401
|
Fedorov Y, King A, Anderson E, Karpilow J, Ilsley D, Marshall W, Khvorova A. Different delivery methods-different expression profiles. Nat Methods 2005; 2:241. [PMID: 15782213 DOI: 10.1038/nmeth0405-241] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
402
|
Suzuki T, Moraes TJ, Vachon E, Ginzberg HH, Huang TT, Matthay MA, Hollenberg MD, Marshall J, McCulloch CAG, Abreu MTH, Chow CW, Downey GP. Proteinase-activated receptor-1 mediates elastase-induced apoptosis of human lung epithelial cells. Am J Respir Cell Mol Biol 2005; 33:231-47. [PMID: 15891109 PMCID: PMC2715314 DOI: 10.1165/rcmb.2005-0109oc] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Apoptosis of distal lung epithelial cells plays a pivotal role in the pathogenesis of acute lung injury. In this context, proteinases, either circulating or leukocyte-derived, may contribute to epithelial apoptosis and lung injury. We hypothesized that apoptosis of lung epithelial cells induced by leukocyte elastase is mediated via the proteinase activated receptor (PAR)-1. Leukocyte elastase, thrombin, and PAR-1-activating peptide, but not the control peptide, induced apoptosis in human airway and alveolar epithelial cells as assessed by increases in cytoplasmic histone-associated DNA fragments and TUNEL staining. These effects were largely prevented by a specific PAR-1 antagonist and by short interfering RNA directed against PAR-1. To ascertain the mechanism of epithelial apoptosis, we determined that PAR-1AP, thrombin, and leukocyte elastase dissipated mitochondrial membrane potential, induced translocation of cytochrome c to the cytosol, enhanced cleavage of caspase-9 and caspase-3, and led to JNK activation and Akt inhibition. In concert, these observations provide strong evidence that leukocyte elastase mediates apoptosis of human lung epithelial cells through PAR-1-dependent modulation of the intrinsic apoptotic pathway via alterations in mitochondrial permeability and by modulation of JNK and Akt.
Collapse
Affiliation(s)
- Tomoko Suzuki
- Division of Respirology, Department of Medicine, University of Toronto and Toronto General Hospital Research Institute, 1 King's College Circle, Toronto, Ontario, M5S 1A8 Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
403
|
Mori K, Kuni-Kamochi R, Yamane-Ohnuki N, Wakitani M, Yamano K, Imai H, Kanda Y, Niwa R, Iida S, Uchida K, Shitara K, Satoh M. Engineering Chinese hamster ovary cells to maximize effector function of produced antibodies using FUT8 siRNA. Biotechnol Bioeng 2005; 88:901-8. [PMID: 15515168 DOI: 10.1002/bit.20326] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We explored the possibility of converting established antibody-producing cells to cells producing high antibody-dependent cellular cytotoxicity (ADCC) antibodies. The conversion was made by constitutive expression of small interfering RNA (siRNA) against alpha1,6 fucosyltransferase (FUT8). We found two effective siRNAs, which reduce FUT8 mRNA expression to 20% when introduced into Chinese hamster ovary (CHO)/DG44 cells. Selection for Lens culinaris agglutinin (LCA)-resistant clones after introduction of the FUT8 siRNA expression plasmids yields clones producing highly defucosylated (approximately 60%) antibody with over 100-fold higher ADCC compared to antibody produced by the parental cells (approximately 10% defucosylated). Moreover, the selected clones remain stable, producing defucosylated antibody even in serum-free fed-batch culture. Our results demonstrate that constitutive FUT8 siRNA expression can control the oligosaccharide structure of recombinant antibody produced by CHO cells to yield antibodies with dramatically enhanced ADCC.
Collapse
Affiliation(s)
- Katsuhiro Mori
- Tokyo Research Laboratories, Kyowa Hakko Kogyo Co., Ltd., 3-6-6 Asahi-machi, Machida-shi, Tokyo 194-8533, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
404
|
Kwon HS, Shin HC, Kim JS. Suppression of vascular endothelial growth factor expression at the transcriptional and post-transcriptional levels. Nucleic Acids Res 2005; 33:e74. [PMID: 15860771 PMCID: PMC1087787 DOI: 10.1093/nar/gni068] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Gene expression is regulated at the transcriptional and post-transcriptional levels. Therefore, in order to achieve a high level of silencing, which includes minimizing any residual expression of a target gene, suppression at both the transcriptional and post-transcriptional levels is required. In this study, we describe a new method for highly efficient gene silencing that combines zinc finger protein-mediated transcriptional repression and small interfering RNA (siRNA)-mediated inhibition of post-transcriptional events. To measure the amount of gene expression under various conditions, we used a luciferase reporter gene that was driven by a variety of promoters, including that of the human vascular endothelial growth factor-A (VEGF-A) gene. We also measured expression of the endogenous VEGF-A gene. Inhibition of gene expression by each of the two individual technologies was effective, but in-depth analyses revealed residual expression of the target gene. The combination of specific zinc finger transcription factors and siRNAs greatly enhanced the silencing of the human VEGF-A gene, not only when cells were grown in the presence of normal amounts of oxygen but also under conditions of hypoxic stimulation. These results suggest that a bi-level approach to the silencing of VEGF-A expression may be clinically beneficial as part of a cancer treatment protocol.
Collapse
Affiliation(s)
| | | | - Jin-Soo Kim
- To whom correspondence should be addressed. Tel: +82 42 863 8166; Fax: +82 42 863 3840;
| |
Collapse
|
405
|
Sledz CA, Williams BRG. RNA interference and double-stranded-RNA-activated pathways. Biochem Soc Trans 2005; 32:952-6. [PMID: 15506933 DOI: 10.1042/bst0320952] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
RNAi (RNA interference) has become a powerful tool to determine gene function. Different methods of expressing the short ds (double-stranded) RNA intermediates required for interference in mammalian systems have been developed, including the introduction of si (short interfering) RNAs by direct transfection or driven from transfected plasmids or lentiviral vectors encoding sh (short hairpin) RNAs. Although RNAi relies upon a high degree of specificity, recent findings suggest that off-target non-specific effects can be encountered. We found that transfection of siRNAs can results in an interferon-mediated activation of the JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway and global up-regulation of interferon-stimulated genes. This effect is mediated in part by the dsRNA-dependent protein kinase PKR, as this kinase is activated by the 21 bp siRNA, and is required in response to the siRNAs. However, the transcription factor IRF3 (interferon-regulatory factor 3) is also activated by siRNA as a primary response, resulting in the stimulation of genes independent of an interferon response. In cells deficient in IRF3, this response is blunted, but can be restored by re-introduction of IRF3. Thus siRNAs induce complex signalling responses in target cells, leading to effects beyond the selective silencing of specific genes.
Collapse
Affiliation(s)
- C A Sledz
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | |
Collapse
|
406
|
Kasashima K, Sakota E, Kozu T. Discrimination of target by siRNA: designing of AML1-MTG8 fusion mRNA-specific siRNA sequences. Biochimie 2005; 86:713-21. [PMID: 15556282 DOI: 10.1016/j.biochi.2004.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Accepted: 08/16/2004] [Indexed: 11/30/2022]
Abstract
AML1-MTG8 is a chimeric transcription factor produced by t(8;21) chromosome translocation and causes AML. AML1-MTG8 acts as a dominant negative effector on normal AML1 protein, a key transcriptional regulator of hematopoietic differentiation, but its precise mechanism is not known. To analyze the function of AML1-MTG8 in leukemic cells and to explore the possibility of AML1-MTG8-targeted therapy, we designed nine small interfering RNAs (siRNAs) targeting a 25-nucleotide region spanning the fusion point of AML1 and MTG8. Two different siRNAs (AM2 and AM4) significantly reduced AML1-MTG8 expression from a transfected reporter plasmid at both the mRNA and protein levels. Both siRNAs did not reduce AML1b expression, but AM2 siRNA showed slightly reducing activity against MTG8b mRNA that is 86% homologous to the corresponded region of AML1-MTG8 mRNA. Moreover, using a cationic lipid reagent, the siRNAs were efficiently introduced into leukemia cell lines with t(8;21), SKNO-1 (30-40%) and Kasumi-1 (60-70%) cells, and reduced specifically the endogenous AML1-MTG8 expression. The siRNAs reduced neither the wild type AML1 in Kasumi-1 cells nor wild type MTG8b in human erythroblastic leukemia (HEL) cells. These results indicated that the two siRNAs are highly specific for the fusion mRNA. The knockdown of AML1-MTG8 in Kasumi-1 cells resulted in the activation of p14(ARF) promoter activity and increased the expression of integrin alphaIIb, whose expression is related to megakaryocytic differentiation. However, the knockdown of AML1-MTG8 in Kasumi-1 cells did not inhibit the cell growth, suggesting that the siRNA-mediated knockdown of AML1-MTG8 is useful for the functional analysis of the gene, but it alone might not be sufficient for gene therapy of the leukemia.
Collapse
Affiliation(s)
- Katsumi Kasashima
- Division of Cancer Treatment, Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina, Saitama 362-0806, Japan
| | | | | |
Collapse
|
407
|
Abstract
RNA interference (RNAi) is a conserved biologic response to double-stranded RNA that results in the sequence-specific silencing of target gene expression. Over the past 5 years, an intensive research effort has facilitated the rapid movement of RNAi from a relatively obscure biologic phenomenon to a valuable tool used to silence target gene expression and perform large-scale functional genomic screens. In fact, recent studies reported in this journal and others have demonstrated success using RNAi to address the role of oncogene expression in leukemia cell lines and to validate the therapeutic potential of RNAi for treating these blood disorders. In order to advance these applications and gain an appreciation for the future of RNAi both in basic research and in the treatment of diseases caused by aberrant gene expression, it is important to have an understanding of the process of RNAi and its limitations.
Collapse
Affiliation(s)
- Carol A Sledz
- Department of Cancer Biology NB40, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | | |
Collapse
|
408
|
Guan H, Zhou Z, Wang H, Jia SF, Liu W, Kleinerman ES. A Small Interfering RNA Targeting Vascular Endothelial Growth Factor Inhibits Ewing's Sarcoma Growth in a Xenograft Mouse Model. Clin Cancer Res 2005; 11:2662-9. [PMID: 15814647 DOI: 10.1158/1078-0432.ccr-04-1206] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiogenesis plays an essential role in tumor growth and metastasis and is a promising therapeutic target for cancer. Vascular endothelial growth factor (VEGF) is a key regulator in vasculogenesis as well as in angiogenesis. TC71 human Ewing's sarcoma cells overexpress VEGF, with a shift in isoform production from membrane-bound VEGF189 to the more soluble VEGF165. Transfection of TC71 cells with a vector-based VEGF targeted small interfering RNA expression system (VEGFsi) inhibited VEGF165 expression by 80% and VEGF165 protein production by 98%, with no alteration in VEGF189 expression. Human microvascular endothelial cell proliferation and migration induced by conditioned medium from VEGFsi-transfected TC71 cells was significantly less than that induced by conditioned medium from TC71 cells and control vector-transfected TC71 cells. Furthermore, after s.c. injection into athymic nu/nu mice, the tumor growth of VEGFsi-expressing TC71 cells was significantly less than that of parental or control vector-transfected cells. Vessel density as assessed by CD31 immunohistochemical analysis and VEGF165 expression as assessed by Northern blotting were also decreased. Intratumor gene therapy with polyethylenimine/VEGFsi also resulted in tumor growth suppression. When inoculated into the tibias of nude mice, VEGFsi-expressing TC71 cells induced osteolytic bone lesions that were less severe than those induced by control groups. These data suggest that targeting VEGF165 may provide a therapeutic option for Ewing's sarcoma.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/metabolism
- Apoptosis
- Blotting, Western
- Cell Line
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- DNA Topoisomerases, Type II/metabolism
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Immunohistochemistry
- Mice
- Mice, Nude
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Plasmids/genetics
- Platelet Endothelial Cell Adhesion Molecule-1/analysis
- RNA Interference
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptor, ErbB-2/metabolism
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/mortality
- Sarcoma, Ewing/pathology
- Survival Rate
- Transfection
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
- Xenograft Model Antitumor Assays/methods
Collapse
Affiliation(s)
- Hui Guan
- Division of Pediatrics and Departments of Cancer Biology and Surgical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
409
|
Abstract
Small non-coding RNAs called microRNAs have been shown to play important roles in gene regulation across a broad range of metazoans from plants to humans. In this review, the nature and function of microRNAs will be discussed, with special emphasis on the computational tools and databases available to predict microRNAs and the genes they target.
Collapse
Affiliation(s)
- James R Brown
- GlaxoSmithKline, Bioinformatics Discovery and Analysis, Upper Providence, 1250 South Collegeville Road, UP1345, PO Box 5089, Collegeville, PA 19426-0989, USA
| | | |
Collapse
|
410
|
Miyake K, Flygare J, Kiefer T, Utsugisawa T, Richter J, Ma Z, Wiznerowicz M, Trono D, Karlsson S. Development of cellular models for ribosomal protein S19 (RPS19)-deficient diamond–blackfan anemia using inducible expression of siRNA against RPS19. Mol Ther 2005; 11:627-37. [PMID: 15771965 DOI: 10.1016/j.ymthe.2004.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Accepted: 12/05/2004] [Indexed: 10/26/2022] Open
Abstract
Diamond-Blackfan anemia (DBA) is a congenital red cell aplasia in which 25% of the patients have a mutation in the ribosomal protein S19 (RPS19) gene. No models exist for RPS19-deficient DBA and the molecular pathogenesis is unknown. To establish an in vitro inducible model for DBA, human erythroid leukemic cell lines, TF-1 and UT-7 cells, were cotransduced with a lentiviral vector expressing the green fluorescent protein (GFP) gene and small interfering RNA (siRNA) against RPS19 controlled by a tet operator regulatory element and another transactivator vector containing the red fluorescent protein (RFP) gene and the cDNA encoding a tetracycline-controllable transcriptional repressor. Following transduction, the RFP-positive and GFP-negative cell population was sorted by flow cytometry. Upon incubation with doxycycline (0.5 mug/ml), more than 98% of cells expressed GFP and the siRNA. Significant suppression of erythroid differentiation, cell growth, and colony formation was observed in cells treated with siRNA against RPS19 but not in cells treated with a control vector. These findings show that RPS19 plays an important role in the regulation of hematopoietic cell proliferation and erythroid differentiation. These novel cell lines represent models for RPS19-deficient DBA and can be used to identify the molecular mechanisms in RPS19-deficient DBA.
Collapse
Affiliation(s)
- Koichi Miyake
- Molecular Medicine and Gene Therapy, Lund University, BMC A12, 221 84 Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
411
|
Yashpal NK, Li J, Wheeler MB, Wang R. Expression of {beta}1 integrin receptors during rat pancreas development--sites and dynamics. Endocrinology 2005; 146:1798-807. [PMID: 15618357 DOI: 10.1210/en.2004-1292] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The integrin receptors link to extracellular matrix proteins and exert a dynamic role in development by providing the physical basis for cell adhesion and controlling cell growth. In the present study, we examined changes in the expression of beta1 integrins and its associated alpha-subunits to islet cell development in the rat pancreas. A significant increase in protein expression of integrin alpha3, alpha6, and beta1 was observed from fetal to postnatal life. High mRNA levels of these integrin subunits was detected at embryonic d 18 and dropped significantly after birth with relatively low expression throughout postnatal life. Integrins alpha3, alpha5, alpha6, and beta1 were expressed in a cell-specific manner in the pancreas with high integrin immunoreactivity in duct and islet regions during fetal life, and a progressive increase later into postnatal life. The coexpression with islet and putative islet precursor markers during fetal and postnatal development suggest a role for these integrin subunits in differentiation and maturation of islets. Functional studies in vitro showed that anti-beta1 antibody treatment inhibited islet cell adhesion to extracellular matrices and disrupted islet architecture. Blockade of beta1 integrin receptor and knockdown beta1 mRNA resulted in a decrease in the expression of insulin mRNA and increased islet cell death. These results suggest that progression in islet cell development is accompanied by and dependent upon cell adhesion via beta1 integrin and its respective alpha-subunits and suggest that the beta1 family of integrins may play a critical role in islet cell architecture, development, integrity, and function.
Collapse
Affiliation(s)
- Nina Kaur Yashpal
- Victoria Research Laboratories Room A5 140, 800 Commissioners Road, East London, Ontario, Canada N6C 2V5
| | | | | | | |
Collapse
|
412
|
Qiu S, Adema CM, Lane T. A computational study of off-target effects of RNA interference. Nucleic Acids Res 2005; 33:1834-47. [PMID: 15800213 PMCID: PMC1072799 DOI: 10.1093/nar/gki324] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Revised: 02/19/2005] [Accepted: 03/07/2005] [Indexed: 01/26/2023] Open
Abstract
RNA interference (RNAi) is an intracellular mechanism for post-transcriptional gene silencing that is frequently used to study gene function. RNAi is initiated by short interfering RNA (siRNA) of approximately 21 nt in length, either generated from the double-stranded RNA (dsRNA) by using the enzyme Dicer or introduced experimentally. Following association with an RNAi silencing complex, siRNA targets mRNA transcripts that have sequence identity for destruction. A phenotype resulting from this knockdown of expression may inform about the function of the targeted gene. However, 'off-target effects' compromise the specificity of RNAi if sequence identity between siRNA and random mRNA transcripts causes RNAi to knockdown expression of non-targeted genes. The complete off-target effects must be investigated systematically on each gene in a genome by adjusting a group of parameters, which is too expensive to conduct experimentally and motivates a study in silico. This computational study examined the potential for off-target effects of RNAi, employing the genome and transcriptome sequence data of Homo sapiens, Caenorhabditis elegans and Schizosaccharomyces pombe. The chance for RNAi off-target effects proved considerable, ranging from 5 to 80% for each of the organisms, when using as parameter the exact identity between any possible siRNA sequences (arbitrary length ranging from 17 to 28 nt) derived from a dsRNA (range 100-400 nt) representing the coding sequences of target genes and all other siRNAs within the genome. Remarkably, high-sequence specificity and low probability for off-target reactivity were optimally balanced for siRNA of 21 nt, the length observed mostly in vivo. The chance for off-target RNAi increased (although not always significantly) with greater length of the initial dsRNA sequence, inclusion into the analysis of available untranslated region sequences and allowing for mismatches between siRNA and target sequences. siRNA sequences from within 100 nt of the 5' termini of coding sequences had low chances for off-target reactivity. This may be owing to coding constraints for signal peptide-encoding regions of genes relative to regions that encode for mature proteins. Off-target distribution varied along the chromosomes of C.elegans, apparently owing to the use of more unique sequences in gene-dense regions. Finally, biological and thermodynamical descriptors of effective siRNA reduced the number of potential siRNAs compared with those identified by sequence identity alone, but off-target RNAi remained likely, with an off-target error rate of approximately 10%. These results also suggest a direction for future in vivo studies that could both help in calibrating true off-target rates in living organisms and also in contributing evidence toward the debate of whether siRNA efficacy is correlated with, or independent of, the target molecule. In summary, off-target effects present a real but not prohibitive concern that should be considered for RNAi experiments.
Collapse
Affiliation(s)
- Shibin Qiu
- Department of Computer Science, University of New MexicoAlbuquerque, NM 87131, USA
- Department of Biology, University of New MexicoAlbuquerque, NM 87131, USA
| | - Coen M. Adema
- Department of Biology, University of New MexicoAlbuquerque, NM 87131, USA
| | - Terran Lane
- To whom correspondence should be addressed at Department of Computer Science, University of New Mexico, Farris Engineering Building Room 325, Albuquerque, NM 87131-1386, USA. Tel: +1 505 277 9609; Fax: +1 505 277 9627;
| |
Collapse
|
413
|
Godfrey A, Anderson J, Papanastasiou A, Takeuchi Y, Boshoff C. Inhibiting primary effusion lymphoma by lentiviral vectors encoding short hairpin RNA. Blood 2005; 105:2510-8. [PMID: 15572586 DOI: 10.1182/blood-2004-08-3052] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AbstractWe use lentiviral-delivered RNA interference (RNAi) to inhibit the growth of a model of primary effusion lymphoma (PEL) in vitro and in vivo. RNAi is a phenomenon allowing the sequence-specific targeting and silencing of exogenous and endogenous gene expression and is being applied to inhibit viral replication both in vitro and in vivo. We show that silencing of genes believed to be essential for the Kaposi sarcoma-associated herpesvirus (KSHV) latent life cycle (the oncogenic cluster) has a varied effect in PEL cell lines cultured in vitro, however, concomitant silencing of the viral cyclin (vcyclin) and viral FLICE (Fas-associating protein with death domain-like interleukin-1β-converting enzyme) inhibitory protein (vFLIP) caused efficient apoptosis in all PEL lines tested. We demonstrate that in a murine model of PEL, lentiviral-mediated RNA interference both inhibits development of ascites and can act as a treatment for established ascites. We also show that the administered lentiviral vectors are essentially limited to the peritoneal cavity, which has advantages for safety and dosage in a therapeutic setting. This shows the use of lentiviral-mediated RNA interference in vivo as a potential therapeutic against a virally driven human cancer.
Collapse
Affiliation(s)
- Andrew Godfrey
- Cancer Research United Kingdom Viral Oncology Group, Wolfson Institute for Biomedical Research, UCL, Gower Street, London, United Kingdom WC1E 6BT
| | | | | | | | | |
Collapse
|
414
|
Abstract
The large number of candidate genes identified by modern high-throughput technologies require efficient methods for generating knockout phenotypes or gene silencing in order to study gene function. RNA interference (RNAi) is an efficient method that can be used for this purpose. Effective gene silencing by RNAi depends on a number of important parameters, including the dynamics of gene expression and the RNA dose. Using mouse hepatoma cells, we detail some of the principal characteristics of RNAi as a tool for gene silencing, such as the RNA dose level, RNA complex exposure time, and the time of transfection relative to gene induction, in the context of silencing a green fluorescent protein reporter gene. Our experiments demonstrate that different levels of silencing can be attained by modulating the dose level of RNA and the time of transfection and illustrate the importance of a dynamic analysis in designing robust silencing protocols. By quantifying the kinetics of RNAi-based gene silencing, we present a model that may be used to help determine key parameters in more complex silencing experiments and explore alternative gene silencing protocols.
Collapse
Affiliation(s)
- R Michael Raab
- Department of Chemical Engineering, Room 56-459, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
415
|
Oxford GS, Webb CK. GoLoco motif peptides as probes of Galpha subunit specificity in coupling of G-protein-coupled receptors to ion channels. Methods Enzymol 2005; 390:437-50. [PMID: 15488193 DOI: 10.1016/s0076-6879(04)90027-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Biochemical and structural studies of signaling proteins have revealed critical features of peptide motifs at the interaction surfaces between proteins. Such information can be used to design small peptides that can be used as functional probes of specific interactions in signaling cascades. This article describes the use of a novel domain (the GoLoco motif) found in several members of the regulators of G-protein signaling (RGS) protein family to probe the specificity of Galpha subunit involvement in the coupling of dopamine and somatostatin receptors to ion channels in the AtT20 neuroendocrine cell line. Peptides encoding the GoLoco motifs of RGS12 and AGS3 were perfused into single cells during electrical recording of agonist-induced current responses by whole cell patch clamp methods. The particular sequences chosen have been demonstrated to bind selectively to the GDP-bound form of Galphai, but not Galphao, and preclude association of Gbetagamma and Galphai subunits. A functional manifestation of this property is observed in the progressive uncoupling of D2 dopamine receptors and Kir3.1/3.2 channels with repeated agonist application. Similar uncoupling is not observed with somatostatin receptors nor with D2 receptors coupling to calcium channels, suggesting Galpha subunit specificity in these signaling pathways. Motifs found in other proteins in the GPCR signaling machinery may also prove useful in assessing G-protein signaling specificity and complexity in single cells in the future.
Collapse
Affiliation(s)
- Gerry S Oxford
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis 46202, USA
| | | |
Collapse
|
416
|
Gifford LK, Opalinska JB, Jordan D, Pattanayak V, Greenham P, Kalota A, Robbins M, Vernovsky K, Rodriguez LC, Do BT, Lu P, Gewirtz AM. Identification of antisense nucleic acid hybridization sites in mRNA molecules with self-quenching fluorescent reporter molecules. Nucleic Acids Res 2005; 33:e28. [PMID: 15718294 PMCID: PMC549423 DOI: 10.1093/nar/gni024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We describe a physical mRNA mapping strategy employing fluorescent self-quenching reporter molecules (SQRMs) that facilitates the identification of mRNA sequence accessible for hybridization with antisense nucleic acids in vitro and in vivo, real time. SQRMs are 20–30 base oligodeoxynucleotides with 5–6 bp complementary ends to which a 5′ fluorophore and 3′ quenching group are attached. Alone, the SQRM complementary ends form a stem that holds the fluorophore and quencher in contact. When the SQRM forms base pairs with its target, the structure separates the fluorophore from the quencher. This event can be reported by fluorescence emission when the fluorophore is excited. The stem–loop of the SQRM suggests that SQRM be made to target natural stem–loop structures formed during mRNA synthesis. The general utility of this method is demonstrated by SQRM identification of targetable sequence within c-myb and bcl-6 mRNA. Corresponding antisense oligonucleotides reduce these gene products in cells.
Collapse
Affiliation(s)
- Lida K. Gifford
- Department of Chemistry, School of Arts and Sciences231 South 34th Street, Philadelphia, PA 19104, USA
| | - Joanna B. Opalinska
- Department of Chemistry, School of Arts and Sciences231 South 34th Street, Philadelphia, PA 19104, USA
| | - David Jordan
- Department of Chemistry, School of Arts and Sciences231 South 34th Street, Philadelphia, PA 19104, USA
| | - Vikram Pattanayak
- Department of Chemistry, School of Arts and Sciences231 South 34th Street, Philadelphia, PA 19104, USA
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of PennsylvaniaRoom 713, BRB II/III 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Paul Greenham
- Department of Chemistry, School of Arts and Sciences231 South 34th Street, Philadelphia, PA 19104, USA
| | - Anna Kalota
- Department of Chemistry, School of Arts and Sciences231 South 34th Street, Philadelphia, PA 19104, USA
| | - Michelle Robbins
- Department of Chemistry, School of Arts and Sciences231 South 34th Street, Philadelphia, PA 19104, USA
| | - Kathy Vernovsky
- Department of Chemistry, School of Arts and Sciences231 South 34th Street, Philadelphia, PA 19104, USA
| | - Lesbeth C. Rodriguez
- Department of Chemistry, School of Arts and Sciences231 South 34th Street, Philadelphia, PA 19104, USA
| | - Bao T. Do
- Department of Chemistry, School of Arts and Sciences231 South 34th Street, Philadelphia, PA 19104, USA
| | - Ponzy Lu
- Department of Chemistry, School of Arts and Sciences231 South 34th Street, Philadelphia, PA 19104, USA
| | - Alan M. Gewirtz
- Department of Chemistry, School of Arts and Sciences231 South 34th Street, Philadelphia, PA 19104, USA
- To whom correspondence should be addressed. Tel: +1 215 898 4499; Fax: +1 215 573 2078;
| |
Collapse
|
417
|
Leonard JN, Schaffer DV. Computational design of antiviral RNA interference strategies that resist human immunodeficiency virus escape. J Virol 2005; 79:1645-54. [PMID: 15650190 PMCID: PMC544124 DOI: 10.1128/jvi.79.3.1645-1654.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recently developed antiviral strategies based upon RNA interference (RNAi), which harnesses an innate cellular system for the targeted down-regulation of gene expression, appear highly promising and offer alternative approaches to conventional highly active antiretroviral therapy or efforts to develop an AIDS vaccine. However, RNAi is faced with several challenges that must be overcome to fully realize its promise. Specifically, it degrades target RNA in a highly sequence-specific manner and is thus susceptible to viral mutational escape, and there are also challenges in delivery systems to induce RNAi. To aid in the development of anti-human immunodeficiency virus (anti-HIV) RNAi therapies, we have developed a novel stochastic computational model that simulates in molecular-level detail the propagation of an HIV infection in cells expressing RNAi. The model provides quantitative predictions on how targeting multiple locations in the HIV genome, while keeping the overall RNAi strength constant, significantly improves efficacy. Furthermore, it demonstrates that delivery systems must be highly efficient to preclude leaving reservoirs of unprotected cells where the virus can propagate, mutate, and eventually overwhelm the entire system. It also predicts how therapeutic success depends upon a relationship between RNAi strength and delivery efficiency and uniformity. Finally, targeting an essential viral element, in this case the HIV TAR region, can be highly successful if the RNAi target sequence is correctly selected. In addition to providing specific predictions for how to optimize a clinical therapy, this system may also serve as a future tool for investigating more fundamental questions of viral evolution.
Collapse
Affiliation(s)
- Joshua N Leonard
- Department of Chemical Engineering and The Helen Wills Neuroscience Institute, University of California, 201 Gilman Hall, Berkeley, CA 94720-1462, USA
| | | |
Collapse
|
418
|
Rusconi F, Durand-Dubief M, Bastin P. Functional complementation of RNA interference mutants in trypanosomes. BMC Biotechnol 2005; 5:6. [PMID: 15703078 PMCID: PMC549545 DOI: 10.1186/1472-6750-5-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Accepted: 02/09/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In many eukaryotic cells, double-stranded RNA (dsRNA) triggers RNA interference (RNAi), the specific degradation of RNA of homologous sequence. RNAi is now a major tool for reverse-genetics projects, including large-scale high-throughput screens. Recent reports have questioned the specificity of RNAi, raising problems in interpretation of RNAi-based experiments. RESULTS Using the protozoan Trypanosoma brucei as a model, we designed a functional complementation assay to ascertain that phenotypic effect(s) observed upon RNAi were due to specific silencing of the targeted gene. This was applied to a cytoskeletal gene encoding the paraflagellar rod protein 2 (TbPFR2), whose product is essential for flagellar motility. We demonstrate the complementation of TbPFR2, silenced via dsRNA targeting its UTRs, through the expression of a tagged RNAi-resistant TbPFR2 encoding a protein that could be immunolocalized in the flagellum. Next, we performed a functional complementation of TbPFR2, silenced via dsRNA targeting its coding sequence, through heterologous expression of the TbPFR2 orthologue gene from Trypanosoma cruzi: the flagellum regained its motility. CONCLUSIONS This work shows that functional complementation experiments can be readily performed in order to ascertain that phenotypic effects observed upon RNAi experiments are indeed due to the specific silencing of the targetted gene. Further, the results described here are of particular interest when reverse genetics studies cannot be easily achieved in organisms not amenable to RNAi. In addition, our strategy should constitute a firm basis to elaborate functional-dissection studies of genes from other organisms.
Collapse
Affiliation(s)
- Filippo Rusconi
- UMR5153 CNRS, USM0503 MNHN, U565 INSERM – 57, rue Cuvier – B.P. 26 – F-75231 – Paris Cedex 05 – France
| | - Mickaël Durand-Dubief
- UMR5153 CNRS, USM0503 MNHN, U565 INSERM – 57, rue Cuvier – B.P. 26 – F-75231 – Paris Cedex 05 – France
| | - Philippe Bastin
- UMR5153 CNRS, USM0503 MNHN, U565 INSERM – 57, rue Cuvier – B.P. 26 – F-75231 – Paris Cedex 05 – France
| |
Collapse
|
419
|
Kittler R, Pelletier L, Ma C, Poser I, Fischer S, Hyman AA, Buchholz F. RNA interference rescue by bacterial artificial chromosome transgenesis in mammalian tissue culture cells. Proc Natl Acad Sci U S A 2005; 102:2396-401. [PMID: 15695330 PMCID: PMC548992 DOI: 10.1073/pnas.0409861102] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA interference (RNAi) is a widely used method for analysis of gene function in tissue culture cells. However, to date there has been no reliable method for testing the specificity of any particular RNAi experiment. The ideal experiment is to rescue the phenotype by expression of the target gene in a form refractory to RNAi. The transgene should be expressed at physiological levels and with its different splice variants. Here, we demonstrate that expression of murine bacterial artificial chromosomes in human cells provides a reliable method to create RNAi-resistant transgenes. This strategy should be applicable to all eukaryotes and should therefore be a standard technology for confirming the specificity of RNAi. We show that this technique can be extended to allow the creation of tagged transgenes, expressed at physiological levels, for the further study of gene function.
Collapse
Affiliation(s)
- Ralf Kittler
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
420
|
Liu F, He CW, Zhang YF, Zhou KY. RNA interference by expression of short hairpin RNAs suppresses bcl-xL gene expression in nasopharyngeal carcinoma cells. Acta Pharmacol Sin 2005; 26:228-34. [PMID: 15663904 DOI: 10.1111/j.1745-7254.2005.00529.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AIM To evaluate a new plasmid mediated RNA interference (RNAi) system and investigate whether knock-down of bcl-xL by short hairpin RNA (shRNA) can induce apoptosis of human nasopharyngeal carcinoma (NPC) cell line CNE-2Z in vitro. METHODS The plasmid containing mU6 promoter was subcloned to yield the pmU6 plasmid, recombinant plasmid expressing shRNA targeting bcl-xL gene was designed and constructed, and were co-transfected cells with green fluorescence protein expressing plasmid. Flow cytometry was used to evaluate transfection efficiency, and RT-PCR and Western blot were applied to analyze bcl-xL mRNA and protein levels, respectively. RESULTS The shRNA expressed by the recombinant plasmid efficiently suppressed bcl-xL gene expression and induced apoptosis of NPC cells in vitro. CONCLUSION The recombinant plasmid can sufficiently mediate RNAi in CNE-2Z cells, and knock-down of the bcl-xL expression by shRNA significantly induced apoptosis in CNE-2Z cells. The results suggest this new system, mediated RNAi can be used as a tool for the study of gene function and gene therapy.
Collapse
Affiliation(s)
- Fang Liu
- Institute of Biochemistry and Molecular Biology, The First Affiliated Hospital, Guangdong Medical College, Zhanjiang 524023, China
| | | | | | | |
Collapse
|
421
|
Smart N, Scambler PJ, Riley PR. A rapid and sensitive assay for quantification of siRNA efficiency and specificity. Biol Proced Online 2005; 7:1-7. [PMID: 15678169 PMCID: PMC545496 DOI: 10.1251/bpo99] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 12/21/2004] [Accepted: 12/23/2004] [Indexed: 11/23/2022] Open
Abstract
RNA Interference has rapidly emerged as an efficient procedure for knocking down gene expression in model systems. However, cross-reactivity, whereby multiple genes may be simultaneously targeted by a single short interfering RNA (siRNA), can potentially jeopardize correct interpretation of gene function. As such, it is essential to test the specificity of a siRNA prior to a full phenotypic analysis. To this end, we have adapted a reporter-based assay harnessing the sensitivity of luciferase activity to provide a quantitative readout of relative RNAi efficacy and specificity. We have tested different siRNAs directed against Thymosin beta4 (Tbeta4); determined their effectiveness at silencing Tbeta4 and have both excluded off-target silencing of the Tbeta4 homologue Thymosin beta10 (Tbeta10) and demonstrated partial knockdown of Tbeta10 despite significant (12/23; 52%) sequence mismatch. This assay system is applicable to any RNAi study where there is a risk of targeting homologous genes and to the monitoring of off-target effects at the genome level following microarray expression profiling.
Collapse
Affiliation(s)
- Nicola Smart
- Molecular Medicine Unit, Institute of Child Health. 30 Guilford Street, London WC1N 1EH. United Kingdom
| | - Peter James Scambler
- Molecular Medicine Unit, Institute of Child Health. 30 Guilford Street, London WC1N 1EH. United Kingdom
| | - Paul Richard Riley
- Molecular Medicine Unit, Institute of Child Health. 30 Guilford Street, London WC1N 1EH. United Kingdom
| |
Collapse
|
422
|
Sabeh F, Ota I, Holmbeck K, Birkedal-Hansen H, Soloway P, Balbin M, Lopez-Otin C, Shapiro S, Inada M, Krane S, Allen E, Chung D, Weiss SJ. Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP. ACTA ACUST UNITED AC 2005; 167:769-81. [PMID: 15557125 PMCID: PMC2172570 DOI: 10.1083/jcb.200408028] [Citation(s) in RCA: 456] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As cancer cells traverse collagen-rich extracellular matrix (ECM) barriers and intravasate, they adopt a fibroblast-like phenotype and engage undefined proteolytic cascades that mediate invasive activity. Herein, we find that fibroblasts and cancer cells express an indistinguishable pericellular collagenolytic activity that allows them to traverse the ECM. Using fibroblasts isolated from gene-targeted mice, a matrix metalloproteinase (MMP)–dependent activity is identified that drives invasion independently of plasminogen, the gelatinase A/TIMP-2 axis, gelatinase B, collagenase-3, collagenase-2, or stromelysin-1. In contrast, deleting or suppressing expression of the membrane-tethered MMP, MT1-MMP, in fibroblasts or tumor cells results in a loss of collagenolytic and invasive activity in vitro or in vivo. Thus, MT1-MMP serves as the major cell-associated proteinase necessary to confer normal or neoplastic cells with invasive activity.
Collapse
Affiliation(s)
- Farideh Sabeh
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
423
|
Anderson J, Akkina R. HIV-1 resistance conferred by siRNA cosuppression of CXCR4 and CCR5 coreceptors by a bispecific lentiviral vector. AIDS Res Ther 2005; 2:1. [PMID: 15813990 PMCID: PMC1074340 DOI: 10.1186/1742-6405-2-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Accepted: 01/13/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND: RNA interference (RNAi) mediated by small interfering RNAs (siRNAs) has proved to be a highly effective gene silencing mechanism with great potential for HIV/AIDS gene therapy. Previous work with siRNAs against cellular coreceptors CXCR4 and CCR5 had shown that down regulation of these surface molecules could prevent HIV-1 entry and confer viral resistance. Since monospecific siRNAs targeting individual coreceptors are inadequate in protecting against both T cell tropic (X4) and monocyte tropic (R5) viral strains simultaneously, bispecific constructs with dual specificity are required. For effective long range therapy, the bispecific constructs need to be stably transduced into HIV-1 target cells via integrating viral vectors. RESULTS: To achieve this goal, lentiviral vectors incorporating both CXCR4 and CCR5 siRNAs of short hairpin design were constructed. The CXCR4 siRNA was driven by a U6 promoter whereas the CCR5 siRNA was driven by an H1 promoter. A CMV promoter driven EGFP reporter gene is also incorporated in the bispecific construct. High efficiency transduction into coreceptor expressing Magi and Ghost cell lines with a concomitant down regulation of respective coreceptors was achieved with lentiviral vectors. When the siRNA expressing transduced cells were challenged with X4 and R5 tropic HIV-1, they demonstrated marked viral resistance. HIV-1 resistance was also observed in bispecific lentiviral vector transduced primary PBMCs. CONCLUSIONS: Both CXCR4 and CCR5 coreceptors could be simultaneously targeted for down regulation by a single combinatorial lentiviral vector incorporating respective anti-coreceptor siRNAs. Stable down regulation of both the coreceptors protects cells against infection by both X4 and R5 tropic HIV-1. Stable down regulation of cellular molecules that aid in HIV-1 infection will be an effective strategy for long range HIV gene therapy.
Collapse
Affiliation(s)
- Joseph Anderson
- Dept Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Ramesh Akkina
- Dept Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
424
|
Hassani Z, Lemkine GF, Erbacher P, Palmier K, Alfama G, Giovannangeli C, Behr JP, Demeneix BA. Lipid-mediated siRNA delivery down-regulates exogenous gene expression in the mouse brain at picomolar levels. J Gene Med 2005; 7:198-207. [PMID: 15515135 DOI: 10.1002/jgm.659] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Efficient in vivo vectors are needed to exploit the enormous potential of RNA interference (RNAi). Such methods require optimisation for specific delivery routes, tissues and usages. We tested the capacity of different non-viral vectors and formulation methods for inhibition of exogenous (luciferase) gene expression when used to introduce small interfering RNA (siRNA) into the mouse brain in vivo. METHODS Polyethylenimine (PEI)-based polyplexes and JetSI (a mixture of cationic lipids)-based lipoplexes were used to vectorise plasmid DNA encoding the firefly Photinus pyralis luciferase gene and picomolar amounts of siRNA directed against this gene. Two controls were used, DNA encoding an unrelated luciferase from Renilla reniformis and a mutated siRNA sequence. RESULTS First, we found that linear PEI, although efficient for delivering nucleic acids to cells, did not permit development of siRNA activity within the dose range tested (<0.5 pmol). Second, various combinations of cationic lipids were tried and the best formulation was found to be a combination of JetSI with the fusogenic lipid dioleoylphosphatidylethanolamine (DOPE). Efficient inhibition of target, firefly luciferase was obtained with exceedingly low amounts of siRNA: 78 +/- 6% inhibition at 24 h post-transfection with 0.2 pmol siRNA. This inhibition was dose-dependent and specific. No effect was seen on the control gene, co-transfected Renilla luciferase, and the control mutated siRNA sequence had no effect on the targeted firefly luciferase. CONCLUSIONS We have optimised an efficient cationic lipoplex method for delivery of siRNA into the newborn mouse brain. Specific inhibition of exogenous target gene expression is obtained with picomolar amounts of siRNA.
Collapse
Affiliation(s)
- Zahra Hassani
- Laboratoire d'Evolution des Régulations Endocriniennes, MNHN, UMR CNRS 5166, 7 rue Cuvier 75231 Paris Cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|
425
|
Sachse C, Krausz E, Krönke A, Hannus M, Walsh A, Grabner A, Ovcharenko D, Dorris D, Trudel C, Sönnichsen B, Echeverri CJ. High-Throughput RNA Interference Strategies for Target Discovery and Validation by Using Synthetic Short Interfering RNAs: Functional Genomics Investigations of Biological Pathways. Methods Enzymol 2005; 392:242-77. [PMID: 15644186 DOI: 10.1016/s0076-6879(04)92015-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During the past five years, RNA interference (RNAi) has emerged as arguably the best functional genomics tool available to date, providing direct, causal links between individual genes and loss-of-function phenotypes through robust, broadly applicable, and readily upscalable methodologies. Originally applied experimentally in C. elegans and Drosophila, RNAi is now widely used in mammalian cell systems also. The development of commercially available libraries of short interfering RNAs (siRNAs) and other RNAi silencing reagents targeting entire classes of human genes provide the opportunity to carry out genome-scale screens to discover and characterize gene functions directly in human cells. A key challenge of these studies, also faced by earlier genomics or proteomics approaches, resides in reaching an optimal balance between the necessarily high throughput and the desire to achieve the same level of detailed analysis that is routine in conventional small-scale studies. This chapter discusses technical aspects of how to perform such screens, what parameters to monitor, and which readouts to apply. Examples of homogenous assays and multiplexed high-content microscopy-based screens are demonstrated.
Collapse
|
426
|
Wilson A, He F, Li J, Ma Z, Pitt B, Li S. Targeted delivery of therapeutic oligonucleotides to pulmonary circulation. ADVANCES IN GENETICS 2005; 54:21-41. [PMID: 16096006 DOI: 10.1016/s0065-2660(05)54002-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Functional oligodeoxynucleotides (ODN) such as antisense ODN (AS-ODN) show promise as new therapeutics for the treatment of a number of pulmonary diseases. They also hold potential to serve as a research tool for the study of gene function related to lung physiology. The success of their application is largely dependent on the development of an efficient delivery vehicle. This chapter summarizes work toward the development of lipidic vectors for targeted ODN delivery to pulmonary circulation. Recent advancements in the development of novel ODN are also discussed briefly.
Collapse
Affiliation(s)
- Annette Wilson
- Department of Environmental and Occupational Health Graduate School of Public Health, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
427
|
Stein CA, Rossi JJ. A critical assessment of the potential of short interfering RNA therapeutics. DRUG DISCOVERY TODAY. TECHNOLOGIES 2005; 2:27-31. [PMID: 24981752 DOI: 10.1016/j.ddtec.2005.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
siRNA technology is now being extensively investigated both academically and commercially as a therapeutic modality because of its ability, at low concentration, to effectively downregulate the expression of target genes in tissue culture. However, the road to therapeutic siRNAs, similar to antisense oligodeoxyribonucleotides, an older technology that is also based on Watson-Crick base-pair complementation and which have not performed well in the clinic, will undoubtedly be long and challenging despite the initial enthusiasm.:
Collapse
Affiliation(s)
- C A Stein
- Department of Oncology, Albert Einstein-Montefiore Cancer Center, 111 E. 210 St. Bronx, NY 10461, USA.
| | - J J Rossi
- Beckman Research Institute, City of Hope National Medical Center, 1450 E. Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
428
|
Bantounas I, Glover CPJ, Kelly S, Iseki S, Phylactou LA, Uney JB. Assessing adenoviral hammerhead ribozyme and small hairpin RNA cassettes in neurons: Inhibition of endogenous caspase-3 activity and protection from apoptotic cell death. J Neurosci Res 2005; 79:661-9. [PMID: 15657876 DOI: 10.1002/jnr.20389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Antisense technology, including ribozyme and small interfering RNA, is being developed to mediate the down-regulation of specific intracellular genes. It was observed in this study that both antiluciferase ribozymes and short hairpin RNAs (shRNAs) could significantly reduce the activity of exogenously expressed luciferase in primary hippocampal neurons in a viral titer-dependent manner. shRNAs were more effective gene-silencing agents than ribozymes, although they exhibited some nonspecific gene-silencing effects at high viral titers. We also attempted to increase ribozyme efficacy by using a woodchuck hepatitis posttranscriptional regulatory element (WPRE) in the ribozyme expression cassette. The results showed that adenoviral vectors encoding specific ribozymes could silence the cellular expression of luciferase and endogenous procaspase-3 significantly. Furthermore, the antiprocaspase-3 ribozyme was shown to inhibit staurosporine-mediated cell death. The addition of a WPRE did not, however, increase or decrease ribozyme activity. As far as we are aware, this is the first example of adenovirally mediated delivery of hammerhead ribozymes being used to manipulate gene expression in primary neurons. The results therefore suggest that hammerhead ribozymes may be useful tools for studying neuronal gene function and have potential as therapeutic agents to treat CNS diseases.
Collapse
Affiliation(s)
- Ioannis Bantounas
- The Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, United Kingdom
| | | | | | | | | | | |
Collapse
|
429
|
Grassi G, Schneider A, Engel S, Racchi G, Kandolf R, Kuhn A. Hammerhead ribozymes targeted against cyclin E and E2F1 cooperate to down-regulate coronary smooth muscle cell proliferation. J Gene Med 2005; 7:1223-34. [PMID: 15772936 DOI: 10.1002/jgm.755] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Anti-proliferative drugs released from endo-vascular stents have substantially contributed to reduce in-stent restenosis rates in coronary arteries bearing single primary lesions by down-regulating coronary smooth muscle cell (CSMC) growth. However, the considerably lower drug efficacy shown in treatment of more complex coronary lesions suggests that alternative anti-proliferative approaches can be beneficial. Thus, we explored the use of hammerhead ribozymes as tools to knock down cyclin E and E2F1, two potent activators of cell proliferation which cooperate to promote the G1 to S phase transition. METHODS Two ribozymes, one directed against cyclin E and the other against E2F1 mRNAs, were delivered by liposomes to cultured human CSMCs. The influences on cell proliferation were measured evaluating BrdU incorporation into newly synthesised DNA. The effects on cell cycle phase distribution were determined by BrdU and 7-aminoactinomycin D incorporation into DNA. RESULTS Both ribozymes exhibited a sequence-specific and dose-dependent reduction in BrdU incorporation, which, at a concentration of 280 nM, persisted up to 4 days after transfection of CSMCs. A combined administration of the two ribozymes (210+210 nM) resulted in a more pronounced decrease in BrdU incorporation compared to the administration of an equimolar amount (420 nM) of each of them. Finally, both ribozymes induced a significant (P<0.05) reduction in S phase cells with a concomitant increase of G1/G0 and G2-M phase cells, compared to controls. CONCLUSIONS The ribozymes selected represent potent tools to prevent CSMC proliferation, especially when administered together, and thus are ideal candidates for in vivo application.
Collapse
Affiliation(s)
- G Grassi
- Department of Molecular Pathology, University Hospital of Tübingen, Liebermeisterstr. 8, 72076 Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
430
|
Gu S, Rossi JJ. Uncoupling of RNAi from active translation in mammalian cells. RNA (NEW YORK, N.Y.) 2005; 11:38-44. [PMID: 15574516 PMCID: PMC1370689 DOI: 10.1261/rna.7158605] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 10/08/2004] [Indexed: 05/24/2023]
Abstract
Small inhibitory RNAs (siRNAs) are produced from longer RNA duplexes by the RNAse III family member Dicer. The siRNAs function as sequence-specific guides for RNA cleavage or translational inhibition. The precise mechanism by which siRNAs direct the RNA-induced silencing complex (RISC) to find the complementary target mRNA remains a mystery. Some biochemical evidence connects RNAi with translation making attractive the hypothesis that RISC is coupled with the translational apparatus for scanning mRNAs. Such coupling would facilitate rapid alignment of the siRNA antisense with the complementary target sequence. To test this hypothesis we took advantage of a well-characterized translational switch afforded by the ferritin IRE-IRP to analyze RNAi mediated cleavage of a target mRNA in the presence and absence of translation. Our results demonstrate that neither active translation nor unidirectional scanning is required for siRNA mediated target degradation. Our findings demonstrate that nontranslated mRNAs are highly susceptible to RNAi, and blocking scanning from both the 5' and 3' ends of an mRNA does not impede RNAi. Interestingly, RNAi is about threefold more active in the absence of translation.
Collapse
Affiliation(s)
- Shuo Gu
- Division of Molecular Biology, Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1450 E. Duarte Rd., Duarte, CA 91010, USA
| | | |
Collapse
|
431
|
Li H, Wu X. Histone deacetylase inhibitor, Trichostatin A, activates p21WAF1/CIP1 expression through downregulation of c-myc and release of the repression of c-myc from the promoter in human cervical cancer cells. Biochem Biophys Res Commun 2004; 324:860-7. [PMID: 15474507 DOI: 10.1016/j.bbrc.2004.09.130] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Indexed: 12/23/2022]
Abstract
Histone deacetylase (HDAC) inhibitors have shown promise in clinical cancer therapy and to consistently induce p21WAF1/CIP1 expression in a p53-independent manner and via increased acetylation of the chromatin at the Sp1 sites in the p21WAF1/CIP1 promoter region. However, the exact mechanism by which HDAC inhibitors induce p21WAF1/CIP1 remains unclear. In this study, we observed that Trichostatin A (TSA), a HDAC inhibitor, induced strikingly p21WAF1/CIP1 expression in human cervical cancer (HeLa) cells, and this induction correlated with downregulation of c-myc expression. Coincident with this observation, knock down of c-myc with a c-myc specific small interfering RNA dramatically induced expression of p21WAF1/CIP1 in these cancer cells. These data suggest that c-myc may play a critical role in repression of p21WAF1/CIP1 expression in HeLa cells. More importantly, using chromatin immunoprecipitation assay, we observed for the first time that c-myc bound to the endogenous p21WAF1/CIP1 promoter in untreated HeLa cells, but not in TSA-treated cells. Taken together, TSA induced c-myc downregulation and release from the endogenous p21WAF1/CIP1 promoter contributes, at least partially, to transcriptional activation of the p21WAF1/CIP1 in HeLa cells.
Collapse
Affiliation(s)
- Hui Li
- Institute of Medical Virology, Wuhan University School of Medicine, Wuhan, Hubei 430071, PR China.
| | | |
Collapse
|
432
|
Abstract
About 25 years ago, researchers first demonstrated that a short synthetic oligodeoxynucleotide, referred to as antisense, can inhibit replication of Rous sarcoma virus through hybridization to viral RNA. Since then, several hybridization-based oligonucleotide approaches have been developed to elucidate the functions of genes and their potential as therapeutic agents. Short-interfering (si) RNA is the most recent example. To effectively inhibit gene expression, an antisense or siRNA must be resistant to nucleases, be taken up efficiently by cells, hybridize efficiently with the target mRNA and activate selective degradation of the target mRNA or block its translation without causing undesirable side effects. However, both antisense and siRNA agents have been shown to exert non-target-related biological effects including immune stimulation. Do antisense and siRNA agents work as ligands for Toll-like receptors (TLRs), a family of pathogen-associated, molecular pattern recognition receptors?
Collapse
Affiliation(s)
- Sudhir Agrawal
- Hybridon, Inc., 345 Vassar Street, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
433
|
Missiaen L, Raeymaekers L, Dode L, Vanoevelen J, Van Baelen K, Parys JB, Callewaert G, De Smedt H, Segaert S, Wuytack F. SPCA1 pumps and Hailey-Hailey disease. Biochem Biophys Res Commun 2004; 322:1204-13. [PMID: 15336968 DOI: 10.1016/j.bbrc.2004.07.128] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Indexed: 10/26/2022]
Abstract
Both the endoplasmic reticulum and the Golgi apparatus are agonist-sensitive intracellular Ca2+ stores. The Golgi apparatus has Ca2+-release channels and a Ca2+-uptake mechanism consisting of sarco(endo)plasmic-reticulum Ca2+-ATPases (SERCA) and secretory-pathway Ca2+-ATPases (SPCA). SPCA1 has been shown to transport both Ca2+ and Mn2+ in the Golgi lumen and therefore plays an important role in the cytosolic and intra-Golgi Ca2+ and Mn2+ homeostasis. Human genetic studies have provided new information on the physiological role of SPCA1. Loss of one functional copy of the SPCA1 (ATP2C1) gene causes Hailey-Hailey disease, a skin disorder arising in the adult age with recurrent vesicles and erosions in the flexural areas. Here, we review recent experimental evidence showing that the Golgi apparatus plays a much more important role in intracellular ion homeostasis than previously anticipated.
Collapse
Affiliation(s)
- Ludwig Missiaen
- Laboratorium voor Fysiologie, K.U.Leuven Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
434
|
Zhao X, McKillop-Smith S, Müller B. The human histone gene expression regulator HBP/SLBP is required for histone and DNA synthesis, cell cycle progression and cell proliferation in mitotic cells. J Cell Sci 2004; 117:6043-51. [PMID: 15546920 DOI: 10.1242/jcs.01523] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histone proteins are essential for chromatin formation, and histone gene expression is coupled to DNA synthesis. In metazoans, the histone RNA binding protein HBP/SLBP is involved in post-transcriptional control of histone gene expression. In vitro assays have demonstrated that human HBP/SLBP is involved in histone mRNA 3' end formation and translation. We have inhibited human HBP/SLBP expression by RNA interference to determine its function during the mitotic cell cycle. Inhibition of HBP/SLBP expression resulted in the inhibition of histone gene expression and DNA synthesis, the inhibition of cell cycle progression in S phase and the inhibition of cell proliferation. These findings indicate that human HBP/SLBP is essential for the coordinate synthesis of DNA and histone proteins and is required for progression through the cell division cycle.
Collapse
Affiliation(s)
- Xiujie Zhao
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | | | | |
Collapse
|
435
|
Endesfelder S, Kliche A, Lochmüller H, von Moers A, Speer A. Antisense oligonucleotides and short interfering RNAs silencing the cyclin-dependent kinase inhibitor p21 improve proliferation of Duchenne muscular dystrophy patients' primary skeletal myoblasts. J Mol Med (Berl) 2004; 83:64-71. [PMID: 15536518 DOI: 10.1007/s00109-004-0607-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Accepted: 09/10/2004] [Indexed: 11/28/2022]
Abstract
Increased levels of the cyclin-dependent kinase inhibitor p21 associated with decreased myoblast proliferation may be involved in the dystrophic process in Duchenne muscular dystrophy (DMD). Therefore we are interested to improve the proliferation of primary myoblasts of DMD patients by a reduction in p21 using either antisense oligonucleotides (ASO) or short interfering RNAs (siRNA). After transient transfection of myoblasts in cell culture proliferation was analyzed using a 5-bromo-2'-deoxyuridine assay comparing specific transfected cells with untransfected cells and cells transfected with scrambled ASO and luciferase siRNA, respectively. Four of five Dystrophin-deficient (Dys(-)) cell culture samples revealed an increase in proliferation between 7% and 18% compared to untransfected cells and between 8% and 36% compared to cells transfected with scrambled ASO. Transfection with siRNA was performed for selected samples to determine whether siRNA is more effective in gene silencing than ASO. The increase in proliferation using luciferase siRNA as reference was comparable to or less than ASO data using scrambled ASO as reference. Using untransfected cells as reference, the increase in proliferation was higher for siRNA than ASO (20-47% vs. 7-18%), but the data must be carefully interpreted with respect to nonspecific effects on gene expression by siRNA. Our findings of transient p21 gene silencing represent a basis for viral vector-mediated drug-inducible p21 shRNA expression in Dys(-) myoblasts which might enhance, prolong and regulate the proliferation effect.
Collapse
Affiliation(s)
- Stefanie Endesfelder
- Department of Biotechnology, University of Applied Sciences, Seestrasse 64, 13347 Berlin, Germany
| | | | | | | | | |
Collapse
|
436
|
Gibbons DL, Shashikant C, Hayday AC. A comparative analysis of RNA targeting strategies in the thymosin beta 4 gene. J Mol Biol 2004; 342:1069-76. [PMID: 15351635 DOI: 10.1016/j.jmb.2004.07.081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 07/20/2004] [Accepted: 07/22/2004] [Indexed: 11/19/2022]
Abstract
The thymosin beta 4 (Tbeta4) gene is of biological and pharmaceutical relevance because of its anti-inflammatory and wound-healing properties. As such, it is an example of a gene that may be targeted in immunotherapy regimens. Therefore, we have used the Tbeta4 gene to compare alternative strategies for RNA targeting, namely short hairpin (sh) RNAi versus external guide sequence (EGS)-mediated RNase P cleavage. Tbeta4 has two transcripts (UTbeta4 and LTbeta4) formed by alternative splicing that differ in both expression levels and the biological activity of their encoded products. Thus, we were able to compare the capacity of shRNAi/EGS mini-genes to target molecules of high and low abundance; to specifically target alternatively spliced mRNAs; and to discriminate between very closely related alleles encoding for identical proteins. Finally, we compared transient gene knockdown in tissue culture with results in stable systems in vitro and in vivo. The data demonstrate that shRNAi and EGS can both target the Tbeta4 gene, but that the extent of RNA reduction with shRNAi ( approximately 90%) is greater. RNAi targeting shows varying efficacy against two overlapping RNAs, is largely but not completely splice form-specific, and preferentially, but not exclusively, targets a perfect-sequence match. Very high targeting achieved with an shRNAi expressed from an RNA polymerase III promoter in transient transfection was not maintained in stably transfected clones and was not efficiently transmitted through the mouse germline. These results demonstrate the versatility and the limitations of RNA targeting strategies, and suggest that particular biological and clinical needs may be best met by varying the strategy.
Collapse
Affiliation(s)
- Deena L Gibbons
- Peter Gorer Department of Immunobiology, Guy's King's St Thomas' School of Medicine, Guy's Hospital, London SE1 9RT, UK
| | | | | |
Collapse
|
437
|
Zhang H, Altman S. Inhibition of the expression of the human RNase P protein subunits Rpp21, Rpp25, Rpp29 by external guide sequences (EGSs) and siRNA. J Mol Biol 2004; 342:1077-83. [PMID: 15351636 DOI: 10.1016/j.jmb.2004.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Revised: 05/23/2004] [Accepted: 06/03/2004] [Indexed: 12/27/2022]
Abstract
External guide sequences (EGSs) and siRNAs were targeted individually to the mRNA of three of the protein subunits of human RNase P, Rpp21, Rpp25 and Rpp29. The production of each of the three targets was inhibited in every specific case. In addition, some of the remaining protein subunits were also inhibited by these specific EGSs and the siRNAs. These data, in general, confirm previous results on the inhibition of a sub-group of all the protein subunits with an EGS against Rpp38. The effect of EGSs is apparent in 24 hours after transfection but the effect of siRNAs, which is comparable to the EGS data in amounts of inhibition, takes at least 48 to 96 hours to become evident. No general understanding of the mechanism of action of the siRNAs, in terms of which portion of a target mRNA they bind to for function, was apparent from the design of those used here.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
438
|
Abstract
High-throughput, human cell-based applications of RNA-mediated interference (RNAi) have emerged in recent years as perhaps the most powerful of a 'second wave' of functional genomics technologies. The available reagents and methodologies for RNAi screening studies now enable a wide range of different scopes and scales of investigation, from single-parameter assays applied to focused subsets of genes, to comprehensive genome-wide surveys based on rich, multiparameter readouts. As such, RNAi-based screens are offering important new avenues for the discovery and validation of novel therapeutic targets for several disease areas, including oncology. By enabling a 'clean' determination of gene function, that is the creation of direct causal links between gene and phenotype in human cells, RNAi investigations promise levels of pathophysiological relevance, efficiency, and range of applicability never before possible on this scale. The field of oncology, with its many assays using readily transfectable cell lines, has offered particularly fertile ground for showcasing the potential of RNAi-based genomics. However, like any other technology before it, RNAi is not without its own challenges, limitations, and caveats. Many of these issues stem directly from the choice of silencing reagent to be used in such studies, and the design of the overall screening strategy. Here, we discuss the basic design issues, potential advantages, and technical challenges of large-scale RNAi screens based on the use of chemically synthesized siRNA libraries.
Collapse
|
439
|
Liao B, Patel M, Hu Y, Charles S, Herrick DJ, Brewer G. Targeted Knockdown of the RNA-binding Protein CRD-BP Promotes Cell Proliferation via an Insulin-like Growth Factor II-dependent Pathway in Human K562 Leukemia Cells. J Biol Chem 2004; 279:48716-24. [PMID: 15355996 DOI: 10.1074/jbc.m405853200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The c-myc mRNA coding region determinant-binding protein (CRD-BP) was first identified as a masking protein that stabilizes c-myc mRNA in a cell-free mRNA degradation system. Thus, CRD-BP is thought to promote cell proliferation by maintaining c-Myc at critical levels. CRD-BP also appears to be an oncofetal protein, based upon its expression during mammalian development and in some tumors. By using K562 leukemia cells as a model, we show that CRD-BP gene silencing by RNA interference significantly promoted proliferation, indicating an inhibitory effect of CRD-BP on proliferation. Unexpectedly, CRD-BP knockdown had no discernible effect on c-myc mRNA levels. CRD-BP is also known as insulin-like growth factor II (IGF-II) mRNA-binding protein-1. It has been reported to repress translation of a luciferase reporter mRNA containing an IGF-II 5'-untranslated region known as leader 3 but not one containing IGF-II leader 4. CRD-BP knockdown markedly increased IGF-II mRNA and protein levels but did not alter translation of luciferase reporter mRNAs containing 5'-untranslated regions consisting of either IGF-II leader 3 or leader 4. Addition of antibody against IGF-II to cell cultures inhibited the proliferative effect of CRD-BP knockdown, suggesting that regulation of IGF-II gene expression, rather than c-myc mRNA levels, mediates the proliferative effect of CRD-BP knockdown. Thus, we have identified a dominant function for CRD-BP in cell proliferation of human K562 cells, involving a possible IGF-II-dependent mechanism that appears independent of its ability to serve as a c-myc mRNA masking protein.
Collapse
Affiliation(s)
- Baisong Liao
- Department of Molecular Genetics, Microbiology, and Immunology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | |
Collapse
|
440
|
Wadhwa R, Kaul SC, Miyagishi M, Taira K. Know-how of RNA interference and its applications in research and therapy. Mutat Res 2004; 567:71-84. [PMID: 15341903 DOI: 10.1016/j.mrrev.2004.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 06/18/2004] [Accepted: 06/18/2004] [Indexed: 12/11/2022]
Abstract
Double stranded RNA (dsRNA) mediates gene silencing in a sequence specific manner. Originally recognized in plants and lower organisms, it was recently extended to higher eukaryotes and established as an important evolutionary conserved phenomenon. It has been established that the double stranded short interfering RNAs (siRNAs) originate by the activity of a dsRNA-specific endonuclease, Dicer. siRNA in conjunction with a multiple enzyme complex called RNA-induced silencing complex (RISC) locates to the specific sites on mRNA and degrades it by endonuclease and exonuclease activities. In addition to gene silencing at transcript level (degradation of messenger RNA), siRNA was also shown to reduce the expression of protein by silencing of gene promoters via de novo methylation. By virtue of their specific gene silencing activity and owing to the recent discoveries on their plasmid and virus driven expression, small dsRNAs are being widely adopted in research and therapeutics. They are rapidly replacing the conventional gene knock-out technologies. siRNA libraries are also being recruited as a new tool in genome wide functional screenings. There is no doubt that further progress in understanding the mechanism of their action as well as strategies to achieve their tightly regulated and tissue specific expression will revolutionize basic and applied biomedical research.
Collapse
Affiliation(s)
- Renu Wadhwa
- Gene Function Research Center, National Institute of Advanced Industrial, Science and Technology, 1-1-1 Higashi, Tsukuba 305-8562, Japan
| | | | | | | |
Collapse
|
441
|
Abstract
The discovery of RNA interference (RNAi) may well be one of the transforming events in biology in the past decade. RNAi can result in gene silencing or even in the expulsion of sequences from the genome. Harnessed as an experimental tool, RNAi has revolutionized approaches to decoding gene function. It also has the potential to be exploited therapeutically, and clinical trials to test this possibility are already being planned.
Collapse
Affiliation(s)
- Gregory J Hannon
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA.
| | | |
Collapse
|
442
|
Hamar P, Song E, Kökény G, Chen A, Ouyang N, Lieberman J. Small interfering RNA targeting Fas protects mice against renal ischemia-reperfusion injury. Proc Natl Acad Sci U S A 2004; 101:14883-8. [PMID: 15466709 PMCID: PMC522049 DOI: 10.1073/pnas.0406421101] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fas-mediated apoptosis has been suggested to contribute to tubular cell death after renal ischemia-reperfusion injury. Here we investigate whether small interfering RNA (siRNA) duplexes targeting Fas protect mice from acute renal failure after clamping of the renal artery. Renal ischemia-reperfusion injury was induced by clamping the renal vein and artery for 15 or 35 min. Mice were treated before or after ischemia with siRNA targeting Fas or a control gene, administered by hydrodynamic injection, low-volume renal vein injection, or both. Treated mice were evaluated for renal Fas protein and mRNA expression, tissue histopathology, and apoptosis by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) staining. Blood urea nitrogen and survival were monitored in mice in which the contralateral kidney had been removed. A single hydrodynamic injection of Fas siRNA reduced Fas mRNA and protein expression in the kidney 4-fold. Kidneys from mice that received Fas siRNA two days earlier had substantially less renal tubular apoptosis by TUNEL staining and less tubular atrophy and hyaline damage. Whereas 90% of mice pretreated with saline or GFP siRNA died, only 20% of Fas-siRNA-pretreated animals died. The same survival advantage was provided by a single low-volume Fas siRNA injection into the renal vein. Moreover, postischemic injection through the renal vein protected 38% of mice from death. This study confirms the importance of Fas-mediated apoptosis in renal ischemia-reperfusion injury. Silencing Fas by systemic or local catheterization holds therapeutic promise to limit ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Péter Hamar
- Institute of Pathophysiology, Semmelweis University, Nagyvárad tér 4, Budapest, H 1089, Hungary.
| | | | | | | | | | | |
Collapse
|
443
|
Zambrowicz BP, Sands AT. Modeling drug action in the mouse with knockouts and RNA interference. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s1741-8372(04)02454-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
444
|
Patry C, Lemieux B, Wellinger RJ, Chabot B. Targeting heterogeneous nuclear ribonucleoparticule A1 and A2 proteins by RNA interference promotes cell death in transformed but not in normal mouse cell lines. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.1193.3.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The heterogeneous nuclear ribonucleoparticule A1 and A2 proteins can bind to vertebrate single-stranded telomeric sequences. Moreover, changes in the levels of heterogeneous nuclear ribonucleoparticule A1 can influence telomere length in mouse and human cells. We have shown previously that the combined knockdown of A1 and A2 proteins in human transformed cells promotes apoptosis. In contrast, a similar reduction in A1 and A2 expression in normal mortal human cell lines does not induce cell death. Here, we show that a variety of mouse cell lines display a similar behavior on reduction of A1 and A2 protein levels using small interfering RNA. In addition, the expression of the mouse A1 cDNA protects human HeLa cells from apoptosis when human A1 and A2 proteins are targeted by RNA interference. Lastly, we show that knockdown of A1 and A2 expression also impairs the growth of a human transformed cell line that does not express telomerase. These results firmly establish A1 and A2 as proteins required for the viability of transformed murine and human cells, irrespective of the status of telomerase expression or the length of the double-stranded telomeric repeat.
Collapse
Affiliation(s)
- Caroline Patry
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Bruno Lemieux
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Raymund J. Wellinger
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Benoit Chabot
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
445
|
Wang Q, Carmichael GG. Effects of length and location on the cellular response to double-stranded RNA. Microbiol Mol Biol Rev 2004; 68:432-52, table of contents. [PMID: 15353564 PMCID: PMC515255 DOI: 10.1128/mmbr.68.3.432-452.2004] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Since double-stranded RNA (dsRNA) has not until recently generally been thought to be deliberately expressed in cells, it has commonly been assumed that the major source of cellular dsRNA is viral infections. In this view, the cellular responses to dsRNA would be natural and perhaps ancient antiviral responses. While the cell may certainly react to some dsRNAs as an antiviral response, this does not represent the only response or even, perhaps, the major one. A number of recent observations have pointed to the possibility that dsRNA molecules are not seen only as evidence of viral infection or recognized for degradation because they cannot be translated. In some instances they may also play important roles in normal cell growth and function. The purpose of this review is to outline our current understanding of the fate of dsRNA in cells, with a focus on the apparent fact that their fates and functions appear to depend critically not only on where in the cell dsRNA molecules are found, but also on how long they are and perhaps on how abundant they are.
Collapse
Affiliation(s)
- Qiaoqiao Wang
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030-3301, USA
| | | |
Collapse
|
446
|
Abstract
Given that microRNAs select their targets by nucleotide base-pairing, it follows that it should be possible to find microRNA targets computationally. There has been considerable progress, but assessing success and biological significance requires a move into the 'wet' lab.
Collapse
Affiliation(s)
- Eric C Lai
- 545 Life Sciences Addition, Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
447
|
Kang H, Fisher MH, Xu D, Miyamoto YJ, Marchand A, Van Aerschot A, Herdewijn P, Juliano RL. Inhibition of MDR1 gene expression by chimeric HNA antisense oligonucleotides. Nucleic Acids Res 2004; 32:4411-9. [PMID: 15316104 PMCID: PMC514393 DOI: 10.1093/nar/gkh775] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2004] [Revised: 07/01/2004] [Accepted: 07/29/2004] [Indexed: 11/14/2022] Open
Abstract
Hexitol nucleic acids (HNAs) are nuclease resistant and provide strong hybridization to RNA. However, there is relatively little information on the biological properties of HNA antisense oligonucleotides. In this study, we compared the antisense effects of a chimeric HNA 'gapmer' oligonucleotide comprising a phosphorothioate central sequence flanked by 5' and 3' HNA sequences to conventional phosphorothioate oligonucleotides and to a 2'-O-methoxyethyl (2'-O-ME) phosphorothioate 'gapmer'. The antisense oligomers each targeted a sequence bracketing the start codon of the message of MDR1, a gene involved in multi-drug resistance in cancer cells. Antisense and control oligonucleotides were delivered to MDR1-expressing cells using transfection with the cationic lipid Lipofectamine 2000. The anti-MDR1 HNA gapmer was substantially more potent than a phosphorothioate oligonucleotide of the same sequence in reducing expression of P-glycoprotein, the MDR1 gene product. HNA and 2'-O-ME gapmers displayed similar potency, but a pure HNA antisense oligonucleotide (lacking the phosphorothioate 'gap') was ineffective, indicating that RNase H activity was likely required. Treatment with anti-MDR1 HNA gapmer resulted in increased cellular accumulation of the drug surrogate Rhodamine 123 that correlated well with the reduced cell surface expression of P-glycoprotein. Thus, HNA gapmers may provide a valuable additional tool for antisense-based investigations and therapeutic approaches.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/metabolism
- Antineoplastic Agents/pharmacology
- Biological Transport/drug effects
- Blotting, Western
- Cell Line
- Flow Cytometry
- Fluorescent Dyes/metabolism
- Gene Expression Regulation
- Mice
- NIH 3T3 Cells
- Oligonucleotides, Antisense/chemistry
- Oligonucleotides, Antisense/metabolism
- Oligonucleotides, Antisense/pharmacology
- Rhodamine 123/metabolism
- Sugar Alcohols/chemistry
- Thionucleotides/chemistry
Collapse
Affiliation(s)
- Hyunmin Kang
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
448
|
Fish RJ, Kruithof EKO. Short-term cytotoxic effects and long-term instability of RNAi delivered using lentiviral vectors. BMC Mol Biol 2004; 5:9. [PMID: 15291968 PMCID: PMC514603 DOI: 10.1186/1471-2199-5-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Accepted: 08/03/2004] [Indexed: 12/19/2022] Open
Abstract
Background RNA interference (RNAi) can potently reduce target gene expression in mammalian cells and is in wide use for loss-of-function studies. Several recent reports have demonstrated that short double-stranded RNAs (dsRNAs), used to mediate RNAi, can also induce an interferon-based response resulting in changes in the expression of many interferon-responsive genes. Off-target gene silencing has also been described, bringing into question the validity of certain RNAi-based approaches for studying gene function. We have targeted the plasminogen activator inhibitor-2 (PAI-2 or SERPINB2) mRNA using lentiviral vectors for delivery of U6 promoter-driven PAI-2-targeted short hairpin RNA (shRNA) expression. PAI-2 is reported to have anti-apoptotic activity, thus reduction of endogenous expression may be expected to make cells more sensitive to programmed cell death. Results As expected, we encountered a cytotoxic phenotype when targeting the PAI-2 mRNA with vector-derived shRNA. However, this predicted phenotype was a potent non-specific effect of shRNA expression, as functional overexpression of the target protein failed to rescue the phenotype. By decreasing the shRNA length or modifying its sequence we maintained PAI-2 silencing and reduced, but did not eliminate, cytotoxicity. ShRNA of 21 complementary nucleotides (21 mers) or more increased expression of the oligoadenylate synthase-1 (OAS1) interferon-responsive gene. 19 mer shRNA had no effect on OAS1 expression but long-term selective pressure on cell growth was observed. By lowering lentiviral vector titre we were able to reduce both expression of shRNA and induction of OAS1, without a major impact on the efficacy of gene silencing. Conclusions Our data demonstrate a rapid cytotoxic effect of shRNAs expressed in human tumor cell lines. There appears to be a cut-off of 21 complementary nucleotides below which there is no interferon response while target gene silencing is maintained. Cytotoxicity or OAS1 induction could be reduced by changing shRNA sequence or vector titre, but stable gene silencing could not be maintained in extended cell culture despite persistent marker gene expression from the RNAi-inducing transgene cassette. These results underscore the necessity of careful controls for immediate and long-term RNAi use in mammalian cell systems.
Collapse
MESH Headings
- 2',5'-Oligoadenylate Synthetase/genetics
- Biomarkers/metabolism
- Cell Line
- Cell Line, Tumor
- Drug Delivery Systems/methods
- Enzyme Induction/genetics
- Gene Expression/genetics
- Gene Silencing
- Gene Transfer Techniques
- Genetic Vectors/genetics
- HeLa Cells/drug effects
- Humans
- Kidney/cytology
- Kidney/drug effects
- Kidney/embryology
- Lentivirus/genetics
- Lentivirus/metabolism
- Plasminogen Activator Inhibitor 2/biosynthesis
- Plasminogen Activator Inhibitor 2/genetics
- Plasminogen Activator Inhibitor 2/metabolism
- RNA Stability
- RNA, Antisense/administration & dosage
- RNA, Antisense/adverse effects
- RNA, Antisense/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/adverse effects
- RNA, Small Interfering/biosynthesis
- RNA, Small Interfering/metabolism
- Transduction, Genetic/methods
Collapse
Affiliation(s)
- Richard J Fish
- Division of Angiology and Haemostasis, Department of Internal Medicine, Geneva University Hospital and University Medical Centre, Geneva, CH-1211 Switzerland
| | - Egbert KO Kruithof
- Division of Angiology and Haemostasis, Department of Internal Medicine, Geneva University Hospital and University Medical Centre, Geneva, CH-1211 Switzerland
| |
Collapse
|
449
|
He Z, Sontheimer EJ. "siRNAs and miRNAs": a meeting report on RNA silencing. RNA (NEW YORK, N.Y.) 2004; 10:1165-73. [PMID: 15272116 PMCID: PMC1370606 DOI: 10.1261/rna.7900204] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Affiliation(s)
- Zhengying He
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, USA
| | | |
Collapse
|
450
|
Radhakrishnan SK, Layden TJ, Gartel AL. RNA interference as a new strategy against viral hepatitis. Virology 2004; 323:173-81. [PMID: 15193913 DOI: 10.1016/j.virol.2004.02.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Revised: 02/03/2004] [Accepted: 02/19/2004] [Indexed: 12/11/2022]
Abstract
Hepatitis viruses are the leading cause of liver cirrhosis and hepatocellular carcinoma worldwide. Since currently available treatment options against these viruses are limited, there is a need for development of alternative therapies. In this minireview, we concentrate on three hepatitis viruses--hepatitis C virus, hepatitis B virus, and hepatitis delta virus and discuss how RNA interference (RNAi) has been utilized against them. RNAi is a process by which small double-stranded RNA can effectively target a homologous RNA sequence for degradation by cellular ribonucleases. Though RNAi was exploited in the beginning for down-regulating cellular genes, it has recently been demonstrated that this process is equally effective against many types of human and animal viruses including the hepatitis viruses. Both synthetic small-interfering RNAs (siRNAs) and plasmid-based siRNA expression systems have been useful in suppressing the hepatitis viruses. Though this new approach looks promising, problems of nonspecific effects and delivery may need to be addressed before the full therapeutic potential of RNAi against viral infections in patients is realized.
Collapse
|