects receiving GCs after 60 days (P = 0.0053). Hypocortisolemia occurred mainly in males (10/11) and correlated with favorable outcome. Male patients with hypocortisolemia had lower expression of interleukin 8, transforming growth factor-α, and fibroblast growth factor 5 and higher expression of Delta/Notch-like epidermal growth factor-related receptor. Conclusions GCs may be used to treat IRAEs without major concern. GCs early during ICIs may, however, impact clinical outcome negatively. The prognostic value of hypocortisolemia and inflammation proteins as biomarkers should be further investigated.
Collapse
Affiliation(s)
- F. Costa Svedman
- Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - M. Liapi
- Department of Rheumatology, Theme Inflammation and Geriatrics, Karolinska University Hospital, Stockholm, Sweden
| | - A. Månsson-Broberg
- Theme Heart and Vascular, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - K. Chatzidionysiou
- Department of Rheumatology, Theme Inflammation and Geriatrics, Karolinska University Hospital, Stockholm, Sweden
| | - S. Egyhazi Brage
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
406
|
Lin L, Houwink API, van Dieren JM, Wolthuis EK, van Thienen JV, van der Heijden MS, Haanen JBAG, Beijnen JH, Huitema ADR. Treatment patterns and survival outcomes of patients admitted to the intensive care unit due to immune-related adverse events of immune checkpoint inhibitors. Cancer Med 2024; 13:e7302. [PMID: 38899457 PMCID: PMC11187539 DOI: 10.1002/cam4.7302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/19/2024] [Accepted: 05/06/2024] [Indexed: 06/21/2024] Open
Abstract
INTRODUCTION Severe immune-related adverse events (irAEs) due to immune checkpoint inhibitors (ICIs) can lead to admission to the intensive care unit (ICU). In this retrospective study, we determined the incidence, treatment patterns and survival outcomes of this patient population at a comprehensive cancer center. METHODS All patients admitted to the ICU due to irAEs from ICI treatment between January 2015 and July 2022 were included. Descriptive statistics were reported on patient characteristics and treatment patterns during hospital admission. Overall survival (OS) from the time of ICU discharge to death was estimated using the Kaplan-Meier method. RESULTS Over the study period, 5561 patients received at least one ICI administration, of which 32 patients (0.6%) were admitted to the ICU due to irAEs. Twenty patients were treated with anti-PD-1 plus anti-CTLA-4 treatment, whereas 12 patients were treated with ICI monotherapy. The type of irAEs were de novo diabetes-related ketoacidosis (n = 8), immune-related gastrointestinal toxicity (n = 8), myocarditis or myositis (n = 10), nephritis (n = 3), pneumonitis (n = 2), and myelitis (n = 1). The median duration of ICU admission was 3 days (interquartile range: 2-6 days). Three patients died during ICU admission. The median OS of the patients who were discharged from the ICU was 18 months (95% confidence interval, 5.0-NA). CONCLUSION The incidence of irAEs leading to ICU admission in patients treated with ICI was low in this study. ICU mortality due to irAEs was low and a subset of this patient population even had long-term survival.
Collapse
Affiliation(s)
- Lishi Lin
- Department of Pharmacy & PharmacologyThe Netherlands Cancer Institute‐Antoni van Leeuwenhoek HospitalAmsterdamThe Netherlands
| | - Aletta P. I. Houwink
- Department of Anaesthesiology and Intensive CareThe Netherlands Cancer Institute‐Antoni van Leeuwenhoek HospitalAmsterdamThe Netherlands
| | - Jolanda M. van Dieren
- Department of Gastrointestinal OncologyThe Netherlands Cancer Institute‐Antoni van Leeuwenhoek HospitalAmsterdamThe Netherlands
| | - Esther K. Wolthuis
- Department of Anaesthesiology and Intensive CareThe Netherlands Cancer Institute‐Antoni van Leeuwenhoek HospitalAmsterdamThe Netherlands
| | - Johannes V. van Thienen
- Department of Medical OncologyThe Netherlands Cancer Institute‐Antoni van Leeuwenhoek HospitalAmsterdamThe Netherlands
| | - Michiel S. van der Heijden
- Department of Medical OncologyThe Netherlands Cancer Institute‐Antoni van Leeuwenhoek HospitalAmsterdamThe Netherlands
| | - John B. A. G. Haanen
- Department of Medical OncologyThe Netherlands Cancer Institute‐Antoni van Leeuwenhoek HospitalAmsterdamThe Netherlands
- Department of Molecular Oncology and ImmunologyThe Netherlands Cancer Institute‐Antoni van Leeuwenhoek HospitalAmsterdamThe Netherlands
- Department of Clinical OncologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jos H. Beijnen
- Department of Pharmacy & PharmacologyThe Netherlands Cancer Institute‐Antoni van Leeuwenhoek HospitalAmsterdamThe Netherlands
- Department of Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Alwin D. R. Huitema
- Department of Pharmacy & PharmacologyThe Netherlands Cancer Institute‐Antoni van Leeuwenhoek HospitalAmsterdamThe Netherlands
- Department of PharmacologyPrincess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Department of Clinical PharmacyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
407
|
Hassel JC, Zimmer L. [Side effects of dermato-oncologic therapies]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2024; 75:466-475. [PMID: 38802653 DOI: 10.1007/s00105-024-05354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) such as PD(L)1 and CTLA4 antibodies as well as targeted therapies such as BRAF and MEK inhibitors have significantly improved the systemic treatment of skin cancer in adjuvant and advanced therapy settings. All these drugs differ in their spectrum of side effects. MATERIALS AND METHODS The aim of this article is to provide an overview of the spectrum of side effects of dermato-oncological therapies and their management, taking into account the current literature. RESULTS The most important side effects of ICIs, the CCR4 inhibitor mogamulizumab, the ImmTAC tebentafusp, the BRAF and MEK inhibitors and the multityrosine kinase inhibitor imatinib are considered. CONCLUSIONS Side effects can manifest themselves in all organ systems. Chronic side effects and long-term harm are possible, especially with ICIs, and require close therapy monitoring and patient education. Knowledge of the side effects and the temporal, sometimes delayed course of their occurrence are essential for diagnosis and prompt initiation of therapy.
Collapse
Affiliation(s)
- Jessica C Hassel
- Medizinische Fakultät, Hautklinik und Nationales Centrum für Tumorerkrankungen (NCT), NCT Heidelberg, eine Partnerschaft zwischen DKFZ und dem Universitätsklinikum Heidelberg, Universität Heidelberg, Im Neuenheimer Feld 460, 69120, Heidelberg, Deutschland.
| | - Lisa Zimmer
- Klinik für Dermatologie, Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Deutschland.
| |
Collapse
|
408
|
Larkin RM, Lopez DC, Robbins YL, Lassoued W, Canubas K, Warner A, Karim B, Vulikh K, Hodge JW, Floudas CS, Gulley JL, Gallia GL, Allen CT, London NR. Augmentation of tumor expression of HLA-DR, CXCL9, and CXCL10 may improve olfactory neuroblastoma immunotherapeutic responses. J Transl Med 2024; 22:524. [PMID: 38822345 PMCID: PMC11140921 DOI: 10.1186/s12967-024-05339-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Olfactory neuroblastoma is a rare malignancy of the anterior skull base typically treated with surgery and adjuvant radiation. Although outcomes are fair for low-grade disease, patients with high-grade, recurrent, or metastatic disease oftentimes respond poorly to standard treatment methods. We hypothesized that an in-depth evaluation of the olfactory neuroblastoma tumor immune microenvironment would identify mechanisms of immune evasion in high-grade olfactory neuroblastoma as well as rational targetable mechanisms for future translational immunotherapeutic approaches. METHODS Multispectral immunofluorescence and RNAScope evaluation of the tumor immune microenvironment was performed on forty-seven clinically annotated olfactory neuroblastoma samples. A retrospective chart review was performed and clinical correlations assessed. RESULTS A significant T cell infiltration was noted in olfactory neuroblastoma samples with a stromal predilection, presence of myeloid-derived suppressor cells, and sparse natural killer cells. A striking decrease was observed in MHC-I expression in high-grade olfactory neuroblastoma compared to low-grade disease, representing a mechanism of immune evasion in high-grade disease. Mechanistically, the immune effector stromal predilection appears driven by low tumor cell MHC class II (HLA-DR), CXCL9, and CXCL10 expression as those tumors with increased tumor cell expression of each of these mediators correlated with significant increases in T cell infiltration. CONCLUSION These data suggest that immunotherapeutic strategies that augment tumor cell expression of MHC class II, CXCL9, and CXCL10 may improve parenchymal trafficking of immune effector cells in olfactory neuroblastoma and augment immunotherapeutic responses.
Collapse
Affiliation(s)
- Riley M Larkin
- Sinonasal and Skull Base Tumor Program, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Diana C Lopez
- Sinonasal and Skull Base Tumor Program, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yvette L Robbins
- Section on Translational Tumor Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wiem Lassoued
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth Canubas
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Warner
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ksenia Vulikh
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - James W Hodge
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charalampos S Floudas
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James L Gulley
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gary L Gallia
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Clint T Allen
- Section on Translational Tumor Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nyall R London
- Sinonasal and Skull Base Tumor Program, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
409
|
Deuss E, Kürten C, Fehr L, Kahl L, Zimmer S, Künzel J, Stauber RH, Lang S, Hussain T, Brandau S. Standardized Digital Image Analysis of PD-L1 Expression in Head and Neck Squamous Cell Carcinoma Reveals Intra- and Inter-Sample Heterogeneity with Therapeutic Implications. Cancers (Basel) 2024; 16:2103. [PMID: 38893222 PMCID: PMC11171694 DOI: 10.3390/cancers16112103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
For practical reasons, in many studies PD-L1 expression is measured by combined positive score (CPS) from a single tumor sample. This does not reflect the heterogeneity of PD-L1 expression in head and neck squamous cell carcinoma (HNSCC). We investigated the extent and relevance of PD-L1 expression heterogeneity in HNSCC analyzing primary tumors and recurrences (LRs), as well as metastases. Tumor tissue from 200 HNSCC patients was immunohistochemically stained for PD-L1 and analyzed using image-analysis software QuPath v3.4 with multiple specimens per patient. CPS was ≥20 in 25.6% of primary tumors. Intra-tumoral heterogeneity led to a therapeutically relevant underestimation of PD-L1 expression in 28.7% of patients, when only one specimen per patient was analyzed. Inter-tumoral differences in PD-L1 expression between primary tumors and lymph node metastasis (LNM) or LR occurred in 44.4% and 61.5% (CPS) and in 40.6% and 50% of cases (TPS). Overall survival was increased in patients with CPS ≥ 1 vs. CPS < 1 in primary tumors and LNM (hazard ratio: 0.46 and 0.35; p < 0.005); CPS in LR was not prognostic. Our analysis shows clinically relevant intra- and inter-sample heterogeneity of PD-L1 expression in HNSCC. To account for heterogeneity and improve patient selection for immunotherapy, multiple sample analyses should be performed, particularly in patients with CPS/TPS < 1.
Collapse
Affiliation(s)
- Eric Deuss
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Essen, 45147 Essen, Germany (T.H.); (S.B.)
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Cornelius Kürten
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Essen, 45147 Essen, Germany (T.H.); (S.B.)
| | - Lara Fehr
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Essen, 45147 Essen, Germany (T.H.); (S.B.)
| | - Laura Kahl
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Essen, 45147 Essen, Germany (T.H.); (S.B.)
| | - Stefanie Zimmer
- Institute of Pathology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Julian Künzel
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center Mainz, 55131 Mainz, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Roland H. Stauber
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center Mainz, 55131 Mainz, Germany
- Institute for Biotechnology, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China
| | - Stephan Lang
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Essen, 45147 Essen, Germany (T.H.); (S.B.)
| | - Timon Hussain
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Essen, 45147 Essen, Germany (T.H.); (S.B.)
- Department of Otorhinolaryngology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Essen, 45147 Essen, Germany (T.H.); (S.B.)
| |
Collapse
|
410
|
Gupta M, Stukalin I, Meyers DE, Heng DYC, Monzon J, Cheng T, Navani V. Imaging response to immune checkpoint inhibitors in patients with advanced melanoma: a retrospective observational cohort study. Front Oncol 2024; 14:1385425. [PMID: 38884085 PMCID: PMC11176500 DOI: 10.3389/fonc.2024.1385425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
Background The association between objective imaging response and first line immune checkpoint inhibitor (ICI) therapy regimes in advanced melanoma remains uncharacterized in routine practice. Methods We conducted a multi-center retrospective cohort analysis of advanced melanoma patients receiving first line ICI therapy from August 2013-May 2020 in Alberta, Canada. The primary outcome was likelihood of RECIST v1.1 assessed objective imaging response between patients receiving anti-programmed cell death protein 1 (anti-PD1) monotherapy and those receiving combination ipilimumab-nivolumab. Secondary outcomes were identification of baseline characteristics associated with non-response and the association of imaging response with overall survival (OS) and time to next treatment (TTNT). Results 198 patients were included, 41/198 (20.7%) had complete response, 86/198 (43.4%) had partial response, 23/198 (11.6%) had stable disease, and 48/198 (24.2%) had progressive disease. Median OS was not reached (NR) (95% CI 49.0-NR) months for complete responders, NR (95%CI 52.9-NR) months for partial responders, 33.7 (95%CI 15.8-NR) months for stable disease, and 6.4 (95%CI 5.2-10.1) months for progressive disease (log-rank p<0.001). Likelihood of objective imaging response remained similar between anti-PD1 monotherapy and ipilimumab-nivolumab groups (OR 1.95 95%CI 0.85-4.63, p=0.121). Elevated LDH level (OR 0.46; 95%CI 0.21-0.98, p=0.043), mucosal primary site (OR 0.14; 95%CI 0.03-0.48, p=0.003), and BRAF V600E mutation status (OR 0.31; 95%CI 0.13-0.72, p=0.007) were associated with decreased likelihood of response. Conclusion No significant difference in likelihood of imaging response between anti-PD1 monotherapy and combination ipilimumab-nivolumab was observed. Elevated LDH level, mucosal primary site, and BRAF V600E mutation status were associated with decreased likelihood of response. Given that pivotal clinical trials of ipilimumab-nivolumab did not formally compare ipilimumab-nivolumab with nivolumab monotherapy, this work adds context to differences in outcomes when these agents are used. These results may inform treatment selection, and aid in counseling of patients treated with first-line ICI therapy in routine clinical practice settings.
Collapse
Affiliation(s)
- Mehul Gupta
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Igor Stukalin
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Daniel E Meyers
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Daniel Y C Heng
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Jose Monzon
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Tina Cheng
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Vishal Navani
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Tom Baker Cancer Centre, Calgary, AB, Canada
| |
Collapse
|
411
|
Nguyen NTA, Jiang Y, McQuade JL. Eating away cancer: the potential of diet and the microbiome for shaping immunotherapy outcome. Front Immunol 2024; 15:1409414. [PMID: 38873602 PMCID: PMC11169628 DOI: 10.3389/fimmu.2024.1409414] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
The gut microbiome (GMB) plays a substantial role in human health and disease. From affecting gut barrier integrity to promoting immune cell differentiation, the GMB is capable of shaping host immunity and thus oncogenesis and anti-cancer therapeutic response, particularly with immunotherapy. Dietary patterns and components are key determinants of GMB composition, supporting the investigation of the diet-microbiome-immunity axis as a potential avenue to enhance immunotherapy response in cancer patients. As such, this review will discuss the role of the GMB and diet on anti-cancer immunity. We demonstrate that diet affects anti-cancer immunity through both GMB-independent and GMB-mediated mechanisms, and that different diet patterns mold the GMB's functional and taxonomic composition in distinctive ways. Dietary modulation therefore shows promise as an intervention for improving cancer outcome; however, further and more extensive research in human cancer populations is needed.
Collapse
Affiliation(s)
| | | | - Jennifer L. McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
412
|
Khan B, Qahwaji RM, Alfaifi MS, Mobashir M. Nivolumab and Ipilimumab Acting as Tormentors of Advanced Tumors by Unleashing Immune Cells and Associated Collateral Damage. Pharmaceutics 2024; 16:732. [PMID: 38931856 PMCID: PMC11207028 DOI: 10.3390/pharmaceutics16060732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 06/28/2024] Open
Abstract
Combining immune checkpoint inhibitors, specifically nivolumab (anti-PD-1) and ipilimumab (anti-CTLA-4), holds substantial promise in revolutionizing cancer treatment. This review explores the transformative impact of these combinations, emphasizing their potential for enhancing therapeutic outcomes across various cancers. Immune checkpoint proteins, such as PD1 and CTLA4, play a pivotal role in modulating immune responses. Blocking these checkpoints unleashes anticancer activity, and the synergy observed when combining multiple checkpoint inhibitors underscores their potential for enhanced efficacy. Nivolumab and ipilimumab harness the host's immune system to target cancer cells, presenting a powerful approach to prevent tumor development. Despite their efficacy, immune checkpoint inhibitors are accompanied by a distinct set of adverse effects, particularly immune-related adverse effects affecting various organs. Understanding these challenges is crucial for optimizing treatment strategies and ensuring patient well-being. Ongoing clinical trials are actively exploring the combination of checkpoint inhibitory therapies, aiming to decipher their synergistic effects and efficacy against diverse cancer types. This review discusses the mechanisms, adverse effects, and various clinical trials involving nivolumab and ipilimumab across different cancers, emphasizing their transformative impact on cancer treatment.
Collapse
Affiliation(s)
- Bushra Khan
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Rowaid M. Qahwaji
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22233, Saudi Arabia;
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mashael S. Alfaifi
- Department of Epidemiology, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Mohammad Mobashir
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Solnavägen 9, 171 65 Solna, Sweden
| |
Collapse
|
413
|
Ziblat A, Horton BL, Higgs EF, Hatogai K, Martinez A, Shapiro JW, Kim DEC, Zha Y, Sweis RF, Gajewski TF. Batf3 + DCs and the 4-1BB/4-1BBL axis are required at the effector phase in the tumor microenvironment for PD-1/PD-L1 blockade efficacy. Cell Rep 2024; 43:114141. [PMID: 38656869 PMCID: PMC11229087 DOI: 10.1016/j.celrep.2024.114141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/29/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
The cellular source of positive signals that reinvigorate T cells within the tumor microenvironment (TME) for the therapeutic efficacy of programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) blockade has not been clearly defined. We now show that Batf3-lineage dendritic cells (DCs) are essential in this process. Flow cytometric analysis, gene-targeted mice, and blocking antibody studies revealed that 4-1BBL is a major positive co-stimulatory signal provided by these DCs within the TME that translates to CD8+ T cell functional reinvigoration and tumor regression. Immunofluorescence and spatial transcriptomics on human tumor samples revealed clustering of Batf3+ DCs and CD8+ T cells, which correlates with anti-PD-1 efficacy. In addition, proximity to Batf3+ DCs within the TME is associated with CD8+ T cell transcriptional states linked to anti-PD-1 response. Our results demonstrate that Batf3+ DCs within the TME are critical for PD-1/PD-L1 blockade efficacy and indicate a major role for the 4-1BB/4-1BB ligand (4-1BBL) axis during this process.
Collapse
Affiliation(s)
- Andrea Ziblat
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Brendan L Horton
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Emily F Higgs
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Ken Hatogai
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Anna Martinez
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Jason W Shapiro
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA
| | - Danny E C Kim
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - YuanYuan Zha
- Human Immunological Monitoring Facility, University of Chicago, Chicago, IL 60637, USA
| | - Randy F Sweis
- Department of Medicine, University of Chicago, Chicago, IL 60612, USA
| | - Thomas F Gajewski
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, University of Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
414
|
Choi SH, Mani M, Kim J, Cho WJ, Martin TFJ, Kim JH, Chu HS, Jeong WJ, Won YW, Lee BJ, Ahn B, Kim J, Jeon DY, Park JW. DRG2 is required for surface localization of PD-L1 and the efficacy of anti-PD-1 therapy. Cell Death Discov 2024; 10:260. [PMID: 38802348 PMCID: PMC11130180 DOI: 10.1038/s41420-024-02027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/10/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
More than half of tumor patients with high PD-L1 expression do not respond to anti-PD-1/PD-L1 therapy, and the underlying mechanisms are yet to be clarified. Here we show that developmentally regulated GTP-binding protein 2 (DRG2) is required for response of PD-L1-expressing tumors to anti-PD-1 therapy. DRG2 depletion enhanced IFN-γ signaling and increased the PD-L1 level in melanoma cells. However, it inhibited recycling of endosomal PD-L1 and reduced surface PD-L1 levels, which led to defects in interaction with PD-1. Anti-PD-1 did not expand effector-like T cells within DRG2-depleted tumors and failed to improve the survival of DRG2-depleted tumor-bearing mice. Cohort analysis revealed that patients bearing melanoma with low DRG2 protein levels were resistant to anti-PD-1 therapy. These findings identify DRG2 as a key regulator of recycling of endosomal PD-L1 and response to anti-PD-1 therapy and provide insights into how to increase the correlation between PD-L1 expression and response to anti-PD-1 therapy.
Collapse
Affiliation(s)
- Seong Hee Choi
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
- RopheLBio, B102, Seoul Forest M Tower, Seoul, Korea
| | - Muralidharan Mani
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeonghwan Kim
- School of System Biomedical Science, Soongsil University, Seoul, Korea
| | - Wha Ja Cho
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Thomas F J Martin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jee Hyun Kim
- RopheLBio, B102, Seoul Forest M Tower, Seoul, Korea
| | - Hun Su Chu
- RopheLBio, B102, Seoul Forest M Tower, Seoul, Korea
| | | | - Young-Wook Won
- RopheLBio, B102, Seoul Forest M Tower, Seoul, Korea
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Byung Ju Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
- Basic-Clinic Convergence Research Institute, University of Ulsan, Ulsan, Korea
| | - Byungyong Ahn
- Basic-Clinic Convergence Research Institute, University of Ulsan, Ulsan, Korea
- Department of Food Science and Nutrition, University of Ulsan, Ulsan, Korea
| | - Junil Kim
- School of System Biomedical Science, Soongsil University, Seoul, Korea.
| | - Do Yong Jeon
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea.
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea.
- Basic-Clinic Convergence Research Institute, University of Ulsan, Ulsan, Korea.
| |
Collapse
|
415
|
Chen YH, Kovács T, Ferdinandy P, Varga ZV. Treatment options for immune-related adverse events associated with immune checkpoint inhibitors. Br J Pharmacol 2024. [PMID: 38803135 DOI: 10.1111/bph.16405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/14/2024] [Accepted: 03/09/2024] [Indexed: 05/29/2024] Open
Abstract
The immunotherapy revolution with the use of immune checkpoint inhibitors (ICIs) started with the clinical use of the first ICI, ipilimumab, in 2011. Since then, the field of ICI therapy has rapidly expanded - with the FDA approval of 10 different ICI drugs so far and their incorporation into the therapeutic regimens of a range of malignancies. While ICIs have shown high anti-cancer efficacy, they also have characteristic side effects, termed immune-related adverse events (irAEs). These side effects hinder the therapeutic potential of ICIs and, therefore, finding ways to prevent and treat them is of paramount importance. The current protocols to manage irAEs follow an empirical route of steroid administration and, in more severe cases, ICI withdrawal. However, this approach is not optimal in many cases, as there are often steroid-refractory irAEs, and there is a potential for corticosteroid use to promote tumour progression. This review surveys the current alternative approaches to the treatments for irAEs, with the goal of summarizing and highlighting the best attempts to treat irAEs, without compromising anti-tumour immunity and allowing for rechallenge with ICIs after resolution of the irAEs.
Collapse
Affiliation(s)
- Yu Hua Chen
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Tamás Kovács
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, Budapest, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, Budapest, Hungary
| |
Collapse
|
416
|
Pan W, Luo Q, Liang E, Shi M, Sun J, Shen H, Lu Z, Zhang L, Yan X, Yuan L, Zhou S, Yi H, Zhai Y, Qiu MZ, Yang D. Synergistic effects of Smac mimetic APG-1387 with anti-PD-1 antibody are attributed to increased CD3 + NK1.1 + cell recruitment secondary to induction of cytokines from tumor cells. Cancer Cell Int 2024; 24:181. [PMID: 38790057 PMCID: PMC11127426 DOI: 10.1186/s12935-024-03373-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors are approved for the treatment of various tumors, but the response rate is not satisfactory in certain malignancies. Inhibitor of apoptosis proteins (IAP) ubiquitin-E3 ligase activity is involved in the regulation of immune responses. APG-1387 is a novel second mitochondria-derived activator of caspase (Smac) mimetic IAP inhibitor. The aim of this study was to explore the synergistic effect of APG-1387 when combined with anti-PD-1 antibody in a preclinical setting. METHODS We utilized syngeneic mouse models of ovarian cancer (ID8), colon cancer (MC38), malignant melanoma (B16), and liver cancer (Hepa1-6) to assess the combination effect of APG-1387 and anti-PD-1 antibody, including immune-related factors, tumor growth, and survival. MSD V-PLEX validated assays were used to measure in vitro and in vivo cytokine release. RESULTS In ID8 ovarian cancer and MC38 colon cancer models, APG-1387 and anti-PD1 antibody had synergistic antitumor effects. In the MC38 model, the combination of APG-1387 and anti-PD-1 antibody significantly inhibited tumor growth (P < 0.0001) and increased the survival rate of tumor-bearing animals (P < 0.001). Moreover, we found that APG-1387 upregulated tumor-infiltrating CD3 + NK1.1 + cells by nearly 2-fold, by promoting tumor cell secretion of IL-12. Blocking IL-12 secretion abrogated the synergistic effects of APG-1387 and anti-PD-1 antibody in both MC38 and ID8 models. CONCLUSIONS APG-1387 has the potential to turn "cold tumors" into hot ones by recruiting more CD3 + NK1.1 + cells into certain tumors. Based on these and other data, the safety and therapeutic effect of this combination will be investigated in a phase 1/2 trial in patients with advanced solid tumors or hematologic malignancies (NCT03386526).
Collapse
Affiliation(s)
- Wentao Pan
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Ascentage Pharma (Suzhou) Co, Ltd, Suzhou, Jiangsu Province, China
| | - Qiuyun Luo
- Department of Clinical Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Eric Liang
- Ascentage Pharma (Suzhou) Co, Ltd, Suzhou, Jiangsu Province, China
| | - Mude Shi
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian Sun
- Department of Clinical Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huimin Shen
- Department of Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhenhai Lu
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Lin Zhang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Clinical Laboratory, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xianglei Yan
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Luping Yuan
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Suna Zhou
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hanjie Yi
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yifan Zhai
- Ascentage Pharma (Suzhou) Co, Ltd, Suzhou, Jiangsu Province, China.
| | - Miao-Zhen Qiu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Dajun Yang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Ascentage Pharma (Suzhou) Co, Ltd, Suzhou, Jiangsu Province, China.
| |
Collapse
|
417
|
Janssen JC, van Dijk B, de Joode K, Aarts MJB, van den Berkmortel FWPJ, Blank CU, Boers-Sonderen MJ, van den Eertwegh AJM, de Groot JWB, Jalving M, de Jonge MJA, Joosse A, Kapiteijn E, Kamphuis-Huismans AM, Naipal KAT, Piersma D, Rikhof B, Westgeest HM, Vreugdenhil G, Oomen-de Hoop E, Mulder EEAP, van der Veldt AAM. Safe Stop IPI-NIVO trial: early discontinuation of nivolumab upon achieving a complete or partial response in patients with irresectable stage III or metastatic melanoma treated with first-line ipilimumab-nivolumab - study protocol. BMC Cancer 2024; 24:632. [PMID: 38783238 PMCID: PMC11112744 DOI: 10.1186/s12885-024-12336-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Patients with irresectable stage III or metastatic melanoma presenting with poor prognostic factors are usually treated with a combination of immune checkpoint inhibitors (ICIs), consisting of ipilimumab and nivolumab. This combination therapy is associated with severe immune related adverse events (irAEs) in about 60% of patients. In current clinical practice, patients are usually treated with ICIs for up to two years or until disease progression or the occurrence of unacceptable AEs. The incidence of irAEs gradually increases with duration of treatment. While durable tumour responses have been observed after early discontinuation of treatment, no consensus has been reached on optimal treatment duration. The objective of the Safe Stop IPI-NIVO trial is to evaluate whether early discontinuation of ICIs is safe in patients with irresectable stage III or metastatic melanoma who are treated with combination therapy. METHODS The Safe Stop IPI-NIVO trial is a nationwide, multicentre, prospective, single-arm, interventional study in the Netherlands. A total of 80 patients with irresectable stage III or metastatic melanoma who are treated with combination therapy of ipilimumab-nivolumab and have a complete or partial response (CR/PR) according to RECIST v1.1 will be included to early discontinue maintenance therapy with anti-PD-1. The primary endpoint is the rate of ongoing response at 12 months after start of ICI. Secondary endpoints include ongoing response at 24 months, disease control at different time points, melanoma specific and overall survival, the incidence of irAEs and health-related quality of life. DISCUSSION From a medical, healthcare and economic perspective, overtreatment should be prevented and shorter treatment duration of ICIs is preferred. If early discontinuation of ICIs is safe for patients who are treated with the combination of ipilimumab-nivolumab, the treatment duration of nivolumab could be shortened in patients with a favourable tumour response. TRIAL REGISTRATION ClinicalTrials.gov ID NCT05652673, registration date: 08-12-2022.
Collapse
Affiliation(s)
- J C Janssen
- Department of Medical Oncology and Radiology and Nuclear Medicine, Erasmus Medical Centre Cancer Institute, Dr. Molewaterplein 40, Rotterdam, 3015GD, The Netherlands
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - B van Dijk
- Department of Medical Oncology and Radiology and Nuclear Medicine, Erasmus Medical Centre Cancer Institute, Dr. Molewaterplein 40, Rotterdam, 3015GD, The Netherlands
| | - K de Joode
- Department of Medical Oncology and Radiology and Nuclear Medicine, Erasmus Medical Centre Cancer Institute, Dr. Molewaterplein 40, Rotterdam, 3015GD, The Netherlands
| | - M J B Aarts
- Department of Medical Oncology, Maastricht UMC+, Maastricht, The Netherlands
| | | | - C U Blank
- Department of Medical Oncology, NKI-AvL, Amsterdam, The Netherlands
- Department of Medical Oncology, Leiden UMC, Leiden, The Netherlands
| | | | - A J M van den Eertwegh
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - J W B de Groot
- Department of Medical Oncology, Isala Zwolle, Zwolle, The Netherlands
| | - M Jalving
- Department of Medical Oncology, UMC Groningen, Groningen, The Netherlands
| | - M J A de Jonge
- Department of Medical Oncology and Radiology and Nuclear Medicine, Erasmus Medical Centre Cancer Institute, Dr. Molewaterplein 40, Rotterdam, 3015GD, The Netherlands
| | - A Joosse
- Department of Medical Oncology and Radiology and Nuclear Medicine, Erasmus Medical Centre Cancer Institute, Dr. Molewaterplein 40, Rotterdam, 3015GD, The Netherlands
| | - E Kapiteijn
- Department of Medical Oncology, Leiden UMC, Leiden, The Netherlands
| | | | - K A T Naipal
- Department of Medical Oncology and Radiology and Nuclear Medicine, Erasmus Medical Centre Cancer Institute, Dr. Molewaterplein 40, Rotterdam, 3015GD, The Netherlands
| | - D Piersma
- Department of Medical Oncology, Medisch Spectrum Twente, Enschede, The Netherlands
| | - B Rikhof
- Department of Medical Oncology, Medisch Centrum Leeuwarden, Leeuwarden, The Netherlands
| | - H M Westgeest
- Department of Medical Oncology, Amphia Ziekenhuis, Breda, The Netherlands
| | - G Vreugdenhil
- Department of Medical Oncology, Maxima Medisch Centrum Veldhoven, Veldhoven, The Netherlands
| | - E Oomen-de Hoop
- Department of Medical Oncology and Radiology and Nuclear Medicine, Erasmus Medical Centre Cancer Institute, Dr. Molewaterplein 40, Rotterdam, 3015GD, The Netherlands
| | - E E A P Mulder
- Department of Medical Oncology and Radiology and Nuclear Medicine, Erasmus Medical Centre Cancer Institute, Dr. Molewaterplein 40, Rotterdam, 3015GD, The Netherlands
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Astrid A M van der Veldt
- Department of Medical Oncology and Radiology and Nuclear Medicine, Erasmus Medical Centre Cancer Institute, Dr. Molewaterplein 40, Rotterdam, 3015GD, The Netherlands.
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
418
|
AlRubaish FA, Gupta N, Shi MZ, Christopoulos S. Immune checkpoint inhibitor-induced hypophysitis with transient ACTH-dependent hypercortisolism. BMJ Case Rep 2024; 17:e258701. [PMID: 38772867 DOI: 10.1136/bcr-2023-258701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024] Open
Abstract
A woman in her 70s with metastatic melanoma presenting with refractory hypokalaemia on combined immune checkpoint inhibitors, nivolumab-ipilimumab, was diagnosed with adrenocorticotropic hormone (ACTH)-dependent hypercortisolism 11 weeks following the initiation of her immunotherapy. Investigations also demonstrated central hypothyroidism and hypogonadotropic hypogonadism. She underwent imaging studies of her abdomen and brain which revealed normal adrenal glands and pituitary, respectively. She was started on levothyroxine replacement and had close pituitary function monitoring. Two weeks later, her cortisol and ACTH levels started to trend down. She finally developed secondary adrenal insufficiency and was started on hydrocortisone replacement 4 weeks thereafter.This report highlights a case of immunotherapy-related hypophysitis with well-documented transient central hypercortisolism followed, within weeks, by profound secondary adrenal insufficiency. Healthcare professionals should remain vigilant in monitoring laboratory progression in these patients. Early recognition of the phase of hypercortisolism and its likely rapid transformation into secondary adrenal insufficiency can facilitate timely hormonal replacement and prevent complications.
Collapse
Affiliation(s)
- Fatima Abdullah AlRubaish
- Department of Internal Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province, Saudi Arabia
| | - Nisha Gupta
- McGill University Health Centre, Montreal, Quebec, Canada
| | - Meng Zhu Shi
- Department of Internal Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | | |
Collapse
|
419
|
Wells K. Adding insult to injury: immunotherapy-induced colitis in metastatic colorectal cancer. Proc AMIA Symp 2024; 37:623-624. [PMID: 38910825 PMCID: PMC11188833 DOI: 10.1080/08998280.2024.2352345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 06/25/2024] Open
Affiliation(s)
- Katerina Wells
- Department of Surgery, Baylor University Medical Center, Dallas, Texas, USA
| |
Collapse
|
420
|
Leek LVM, Notohardjo JCL, de Joode K, Velker EL, Haanen JBAG, Suijkerbuijk KPM, Aarts MJB, de Groot JWB, Kapiteijn E, van den Berkmortel FWPJ, Westgeest HM, de Gruijl TD, Retel VP, Cuppen E, van der Veldt AAM, Labots M, Voest EE, van de Haar J, van den Eertwegh AJM. Multi-omic analysis identifies hypoalbuminemia as independent biomarker of poor outcome upon PD-1 blockade in metastatic melanoma. Sci Rep 2024; 14:11244. [PMID: 38755213 PMCID: PMC11099084 DOI: 10.1038/s41598-024-61150-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
We evaluated the prognostic value of hypoalbuminemia in context of various biomarkers at baseline, including clinical, genomic, transcriptomic, and blood-based markers, in patients with metastatic melanoma treated with anti-PD-1 monotherapy or anti-PD-1/anti-CTLA-4 combination therapy (n = 178). An independent validation cohort (n = 79) was used to validate the performance of hypoalbuminemia compared to serum LDH (lactate dehydrogenase) levels. Pre-treatment hypoalbuminemia emerged as the strongest predictor of poor outcome for both OS (HR = 4.01, 95% CI 2.10-7.67, Cox P = 2.63e-05) and PFS (HR = 3.72, 95% CI 2.06-6.73, Cox P = 1.38e-05) in univariate analysis. In multivariate analysis, the association of hypoalbuminemia with PFS was independent of serum LDH, IFN-γ signature expression, TMB, age, ECOG PS, treatment line, treatment type (combination or monotherapy), brain and liver metastasis (HR = 2.76, 95% CI 1.24-6.13, Cox P = 0.0131). Our validation cohort confirmed the prognostic power of hypoalbuminemia for OS (HR = 1.98, 95% CI 1.16-3.38; Cox P = 0.0127) and was complementary to serum LDH in analyses for both OS (LDH-adjusted HR = 2.12, 95% CI 1.2-3.72, Cox P = 0.00925) and PFS (LDH-adjusted HR = 1.91, 95% CI 1.08-3.38, Cox P = 0.0261). In conclusion, pretreatment hypoalbuminemia was a powerful predictor of outcome in ICI in melanoma and showed remarkable complementarity to previously established biomarkers, including high LDH.
Collapse
Affiliation(s)
- Lindsay V M Leek
- Department of Medical Oncology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| | - Jessica C L Notohardjo
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Karlijn de Joode
- Department of Medical Oncology and Radiology & Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Eline L Velker
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - John B A G Haanen
- Department of Medical Oncology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| | - Karijn P M Suijkerbuijk
- Department of Medical Oncology, UMC Utrecht Cancer Center, Utrecht University, Utrecht, The Netherlands
| | - Maureen J B Aarts
- Department of Medical Oncology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jan Willem B de Groot
- Department of Medical Oncology, Oncology Center Isala, Isala, Zwolle, The Netherlands
| | - Ellen Kapiteijn
- Department of Medical Oncology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Hans M Westgeest
- Department of Medical Oncology, Amphia Hospital, Breda, The Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Valesca P Retel
- Division of Psychosocial Research and Epidemiology, Netherlands Cancer Institute-Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
- Health Technology and Services Research Department, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Edwin Cuppen
- Hartwig Medical Foundation, Amsterdam, The Netherlands
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Astrid A M van der Veldt
- Department of Medical Oncology and Radiology & Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Mariette Labots
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Emile E Voest
- Department of Medical Oncology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| | - Joris van de Haar
- Department of Medical Oncology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek, Amsterdam, The Netherlands.
| | | |
Collapse
|
421
|
Lee E, Jang JY, Yang J. Uncommon Adverse Events of Immune Checkpoint Inhibitors in Small Cell Lung Cancer: A Systematic Review of Case Reports. Cancers (Basel) 2024; 16:1896. [PMID: 38791974 PMCID: PMC11119772 DOI: 10.3390/cancers16101896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND This study aimed to systematically review case reports documenting rare adverse events in patients with small cell lung cancer (SCLC) following the administration of immune checkpoint inhibitors (ICIs). METHODS A systematic literature review was conducted to identify case reports detailing previously unreported adverse drug reactions to ICIs in patients with SCLC. The scope of the literature reviewed was restricted to case studies on SCLC published up to 31 December 2023. RESULTS We analyzed twenty-four studies on ICI use for patients with SCLC. There were six reports on atezolizumab, four on durvalumab, and three on adverse events from monotherapy with nivolumab. Reports involving combination treatments were the most frequent, with a total of six, predominantly involving using nivolumab in combination with ipilimumab. Additionally, there was one report each on using pembrolizumab, nofazinilimab, sintilimab, tislelizumab, and toripalimab. We collected detailed information on the clinical course, including patient and disease characteristics, symptoms, treatment for each adverse event, and recovery status. Among the patients included in the case reports, 21 out of 24 (87.5%) had extensive-stage SCLC when initiating ICI therapy, with only 1 patient diagnosed with limited-stage SCLC. Respiratory system adverse events were most common, with seven cases, followed by neurological, endocrinological, and gastroenterological events. Three case reports documented adverse events across multiple systems in a single patient. In most cases, patients showed symptom improvement; however, four studies reported cases where patients either expired without symptom improvement or experienced sequelae. CONCLUSIONS Efforts to develop reliable biomarkers for predicting irAEs continue, with ongoing research to enhance predictive precision. Immunotherapy presents diverse and unpredictable adverse events, underscoring the need for advanced diagnostic tools and a multidisciplinary approach to improve patient management.
Collapse
Affiliation(s)
- Eunso Lee
- Division of Allergy and Pulmonology, Department of Internal Medicine, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
| | - Jeong Yun Jang
- Department of Radiation Oncology, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1, Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea
| | - Jinho Yang
- Department of Occupational Health and Safety, Semyung University, 65 Semyung-ro, Jecheon 27136, Republic of Korea
| |
Collapse
|
422
|
Yang Y, Huang Q, Cheng M, Deng L, Liu X, Zheng X, Wei J, Lei Y, Li X, Guo F, Deng Y, Zheng Y, Bi F, Wang G, Liu M. Efficacy and advantage of immunotherapy for melanoma via intramuscular co-expression of plasmid-encoded PD-1 and CTLA-4 scFvs. Am J Cancer Res 2024; 14:2626-2642. [PMID: 38859854 PMCID: PMC11162689 DOI: 10.62347/ljnc8404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/15/2024] [Indexed: 06/12/2024] Open
Abstract
Immunotherapy, in the shape of immune checkpoint inhibitors (ICIs), has completely changed the treatment of cancer. However, the increasing expense of treatment and the frequency of immune-related side effects, which are frequently associated with combination antibody therapies and Fc fragment of antibody, have limited the patient's ability to benefit from these treatments. Herein, we presented the therapeutic effects of the plasmid-encoded PD-1 and CTLA-4 scFvs (single-chain variable fragment) for melanoma via an optimized intramuscular gene delivery system. After a single injection, the plasmid-encoded ICI scFv in mouse sera continued to be above 150 ng/mL for 3 weeks and reached peak amounts of 600 ng/mL. Intramuscular delivery of plasmid encoding PD-1 and CTLA-4 scFvs significantly changed the tumor microenvironment, delayed tumor growth, and prolonged survival in melanoma-bearing mice. Furthermore, no significant toxicity was observed, suggesting that this approach could improve the biosafety of ICIs combination therapy. Overall, the expression of ICI scFvs in vivo using intramuscular plasmid delivery could potentially develop into a reliable, affordable, and safe immunotherapy technique, expanding the range of antibody-based gene therapy systems that are available.
Collapse
Affiliation(s)
- Yueyao Yang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan UniversityChengdu 610064, Sichuan, China
| | - Qian Huang
- Department of Medical Oncology/Gastric Cancer Center, West China Hospital, Sichuan UniversityChengdu 610041, Sichuan, China
- Department of Oncology, The Third People’s Hospital of ChengduChengdu 255415, Sichuan, China
| | - Mo Cheng
- Department of Medical Oncology/Gastric Cancer Center, West China Hospital, Sichuan UniversityChengdu 610041, Sichuan, China
| | - Lu Deng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan UniversityChengdu 610064, Sichuan, China
| | - Xun Liu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan UniversityChengdu 610064, Sichuan, China
| | - Xiufeng Zheng
- Department of Medical Oncology/Gastric Cancer Center, West China Hospital, Sichuan UniversityChengdu 610041, Sichuan, China
| | - Jing Wei
- Department of Medical Oncology/Gastric Cancer Center, West China Hospital, Sichuan UniversityChengdu 610041, Sichuan, China
| | - Yanna Lei
- Department of Medical Oncology/Gastric Cancer Center, West China Hospital, Sichuan UniversityChengdu 610041, Sichuan, China
| | - Xiaoyin Li
- Department of Medical Oncology/Gastric Cancer Center, West China Hospital, Sichuan UniversityChengdu 610041, Sichuan, China
| | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Yu Deng
- School of Basic Medical Sciences, Chengdu UniversityChengdu 610106, Sichuan, China
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Feng Bi
- Department of Medical Oncology, West China Hospital, Sichuan UniversityChengdu 610041, Sichuan, China
| | - Gang Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan UniversityChengdu 610064, Sichuan, China
| | - Ming Liu
- Department of Medical Oncology/Gastric Cancer Center, West China Hospital, Sichuan UniversityChengdu 610041, Sichuan, China
| |
Collapse
|
423
|
van Duin IAJ, Verheijden RJ, van Diest PJ, Blokx WAM, El-Sharouni MA, Verhoeff JJC, Leiner T, van den Eertwegh AJM, de Groot JWB, van Not OJ, Aarts MJB, van den Berkmortel FWPJ, Blank CU, Haanen JBAG, Hospers GAP, Piersma D, van Rijn RS, van der Veldt AAM, Vreugdenhil G, Wouters MWJM, Stevense-den Boer MAM, Boers-Sonderen MJ, Kapiteijn E, Suijkerbuijk KPM, Elias SG. A prediction model for response to immune checkpoint inhibition in advanced melanoma. Int J Cancer 2024; 154:1760-1771. [PMID: 38296842 DOI: 10.1002/ijc.34853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/01/2023] [Accepted: 12/05/2023] [Indexed: 02/02/2024]
Abstract
Predicting who will benefit from treatment with immune checkpoint inhibition (ICI) in patients with advanced melanoma is challenging. We developed a multivariable prediction model for response to ICI, using routinely available clinical data including primary melanoma characteristics. We used a population-based cohort of 3525 patients with advanced cutaneous melanoma treated with anti-PD-1-based therapy. Our prediction model for predicting response within 6 months after ICI initiation was internally validated with bootstrap resampling. Performance evaluation included calibration, discrimination and internal-external cross-validation. Included patients received anti-PD-1 monotherapy (n = 2366) or ipilimumab plus nivolumab (n = 1159) in any treatment line. The model included serum lactate dehydrogenase, World Health Organization performance score, type and line of ICI, disease stage and time to first distant recurrence-all at start of ICI-, and location and type of primary melanoma, the presence of satellites and/or in-transit metastases at primary diagnosis and sex. The over-optimism adjusted area under the receiver operating characteristic was 0.66 (95% CI: 0.64-0.66). The range of predicted response probabilities was 7%-81%. Based on these probabilities, patients were categorized into quartiles. Compared to the lowest response quartile, patients in the highest quartile had a significantly longer median progression-free survival (20.0 vs 2.8 months; P < .001) and median overall survival (62.0 vs 8.0 months; P < .001). Our prediction model, based on routinely available clinical variables and primary melanoma characteristics, predicts response to ICI in patients with advanced melanoma and discriminates well between treated patients with a very good and very poor prognosis.
Collapse
Affiliation(s)
- Isabella A J van Duin
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Rik J Verheijden
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Paul J van Diest
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Willeke A M Blokx
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mary-Ann El-Sharouni
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Joost J C Verhoeff
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Tim Leiner
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Alfonsus J M van den Eertwegh
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | - Olivier J van Not
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Scientific Bureau, Dutch Institute for Clinical Auditing, Leiden, The Netherlands
| | - Maureen J B Aarts
- Department of Medical Oncology, GROW-School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | | - Christian U Blank
- Department of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - John B A G Haanen
- Department of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Geke A P Hospers
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Djura Piersma
- Department of Internal Medicine, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Rozemarijn S van Rijn
- Department of Internal Medicine, Medical Centre Leeuwarden, Leeuwarden, The Netherlands
| | - Astrid A M van der Veldt
- Department of Medical Oncology and Radiology & Nuclear Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Gerard Vreugdenhil
- Department of Internal Medicine, Maxima Medical Centre, Eindhoven, The Netherlands
| | - Michel W J M Wouters
- Scientific Bureau, Dutch Institute for Clinical Auditing, Leiden, The Netherlands
- Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, The Netherlands
- Department of Surgical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Marye J Boers-Sonderen
- Department of Medical Oncology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ellen Kapiteijn
- Department of Medical Oncology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Karijn P M Suijkerbuijk
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sjoerd G Elias
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
424
|
Kraehenbuehl L, Wolchok JD, Merghoub T, Hirschhorn D. Having the cake and eating it? Clofazimine boosts immunotherapy while limiting side effects. Cancer Cell 2024; 42:738-741. [PMID: 38579723 DOI: 10.1016/j.ccell.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/07/2024]
Abstract
Combined immune checkpoint blockade (ICB) for cancer exhibits good efficacy in a subset of patients but also associates with immune-related adverse events. Xue et al. use an elegant drug screening strategy to identify the antimicrobial drug clofazimine as an agent that both potentiates ICB efficacy and decreases immune-related adverse events.
Collapse
Affiliation(s)
- Lukas Kraehenbuehl
- Pharmacology Program, Weill Cornell Graduate School, New York, NY, USA; Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medical Center, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medical Center, New York, NY, USA; Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jedd D Wolchok
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medical Center, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medical Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School, New York, NY, USA; Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
| | - Taha Merghoub
- Pharmacology Program, Weill Cornell Graduate School, New York, NY, USA; Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medical Center, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medical Center, New York, NY, USA; Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
| | - Daniel Hirschhorn
- Pharmacology Program, Weill Cornell Graduate School, New York, NY, USA; Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medical Center, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medical Center, New York, NY, USA.
| |
Collapse
|
425
|
Xue G, Li X, Kalim M, Fang J, Jiang Z, Zheng N, Wang Z, Li X, Abdelrahim M, He Z, Nikiforov M, Jin G, Lu Y. Clinical drug screening reveals clofazimine potentiates the efficacy while reducing the toxicity of anti-PD-1 and CTLA-4 immunotherapy. Cancer Cell 2024; 42:780-796.e6. [PMID: 38518774 PMCID: PMC11756590 DOI: 10.1016/j.ccell.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/17/2024] [Accepted: 03/01/2024] [Indexed: 03/24/2024]
Abstract
Emerging as the most potent and durable combinational immunotherapy, dual anti-PD-1 and CTLA-4 immune checkpoint blockade (ICB) therapy notoriously increases grade 3-5 immune-related adverse events (irAEs) in patients. Accordingly, attempts to improve the antitumor potency of anti-PD-1+CTLA-4 ICB by including additional therapeutics have been largely discouraged due to concerns of further increasing fatal toxicity. Here, we screened ∼3,000 Food and Drug Administration (FDA)-approved drugs and identified clofazimine as a potential third agent to optimize anti-PD-1+CTLA-4 ICB. Remarkably, clofazimine outperforms ICB dose reduction or steroid treatment in reversing lethality of irAEs, but unlike the detrimental effect of steroids on antitumor efficacy, clofazimine potentiates curative responses in anti-PD-1+CTLA-4 ICB. Mechanistically, clofazimine promotes E2F1 activation in CD8+ T cells to overcome resistance and counteracts pathogenic Th17 cells to abolish irAEs. Collectively, clofazimine potentiates the antitumor efficacy of anti-PD-1+CTLA-4 ICB, curbs intractable irAEs, and may fill a desperate clinical need to improve patient survival.
Collapse
Affiliation(s)
- Gang Xue
- Comprehensive Cancer Center, Wake Forest Baptist Health, Winston-Salem, NC 27157, USA.
| | - Xin Li
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Muhammad Kalim
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Jing Fang
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Zhiwu Jiang
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Ningbo Zheng
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Ziyu Wang
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Xiaoyin Li
- Department of Mathematics and Statistics, St. Cloud State University, St Cloud, MN 56301, USA
| | - Maen Abdelrahim
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Zhiheng He
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA.
| | | | - Guangxu Jin
- Comprehensive Cancer Center, Wake Forest Baptist Health, Winston-Salem, NC 27157, USA.
| | - Yong Lu
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA.
| |
Collapse
|
426
|
Lyu J, Bai L, Li Y, Wang X, Xu Z, Ji T, Yang H, Song Z, Wang Z, Shang Y, Ren L, Li Y, Zang A, Jia Y, Ding C. Plasma proteome profiling reveals dynamic of cholesterol marker after dual blocker therapy. Nat Commun 2024; 15:3860. [PMID: 38719824 PMCID: PMC11078984 DOI: 10.1038/s41467-024-47835-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Dual blocker therapy (DBT) has the enhanced antitumor benefits than the monotherapy. Yet, few effective biomarkers are developed to monitor the therapy response. Herein, we investigate the DBT longitudinal plasma proteome profiling including 113 longitudinal samples from 22 patients who received anti-PD1 and anti-CTLA4 DBT therapy. The results show the immune response and cholesterol metabolism are upregulated after the first DBT cycle. Notably, the cholesterol metabolism is activated in the disease non-progressive group (DNP) during the therapy. Correspondingly, the clinical indicator prealbumin (PA), free triiodothyronine (FT3) and triiodothyronine (T3) show significantly positive association with the cholesterol metabolism. Furthermore, by integrating proteome and radiology approach, we observe the high-density lipoprotein partial remodeling are activated in DNP group and identify a candidate biomarker APOC3 that can reflect DBT response. Above, we establish a machine learning model to predict the DBT response and the model performance is validated by an independent cohort with balanced accuracy is 0.96. Thus, the plasma proteome profiling strategy evaluates the alteration of cholesterol metabolism and identifies a panel of biomarkers in DBT.
Collapse
Affiliation(s)
- Jiacheng Lyu
- Center for Cell and Gene Therapy, Fudan University Clinical Research Center for Cell-based Immunotherapy, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Shanghai Pudong Hospital, Fudan University, Shanghai, 200433, China
| | - Lin Bai
- Center for Cell and Gene Therapy, Fudan University Clinical Research Center for Cell-based Immunotherapy, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Shanghai Pudong Hospital, Fudan University, Shanghai, 200433, China
| | - Yumiao Li
- Department of Medical Oncology, Affiliated Hospital of Hebei University; Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, 212 Yuhua East Road, Baoding, Hebei, 071000, China
| | - Xiaofang Wang
- Department of Medical Oncology, Affiliated Hospital of Hebei University; Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, 212 Yuhua East Road, Baoding, Hebei, 071000, China
| | - Zeya Xu
- Center for Cell and Gene Therapy, Fudan University Clinical Research Center for Cell-based Immunotherapy, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Shanghai Pudong Hospital, Fudan University, Shanghai, 200433, China
| | - Tao Ji
- Center for Cell and Gene Therapy, Fudan University Clinical Research Center for Cell-based Immunotherapy, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Shanghai Pudong Hospital, Fudan University, Shanghai, 200433, China
| | - Hua Yang
- Department of Medical Oncology, Affiliated Hospital of Hebei University; Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, 212 Yuhua East Road, Baoding, Hebei, 071000, China
| | - Zizheng Song
- Department of Medical Oncology, Affiliated Hospital of Hebei University; Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, 212 Yuhua East Road, Baoding, Hebei, 071000, China
| | - Zhiyu Wang
- Department of Medical Oncology, Affiliated Hospital of Hebei University; Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, 212 Yuhua East Road, Baoding, Hebei, 071000, China
| | - Yanhong Shang
- Department of Medical Oncology, Affiliated Hospital of Hebei University; Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, 212 Yuhua East Road, Baoding, Hebei, 071000, China
| | - Lili Ren
- Department of Medical Oncology, Affiliated Hospital of Hebei University; Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, 212 Yuhua East Road, Baoding, Hebei, 071000, China
| | - Yan Li
- Department of Haematology, Hebei General Hospital, No. 348, Heping West Road, Shijiazhuang, Hebei, 050051, China
| | - Aimin Zang
- Department of Medical Oncology, Affiliated Hospital of Hebei University; Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, 212 Yuhua East Road, Baoding, Hebei, 071000, China
| | - Youchao Jia
- Department of Medical Oncology, Affiliated Hospital of Hebei University; Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, 212 Yuhua East Road, Baoding, Hebei, 071000, China.
| | - Chen Ding
- Center for Cell and Gene Therapy, Fudan University Clinical Research Center for Cell-based Immunotherapy, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Shanghai Pudong Hospital, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
427
|
Rangwala HS, Fatima H, Ali M, Sunder S, Devi S, Rangwala BS, Abbas SR. Evaluating the efficacy and safety of nivolumab and ipilimumab combination therapy compared to nivolumab monotherapy in advanced cancers (excluding melanoma): a systemic review and meta-analysis. J Egypt Natl Canc Inst 2024; 36:14. [PMID: 38705953 DOI: 10.1186/s43046-024-00218-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/06/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Nivolumab (Nivo) and ipilimumab (Ipi) have revolutionized cancer treatment by targeting different pathways. Their combination shows promising results in various cancers, including melanoma, but not all studies have demonstrated significant benefits. A meta-analysis was performed to assess the effectiveness and safety of Nivo-Ipi compared to Nivo alone in advanced cancer types (excluding melanoma). METHODS Following PRISMA guidelines, we conducted a meta-analysis up to September 30, 2023, searching databases for randomized controlled trials (RCTs). We focused on advanced solid malignancies (excluding melanoma) with specific Nivo and Ipi dosing. Primary outcomes were overall survival (OS), progression-free survival (PFS), grades 3-4 adverse events (AEs), and treatment-related discontinuations. Secondary outcomes included specific adverse events. Statistical analysis in Review Manager included hazard ratio (HR) and risk ratio (RR), assessing heterogeneity (Higgins I2). RESULTS Nine RCTs, involving 2152 patients covering various malignancies, were analyzed. The Nivo plus Ipi group exhibited a median OS of 12.3 months and a median PFS of 3.73 months, compared to monotherapy with 11.67 months and 3.98 months, respectively. OS showed no significant difference between Nivo and Ipi combination and Nivo alone (HR = 0.97, 95% CI: 0.88 to 1.08, p = 0.61). PFS had a slight improvement with combination therapy (HR = 0.91, 95% CI: 0.82 to 1.00, p = 0.04). Treatment-related cumulative grades 3-4 adverse events were higher with Nivo and Ipi (RR = 1.52, 95% CI: 1.30 to 1.78, p < 0.00001), as were treatment-related discontinuations (RR = 1.99, 95% CI: 1.46 to 2.70, p < 0.0001). Hepatotoxicity (RR = 2.42, 95% CI: 1.39 to 4.24, p = 0.002), GI toxicity (RR = 2.84, 95% CI: 1.44 to 5.59, p = 0.002), pneumonitis (RR = 2.29, 95% CI: 1.24 to 2.23, p = 0.008), dermatitis (RR = 2.96, 95% CI: 1.08 to 8.14, p = 0.04), and endocrine dysfunction (RR = 6.22, 95% CI: 2.31 to 16.71, p = 0.0003) were more frequent with Nivo and Ipi. CONCLUSIONS Combining nivolumab and ipilimumab did not significantly improve overall survival compared to nivolumab alone in advanced cancers (except melanoma). However, it did show slightly better PFS at the cost of increased toxicity, particularly grades 3-4 adverse events. Specific AEs occurred more frequently in the combination group. Further trials are needed to fully assess this combination in treating advanced cancers.
Collapse
Affiliation(s)
| | - Hareer Fatima
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Mirha Ali
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Sailesh Sunder
- Department of Medicine, Shaheed Mohtarma Benazir Bhutto Medical College Lyari, Karachi, Pakistan
| | - Sonia Devi
- Department of Medicine, Ghulam Muhammad Mahar Medical College, Karachi, Pakistan
| | | | - Syed Raza Abbas
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
428
|
Tang HKC, Rao A, Peters C, Ambulkar T, Ho MFX, Wang B, Patel P. 'Immunotherapeutic Strategies for Intra-cranial Metastatic Melanoma - a Meta-analysis and Systematic Review'. J Cancer 2024; 15:3495-3509. [PMID: 38817862 PMCID: PMC11134445 DOI: 10.7150/jca.93306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/27/2024] [Indexed: 06/01/2024] Open
Abstract
Immune-activating anti-CTLA4 and anti-PD1 monoclonal antibodies (alone or in combination) are being used to treat advanced melanoma patients and can lead to durable remissions, and long-term overall survival may be achieved in between 50-60% of patients. Although intracranial metastases are very common in melanoma (about 50-75% of all patients with advanced disease), most of the pivotal prospective clinical trials exclude patients with intra-cranial metastases, certainly if their lesions are symptomatic and steroid-requiring and the degree of sensitivity of intra-cranial melanoma to immunotherapy remains uncertain, and requires further investigation especially in view of the demonstrable activity of RAF-MEK inhibitors in this clinical setting and the emergence of stereotactic radiotherapy. Our study aimed to evaluate the efficacy and toxicity of immunotherapy against advanced melanoma patients with brain metastases. In terms of comparative studies, only retrospective analyses could be identified. Based on 3 retrospective studies, treatment of patients with melanoma brain metastases with immunotherapeutic approaches improves overall survival substantially compared with supportive measures alone (no active anticancer treatment). The efficacy of targeted therapy appeared to be comparable to that of immune therapy in terms of overall survival, based on a small number of patients. The combination of concurrent radiation therapy to the brain and systemic immunotherapy led to improved overall survival compared to radiotherapy alone, suggesting potential synergism between the approaches, and combination treatment could be delivered safely. Our review supports the use of immunotherapeutic strategies for these patients although treatment efficacy appears to be lower for symptomatic lesions. In view of the extremely high efficacy of stereotactic radiotherapy approaches in the brain, understanding the interaction between radiotherapy and immunotherapy is vital and should be an area of active investigation.
Collapse
Affiliation(s)
- Hiu Kwan Carolyn Tang
- Department of Oncology, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, United Kingdom
| | - Ankit Rao
- Department of Oncology, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, United Kingdom
| | - Christina Peters
- Department of Oncology, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, United Kingdom
| | - Tanvi Ambulkar
- Department of Oncology, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, United Kingdom
| | - Michael FX Ho
- Department of Oncology, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, United Kingdom
| | - Bo Wang
- Trinity Hall, University of Cambridge, Cambridge, CB2 1TJ, United Kingdom
| | - Poulam Patel
- Department of Oncology, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, United Kingdom
| |
Collapse
|
429
|
Zhang K, Qu C, Zhou P, Yang Z, Wu X. Integrative analysis of the cuproptosis-related gene ATP7B in the prognosis and immune infiltration of IDH1 wild-type glioma. Gene 2024; 905:148220. [PMID: 38286269 DOI: 10.1016/j.gene.2024.148220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
Glioma is the most common malignant tumor in the brain and the central nervous system with a poor prognosis, and wild-type isocitrate dehydrogenase (IDH) glioma indicates a worse prognosis. Cuproptosis is a recently discovered form of cell death regulated by copper-dependent mitochondrial respiration. However, the effect of cuproptosis on tumor prognosis and immune infiltration is not clear. In this research, we analyzed of public databases to show the correlation between cuproptosis-related genes and the prognosis of IDH1 wild-type glioma. Nine out of 12 genes were upregulated in IDH1 wild-type glioma patients, and 6 genes were significantly associated with overall survival (OS), while 5 genes were associated with progression-free survival (PFS). Then, we constructed a prognostic cuproptosis-related gene signature for IDH1 wild-type glioma patients. ATP7B was considered an independent prognostic indicator, and a low expression level of ATP7B was related to a shorter period of OS and PFS. Moreover, downregulation of ATP7B was correlated not only with the infiltration of activated NK cells, CD8 + T cells and M2 macrophages; but also with high expression of immune checkpoint genes and tumor mutation burden (TMB). In the IDH1 wild-type glioma tissues we collected, our data also confirmed that high tumor grade was accompanied by low expression of ATP7B and high expression of PD-L1, which was associated with increasing infiltration of CD8 + immune cells. In conclusion, our research constructed a prognostic cuproptosis-related gene signature model to predict the prognosis of IDH1 wild-type glioma. ATP7B is deemed to be a potential prognostic indicator and novel immunotherapy biomarker for IDH1 wild-type glioma patients.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chunhui Qu
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha 410078, China
| | - Peijun Zhou
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha 410078, China
| | - Zezi Yang
- School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China
| | - Xia Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; Human Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, 410011, China.
| |
Collapse
|
430
|
Fadlullah MZH, Lin CN, Coleman S, Young A, Naqash AR, Hu-Lieskovan S, Tan AC. Exploring the Landscape of Immune Checkpoint Inhibitor-Induced Adverse Events Through Big Data Mining of Pan-Cancer Clinical Trials. Oncologist 2024; 29:415-421. [PMID: 38330451 PMCID: PMC11067818 DOI: 10.1093/oncolo/oyae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
PURPOSE Immune checkpoint inhibitors (ICIs) have significantly improved the survival of patients with cancer and provided long-term durable benefit. However, ICI-treated patients develop a range of toxicities known as immune-related adverse events (irAEs), which could compromise clinical benefits from these treatments. As the incidence and spectrum of irAEs differs across cancer types and ICI agents, it is imperative to characterize the incidence and spectrum of irAEs in a pan-cancer cohort to aid clinical management. DESIGN We queried >400 000 trials registered at ClinicalTrials.gov and retrieved a comprehensive pan-cancer database of 71 087 ICI-treated participants from 19 cancer types and 7 ICI agents. We performed data harmonization and cleaning of these trial results into 293 harmonized adverse event categories using Medical Dictionary for Regulatory Activities. RESULTS We developed irAExplorer (https://irae.tanlab.org), an interactive database that focuses on adverse events in patients administered with ICIs from big data mining. irAExplorer encompasses 71 087 distinct clinical trial participants from 343 clinical trials across 19 cancer types with well-annotated ICI treatment regimens and harmonized adverse event categories. We demonstrated a few of the irAE analyses through irAExplorer and highlighted some associations between treatment- or cancer-specific irAEs. CONCLUSION The irAExplorer is a user-friendly resource that offers exploration, validation, and discovery of treatment- or cancer-specific irAEs across pan-cancer cohorts. We envision that irAExplorer can serve as a valuable resource to cross-validate users' internal datasets to increase the robustness of their findings.
Collapse
Affiliation(s)
- Muhammad Zaki Hidayatullah Fadlullah
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Informatics, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Ching-Nung Lin
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Informatics, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Samuel Coleman
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Informatics, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Arabella Young
- Department of Pathology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Abdul Rafeh Naqash
- Medical Oncology/TSET Phase 1 Program, Stephenson Cancer Center, The University of Oklahoma, Oklahoma City, OK, USA
| | - Siwen Hu-Lieskovan
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Aik Choon Tan
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Informatics, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
431
|
Jeon D, Hill E, Moseman JE, McNeel DG. Combining toll-like receptor agonists with immune checkpoint blockade affects antitumor vaccine efficacy. J Immunother Cancer 2024; 12:e008799. [PMID: 38702146 PMCID: PMC11086196 DOI: 10.1136/jitc-2024-008799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND T cell checkpoint receptors are expressed when T cells are activated, and modulation of the expression or signaling of these receptors can alter the function of T cells and their antitumor efficacy. We previously found that T cells activated with cognate antigen had increases in the expression of PD-1, and this was attenuated in the presence of multiple toll-like receptor (TLR) agonists, notably TLR3 plus TLR9. In the current report, we sought to investigate whether combining TLR agonists with immune checkpoint blockade can further augment vaccine-mediated T cell antitumor immunity in murine tumor models. METHODS TLR agonists (TLR3 plus TLR9) and immune checkpoint inhibitors (antibodies targeting PD-1, CTLA-4, LAG-3, TIM-3 or VISTA) were combined and delivered with vaccines or vaccine-activated CD8+T cells to E.G7-OVA or MyC-CaP tumor-bearing mice. Tumors were assessed for growth and then collected and analyzed by flow cytometry. RESULTS Immunization of E.G7-OVA tumor-bearing mice with SIINFEKL peptide vaccine, coadministered with TLR agonists and αCTLA-4, demonstrated greater antitumor efficacy than immunization with TLR agonists or αCTLA-4 alone. Conversely, the antitumor efficacy was abrogated when vaccine and TLR agonists were combined with αPD-1. TLR agonists suppressed PD-1 expression on regulatory T cells (Tregs) and activated this population. Depletion of Tregs in tumor-bearing mice led to greater antitumor efficacy of this combination therapy, even in the presence of αPD-1. Combining vaccination with TLR agonists and αCTLA-4 or αLAG-3 showed greater antitumor than with combinations with αTIM-3 or αVISTA. CONCLUSION The combination of TLR agonists and αCTLA-4 or αLAG-3 can further improve the efficacy of a cancer vaccine, an effect not observed using αPD-1 due to activation of Tregs when αPD-1 was combined with TLR3 and TLR9 agonists. These data suggest that optimal combinations of TLR agonists and immune checkpoint blockade may improve the efficacy of human anticancer vaccines.
Collapse
Affiliation(s)
- Donghwan Jeon
- Cancer Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ethan Hill
- Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jena E Moseman
- Cancer Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Douglas G McNeel
- Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
432
|
Tangudu NK, Buj R, Wang H, Wang J, Cole AR, Uboveja A, Fang R, Amalric A, Yang B, Chatoff A, Crispim CV, Sajjakulnukit P, Lyons MA, Cooper K, Hempel N, Lyssiotis CA, Chandran UR, Snyder NW, Aird KM. De Novo Purine Metabolism is a Metabolic Vulnerability of Cancers with Low p16 Expression. CANCER RESEARCH COMMUNICATIONS 2024; 4:1174-1188. [PMID: 38626341 PMCID: PMC11064835 DOI: 10.1158/2767-9764.crc-23-0450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/04/2024] [Accepted: 04/11/2024] [Indexed: 04/18/2024]
Abstract
p16 is a tumor suppressor encoded by the CDKN2A gene whose expression is lost in approximately 50% of all human cancers. In its canonical role, p16 inhibits the G1-S-phase cell cycle progression through suppression of cyclin-dependent kinases. Interestingly, p16 also has roles in metabolic reprogramming, and we previously published that loss of p16 promotes nucleotide synthesis via the pentose phosphate pathway. However, the broader impact of p16/CDKN2A loss on other nucleotide metabolic pathways and potential therapeutic targets remains unexplored. Using CRISPR knockout libraries in isogenic human and mouse melanoma cell lines, we determined several nucleotide metabolism genes essential for the survival of cells with loss of p16/CDKN2A. Consistently, many of these genes are upregulated in melanoma cells with p16 knockdown or endogenously low CDKN2A expression. We determined that cells with low p16/CDKN2A expression are sensitive to multiple inhibitors of de novo purine synthesis, including antifolates. Finally, tumors with p16 knockdown were more sensitive to the antifolate methotrexate in vivo than control tumors. Together, our data provide evidence to reevaluate the utility of these drugs in patients with p16/CDKN2Alow tumors as loss of p16/CDKN2A may provide a therapeutic window for these agents. SIGNIFICANCE Antimetabolites were the first chemotherapies, yet many have failed in the clinic due to toxicity and poor patient selection. Our data suggest that p16 loss provides a therapeutic window to kill cancer cells with widely-used antifolates with relatively little toxicity.
Collapse
Affiliation(s)
- Naveen Kumar Tangudu
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Raquel Buj
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hui Wang
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jiefei Wang
- Department of Biomedical Informatics and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Aidan R. Cole
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Apoorva Uboveja
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Richard Fang
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Amandine Amalric
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Baixue Yang
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Tsinghua University School of Medicine, Beijing, P.R. China
| | - Adam Chatoff
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Claudia V. Crispim
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Peter Sajjakulnukit
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, Division of Gastroenterology, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Maureen A. Lyons
- Genomics Facility, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kristine Cooper
- Biostatistics Facility, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nadine Hempel
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Costas A. Lyssiotis
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, Division of Gastroenterology, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Uma R. Chandran
- Department of Biomedical Informatics and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nathaniel W. Snyder
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Katherine M. Aird
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
433
|
Su L, Hounye AH, Pan Q, Miao K, Wang J, Hou M, Xiong L. Explainable cancer factors discovery: Shapley additive explanation for machine learning models demonstrates the best practices in the case of pancreatic cancer. Pancreatology 2024; 24:404-423. [PMID: 38342661 DOI: 10.1016/j.pan.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/07/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Pancreatic cancer is one of digestive tract cancers with high mortality rate. Despite the wide range of available treatments and improvements in surgery, chemotherapy, and radiation therapy, the five-year prognosis for individuals diagnosed pancreatic cancer remains poor. There is still research to be done to see if immunotherapy may be used to treat pancreatic cancer. The goals of our research were to comprehend the tumor microenvironment of pancreatic cancer, found a useful biomarker to assess the prognosis of patients, and investigated its biological relevance. In this paper, machine learning methods such as random forest were fused with weighted gene co-expression networks for screening hub immune-related genes (hub-IRGs). LASSO regression model was used to further work. Thus, we got eight hub-IRGs. Based on hub-IRGs, we created a prognosis risk prediction model for PAAD that can stratify accurately and produce a prognostic risk score (IRG_Score) for each patient. In the raw data set and the validation data set, the five-year area under the curve (AUC) for this model was 0.9 and 0.7, respectively. And shapley additive explanation (SHAP) portrayed the importance of prognostic risk prediction influencing factors from a machine learning perspective to obtain the most influential certain gene (or clinical factor). The five most important factors were TRIM67, CORT, PSPN, SCAMP5, RFXAP, all of which are genes. In summary, the eight hub-IRGs had accurate risk prediction performance and biological significance, which was validated in other cancers. The result of SHAP helped to understand the molecular mechanism of pancreatic cancer.
Collapse
Affiliation(s)
- Liuyan Su
- School of Mathematics and Statistics, Central South University, Changsha, 410083, China
| | | | - Qi Pan
- School of Mathematics and Statistics, Central South University, Changsha, 410083, China
| | - Kexin Miao
- School of Mathematics and Statistics, Central South University, Changsha, 410083, China
| | - Jiaoju Wang
- School of Mathematics and Statistics, Central South University, Changsha, 410083, China
| | - Muzhou Hou
- School of Mathematics and Statistics, Central South University, Changsha, 410083, China.
| | - Li Xiong
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China; Hunan Clinical Research Center for Intelligent General Surgery, Changsha, 410011, China.
| |
Collapse
|
434
|
Nikolajevic N, Nikolajevic M, Pantic I, Korica B, Kotseva M, Alempijevic T, Jevtic D, Madrid CI, Dumic I. Drug-Induced Liver Injury Due to Doxycycline: A Case Report and Review of Literature. Cureus 2024; 16:e59687. [PMID: 38836151 PMCID: PMC11150051 DOI: 10.7759/cureus.59687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
Antibiotics are among the most common causes of drug-induced liver injury worldwide. Amoxicillin/clavulanic acid and nitrofurantoin are the most common culprits while tetracyclines are a rare cause of liver injury. Among tetracyclines, minocycline has been reported more frequently than doxycycline, which is an extremely rare cause of drug-induced liver injury. We present a healthy 28-year-old male patient from rural United States who was taking doxycycline for Lyme disease. After five days of therapy, he developed nausea, vomiting, fatigue, and significant transaminitis consistent with a hepatocellular pattern of liver injury. After a thorough workup which ruled out other causes such as infection, autoimmune diseases, liver malignancy, and vascular, structural, and metabolic disorders, his liver injury was attributed to doxycycline. We reached the diagnosis also by demonstrating a consistent temporal association between doxycycline intake and liver injury and the patient recovered completely with the cessation of doxycycline. Recognition of doxycycline as a cause of drug-induced liver injury should be considered in patients utilizing this antibiotic. Doxycycline, unlike minocycline, has a short latency period. Early recognition and discontinuation of doxycycline in our patient resulted in the complete resolution of symptoms and transaminitis preventing further morbidity and mortality.
Collapse
Affiliation(s)
- Nikola Nikolajevic
- Internal Medicine, University of Belgrade, Faculty of Medicine, Belgrade, SRB
| | - Milan Nikolajevic
- Internal Medicine, University of Belgrade, Faculty of Medicine, Belgrade, SRB
| | - Ivana Pantic
- Gastroenterology and Hepatology, Clinic for Gastroenterology, University Clinical Center of Serbia, Belgrade, SRB
| | - Bojan Korica
- Gastroenterology and Hepatology, Clinic for Gastroenterology, University Clinical Center of Serbia, Belgrade, SRB
| | | | - Tamara Alempijevic
- Gastroenterology and Hepatology, Clinic for Gastroenterology, University Clinical Center of Serbia, Belgrade, SRB
| | - Dorde Jevtic
- Internal Medicine, NYC Health + Hospitals/Elmhurst, Queens, USA
| | | | - Igor Dumic
- Hospital Medicine, Mayo Clinic Health System, Eau Claire, USA
| |
Collapse
|
435
|
Anderson TM, Chang BH, Huang AC, Xu X, Yoon D, Shang CG, Mick R, Schubert E, McGettigan S, Kreider K, Xu W, Wherry EJ, Schuchter LM, Amaravadi RK, Mitchell TC, Farwell MD. FDG PET/CT Imaging 1 Week after a Single Dose of Pembrolizumab Predicts Treatment Response in Patients with Advanced Melanoma. Clin Cancer Res 2024; 30:1758-1767. [PMID: 38263597 PMCID: PMC11062839 DOI: 10.1158/1078-0432.ccr-23-2390] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024]
Abstract
PURPOSE Immunologic response to anti-programmed cell death protein 1 (PD-1) therapy can occur rapidly with T-cell responses detectable in as little as one week. Given that activated immune cells are FDG avid, we hypothesized that an early FDG PET/CT obtained approximately 1 week after starting pembrolizumab could be used to visualize a metabolic flare (MF), with increased tumor FDG activity due to infiltration by activated immune cells, or a metabolic response (MR), due to tumor cell death, that would predict response. PATIENTS AND METHODS Nineteen patients with advanced melanoma scheduled to receive pembrolizumab were prospectively enrolled. FDG PET/CT imaging was performed at baseline and approximately 1 week after starting treatment. FDG PET/CT scans were evaluated for changes in maximum standardized uptake value (SUVmax) and thresholds were identified by ROC analysis; MF was defined as >70% increase in tumor SUVmax, and MR as >30% decrease in tumor SUVmax. RESULTS An MF or MR was identified in 6 of 11 (55%) responders and 0 of 8 (0%) nonresponders, with an objective response rate (ORR) of 100% in the MF-MR group and an ORR of 38% in the stable metabolism (SM) group. An MF or MR was associated with T-cell reinvigoration in the peripheral blood and immune infiltration in the tumor. Overall survival at 3 years was 83% in the MF-MR group and 62% in the SM group. Median progression-free survival (PFS) was >38 months (median not reached) in the MF-MR group and 2.8 months (95% confidence interval, 0.3-5.2) in the SM group (P = 0.017). CONCLUSIONS Early FDG PET/CT can identify metabolic changes in melanoma metastases that are potentially predictive of response to pembrolizumab and significantly correlated with PFS.
Collapse
Affiliation(s)
- Thomas M. Anderson
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Bryan H. Chang
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alexander C. Huang
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaowei Xu
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Yoon
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Catherine G. Shang
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Rosemarie Mick
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Erin Schubert
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Suzanne McGettigan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristin Kreider
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Xu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E. John Wherry
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lynn M. Schuchter
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ravi K. Amaravadi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tara C. Mitchell
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael D. Farwell
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
436
|
Helgadottir H, Matikas A, Fernebro J, Frödin JE, Ekman S, Rodriguez-Wallberg KA. Fertility and reproductive concerns related to the new generation of cancer drugs and the clinical implication for young individuals undergoing treatments for solid tumors. Eur J Cancer 2024; 202:114010. [PMID: 38520926 DOI: 10.1016/j.ejca.2024.114010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024]
Abstract
The treatment landscape of solid tumors has changed markedly in the last years. Molecularly targeted treatments and immunotherapies have been implemented and have, in many cancers, lowered the risk of relapse and prolonged survival. Patients with tumors harboring specific targetable molecular alterations or mutations are often of a younger age, and hence future fertility and family building can be important concerns in this group. However, there are great uncertainties regarding the effect of the new drugs on reproductive functions, including fertility, pregnancy and lactation and how young patients with cancers, both women and men should be advised. The goal with this review is to gather the current knowledge regarding oncofertility and the different novel therapies, including immune checkpoint inhibitors, antibody-drug conjugates, small molecules and monoclonal antibody targeted therapies. The specific circumstances and reproductive concerns in different patient groups where novel treatments have been broadly introduced are also discussed, including those with melanoma, lung, breast, colorectal and gynecological cancers. It is clear, that more awareness is needed regarding potential drug toxicity on reproductive tissues, and it is of essence that individuals are informed based on current expertise and on available fertility preservation methods.
Collapse
Affiliation(s)
- Hildur Helgadottir
- Department of Oncology and Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden; Skin Cancer Centrum, Theme Cancer, Karolinska University Hospital, 171 76 Stockholm, Sweden.
| | - Alexios Matikas
- Department of Oncology and Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden; Breast Center, Karolinska Comprehensive Cancer Center and Karolinska University Hospital, Stockholm, Sweden
| | - Josefin Fernebro
- Department of Oncology and Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden; Division of Gynecological Cancer, Department of Pelvic Cancer, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Jan-Erik Frödin
- Department of Oncology and Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden; Division of Gastrointestinal Oncology, Department of Upper abdomen, Karolinska University Hospital, Sweden
| | - Simon Ekman
- Department of Oncology and Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden; Thoracic Oncology Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Kenny A Rodriguez-Wallberg
- Department of Oncology and Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Reproductive Medicine, Division of Gynecology and Reproduction Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
437
|
Muscatello LV, Gobbo F, Avallone G, Innao M, Benazzi C, D'Annunzio G, Romaniello D, Orioles M, Lauriola M, Sarli G. PDL1 immunohistochemistry in canine neoplasms: Validation of commercial antibodies, standardization of evaluation, and scoring systems. Vet Pathol 2024; 61:393-401. [PMID: 37920996 DOI: 10.1177/03009858231209410] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Immuno-oncology research has brought to light the paradoxical role of immune cells in the induction and elimination of cancer. Programmed cell death protein 1 (PD1), expressed by tumor-infiltrating lymphocytes, and programmed cell death ligand 1 (PDL1), expressed by tumor cells, are immune checkpoint proteins that regulate the antitumor adaptive immune response. This study aimed to validate commercially available PDL1 antibodies in canine tissue and then, applying standardized methods and scoring systems used in human pathology, evaluate PDL1 immunopositivity in different types of canine tumors. To demonstrate cross-reactivity, a monoclonal antibody (22C3) and polyclonal antibody (cod. A1645) were tested by western blot. Cross-reactivity in canine tissue cell extracts was observed for both antibodies; however, the polyclonal antibody (cod. A1645) demonstrated higher signal specificity. Canine tumor histotypes were selected based on the human counterparts known to express PDL1. Immunohistochemistry was performed on 168 tumors with the polyclonal anti-PDL1 antibody. Only membranous labeling was considered positive. PDL1 labeling was detected both in neoplastic and infiltrating immune cells. The following tumors were immunopositive: melanomas (17 of 17; 100%), renal cell carcinomas (4 of 17; 24%), squamous cell carcinomas (3 of 17; 18%), lymphomas (2 of 14; 14%), urothelial carcinomas (2 of 18; 11%), pulmonary carcinomas (2 of 20; 10%), and mammary carcinomas (1 of 31; 3%). Gastric (0 of 10; 0%) and intestinal carcinomas (0 of 24; 0%) were negative. The findings of this study suggest that PDL1 is expressed in some canine tumors, with high prevalence in melanomas.
Collapse
Affiliation(s)
| | | | | | | | | | - Giulia D'Annunzio
- University of Bologna, Bologna, Italy
- Experimental Zooprophylactic Institute of Lombardia and Emilia-Romagna, Brescia, Italy
| | | | | | | | | |
Collapse
|
438
|
Eum HH, Jeong D, Kim N, Jo A, Na M, Kang H, Hong Y, Kong JS, Jeong GH, Yoo SA, Lee HO. Single-cell RNA sequencing reveals myeloid and T cell co-stimulation mediated by IL-7 anti-cancer immunotherapy. Br J Cancer 2024; 130:1388-1401. [PMID: 38424167 PMCID: PMC11014989 DOI: 10.1038/s41416-024-02617-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors unleash inhibitory signals on T cells conferred by tumors and surrounding stromal cells. Despite the clinical efficacy of checkpoint inhibitors, the lack of target expression and persistence of immunosuppressive cells limit the pervasive effectiveness of the therapy. These limitations may be overcome by alternative approaches that co-stimulate T cells and the immune microenvironment. METHODS We analyzed single-cell RNA sequencing data from multiple human cancers and a mouse tumor transplant model to discover the pleiotropic expression of the Interleukin 7 (IL-7) receptor on T cells, macrophages, and dendritic cells. RESULTS Our experiment on the mouse model demonstrated that recombinant IL-7 therapy induces tumor regression, expansion of effector CD8 T cells, and pro-inflammatory activation of macrophages. Moreover, spatial transcriptomic data support immunostimulatory interactions between macrophages and T cells. CONCLUSION These results indicate that IL-7 therapy induces anti-tumor immunity by activating T cells and pro-inflammatory myeloid cells, which may have diverse therapeutic applicability.
Collapse
Affiliation(s)
- Hye Hyeon Eum
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Dasom Jeong
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Nayoung Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Areum Jo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Minsu Na
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Huiram Kang
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yourae Hong
- Digestive Oncology, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jin-Sun Kong
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Gi Heon Jeong
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Seung-Ah Yoo
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Hae-Ock Lee
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
439
|
Leeneman B, Xander NSH, Fiets WE, de Jong WK, Uyl NEM, Wymenga ANM, Reyners AKL, Uyl-de Groot CA. Assessing the clinical benefit of systemic anti-cancer treatments in the Netherlands: The impact of different thresholds for effectiveness. Eur J Cancer 2024; 202:114002. [PMID: 38489860 DOI: 10.1016/j.ejca.2024.114002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND In the Netherlands, the clinical benefit of systemic anti-cancer treatments (SACTs) is assessed by the Committee for the Evaluation of Oncological Agents (cieBOM). For non-curative SACTs, the assessment is based on the hazard ratio (HR) for progression-free survival and/or overall survival (OS), and the difference in median survival. We evaluated the impact of different thresholds for effectiveness by reassessing the clinical benefit of SACTs. METHODS We reassessed SACTs that were initially assessed by cieBOM between 2015 and 2017. Four scenarios were formulated: replacing an "OR" approach (initial assessment) by an "AND" approach (used in all scenarios), changing the HR threshold from < 0.70 (initial assessment) to < 0.60, changing the threshold for the difference in median survival from > 12 weeks (initial assessment) to > 16 weeks, and including thresholds for OS rates. The outcomes of these scenarios were compared to the outcomes of the initial assessment. RESULTS Reassessments were conducted for 41 treatments. Replacing the "OR" approach by an "AND" approach substantially decreased the number of positive assessments (from 33 to 22), predominantly affecting immunotherapies. This number further decreased (to 21 and 19, respectively) in case more restrictive thresholds for the HR and difference in median survival were used. Including thresholds for OS rates slightly mitigated the impact of applying an "AND" approach. CONCLUSIONS The scenario-specific thresholds had a substantial impact; the number of negative assessments more than doubled. Since this was not limited to treatments with marginal survival benefits, understanding the potential challenges that may arise from applying more restrictive thresholds is essential.
Collapse
Affiliation(s)
- Brenda Leeneman
- Department of Health Technology Assessment, Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA Rotterdam, the Netherlands; Erasmus Centre for Health Economics Rotterdam, Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA Rotterdam, the Netherlands.
| | - Nicolas S H Xander
- Department of Health Technology Assessment, Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA Rotterdam, the Netherlands; Erasmus Centre for Health Economics Rotterdam, Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA Rotterdam, the Netherlands
| | - W Edward Fiets
- Department of Medical Oncology, Medical Center Leeuwarden, Henri Dunantweg 2, 8934 AD Leeuwarden, the Netherlands
| | - Wouter K de Jong
- Department of Pulmonology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Nathalie E M Uyl
- Department of Health Technology Assessment, Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA Rotterdam, the Netherlands
| | - A N Machteld Wymenga
- Department of Medical Oncology, Medisch Spectrum Twente, Koningsplein 1, 7512 KZ Enschede the Netherlands
| | - An K L Reyners
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Carin A Uyl-de Groot
- Department of Health Technology Assessment, Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA Rotterdam, the Netherlands; Erasmus Centre for Health Economics Rotterdam, Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA Rotterdam, the Netherlands
| |
Collapse
|
440
|
Zakharevich NV, Morozov MD, Kanaeva VA, Filippov MS, Zyubko TI, Ivanov AB, Ulyantsev VI, Klimina KM, Olekhnovich EI. Systemic metabolic depletion of gut microbiome undermines responsiveness to melanoma immunotherapy. Life Sci Alliance 2024; 7:e202302480. [PMID: 38448159 PMCID: PMC10917649 DOI: 10.26508/lsa.202302480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/08/2024] Open
Abstract
Immunotherapy has proven to be a boon for patients battling metastatic melanoma, significantly improving their clinical condition and overall quality of life. A compelling link between the composition of the gut microbiome and the efficacy of immunotherapy has been established in both animal models and human patients. However, the precise biological mechanisms by which gut microbes influence treatment outcomes remain poorly understood. Using a robust dataset of 680 fecal metagenomes from melanoma patients, a detailed catalog of metagenome-assembled genomes (MAGs) was constructed to explore the compositional and functional properties of the gut microbiome. Our study uncovered significant findings that deepen the understanding of the intricate relationship between gut microbes and the efficacy of melanoma immunotherapy. In particular, we discovered the specific metagenomic profile of patients with favorable treatment outcomes, characterized by a prevalence of MAGs with increased overall metabolic potential and proficiency in polysaccharide utilization, along with those responsible for cobalamin and amino acid production. Furthermore, our investigation of the biosynthetic pathways of short-chain fatty acids, known for their immunomodulatory role, revealed a differential abundance of these pathways among the specific MAGs. Among others, the cobalamin-dependent Wood-Ljungdahl pathway of acetate synthesis was directly associated with responsiveness to melanoma immunotherapy.
Collapse
Affiliation(s)
- Natalia V Zakharevich
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian
| | - Maxim D Morozov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian
| | - Vera A Kanaeva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian
- Moscow Institute of Physics and Technology, Moscow, Russian
| | | | | | - Artem B Ivanov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian
- ITMO University, Saint Petersburg, Russian
| | | | - Ksenia M Klimina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian
| | - Evgenii I Olekhnovich
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian
| |
Collapse
|
441
|
Schwantes IR, Sutton T, Behrens S, Fowler G, Han G, Vetto JT, Han D. Metastasectomy for metastatic melanoma in the era of effective systemic therapy. Am J Surg 2024; 231:65-69. [PMID: 37308347 DOI: 10.1016/j.amjsurg.2023.04.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/13/2023] [Accepted: 04/30/2023] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Effective systemic therapy (EST) in patients with metachronous metastatic melanoma (MMM) improves survival and alters surgical decision-making. Surgical metastasectomy is another treatment option, however, it is unclear if metastasectomy confers survival benefit. This study seeks to identify any survival benefit associated with surgical management of MMM. METHODS Patients with MMM from 2009 to 2021 were grouped by receipt of metastasectomy and treatment era (pre-versus post-EST). Overall survival (OS) was calculated from date of metastasis and evaluated with Kaplan-Meier analysis. RESULTS Our dataset identified 226 patients with MMM; 32% were diagnosed pre-EST. On Kaplan-Meier analysis, OS was improved for patients undergoing treatment post-versus pre-EST (p < 0.001). In the post-EST era, metastasectomy was associated with an increase in OS compared to no resection (p = 0.022). CONCLUSIONS In the post-EST group, EST paired with metastasectomy was associated with improved OS compared to the pre-EST group, suggesting persistent evidence of a survival benefit from metastasectomy.
Collapse
Affiliation(s)
- Issac R Schwantes
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Thomas Sutton
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Shay Behrens
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Graham Fowler
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Gang Han
- Texas A&M University, Department of Epidemiology and Biostatistics. School of Public Health, College Station, TX, USA
| | - John T Vetto
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA; Oregon Health & Science University, Division of Surgical Oncology-Knight Cancer Institute, Portland, OR, USA.
| | - Dale Han
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA; Oregon Health & Science University, Division of Surgical Oncology-Knight Cancer Institute, Portland, OR, USA
| |
Collapse
|
442
|
Grajales V, Martini A, Shore ND. Complications of immuno-oncology care: what urologist should know. BJU Int 2024; 133:524-531. [PMID: 38437876 DOI: 10.1111/bju.16310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
OBJECTIVES To provide a practical review of immune-related adverse events (irAEs) that may be encountered in uro-oncology patients. PATIENTS AND METHODS We conducted a literature review of studies reporting irAEs including articles published through September 2023 for uro-oncology patients and the potential relevancy for the practicing urologist. RESULTS Immunotherapy has revolutionised cancer treatment, extending its impact to urological malignancies including for patients with urothelial, kidney, and prostate cancers. Immuno-oncology (IO) compounds have achieved measurable and durable responses in these cancers. Urologists, choosing to administer or co-manage IO patient care, should be prepared to understand, evaluate, and treat irAEs. This review discusses the spectrum of irAEs that can be encountered. Ongoing trials are exploring the use of immunotherapy at earlier stages of uro-oncological diseases, thus underscoring the evolving landscape of urological cancer treatment. Paradoxically, some data suggests that the occurrence of irAEs is associated with improved oncological outcomes. CONCLUSIONS Immune-related AEs, while manageable, may be life-threatening and require lifelong therapy. A thorough understanding of AEs and toxicity of a novel drug class is imperative.
Collapse
Affiliation(s)
| | - Alberto Martini
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neal D Shore
- Carolina Urologic Research Center, Myrtle Beach, SC, USA
| |
Collapse
|
443
|
Cook SL, Al Amin M, Bari S, Poonnen PJ, Khasraw M, Johnson MO. Immune Checkpoint Inhibitors in Geriatric Oncology. Curr Oncol Rep 2024; 26:562-572. [PMID: 38587598 DOI: 10.1007/s11912-024-01528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
PURPOSE OF REVIEW This manuscript will update prior reviews of immune checkpoint inhibitors (ICIs) in light of basic science, translational, and clinical discoveries in the field of cancer immunology and aging. RECENT FINDINGS ICIs have led to significant advancements in the treatment of cancer. Landmark trials of ICIs have cited the efficacy and toxicity experienced by older patients, but most trials are not specifically designed to address outcomes in older patients. Underlying mechanisms of aging, like cellular senescence, affect the immune system and may ultimately alter the host's response to ICIs. Validated tools are currently used to identify older adults who may be at greater risk of developing complications from their cancer treatment. We review changes in the aging immune system that may alter responses to ICIs, report outcomes and toxicities in older adults from recent ICI clinical trials, and discuss clinical tools specific to older patients with cancer.
Collapse
Affiliation(s)
- Sarah L Cook
- Department of Neurosurgery, Duke University School of Medicine, 047 Baker House, Trent Drive, Durham, NC, 27710, USA
| | - Md Al Amin
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Sher-E-Bangla Medical College, Barisal City, Bangladesh
| | - Shahla Bari
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Pradeep J Poonnen
- Department of Veterans Affairs, Durham VA Medical Center, Durham, NC, USA
- Department of Veterans Affairs, National TeleOncology Program, Durham, NC, USA
| | - Mustafa Khasraw
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
- Department of Neurosurgery, Duke University School of Medicine, 047 Baker House, Trent Drive, Durham, NC, 27710, USA.
| | - Margaret O Johnson
- Department of Neurosurgery, Duke University School of Medicine, 047 Baker House, Trent Drive, Durham, NC, 27710, USA
- Department of Veterans Affairs, National TeleOncology Program, Durham, NC, USA
| |
Collapse
|
444
|
Valerius AR, Webb LM, Sener U. Novel Clinical Trials and Approaches in the Management of Glioblastoma. Curr Oncol Rep 2024; 26:439-465. [PMID: 38546941 DOI: 10.1007/s11912-024-01519-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss a wide variety of novel therapies recently studied or actively undergoing study in patients with glioblastoma. This review also discusses current and future strategies for improving clinical trial design in patients with glioblastoma to maximize efficacy in discovering effective treatments. RECENT FINDINGS Over the years, there has been significant expansion in therapy modalities studied in patients with glioblastoma. These therapies include, but are not limited to, targeted molecular therapies, DNA repair pathway targeted therapies, immunotherapies, vaccine therapies, and surgically targeted radiotherapies. Glioblastoma is the most common malignant primary brain tumor in adults and unfortunately remains with poor overall survival following the current standard of care. Given the dismal prognosis, significant clinical and research efforts are ongoing with the goal of improving patient outcomes and enhancing quality and quantity of life utilizing a wide variety of novel therapies.
Collapse
Affiliation(s)
| | - Lauren M Webb
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Ugur Sener
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
445
|
Gómez-Puerta JA, Gente K, Katsumoto TR, Leipe J, Reid P, van Binsbergen WH, Suarez-Almazor ME. Mimickers of Immune Checkpoint Inhibitor-induced Inflammatory Arthritis. Rheum Dis Clin North Am 2024; 50:161-179. [PMID: 38670719 DOI: 10.1016/j.rdc.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The differential diagnosis of inflammatory arthritis as an immune-related adverse event can be challenging as patients with cancer can present with musculoskeletal symptoms that can mimic arthritis because of localized or generalized joint pain. In addition, immune checkpoint inhibitors can exacerbate joint conditions such as crystal-induced arthritis or osteoarthritis, or induce systemic disease that can affect the joints such as sarcoidosis. This distinction is important as the treatment of these conditions can be different from that of immune-related inflammatory arthritis.
Collapse
Affiliation(s)
- José A Gómez-Puerta
- Department of Rheumatology, Hospital Clínic; University of Barcelona, Escala 11-2, Barcelona, Villarroel 170, Barcelona 08036, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Karolina Gente
- Department of Internal Medicine V - Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - Tamiko R Katsumoto
- Division of Immunology and Rheumatology, Department of Medicine, 300 Pasteur Drive Suite H305, Stanford, CA 94305, USA
| | - Jan Leipe
- Division of Rheumatology, Department of Medicine V, University Hospital Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim, Heidelberg 68167, Germany
| | - Pankti Reid
- Division of Rheumatology, Department of Medicine, University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | - Wouter H van Binsbergen
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center, Meibergdreef 9, 1105AZ (AMC) & De Boelelaan 1117, Amsterdam 1081 HV (VUmc), The Netherlands
| | - Maria E Suarez-Almazor
- Department of Health Services Research, MD Anderson Cancer Center, The University of Texas, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| |
Collapse
|
446
|
Haugh A, Daud AI. Therapeutic Strategies in BRAF V600 Wild-Type Cutaneous Melanoma. Am J Clin Dermatol 2024; 25:407-419. [PMID: 38329690 DOI: 10.1007/s40257-023-00841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 02/09/2024]
Abstract
There have been many recent advances in melanoma therapy. While 50% of melanomas have a BRAF mutation and are a target for BRAF inhibitors, the remaining 50% are BRAF wild-type. Immune checkpoint inhibitors targeting PD-1, cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and lymphocyte activated gene-3 (Lag-3) are all approved for the treatment of patients with advanced BRAF wild-type melanoma; however, treatment of this patient population following initial immune checkpoint blockade is a current therapeutic challenge given the lack of other efficacious options. Here, we briefly review available US FDA-approved therapies for BRAF wild-type melanoma and focus on developing treatment avenues for this heterogeneous group of patients. We review the basics of genomic features of both BRAF mutant and BRAF wild-type melanoma as well as efforts underway to develop new targeted therapies involving the mitogen-activated protein kinase (MAPK) pathway for patients with BRAF wild-type tumors. We then focus on novel immunotherapies, including developing checkpoint inhibitors and agonists, cytokine therapies, oncolytic viruses and tumor-infiltrating lymphocytes, all of which represent potential therapeutic avenues for patients with BRAF wild-type melanoma who progress on currently approved immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Alexandra Haugh
- Department of Medicine, University of California San Francisco, 550 16th Street, 6809, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Adil I Daud
- Department of Medicine, University of California San Francisco, 550 16th Street, 6809, San Francisco, CA, 94158, USA.
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
447
|
Dong Y, Chen Z, Yang F, Wei J, Huang J, Long X. Prediction of immunotherapy responsiveness in melanoma through single-cell sequencing-based characterization of the tumor immune microenvironment. Transl Oncol 2024; 43:101910. [PMID: 38417293 PMCID: PMC10907870 DOI: 10.1016/j.tranon.2024.101910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/13/2024] [Accepted: 02/08/2024] [Indexed: 03/01/2024] Open
Abstract
Immune checkpoint inhibitors (ICB) therapy have emerged as effective treatments for melanomas. However, the response of melanoma patients to ICB has been highly heterogenous. Here, by analyzing integrated scRNA-seq datasets from melanoma patients, we revealed significant differences in the TiME composition between ICB-resistant and responsive tissues, with resistant or responsive tissues characterized by an abundance of myeloid cells and CD8+ T cells or CD4+ T cell predominance, respectively. Among CD4+ T cells, CD4+ CXCL13+ Tfh-like cells were associated with an immunosuppressive phenotype linked to immune escape-related genes and negative regulation of T cell activation. We also develop an immunotherapy response prediction model based on the composition of the immune compartment. Our predictive model was validated using CIBERSORTx on bulk RNA-seq datasets from melanoma patients pre- and post-ICB treatment and showed a better performance than other existing models. Our study presents an effective immunotherapy response prediction model with potential for further translation, as well as underscores the critical role of the TiME in influencing the response of melanomas to immunotherapy.
Collapse
Affiliation(s)
- Yucheng Dong
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Zhizhuo Chen
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Fan Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiaxin Wei
- Department of Emergency Department, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiuzuo Huang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| | - Xiao Long
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
448
|
Scuderi SA, Ardizzone A, Salako AE, Pantò G, De Luca F, Esposito E, Capra AP. Pentraxin 3: A Main Driver of Inflammation and Immune System Dysfunction in the Tumor Microenvironment of Glioblastoma. Cancers (Basel) 2024; 16:1637. [PMID: 38730589 PMCID: PMC11083335 DOI: 10.3390/cancers16091637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Brain tumors are a heterogeneous group of brain neoplasms that are highly prevalent in individuals of all ages worldwide. Within this pathological framework, the most prevalent and aggressive type of primary brain tumor is glioblastoma (GB), a subtype of glioma that falls within the IV-grade astrocytoma group. The death rate for patients with GB remains high, occurring within a few months after diagnosis, even with the gold-standard therapies now available, such as surgery, radiation, or a pharmaceutical approach with Temozolomide. For this reason, it is crucial to continue looking for cutting-edge therapeutic options to raise patients' survival chances. Pentraxin 3 (PTX3) is a multifunctional protein that has a variety of regulatory roles in inflammatory processes related to extracellular matrix (ECM). An increase in PTX3 blood levels is considered a trustworthy factor associated with the beginning of inflammation. Moreover, scientific evidence suggested that PTX3 is a sensitive and earlier inflammation-related marker compared to the short pentraxin C-reactive protein (CRP). In several tumoral subtypes, via regulating complement-dependent and macrophage-associated tumor-promoting inflammation, it has been demonstrated that PTX3 may function as a promoter of cancer metastasis, invasion, and stemness. Our review aims to deeply evaluate the function of PTX3 in the pathological context of GB, considering its pivotal biological activities and its possible role as a molecular target for future therapies.
Collapse
Affiliation(s)
- Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (S.A.S.); (A.A.); (A.E.S.); (F.D.L.); (A.P.C.)
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (S.A.S.); (A.A.); (A.E.S.); (F.D.L.); (A.P.C.)
| | - Ayomide Eniola Salako
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (S.A.S.); (A.A.); (A.E.S.); (F.D.L.); (A.P.C.)
- University of Florence, 50121 Florence, Italy
| | - Giuseppe Pantò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy;
| | - Fabiola De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (S.A.S.); (A.A.); (A.E.S.); (F.D.L.); (A.P.C.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (S.A.S.); (A.A.); (A.E.S.); (F.D.L.); (A.P.C.)
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (S.A.S.); (A.A.); (A.E.S.); (F.D.L.); (A.P.C.)
| |
Collapse
|
449
|
Schofield JH, Longo J, Sheldon RD, Albano E, Ellis AE, Hawk MA, Murphy S, Duong L, Rahmy S, Lu X, Jones RG, Schafer ZT. Acod1 expression in cancer cells promotes immune evasion through the generation of inhibitory peptides. Cell Rep 2024; 43:113984. [PMID: 38520689 PMCID: PMC11090053 DOI: 10.1016/j.celrep.2024.113984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/24/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024] Open
Abstract
Targeting programmed cell death protein 1 (PD-1) is an important component of many immune checkpoint blockade (ICB) therapeutic approaches. However, ICB is not an efficacious strategy in a variety of cancer types, in part due to immunosuppressive metabolites in the tumor microenvironment. Here, we find that αPD-1-resistant cancer cells produce abundant itaconate (ITA) due to enhanced levels of aconitate decarboxylase (Acod1). Acod1 has an important role in the resistance to αPD-1, as decreasing Acod1 levels in αPD-1-resistant cancer cells can sensitize tumors to αPD-1 therapy. Mechanistically, cancer cells with high Acod1 inhibit the proliferation of naive CD8+ T cells through the secretion of inhibitory factors. Surprisingly, inhibition of CD8+ T cell proliferation is not dependent on the secretion of ITA but is instead a consequence of the release of small inhibitory peptides. Our study suggests that strategies to counter the activity of Acod1 in cancer cells may sensitize tumors to ICB therapy.
Collapse
Affiliation(s)
- James H Schofield
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Joseph Longo
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ryan D Sheldon
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Emma Albano
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Abigail E Ellis
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Mark A Hawk
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sean Murphy
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Loan Duong
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sharif Rahmy
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Xin Lu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Russell G Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Zachary T Schafer
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
450
|
Rastrelli M, Russano F, Cavallin F, Del Fiore P, Pacilli C, Di Prata C, Rossi CR, Vecchiato A, Dall’Olmo L, Mocellin S. Isolated Limb Perfusion and Immunotherapy in the Treatment of In-Transit Melanoma Metastases: Is It a Real Synergy? J Pers Med 2024; 14:442. [PMID: 38793023 PMCID: PMC11122383 DOI: 10.3390/jpm14050442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Isolated limb hyperthermic-antiblastic perfusion (ILP) was the most effective local treatment for advanced in-transit melanoma, but the advent of modern effective immunotherapy (IT), such as immune checkpoint inhibitors, has changed the treatment landscape. METHODS This study evaluated the role of the association between ILP and IT in the treatment of locally advanced unresectable melanoma, particularly in relation to modern systemic therapies. We analyzed 187 consecutive patients who were treated with ILP (melphalan or melphalan associated with TNF-alpha) for advanced melanoma at the Veneto Institute of Oncology of Padua (Italy) and the Padua University Hospital (Italy) between June 1989 and September 2021. Overall survival (OS), disease-specific survival (DSS), local disease-free survival (local DFS) and distant disease-free survival (distant DFS) were evaluated. Local toxicity was classified according to the Wieberdink scale and surgical complications according to the Clavien-Dindo classification. Response to locoregional therapy was evaluated during follow-up according to the RECIST 1.1 criteria (Response Evaluation Criteria in Solid Tumor). RESULTS A total of 99 patients were treated with ILP and 88 with IT + ILP. The overall response rate was 67% in both groups. At 36 months, OS was 43% in the ILP group and 61% in the ILP + IT group (p = 0.02); DSS was 43% in the ILP group and 64% in the ILP + IT group (p = 0.02); local DFS was the 37% in ILP group and 53% in the ILP + IT group (p = 0.04); and distant DFS was 33% in the ILP group and 35% in the ILP + IT group (p = 0.40). Adjusting for age and lymph node involvement, receiving ILP + IT was associated with improved OS (p = 0.01) and DSS (p = 0.007) but not local DFS (p = 0.13) and distant DFS (p = 0.21). CONCLUSIONS Our findings confirm the synergy between ILP and IT. ILP remains a valuable loco-regional treatment option in the era of effective systemic treatments. Further studies are needed to establish the optimal combination of loco-regional and systemic treatments and address the best timing of this combination to obtain the highest local response rate.
Collapse
Affiliation(s)
- Marco Rastrelli
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy; (M.R.); (F.R.); (A.V.); (L.D.); (S.M.)
- Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, 35128 Padova, Italy;
| | - Francesco Russano
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy; (M.R.); (F.R.); (A.V.); (L.D.); (S.M.)
| | | | - Paolo Del Fiore
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy; (M.R.); (F.R.); (A.V.); (L.D.); (S.M.)
| | - Claudia Pacilli
- Department of Medicine (DIMED), School of Medicine, University of Padova, 35128 Padova, Italy;
| | | | - Carlo Riccardo Rossi
- Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, 35128 Padova, Italy;
| | - Antonella Vecchiato
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy; (M.R.); (F.R.); (A.V.); (L.D.); (S.M.)
| | - Luigi Dall’Olmo
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy; (M.R.); (F.R.); (A.V.); (L.D.); (S.M.)
- Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, 35128 Padova, Italy;
| | - Simone Mocellin
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy; (M.R.); (F.R.); (A.V.); (L.D.); (S.M.)
- Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padua, 35128 Padova, Italy;
| |
Collapse
|