401
|
Andrews PD, Ovechkina Y, Morrice N, Wagenbach M, Duncan K, Wordeman L, Swedlow JR. Aurora B regulates MCAK at the mitotic centromere. Dev Cell 2004; 6:253-68. [PMID: 14960279 DOI: 10.1016/s1534-5807(04)00025-5] [Citation(s) in RCA: 369] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2003] [Revised: 08/22/2003] [Accepted: 12/11/2003] [Indexed: 10/26/2022]
Abstract
Chromosome orientation and alignment within the mitotic spindle requires the Aurora B protein kinase and the mitotic centromere-associated kinesin (MCAK). Here, we report the regulation of MCAK by Aurora B. Aurora B inhibited MCAK's microtubule depolymerizing activity in vitro, and phospho-mimic (S/E) mutants of MCAK inhibited depolymerization in vivo. Expression of either MCAK (S/E) or MCAK (S/A) mutants increased the frequency of syntelic microtubule-kinetochore attachments and mono-oriented chromosomes. MCAK phosphorylation also regulates MCAK localization: the MCAK (S/E) mutant frequently localized to the inner centromere while the (S/A) mutant concentrated at kinetochores. We also detected two different binding sites for MCAK using FRAP analysis of the different MCAK mutants. Moreover, disruption of Aurora B function by expression of a kinase-dead mutant or RNAi prevented centromeric targeting of MCAK. These results link Aurora B activity to MCAK function, with Aurora B regulating MCAK's activity and its localization at the centromere and kinetochore.
Collapse
Affiliation(s)
- Paul D Andrews
- Division of Gene Regulation and Expression, Wellcome Trust Biocentre, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
402
|
Johnson VL, Scott MIF, Holt SV, Hussein D, Taylor SS. Bub1 is required for kinetochore localization of BubR1, Cenp-E, Cenp-F and Mad2, and chromosome congression. J Cell Sci 2004; 117:1577-89. [PMID: 15020684 DOI: 10.1242/jcs.01006] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During mitosis, the recruitment of spindle-checkpoint-associated proteins to the kinetochore occurs in a defined order. The protein kinase Bub1 localizes to the kinetochore very early during mitosis, followed by Cenp-F, BubR1, Cenp-E and finally Mad2. Using RNA interference, we have investigated whether this order of binding reflects a level of dependency in human somatic cells. Specifically, we show that Bub1 plays a key role in the assembly of checkpoint proteins at the kinetochore, being required for the subsequent localization of Cenp-F, BubR1, Cenp-E and Mad2. In contrast to studies in Xenopus, we also show that BubR1 is not required for kinetochore localization of Bub1. Repression of Bub1 increases the number of cells with lagging chromosomes at metaphase, suggesting that Bub1 plays a role in chromosome congression. However, repression of Bub1 does not appear to compromise spindle checkpoint function either during normal mitosis or in response to spindle damage. This raises the possibility that, in the absence of Bub1, other mechanisms contribute to spindle checkpoint function.
Collapse
Affiliation(s)
- Victoria L Johnson
- School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | |
Collapse
|
403
|
Ceulemans H, Bollen M. Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol Rev 2004; 84:1-39. [PMID: 14715909 DOI: 10.1152/physrev.00013.2003] [Citation(s) in RCA: 490] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The protein serine/threonine phosphatase protein phosphatase-1 (PP1) is a ubiquitous eukaryotic enzyme that regulates a variety of cellular processes through the dephosphorylation of dozens of substrates. This multifunctionality of PP1 relies on its association with a host of function-specific targetting and substrate-specifying proteins. In this review we discuss how PP1 affects the biochemistry and physiology of eukaryotic cells. The picture of PP1 that emerges from this analysis is that of a "green" enzyme that promotes the rational use of energy, the recycling of protein factors, and a reversal of the cell to a basal and/or energy-conserving state. Thus PP1 promotes a shift to the more energy-efficient fuels when nutrients are abundant and stimulates the storage of energy in the form of glycogen. PP1 also enables the relaxation of actomyosin fibers, the return to basal patterns of protein synthesis, and the recycling of transcription and splicing factors. In addition, PP1 plays a key role in the recovery from stress but promotes apoptosis when cells are damaged beyond repair. Furthermore, PP1 downregulates ion pumps and transporters in various tissues and ion channels that are involved in the excitation of neurons. Finally, PP1 promotes the exit from mitosis and maintains cells in the G1 or G2 phases of the cell cycle.
Collapse
Affiliation(s)
- Hugo Ceulemans
- Afdeling Biochemie, Faculteit Geneeskunde, Katholieke Universiteit Leuven, Leuven, Belgium
| | | |
Collapse
|
404
|
Yasui Y, Urano T, Kawajiri A, Nagata KI, Tatsuka M, Saya H, Furukawa K, Takahashi T, Izawa I, Inagaki M. Autophosphorylation of a Newly Identified Site of Aurora-B Is Indispensable for Cytokinesis. J Biol Chem 2004; 279:12997-3003. [PMID: 14722118 DOI: 10.1074/jbc.m311128200] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitotic kinases regulate cell division and its checkpoints, errors of which can lead to aneuploidy or genetic instability. One of these is Aurora-B, a key kinase that is required for chromosome alignment at the metaphase plate and for cytokinesis in mammalian cells. We report here that human Aurora-B is phosphorylated at Thr-232 through interaction with the inner centromere protein (INCENP) in vivo. The phosphorylation of Thr-232 occurs by means of an autophosphorylation mechanism, which is indispensable for the Aurora-B kinase activity. The activation of Aurora-B spatio-temporally correlated with the site-specific phosphorylation of its physiological substrates, histone H3 and vimentin. Overexpression of the TA mutant of Aurora-B, in which Thr-232 was changed into alanine, frequently induced multinuclearity in cells. These results indicate that the phosphorylation of Thr-232 is an essential regulatory mechanism for Aurora-B activation.
Collapse
Affiliation(s)
- Yoshihiro Yasui
- Division of Biochemistry, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Aichi 464-8681, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
405
|
Butcher RDJ, Chodagam S, Basto R, Wakefield JG, Henderson DS, Raff JW, Whitfield WGF. TheDrosophilacentrosome-associated protein CP190 is essential for viability but not for cell division. J Cell Sci 2004; 117:1191-9. [PMID: 14996941 DOI: 10.1242/jcs.00979] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Drosophila CP190 and CP60 proteins interact with each other and shuttle between the nucleus in interphase and the centrosome in mitosis. Both proteins can bind directly to microtubules in vitro, and have been shown to associate with a specific pattern of loci on salivary gland polytene chromosomes, but their functions are unknown. Here we show that reducing the level of CP190 or CP60 by >90% in tissue culture cells does not significantly interfere with centrosome or microtubule organisation, with cell division, or with cell viability. However, CP190 is an essential protein, as flies homozygous for mutations in the Cp190 gene die at late pupal stages of development. In larval brains of Cp190 mutants, mitosis is not radically perturbed, and a mutated form of CP190 (CP190ΔM), that cannot bind to microtubules or associate with centrosomes, can rescue the lethality associated with mutations in the Cp190 gene. Thus, CP190 plays an essential role in flies that is independent of its association with centrosomes or microtubules.
Collapse
Affiliation(s)
- R D J Butcher
- NERC Center for Population Biology, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | | | | | | | | | | | | |
Collapse
|
406
|
Polioudaki H, Markaki Y, Kourmouli N, Dialynas G, Theodoropoulos PA, Singh PB, Georgatos SD. Mitotic phosphorylation of histone H3 at threonine 3. FEBS Lett 2004; 560:39-44. [PMID: 14987995 DOI: 10.1016/s0014-5793(04)00060-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 01/14/2004] [Accepted: 01/14/2004] [Indexed: 11/16/2022]
Abstract
Nuclear envelope-peripheral heterochromatin fractions contain multiple histone kinase activities. In vitro assays and amino-terminal sequencing show that one of these activities co-isolates with heterochromatin protein 1 (HP1) and phosphorylates histone H3 at threonine 3. Antibodies recognizing this post-translational modification reveal that in vivo phosphorylation at threonine 3 commences at early prophase in the vicinity of the nuclear envelope, spreads to pericentromeric chromatin during prometaphase and is fully reversed by late anaphase. This spatio-temporal pattern is distinct from H3 phosphorylation at serine 10, which also occurs during cell division, suggesting segregation of differentially phosphorylated chromatin to different regions of mitotic chromosomes.
Collapse
Affiliation(s)
- Hara Polioudaki
- Department of Basic Sciences, The University of Crete, School of Medicine, 95110 Heraklion, Crete, Greece
| | | | | | | | | | | | | |
Collapse
|
407
|
Meraldi P, Honda R, Nigg EA. Aurora kinases link chromosome segregation and cell division to cancer susceptibility. Curr Opin Genet Dev 2004; 14:29-36. [PMID: 15108802 DOI: 10.1016/j.gde.2003.11.006] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Aurora kinases play critical roles in chromosome segregation and cell division. They are implicated in the centrosome cycle, spindle assembly, chromosome condensation, microtubule-kinetochore attachment, the spindle checkpoint and cytokinesis. Aurora kinases are regulated through phosphorylation, the binding of specific partners and ubiquitin-dependent proteolysis. Several Aurora substrates have been identified and their roles are being elucidated. The deregulation of Aurora kinases impairs spindle assembly, checkpoint function and cell division, causing missegregation of individual chromosomes or polyploidization accompanied by centrosome amplification. Aurora kinases are frequently overexpressed in cancers and the identification of Aurora A as a cancer-susceptibility gene provides a strong link between mitotic errors and carcinogenesis.
Collapse
Affiliation(s)
- Patrick Meraldi
- Massachusetts Institute of Technology, Dept. of Biology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | | | | |
Collapse
|
408
|
Lavoie BD, Hogan E, Koshland D. In vivo requirements for rDNA chromosome condensation reveal two cell-cycle-regulated pathways for mitotic chromosome folding. Genes Dev 2004; 18:76-87. [PMID: 14701879 PMCID: PMC314280 DOI: 10.1101/gad.1150404] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Accepted: 11/18/2003] [Indexed: 11/25/2022]
Abstract
Chromosome condensation plays an essential role in the maintenance of genetic integrity. Using genetic, cell biological, and biochemical approaches, we distinguish two cell-cycle-regulated pathways for chromosome condensation in budding yeast. From G(2) to metaphase, we show that the condensation of the approximately 1-Mb rDNA array is a multistep process, and describe condensin-dependent clustering, alignment, and resolution steps in chromosome folding. We functionally define a further postmetaphase chromosome assembly maturation step that is required for the maintenance of chromosome structural integrity during segregation. This late step in condensation requires the conserved mitotic kinase Ipl1/aurora in addition to condensin, but is independent of cohesin. Consistent with this, the late condensation pathway is initiated during the metaphase-to-anaphase transition, supports de novo condensation in cohesin mutants, and correlates with the Ipl1/aurora-dependent phosphorylation of condensin. These data provide insight into the molecular mechanisms of higher-order chromosome folding and suggest that two distinct condensation pathways, one involving cohesins and the other Ipl1/aurora, are required to modulate chromosome structure during mitosis.
Collapse
Affiliation(s)
- Brigitte D Lavoie
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
409
|
Affiliation(s)
- Mar Carmena
- Wellcome Trust Centre for Cell Biology, Institute for Cell and Molecular Biology, Kings Buildings, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, Scotland, UK.
| | | |
Collapse
|
410
|
Abstract
Aurora kinases have recently taken centre stage in the regulation of key cell cycle processes. Aurora A is emerging as a critical regulator of centrosome and spindle function. Aurora B mediates chromosome segregation by ensuring proper biorientation of sister chromatids, possibly through the regulation of microtubule dynamics. This enzyme also functions in cytokinesis apparently by interacting with a critical GTPase and a kinesin-like protein. Recent work on both kinases has revealed functional links between Aurora kinase activity and the mechanics of cell division.
Collapse
Affiliation(s)
- Paul D Andrews
- Division of Gene Expression and Regulation, Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | | | |
Collapse
|
411
|
Wheatley SP, Henzing AJ, Dodson H, Khaled W, Earnshaw WC. Aurora-B phosphorylation in vitro identifies a residue of survivin that is essential for its localization and binding to inner centromere protein (INCENP) in vivo. J Biol Chem 2003; 279:5655-60. [PMID: 14610074 DOI: 10.1074/jbc.m311299200] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chromosomal passengers, aurora-B kinase, inner centromere protein (INCENP), and survivin, are essential proteins that have been implicated in the regulation of metaphase chromosome alignment, spindle checkpoint function, and cytokinesis. All three share a common pattern of localization, and it was recently demonstrated that aurora-B, INCENP, and survivin are present in a complex in Xenopus eggs and Saccharomyces cerevisiae. The presence of aurora-B kinase in the complex and its ability to bind the other components directly suggest that INCENP and survivin could potentially be aurora-B substrates. This hypothesis was recently proven for INCENP in vitro. Here we report that human survivin is specifically phosphorylated in vitro by aurora-B kinase at threonine 117 in its carboxyl alpha-helical coil. Mutation of threonine 117 to alanine prevents survivin phosphorylation by aurora-B in vitro but does not alter its localization in HeLa cells. By contrast, a phospho-mimic, in which threonine 117 was mutated to glutamic acid, was unable to localize correctly at any stage in mitosis. Mutation at threonine 117 also prevented immunoprecipitation of INCENP with survivin in vivo. These data suggest that phosphorylation of survivin at threonine 117 by aurora-B may regulate targeting of survivin, and possibly the entire passenger complex, in mammals.
Collapse
Affiliation(s)
- Sally P Wheatley
- Chromosome Structure Laboratory, Wellcome Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, Scotland, United Kingdom.
| | | | | | | | | |
Collapse
|
412
|
Takemoto A, Kimura K, Yokoyama S, Hanaoka F. Cell cycle-dependent phosphorylation, nuclear localization, and activation of human condensin. J Biol Chem 2003; 279:4551-9. [PMID: 14607834 DOI: 10.1074/jbc.m310925200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Condensin, one of the most abundant components of mitotic chromosomes, is a conserved protein complex composed of two structural maintenance of chromosomes (SMC) subunits (SMC2- and SMC4-type) and three non-SMC subunits, and it plays an essential role in mitotic chromosome condensation. Purified condensin reconfigures DNA structure using energy provided by ATP hydrolysis. To know the regulation of condensin in somatic cells, the expression level, subcellular localization, and phosphorylation status of human condensin were examined during the cell cycle. The levels of condensin subunits were almost constant throughout the cell cycle, and the three non-SMC subunits were phosphorylated at specific sites in mitosis and dephosphorylated upon the completion of mitosis. Subcellular fractionation studies revealed that a proportion of condensin was tightly bound to mitotic chromosomes and that this form was phosphorylated at specific sites. Condensin purified from mitotic cells had much stronger supercoiling activity than that purified from interphase cells. These results suggest that condensin functions in somatic cells are regulated by phosphorylation in two ways during the cell cycle; the phosphorylation of specific sites correlates with the chromosomal targeting of condensin, and its biochemical activity is stimulated by phosphorylation.
Collapse
Affiliation(s)
- Ai Takemoto
- Cellular Physiology Laboratory, Discovery Research Institute, RIKEN, Japan Science and Technology Corp., 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
413
|
Sunavala-Dossabhoy G, Li Y, Williams B, De Benedetti A. A dominant negative mutant of TLK1 causes chromosome missegregation and aneuploidy in normal breast epithelial cells. BMC Cell Biol 2003; 4:16. [PMID: 14583098 PMCID: PMC270066 DOI: 10.1186/1471-2121-4-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2003] [Accepted: 10/28/2003] [Indexed: 11/10/2022] Open
Abstract
Background In Arabidopsis thaliana, the gene Tousled encodes a protein kinase of unknown function, but mutations in the gene lead to flowering and leaf morphology defects. We have recently cloned a mammalian Tousled-Like Kinase (TLK1B) and found that it phosphorylates specifically histone H3, in vitro and in vivo. We now report the effects that overexpression of a kinase-dead mutant of TLK1B mediates in a normal diploid cell line. Results Expression of a kinase-dead mutant resulted in reduction of phosphorylated histone H3, which could have consequences in mitotic segregation of chromosomes. When analyzed by FACS and microscopy, these cells displayed high chromosome number instability and aneuploidy. This phenomenon was accompanied by less condensed chromosomes at mitosis; failure of a number of chromosomes to align properly on the metaphase plate; failure of some chromosomes to attach to microtubules; and the occasional presentation of two bipolar spindles. We also used a different method (siRNA) to reduce the level of endogenous TLK1, but in this case, the main result was a strong block of cell cycle progression suggesting that TLK1 may also play a role in progression from G1. This block in S phase progression could also offer a different explanation of some of the later mitotic defects. Conclusions TLK1 has a function important for proper chromosome segregation and maintenance of diploid cells at mitosis in mammalian cells that could be mediated by reduced phosphorylation of histone H3 and condensation of chromosomes, although other explanations to the phenotype are possible.
Collapse
Affiliation(s)
- Gulshan Sunavala-Dossabhoy
- Department of Biochemistry and Molecular Biology and the Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center. 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Yuan Li
- Department of Biochemistry and Molecular Biology and the Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center. 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Briana Williams
- Department of Biochemistry and Molecular Biology and the Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center. 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Department of Urology, Louisiana State University Health Sciences Center. 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology and the Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center. 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| |
Collapse
|
414
|
Mellone BG, Ball L, Suka N, Grunstein MR, Partridge JF, Allshire RC. Centromere Silencing and Function in Fission Yeast Is Governed by the Amino Terminus of Histone H3. Curr Biol 2003; 13:1748-57. [PMID: 14561399 DOI: 10.1016/j.cub.2003.09.031] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Centromeric domains often consist of repetitive elements that are assembled in specialized chromatin, characterized by hypoacetylation of histones H3 and H4 and methylation of lysine 9 of histone H3 (K9-MeH3). Perturbation of this underacetylated state by transient treatment with histone deacetylase inhibitors leads to defective centromere function, correlating with delocalization of the heterochromatin protein Swi6/HP1. Likewise, deletion of the K9-MeH3 methyltransferase Clr4/Suvar39 causes defective chromosome segregation. Here, we create fission yeast strains retaining one histone H3 and H4 gene; the creation of these strains allows mutation of specific N-terminal tail residues and their role in centromeric silencing and chromosome stability to be investigated. RESULTS Reduction of H3/H4 gene dosage to one-third does not affect cell viability or heterochromatin formation. Mutation of lysines 9 or 14 or serine 10 within the amino terminus of histone H3 impairs centromere function, leading to defective chromosome segregation and Swi6 delocalization. Surprisingly, silent centromeric chromatin does not require the conserved lysine 8 and 16 residues of histone H4. CONCLUSIONS To date, mutation of conserved N-terminal residues in endogenous histone genes has only been performed in budding yeast, which lacks the Clr4/Suvar39 histone methyltransferase and Swi6/HP1. We demonstrate the importance of conserved residues within the histone H3 N terminus for the maintenance of centromeric heterochromatin in fission yeast. In sharp contrast, mutation of two conserved lysines within the histone H4 tail has no impact on the integrity of centromeric heterochromatin. Our data highlight the striking divergence between the histone tail requirements for the fission yeast and budding yeast silencing pathways.
Collapse
Affiliation(s)
- Barbara G Mellone
- Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, 6.34 Swann Building, The University of Edinburgh, Mayfield Road, EH9 3JR, Edinburgh, United Kingdom
| | | | | | | | | | | |
Collapse
|
415
|
Furukawa K, Sugiyama S, Osouda S, Goto H, Inagaki M, Horigome T, Omata S, McConnell M, Fisher PA, Nishida Y. Barrier-to-autointegration factor plays crucial roles in cell cycle progression and nuclear organization in Drosophila. J Cell Sci 2003; 116:3811-23. [PMID: 12902403 DOI: 10.1242/jcs.00682] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Barrier-to-autointegration factor (BAF) is potentially a DNA-bridging protein, which directly associates with inner nuclear membrane proteins carrying LEM domains. These features point to a key role in regulation of nuclear function and organization, dependent on interactions between the nuclear envelope and chromatin. To understand the functions of BAF in vivo, Drosophila baf null mutants generated by P-element-mediated imprecise excision were analyzed. Homozygous null mutants showed a typical mitotic mutant phenotype: lethality at the larval-pupal transition with small brains and missing imaginal discs. Mitotic figures were decreased but a defined anaphase defect as reported for C. elegans RNAi experiments was not observed in these small brains, suggesting a different phase or phases of cell cycle arrest. Specific abnormalities in interphase nuclear structure were frequently found upon electron microscopic examination of baf null mutants, with partial clumping of chromatin and convolution of nuclear shape. At the light microscopic level, grossly aberrant nuclear lamina structure and B-type lamin distribution correlated well with the loss of detectable amounts of BAF protein from nuclei. Together, these data represent evidence of BAF's anticipated function in mediating interactions between the nuclear envelope and interphase chromosomes. We thus conclude that BAF plays essential roles in nuclear organization and that these BAF functions are required in both M phase and interphase of the cell cycle.
Collapse
Affiliation(s)
- Kazuhiro Furukawa
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
416
|
Abstract
Eukaryotic cells must possess mechanisms for condensing and decondensing chromatin. Chromatin condensation is particularly evident during mitosis and cell death induced by apoptosis, whereas chromatin decondensation is necessary for replication, repair, recombination and transcription. Histones are among the numerous DNA-binding proteins that control the level of DNA condensation, and post-translational modification of histone tails plays a critical role in the dynamic condensation/decondensation that occurs during the cell cycle. Phosphorylation of Ser10 in the tails of histone H3 has been extensively studied in many organisms. Interestingly, this modification is involved in both transcription and cell division, two events requiring opposite alterations in the degree of chromatin compaction. How does one and the same modification of histone H3 fulfil such roles? For instance, in interphase, phosphorylation of H3 correlates with chromatin relaxation and gene expression, whereas in mitosis it correlates with chromosome condensation. What is the kinase and under what circumstances does Ser10 becomes phosphorylated? Most importantly, what are the consequences of phosphorylation of this residue?
Collapse
Affiliation(s)
- Claude Prigent
- Groupe Cycle Cellulaire, UMR 6061 Génétique et Développement, CNRS, 250 Université de Rennes I, IFR 97 Génomique Fonctionnelle et Santé, Faculté de Médecine, 2 avenue du Pr. Léon Bernard, CS 34317, 35043 Rennes Cedex, France.
| | | |
Collapse
|
417
|
Neef R, Preisinger C, Sutcliffe J, Kopajtich R, Nigg EA, Mayer TU, Barr FA. Phosphorylation of mitotic kinesin-like protein 2 by polo-like kinase 1 is required for cytokinesis. J Cell Biol 2003; 162:863-75. [PMID: 12939256 PMCID: PMC2172827 DOI: 10.1083/jcb.200306009] [Citation(s) in RCA: 240] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Accepted: 07/22/2003] [Indexed: 11/22/2022] Open
Abstract
We have investigated the function of mitotic kinesin-like protein (MKlp) 2, a kinesin localized to the central spindle, and demonstrate that its depletion results in a failure of cleavage furrow ingression and cytokinesis, and disrupts localization of polo-like kinase 1 (Plk1). MKlp2 is a target for Plk1, and phosphorylated MKlp2 binds to the polo box domain of Plk1. Plk1 also binds directly to microtubules and targets to the central spindle via its polo box domain, and this interaction controls the activity of Plk1 toward MKlp2. An antibody to the neck region of MKlp2 that prevents phosphorylation of MKlp2 by Plk1 causes a cytokinesis defect when introduced into cells. We propose that phosphorylation of MKlp2 by Plk1 is necessary for the spatial restriction of Plk1 to the central spindle during anaphase and telophase, and the complex of these two proteins is required for cytokinesis.
Collapse
Affiliation(s)
- Rüdiger Neef
- Intracellular Protein Transport, Independent Junior Research Group, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
418
|
Cimini D, Mattiuzzo M, Torosantucci L, Degrassi F. Histone hyperacetylation in mitosis prevents sister chromatid separation and produces chromosome segregation defects. Mol Biol Cell 2003; 14:3821-33. [PMID: 12972566 PMCID: PMC196571 DOI: 10.1091/mbc.e03-01-0860] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Posttranslational modifications of core histones contribute to driving changes in chromatin conformation and compaction. Herein, we investigated the role of histone deacetylation on the mitotic process by inhibiting histone deacetylases shortly before mitosis in human primary fibroblasts. Cells entering mitosis with hyperacetylated histones displayed altered chromatin conformation associated with decreased reactivity to the anti-Ser 10 phospho H3 antibody, increased recruitment of protein phosphatase 1-delta on mitotic chromosomes, and depletion of heterochromatin protein 1 from the centromeric heterochromatin. Inhibition of histone deacetylation before mitosis produced defective chromosome condensation and impaired mitotic progression in living cells, suggesting that improper chromosome condensation may induce mitotic checkpoint activation. In situ hybridization analysis on anaphase cells demonstrated the presence of chromatin bridges, which were caused by persisting cohesion along sister chromatid arms after centromere separation. Thus, the presence of hyperacetylated chromatin during mitosis impairs proper chromosome condensation during the pre-anaphase stages, resulting in poor sister chromatid resolution. Lagging chromosomes consisting of single or paired sisters were also induced by the presence of hyperacetylated histones, indicating that the less constrained centromeric organization associated with heterochromatin protein 1 depletion may promote the attachment of kinetochores to microtubules coming from both poles.
Collapse
Affiliation(s)
- Daniela Cimini
- Institute of Molecular Biology and Pathology, National Research Council, c/o Department of Genetics and Molecular Biology, University La Sapienza, 00185 Rome, Italy
| | | | | | | |
Collapse
|
419
|
Abstract
Two complexes localize to the central spindle and regulate completion of cytokinesis: one, centralspindlin, contains a kinesin-like protein and a Rho-family GAP; the second contains Aurora B kinase. Aurora B kinase is known to regulate localization of centralspindlin and may regulate the activity of the RhoGAP component of centralspindlin.
Collapse
Affiliation(s)
- Masanori Mishima
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030, Vienna, Austria
| | | |
Collapse
|
420
|
Honda R, Körner R, Nigg EA. Exploring the functional interactions between Aurora B, INCENP, and survivin in mitosis. Mol Biol Cell 2003; 14:3325-41. [PMID: 12925766 PMCID: PMC181570 DOI: 10.1091/mbc.e02-11-0769] [Citation(s) in RCA: 402] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The function of the Aurora B kinase at centromeres and the central spindle is crucial for chromosome segregation and cytokinesis, respectively. Herein, we have investigated the regulation of human Aurora B by its complex partners inner centromere protein (INCENP) and survivin. We found that overexpression of a catalytically inactive, dominant-negative mutant of Aurora B impaired the localization of the entire Aurora B/INCENP/survivin complex to centromeres and the central spindle and severely disturbed mitotic progression. Similar results were also observed after depletion, by RNA interference, of either Aurora B, INCENP, or survivin. These data suggest that Aurora B kinase activity and the formation of the Aurora B/INCENP/survivin complex both contribute to its proper localization. Using recombinant proteins, we found that Aurora B kinase activity was stimulated by INCENP and that the C-terminal region of INCENP was sufficient for activation. Under identical assay conditions, survivin did not detectably influence kinase activity. Human INCENP was a substrate of Aurora B and mass spectrometry identified three consecutive residues (threonine 893, serine 894, and serine 895) containing at least two phosphorylation sites. A nonphosphorylatable mutant (TSS893-895AAA) was a poor activator of Aurora B, demonstrating that INCENP phosphorylation is important for kinase activation.
Collapse
Affiliation(s)
- Reiko Honda
- Department of Cell Biology, Max-Planck-Institute for Biochemistry, D-82152 Martinsried, Germany
| | | | | |
Collapse
|
421
|
Carvalho A, Carmena M, Sambade C, Earnshaw WC, Wheatley SP. Survivin is required for stable checkpoint activation in taxol-treated HeLa cells. J Cell Sci 2003; 116:2987-98. [PMID: 12783991 DOI: 10.1242/jcs.00612] [Citation(s) in RCA: 261] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Survivin is an essential chromosomal passenger protein whose function remains unclear. Here, we have used RNA interference to specifically repress Survivin in cultured HeLa cells. Immunoblot analysis showed that Survivin was no longer detectable in cultures 60 hours after transfection with Survivin-specific siRNA. Live cell analysis showed that many Survivin-depleted cells were delayed in mitosis, and immunofluorescence analysis of fixed specimens revealed that Survivin-depleted cells accumulated in prometaphase with misaligned chromosomes. The chromosomal passenger proteins, INCENP and Aurora-B, which can interact directly with Survivin, were absent from the centromeres of Survivin-depleted cells. These data contribute to the emerging picture that Survivin operates together with INCENP and Aurora-B to perform its mitotic duties. Some Survivin-depleted cells eventually exited mitosis without completing cytokinesis. This resulted in a gradual increase in the percentage of multinucleated cells in the culture. Time-lapse imaging of synchronized cultures revealed that control and Survivin-depleted cells arrested in mitosis in the presence of nocodazole; however, the latter failed to arrest in mitosis when treated with taxol. Immunofluorescence studies revealed that Survivin-depleted cells were unable to stably maintain BubR1 at the kinetochores in the presence of either taxol or nocodazole. Our data reveal that Survivin is not required for the spindle assembly checkpoint when it is activated by the loss of microtubules. However, Survivin is required for the maintenance of the checkpoint when it is activated by taxol, which is generally thought to cause a loss of spindle tension.
Collapse
Affiliation(s)
- Ana Carvalho
- Chromosome Structure Group, Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, Scotland, UK
| | | | | | | | | |
Collapse
|
422
|
Clayton AL, Mahadevan LC. MAP kinase-mediated phosphoacetylation of histone H3 and inducible gene regulation. FEBS Lett 2003; 546:51-8. [PMID: 12829236 DOI: 10.1016/s0014-5793(03)00451-4] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
That signalling pathways, particularly the mitogen-activated protein kinase cascades, elicit modification of chromatin proteins such as histone H3 by phosphorylation and/or acetylation concomitant with gene activation is now well established. The picture that is emerging is one of a complex and dynamic pattern of multiple modifications at the H3 tail. Here, we review the inducible gene systems where H3 modifications have been reported and re-evaluate the controversy as to the kinase(s) that phosphorylates it as well as the proposed coupling between H3 phosphorylation and acetylation.
Collapse
Affiliation(s)
- Alison L Clayton
- Nuclear Signalling Laboratory, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | |
Collapse
|
423
|
Maiato H, Sunkel CE, Earnshaw WC. Dissecting mitosis by RNAi in Drosophila tissue culture cells. Biol Proced Online 2003; 5:153-161. [PMID: 14569613 PMCID: PMC162172 DOI: 10.1251/bpo57] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2003] [Revised: 06/09/2003] [Accepted: 06/09/2003] [Indexed: 11/23/2022] Open
Abstract
Here we describe a detailed methodology to study the function of genes whose products function during mitosis by dsRNA-mediated interference (RNAi) in cultured cells of Drosophila melanogaster. This procedure is particularly useful for the analysis of genes for which genetic mutations are not available or for the dissection of complicated phenotypes derived from the analysis of such mutants. With the advent of whole genome sequencing it is expected that RNAi-based screenings will be one method of choice for the identification and study of novel genes involved in particular cellular processes. In this paper we focused particularly on the procedures for the proper phenotypic analysis of cells after RNAi-mediated depletion of proteins required for mitosis, the process by which the genetic information is segregated equally between daughter cells. We use RNAi of the microtubule-associated protein MAST/Orbit as an example for the usefulness of the technique.
Collapse
Affiliation(s)
- Helder Maiato
- Laboratório de Genética Molecular, Instituto de Biologia Molecular e Celular, Universidade do Porto. Rua Campo Alegre, 823, 4150-180 Porto. Portugal
| | | | | |
Collapse
|
424
|
Manzanero S, Rutten T, Kotseruba V, Houben A. Alterations in the distribution of histone H3 phosphorylation in mitotic plant chromosomes in response to cold treatment and the protein phosphatase inhibitor cantharidin. Chromosome Res 2003; 10:467-76. [PMID: 12489829 DOI: 10.1023/a:1020940313841] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The function of the phosphorylation of histone H3 at Ser 10 in plant cell division is uncertain. The timing correlates with chromosome condensation, and studies in plant meiosis suggest that it is involved in sister chromatid cohesion. In mitosis, plant chromosomes are highly phosphorylated in the pericentromeric region only. In order to modulate H3 phosphorylation, root meristems of different plant species were treated with the protein phosphatase inhibitor cantharidin or with ice-water. Immunostaining using an antibody specific to phosphorylated H3 at Ser 10 revealed a high level of H3 phosphorylation along the whole mitotic chromosome after cantharidin treatment, which resembles the distribution seen exclusively in first meiotic division. In chromosomes that were isolated from meristems treated with ice-water, the heterochromatic regions and nucleolar organizer regions, in addition to the pericentromeric region, were highly phosphorylated at H3. Cantharidin and ice-water also affected spindle assembly and chromosome length, but these effects did not seem to be directly linked to changes in H3 phosphorylation.
Collapse
Affiliation(s)
- Silvia Manzanero
- Departamento de Genética, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
425
|
O'Connell MJ, Krien MJE, Hunter T. Never say never. The NIMA-related protein kinases in mitotic control. Trends Cell Biol 2003; 13:221-8. [PMID: 12742165 DOI: 10.1016/s0962-8924(03)00056-4] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mitosis sees a massive reorganization of cellular architecture. The microtubule cytoskeleton is reorganized to form a bipolar spindle between duplicated microtubule organizing centers, the chromosomes are condensed, attached to the spindle at their kinetochores, and, through the action of multiple molecular motors, the chromosomes are segregated into two daughter cells. Mitosis also sees a substantial wave of protein phosphorylation, controlling signaling events that coordinate mitotic processes and ensure accurate chromosome segregation. The key switch for the onset of mitosis is the archetypal cyclin-dependent kinase, Cdc2. Under the direction of Cdc2 is an executive of protein serine/threonine kinases that fall into three families: the Polo kinases, Aurora kinases and the NIMA-related kinases (Nrk). The latter family has proven the most enigmatic in function, although recent advances from several sources are beginning to reveal a common functional theme.
Collapse
Affiliation(s)
- Matthew J O'Connell
- Derald H. Ruttenberg Cancer Center, Mt Sinai School of Medicine, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA.
| | | | | |
Collapse
|
426
|
Hauf S, Cole RW, LaTerra S, Zimmer C, Schnapp G, Walter R, Heckel A, van Meel J, Rieder CL, Peters JM. The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J Cell Biol 2003; 161:281-94. [PMID: 12707311 PMCID: PMC2172906 DOI: 10.1083/jcb.200208092] [Citation(s) in RCA: 908] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The proper segregation of sister chromatids in mitosis depends on bipolar attachment of all chromosomes to the mitotic spindle. We have identified the small molecule Hesperadin as an inhibitor of chromosome alignment and segregation. Our data imply that Hesperadin causes this phenotype by inhibiting the function of the mitotic kinase Aurora B. Mammalian cells treated with Hesperadin enter anaphase in the presence of numerous monooriented chromosomes, many of which may have both sister kinetochores attached to one spindle pole (syntelic attachment). Hesperadin also causes cells arrested by taxol or monastrol to enter anaphase within <1 h, whereas cells in nocodazole stay arrested for 3-5 h. Together, our data suggest that Aurora B is required to generate unattached kinetochores on monooriented chromosomes, which in turn could promote bipolar attachment as well as maintain checkpoint signaling.
Collapse
Affiliation(s)
- Silke Hauf
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
427
|
Petersen J, Hagan IM. S. pombe aurora kinase/survivin is required for chromosome condensation and the spindle checkpoint attachment response. Curr Biol 2003; 13:590-7. [PMID: 12676091 DOI: 10.1016/s0960-9822(03)00205-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The spindle checkpoint inhibits anaphase until all chromosomes have established bipolar attachment. Two kinetochore states trigger this checkpoint. The absence of microtubules activates the attachment response, while the inability of attached microtubules to generate tension triggers the tension/orientation response. The single aurora kinase of budding yeast, Ipl1, is required for the tension/orientation, but not attachment, response. In contrast, we find that the single aurora kinase of fission yeast, Ark1, is required for the attachment response. Having established that the initiator codon assigned to ark1(+) was incorrect and that Ark1-associated kinase activity depended upon survivin function and phosphorylation, we found that the loss of Ark1 from kinetochores by either depletion or use of a survivin mutant overides the checkpoint response to microtubule depolymerization. Ark1/survivin function was not required for the association of Bub1 or Mad3 with the kinetochores. However, it was required for two aspects of Mad2 function that accompany checkpoint activation: full-scale association with kinetochores and formation of a complex with Mad3. Neither the phosphorylation of histone H3 that accompanies chromosome condensation nor condensin recruitment to mitotic chromatin were seen when Ark1 function was compromised. Cytokinesis was not affected by Ark1 depletion or expression of the "kinase dead" ark1.K118R mutant.
Collapse
Affiliation(s)
- Janni Petersen
- Paterson Institute for Cancer Research, Wilmslow Road, M20 4BX, Manchester, United Kingdom.
| | | |
Collapse
|
428
|
Kawajiri A, Yasui Y, Goto H, Tatsuka M, Takahashi M, Nagata KI, Inagaki M. Functional significance of the specific sites phosphorylated in desmin at cleavage furrow: Aurora-B may phosphorylate and regulate type III intermediate filaments during cytokinesis coordinatedly with Rho-kinase. Mol Biol Cell 2003; 14:1489-500. [PMID: 12686604 PMCID: PMC153117 DOI: 10.1091/mbc.e02-09-0612] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aurora-B is a protein kinase required for chromosome segregation and the progression of cytokinesis during the cell cycle. We report here that Aurora-B phosphorylates GFAP and desmin in vitro, and this phosphorylation leads to a reduction in filament forming ability. The sites phosphorylated by Aurora-B; Thr-7/Ser-13/Ser-38 of GFAP, and Thr-16 of desmin are common with those related to Rho-associated kinase (Rho-kinase), which has been reported to phosphorylate GFAP and desmin at cleavage furrow during cytokinesis. We identified Ser-59 of desmin to be a specific site phosphorylated by Aurora-B in vitro. Use of an antibody that specifically recognized desmin phosphorylated at Ser-59 led to the finding that the site is also phosphorylated specifically at the cleavage furrow during cytokinesis in Saos-2 cells. Desmin mutants, in which in vitro phosphorylation sites by Aurora-B and/or Rho-kinase are changed to Ala or Gly, cause dramatic defects in filament separation between daughter cells in cytokinesis. The results presented here suggest the possibility that Aurora-B may regulate cleavage furrow-specific phosphorylation and segregation of type III IFs coordinatedly with Rho-kinase during cytokinesis.
Collapse
Affiliation(s)
- Aie Kawajiri
- Division of Biochemistry, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya 464-8681, Japan
| | | | | | | | | | | | | |
Collapse
|
429
|
Bucciarelli E, Giansanti MG, Bonaccorsi S, Gatti M. Spindle assembly and cytokinesis in the absence of chromosomes during Drosophila male meiosis. J Cell Biol 2003; 160:993-9. [PMID: 12654903 PMCID: PMC2172764 DOI: 10.1083/jcb.200211029] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A large body of work indicates that chromosomes play a key role in the assembly of both a centrosomal and centrosome-containing spindles. In animal systems, the absence of chromosomes either prevents spindle formation or allows the assembly of a metaphase-like spindle that fails to evolve into an ana-telophase spindle. Here, we show that Drosophila secondary spermatocytes can assemble morphologically normal spindles in the absence of chromosomes. The Drosophila mutants fusolo and solofuso are severely defective in chromosome segregation and produce secondary spermatocytes that are devoid of chromosomes. The centrosomes of these anucleated cells form robust asters that give rise to bipolar spindles that undergo the same ana-telophase morphological transformations that characterize normal spindles. The cells containing chromosome-free spindles are also able to assemble regular cytokinetic structures and cleave normally. In addition, chromosome-free spindles normally accumulate the Aurora B kinase at their midzones. This suggests that the association of Aurora B with chromosomes is not a prerequisite for its accumulation at the central spindle, or for its function during cytokinesis.
Collapse
|
430
|
Parra MT, Viera A, Gómez R, Page J, Carmena M, Earnshaw WC, Rufas JS, Suja JA. Dynamic relocalization of the chromosomal passenger complex proteins inner centromere protein (INCENP) and aurora-B kinase during male mouse meiosis. J Cell Sci 2003; 116:961-74. [PMID: 12584241 DOI: 10.1242/jcs.00330] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
INCENP and aurora-B kinase are two chromosomal passenger proteins that are thought to play key roles in coordinating chromosome segregation with cytokinesis in somatic cells. Here we have analyzed their subcellular distribution, and that of phosphorylated histone H3, and the timing of their relative appearance in mouse spermatocytes during both meiotic divisions. Our results show that in mitotic spermatogonial cells, INCENP and aurora-B show the same pattern of distribution as they do in cultured somatic cells. INCENP labels the synaptonemal complex central element from zygotene up to late pachytene when it begins to relocalize to heterochromatic chromocentres. Aurora-B first appears at chromocentres in late diplotene before the initial phosphorylation of histone H3. INCENP and aurora-B concentrate at centromeres during diakinesis and appear during metaphase I as T-shaped signals at their inner domains, just below associated sister kinetochores. During late anaphase I both proteins relocalize to the spindle midzone. Both proteins colocalize at a connecting strand traversing the centromere region and joining sister kinetochores, in metaphase II centromeres. This strand disappears at the metaphase II/anaphase II transition and relocalizes to the spindle midzone. We discuss the complex dynamic relocalization of the chromosomal passenger complex during prophase I. Additionally, we suggest that this complex may regulate sister-chromatid centromere cohesion during both meiotic divisions.
Collapse
Affiliation(s)
- María Teresa Parra
- Departamento de Biología, Edificio de Biológicas, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
431
|
Goto H, Yasui Y, Kawajiri A, Nigg EA, Terada Y, Tatsuka M, Nagata KI, Inagaki M. Aurora-B regulates the cleavage furrow-specific vimentin phosphorylation in the cytokinetic process. J Biol Chem 2003; 278:8526-30. [PMID: 12458200 DOI: 10.1074/jbc.m210892200] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Aurora-B is an evolutionally conserved protein kinase that regulates several mitotic events including cytokinesis. We previously demonstrated the possible existence of a protein kinase that phosphorylates at least Ser-72 on vimentin, the most widely expressed intermediate filament protein, in the cleavage furrow-specific manner. Here we showed that vimentin-Ser-72 phosphorylation occurred specifically at the border of the Aurora-B-localized area from anaphase to telophase. Expression of a dominant-negative mutant of Aurora-B led to a reduction of this vimentin-Ser-72 phosphorylation. In vitro analyses revealed that Aurora-B phosphorylates vimentin at approximately 2 mol phosphate/mol of substrate for 30 min and that this phosphorylation dramatically inhibits vimentin filament formation. We further identified eight Aurora-B phosphorylation sites, including Ser-72 on vimentin, and then constructed the mutant vimentin in which these identified sites are changed into Ala. Cells expressing this mutant formed an unusually long bridge-like intermediate filament structure between unseparated daughter cells. We then identified important phosphorylation sites for the bridge phenotype. Our findings indicate that Aurora-B regulates the cleavage furrow-specific vimentin phosphorylation and controls vimentin filament segregation in cytokinetic process.
Collapse
Affiliation(s)
- Hidemasa Goto
- Division of Biochemistry, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
432
|
Abstract
Dramatic changes of cell organisation occur at onset of mitosis. Genetic analysis of fission yeast and physiological studies of vertebrate and invertebrate oocytes showed that activation of cyclin B-cdc2 kinase triggers mitosis. Nevertheless, upstream mechanisms responsible for this activation remain largely unknown in somatic cells of higher eukaryotes. This review discusses possible pathways and mechanisms involved in triggering onset of mitosis in such cells, including inhibitory checkpoint mechanisms that detect defects in structural organisation of the cell.
Collapse
Affiliation(s)
- Marcel Dorée
- CRBM, UPR 1086-Cnrs, 1919, route de Mende, 34290 Montpellier, France.
| |
Collapse
|
433
|
Abstract
The condensation of mitotic chromosomes is essential for the faithful segregation of sister chromatids in anaphase. An emerging view is that chromosome assembly is an active and dynamic process of chromatin reorganization in which two ATP hydrolyzing enzymes, topoisomerase II and the condensin complex, play central roles. In this review, we discuss recent work that sheds new light on the molecular and structural dynamics of mitotic chromosomes.
Collapse
Affiliation(s)
- Jason R Swedlow
- Division of Gene Regulation and Expression, University of Dundee, DD1 5EH, Dundee, United Kingdom
| | | |
Collapse
|
434
|
Preuss U, Landsberg G, Scheidtmann KH. Novel mitosis-specific phosphorylation of histone H3 at Thr11 mediated by Dlk/ZIP kinase. Nucleic Acids Res 2003; 31:878-85. [PMID: 12560483 PMCID: PMC149197 DOI: 10.1093/nar/gkg176] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Death-associated protein (DAP)-like kinase (Dlk), also known as Zipper interacting protein (ZIP) kinase, is a nuclear serine/threonine-specific kinase that phosphorylates core histones H3 and H4, and myosine light chain in vitro. It interacts with transcription and splicing factors as well as with pro-apoptotic protein Par-4 suggesting that it participates in multiple cellular processes. To explore the significance of histone phosphorylation by Dlk, we determined the phosphorylation site in H3 and generated phosphospecific antibodies for in vivo analyses. Interestingly, Dlk/ZIP kinase phosphorylated histone H3 at a novel site, Thr11, rather than Ser10, which is characteristic of mitotic chromosomes. Immunoblotting and confocal immunofluorescence analyses demonstrated that phosphorylation of H3 at Thr11 occurred in vivo and was restricted to mitosis as well. It was discernable from prophase to early anaphase and particularly enriched at centromeres. Strikingly, during this time interval, Dlk was associated with centromeres too, as revealed by stable expression of a green fluorescent protein (GFP)-Dlk fusion protein. These findings strongly suggest that Dlk is a centromere-specific histone kinase that might play a role in labeling centromere-specific chromatin for subsequent mitotic processes.
Collapse
Affiliation(s)
- Ute Preuss
- Institute of Genetics, University of Bonn, Roemerstrasse 164, D-53117 Bonn, Germany
| | | | | |
Collapse
|
435
|
Abstract
The Armadillo protein of Drosophila melanogaster is both a structural component of adherens junctions at apical cell membranes and also a key cytoplasmic transducer of the Wingless signalling pathway. We have used the Gal4-UAS system to over-express Armadillo in the Drosophila wing: this hyperactivates the Wingless pathway and leads to the formation of ectopic, supernumerary wing bristles. Here, we report that this adult phenotype is dominantly enhanced by mutations in cdc25(string) and, conversely, is suppressed by co-expression of Cdc25(String). Furthermore, we show that the steady state levels of Armadillo protein produced from the UAS transgene are also sensitive to cdc25(string) dosage in the cells of the larval imaginal wing disc. Consistent with the role of Cdc25(String) in promoting mitosis and with our genetic interaction data, we find a strong correlation between progression through mitosis and a reduction in Armadillo levels. Significantly, this is true whether Armadillo is over-expressed or not, and both cytoplasmic (signalling) and membrane-associated (junctional) Armadillo appears to be affected. We conclude that this phenomenon may reduce the efficacy of Wingless signalling and/or intercellular adhesion during cell division.
Collapse
Affiliation(s)
- Steven J Marygold
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | | |
Collapse
|
436
|
Cremet JY, Descamps S, Vérite F, Martin A, Prigent C. Preparation and characterization of a human aurora-A kinase monoclonal antibody. Mol Cell Biochem 2003; 243:123-31. [PMID: 12619897 DOI: 10.1023/a:1021608012253] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have developed monoclonal antibodies against the human aurora-A serine/threonine kinase. After immunization of a mouse, a fusion was performed to obtain hybridomas that were selected because they produced immunoglobulin positively reacting against the protein used for immunization. We isolated one particular monoclonal that we named 35C1 using a series of selective assays. The first criteria of the screen for monoclonals was an ELISA (Enzyme Linked Immunosorbant Assay) assay performed in 96-well plates against the purified recombinant histidine-tagged aurora-A. The second was a positive Western blot against the same recombinant protein. The third criteria was a positive western blot against an HeLa cell extract, the selected monoclonal should detect only one protein migrating at 46 kDa (kiloDalton) on SDS (Sodium Dodecyl Sulfate)-polyacrylamide gel electrophoresis. Finally, the monoclonal had to bind to duplicated centrosomes and spindle poles in human MCF7 cultured cells by indirect immunofluorescence. At this stage several monoclonals were still positive. We then increased the selectivity by searching for antibodies that were able to cross-react with the mouse aurora-A kinase both by western blot and indirect immunofluorescence. We selected and cloned the 35C1 hybridoma to produce the antibody. Further characterization of the 35C1 antibody revealed that it was able to immunoprecipitate the kinase, that it did not inhibit the aurora-A kinase activity and consequently could be used to measure the aurora-A kinase activity in vivo after immunoprecipitation.
Collapse
Affiliation(s)
- Jean Yves Cremet
- Groupe Cycle Cellulaire, UMR 6061 Génétique et Développement, CNRS-Université de Rennes 1, IFR 97 Génomique et Santé, Faculté de médecine, Rennes cedex, France
| | | | | | | | | |
Collapse
|
437
|
Abstract
Structural maintenance of chromosomes (SMC) family proteins have attracted much attention for their unique protein structure and critical roles in mitotic chromosome organization. Elegant genetic and biochemical studies in yeast and Xenopus identified two different SMC heterodimers in two conserved multiprotein complexes termed 'condensin' and 'cohesin'. These complexes are required for mitotic chromosome condensation and sister chromatid cohesion, respectively, both of which are prerequisite to accurate segregation of chromosomes. Although structurally similar, the SMC proteins in condensin and cohesin appear to have distinct functions, whose specificity and cell cycle regulation are critically determined by their interactions with unique sets of associated proteins. Recent studies of subcellular localization of SMC proteins and SMC-containing complexes, identification of their interactions with other cellular factors, and discovery of new SMC family members have uncovered unexpected roles for SMC proteins and SMC-containing complexes in different aspects of genome functions and chromosome organization beyond mitosis, all of which are critical for the maintenance of chromosome integrity.
Collapse
Affiliation(s)
- K Yokomori
- Department of Biological Chemistry, 240D Med. Sci. I, College of Medicine, University of California, Irvine, CA 92697-1700, USA.
| |
Collapse
|
438
|
Anand S, Penrhyn-Lowe S, Venkitaraman AR. AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell 2003; 3:51-62. [PMID: 12559175 DOI: 10.1016/s1535-6108(02)00235-0] [Citation(s) in RCA: 487] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The serine-threonine kinase gene AURORA-A is commonly amplified in epithelial malignancies. Here we show that elevated Aurora-A expression at levels that reflect cancer-associated gene amplification overrides the checkpoint mechanism that monitors mitotic spindle assembly, inducing resistance to the chemotherapeutic agent paclitaxel (Taxol). Cells overexpressing Aurora-A inappropriately enter anaphase despite defective spindle formation, and the persistence of Mad2 at the kinetochores, marking continued activation of the spindle assembly checkpoint. Mitosis is subsequently arrested by failure to complete cytokinesis, resulting in multinucleation. This abnormality is relieved by an inhibitory mutant of BUB1, linking the mitotic abnormalities provoked by Aurora-A overexpression to spindle checkpoint activity. Consistent with this conclusion, elevated Aurora-A expression causes resistance to apoptosis induced by Taxol in a human cancer cell line.
Collapse
Affiliation(s)
- Shubha Anand
- CR UK Department of Oncology and The medical Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, University of Cambridge, Hills Road, Cambridge CB2 2XZ, United Kingdom
| | | | | |
Collapse
|
439
|
Furuta T, Baillie DL, Schumacher JM. Caenorhabditis elegans Aurora A kinase AIR-1 is required for postembryonic cell divisions and germline development. Genesis 2002; 34:244-50. [PMID: 12434334 DOI: 10.1002/gene.10157] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Many kinases are required for progression through the eukaryotic cell cycle. The Aurora kinases comprise a highly conserved family of serine/threonine kinases that have been implicated in chromosome segregation and cytokinesis in several organisms. We have isolated a sterile Caenorhabditis elegans mutant in which the majority of the locus encoding the Aurora A kinase air-1 has been deleted. Complementation tests with previously isolated sterile mutations in the air-1 genetic interval demonstrate that the air-1 and let-412 loci are identical. Previous analysis of AIR-1 function by RNA-mediated interference (RNAi) has shown that AIR-1 is required for embryonic survival. The characterization of the three sterile air-1 mutant alleles described here extends these studies by revealing an allelic series that differentially affects postembryonic cell divisions and germline development.
Collapse
Affiliation(s)
- Tokiko Furuta
- Department of Molecular Genetics, The University of Texas M D.Anderson Cancer Center, Houston, Texas 77030-4095, USA
| | | | | |
Collapse
|
440
|
Losada A, Hirano M, Hirano T. Cohesin release is required for sister chromatid resolution, but not for condensin-mediated compaction, at the onset of mitosis. Genes Dev 2002; 16:3004-16. [PMID: 12464631 PMCID: PMC187494 DOI: 10.1101/gad.249202] [Citation(s) in RCA: 256] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2002] [Accepted: 10/11/2002] [Indexed: 11/24/2022]
Abstract
The establishment of metaphase chromosomes is an essential prerequisite of sister chromatid separation in anaphase. It involves the coordinated action of cohesin and condensin, protein complexes that mediate cohesion and condensation, respectively. In metazoans, most cohesin dissociates from chromatin at prophase, coincident with association of condensin. Whether loosening of cohesion at the onset of mitosis facilitates the compaction process, resolution of the sister chromatids, or both, remains unknown. We have found that the prophase release of cohesin is completely blocked when two mitotic kinases, aurora B and polo-like kinase (Plx1), are simultaneously depleted from Xenopus egg extracts. Condensin loading onto chromatin is not affected under this condition, and rod-shaped chromosomes are produced that show an apparently normal level of compaction. However, the resolution of sister chromatids within these chromosomes is severely compromised. This is not because of inhibition of topoisomerase II activity that is also required for the resolution process. We propose that aurora B and Plx1 cooperate to destabilize the sister chromatid linkage through distinct mechanisms that may involve phosphorylation of histone H3 and cohesin, respectively. More importantly, our results strongly suggest that cohesin release at the onset of mitosis is essential for sister chromatid resolution but not for condensin-mediated compaction.
Collapse
Affiliation(s)
- Ana Losada
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
441
|
Morrison C, Henzing AJ, Jensen ON, Osheroff N, Dodson H, Kandels-Lewis SE, Adams RR, Earnshaw WC. Proteomic analysis of human metaphase chromosomes reveals topoisomerase II alpha as an Aurora B substrate. Nucleic Acids Res 2002; 30:5318-27. [PMID: 12466558 PMCID: PMC137976 DOI: 10.1093/nar/gkf665] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The essential Aurora B kinase is a chromosomal passenger protein that is required for mitotic chromosome alignment and segregation. Aurora B function is dependent on the chromosome passenger, INCENP. INCENP, in turn, requires sister chromatid cohesion for its appropriate behaviour. Relatively few substrates have been identified for Aurora B, so that the precise role it plays in controlling mitosis remains to be elucidated. To identify potential novel mitotic substrates of Aurora B, extracted chromosomes were prepared from mitotically-arrested HeLa S3 cells and incubated with recombinant human Aurora B in the presence of radioactive ATP. Immunoblot analysis confirmed the HeLa scaffold fraction to be enriched for known chromosomal proteins including CENP-A, CENP-B, CENP-C, ScII and INCENP. Mass spectrometry of bands excised from one-dimensional polyacrylamide gels further defined the protein composition of the extracted chromosome fraction. Cloning, fluorescent tagging and expression in HeLa cells of the putative GTP-binding protein NGB/CRFG demonstrated it to be a novel mitotic chromosome protein, with a perichromosomal localisation. Identi fication of the protein bands corresponding to those phosphorylated by Aurora B revealed topoisomerase II alpha (topo IIalpha) as a potential Aurora B substrate. Purified recombinant human topo IIalpha was phosphorylated by Aurora B in vitro, confirming this proteomic approach as a valid method for the initial definition of candidate substrates of key mitotic kinases.
Collapse
Affiliation(s)
- Ciaran Morrison
- Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, Swann Building, King's Buildings, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, UK.
| | | | | | | | | | | | | | | |
Collapse
|
442
|
Lange BM, Rebollo E, Herold A, González C. Cdc37 is essential for chromosome segregation and cytokinesis in higher eukaryotes. EMBO J 2002; 21:5364-74. [PMID: 12374737 PMCID: PMC129064 DOI: 10.1093/emboj/cdf531] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cdc37 has been shown to be required for the activity and stability of protein kinases that regulate different stages of cell cycle progression. However, little is known so far regarding interactions of Cdc37 with kinases that play a role in cell division. Here we show that the loss of function of Cdc37 in Drosophila leads to defects in mitosis and male meiosis, and that these phenotypes closely resemble those brought about by the inactivation of Aurora B. We provide evidence that Aurora B interacts with and requires the Cdc37/Hsp90 complex for its stability. We conclude that the Cdc37/Hsp90 complex modulates the function of Aurora B and that most of the phenotypes brought about by the loss of Cdc37 function can be explained by the inactivation of this kinase. These observations substantiate the role of Cdc37 as an upstream regulatory element of key cell cycle kinases.
Collapse
Affiliation(s)
- Bodo M.H. Lange
- European Molecular Biology Laboratory, Cell Biology and Biophysics Programme and
Gene Expression Programme, Meyerhofstrasse 1, D-69117 Heidelberg, Germany Corresponding author e-mail:
| | | | - Andrea Herold
- European Molecular Biology Laboratory, Cell Biology and Biophysics Programme and
Gene Expression Programme, Meyerhofstrasse 1, D-69117 Heidelberg, Germany Corresponding author e-mail:
| | | |
Collapse
|
443
|
Murata-Hori M, Wang YL. Both midzone and astral microtubules are involved in the delivery of cytokinesis signals: insights from the mobility of aurora B. J Cell Biol 2002; 159:45-53. [PMID: 12370248 PMCID: PMC2173485 DOI: 10.1083/jcb.200207014] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To address the mechanism that coordinates cytokinesis with mitosis, we have studied the dynamics of aurora B, a chromosomal passenger protein involved in signaling cytokinesis. Photobleaching analyses indicated dynamic exchange of aurora B between a centromeric and a cytoplasmic pool before anaphase onset, and stable associations with microtubules after anaphase onset. Bleaching near centromeres upon anaphase onset affected the subsequent appearance of fluorescence along midzone microtubules, but not that near the lateral equatorial cortex, suggesting that there were centromeric-dependent and -independent pathways that transported aurora B to the equator. The former delivered centromeric aurora B along midzone microtubules, whereas the latter delivered cytoplasmic aurora B along astral microtubules. We suggest that cultured cells use midzone microtubules as the primary signaling pathway for cytokinesis, whereas embryos, with their stockpile of cytoplasmic proteins and large sizes, rely primarily on astral microtubules.
Collapse
Affiliation(s)
- Maki Murata-Hori
- University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
444
|
Abstract
Members of the structural maintenance of chromosomes (SMC) family share a characteristic design and configuration of protein domains that provides the molecular basis for the various functions of this family in chromosome dynamics. SMC proteins have a role in chromosome condensation, sister-chromatid cohesion, DNA repair and recombination, and gene dosage compensation, and they function in somatic and meiotic cells. As more is learned about how their unique design affects their function, a picture of a dynamic and varied protein family is emerging.
Collapse
Affiliation(s)
- Rolf Jessberger
- The Carl C. Icahn Institute for Gene Therapy and Molecular Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029, USA.
| |
Collapse
|
445
|
Abstract
Mammalian aurora-A belongs to a multigenic family of mitotic serine/threonine kinases comprising two other members: aurora-B and aurora-C. In this review we will focus on aurora-A that starts to localize to centrosomes only in S phase as soon as centrioles have been duplicated, the protein is then degraded in early G1. Works in various organisms have revealed that the kinase is involved in centrosome separation, duplication and maturation as well as in bipolar spindle assembly and stability. Aurora kinases are found in all organisms in which their function has been conserved throughout evolution, namely the control of chromosome segregation. In human, aurora-A has focused a lot of attention, since its overexpression has been found to be correlated with the grade of various solid tumours. Ectopic kinase overexpression in any culture cell line leads to polyploidy and centrosome amplification. However, overexpression of aurora-A in particular cell lines such as NIH3T3 is sufficient to induce growth on soft agar. Those transformed cells form tumours when implanted in immunodeficient mice, indicating that the kinase is an oncogene.
Collapse
Affiliation(s)
- Stéphanie Dutertre
- Groupe Cycle Cellulaire, UMR 6061 Génétique et développement, CNRS-Université de Rennes I, IFR 97 Génomique Fonctionnelle et Santé, Faculté de Médecine, 2 avenue du Pr Leon Bernard, CS 34317, 35043 Rennes cedex, France
| | | | | |
Collapse
|
446
|
Gruneberg U, Glotzer M, Gartner A, Nigg EA. The CeCDC-14 phosphatase is required for cytokinesis in the Caenorhabditis elegans embryo. J Cell Biol 2002; 158:901-14. [PMID: 12213836 PMCID: PMC2173158 DOI: 10.1083/jcb.200202054] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In all eukaryotic organisms, the physical separation of two nascent cells must be coordinated with chromosome segregation and mitotic exit. In Saccharomyces cerevisiae and Schizosaccharomyces pombe this coordination depends on a number of genes that cooperate in intricate regulatory pathways termed mitotic exit network and septum initiation network, respectively. Here we have explored the function of potentially homologous genes in a metazoan organism, Caenorhabditis elegans, using RNA-mediated interference. Of all the genes tested, only depletion of CeCDC-14, the C. elegans homologue of the budding yeast dual-specificity phosphatase Cdc14p (Clp1/Flp1p in fission yeast), caused embryonic lethality. We show that CeCDC-14 is required for cytokinesis but may be dispensable for progression of the early embryonic cell cycles. In response to depletion of CeCDC-14, embryos fail to establish a central spindle, and several proteins normally found at this structure are mislocalized. CeCDC-14 itself localizes to the central spindle in anaphase and to the midbody in telophase. It colocalizes with the mitotic kinesin ZEN-4, and the two proteins depend on each other for correct localization. These findings identify the CDC14 phosphatase as an important regulator of central spindle formation and cytokinesis in a metazoan organism.
Collapse
Affiliation(s)
- Ulrike Gruneberg
- Department of Cell Biology, Max-Planck-Institute for Biochemistry, D-82152 Martinsried, Germany
| | | | | | | |
Collapse
|
447
|
Bolton MA, Lan W, Powers SE, McCleland ML, Kuang J, Stukenberg PT. Aurora B kinase exists in a complex with survivin and INCENP and its kinase activity is stimulated by survivin binding and phosphorylation. Mol Biol Cell 2002; 13:3064-77. [PMID: 12221116 PMCID: PMC124143 DOI: 10.1091/mbc.e02-02-0092] [Citation(s) in RCA: 236] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Aurora B regulates chromosome segregation and cytokinesis and is the first protein to be implicated as a regulator of bipolar attachment of spindle microtubules to kinetochores. Evidence from several systems suggests that Aurora B is physically associated with inner centromere protein (INCENP) in mitosis and has genetic interactions with Survivin. It is unclear whether the Aurora B and INCENP interaction is cell cycle regulated and if Survivin physically interacts in this complex. In this study, we cloned the Xenopus Survivin gene, examined its association with Aurora B and INCENP, and determined the effect of its binding on Aurora B kinase activity. We demonstrate that in the Xenopus early embryo, all of the detectable Survivin is in a complex with both Aurora B and INCENP throughout the cell cycle. Survivin and Aurora B bind different domains on INCENP. Aurora B activity is stimulated >10-fold in mitotic extracts; this activation is phosphatase sensitive, and the binding of Survivin is required for full Aurora B activity. We also find the hydrodynamic properties of the Aurora B/Survivin/INCENP complex are cell cycle regulated. Our data indicate that Aurora B kinase activity is regulated by both Survivin binding and cell cycle-dependent phosphorylation.
Collapse
Affiliation(s)
- Margaret A Bolton
- Department of Biochemistry and Molecular Genetics, University of Virginia Medical Center, Charlottesville 22908, USA
| | | | | | | | | | | |
Collapse
|
448
|
Kubelka M, Anger M, Kalous J, Schultz RM, Motlík J. Chromosome condensation in pig oocytes: lack of a requirement for either cdc2 kinase or MAP kinase activity. Mol Reprod Dev 2002; 63:110-8. [PMID: 12211068 DOI: 10.1002/mrd.10176] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, butyrolactone I (BL I), a potent and specific inhibitor of cyclin-dependent kinases (cdk), is shown to inhibit germinal vesicle breakdown (GVBD) in pig oocytes. Oocytes treated with 100 microM BL I were arrested in the germinal vesicle (GV)-stage and displayed low activity of cdc2 kinase and MAP kinase. Nevertheless, chromosome condensation occurred and highly condensed bivalents were seen within an intact GV after a 24-hr culture in the presence of BL I. The inhibitory effect of BL I on MAP kinase activation during culture was likely mediated through a cdk-dependent pathway, since MAP kinase activity present in extracts derived from metaphase II eggs was not inhibited by BL I. The block of GVBD could be released by treating oocytes with okadaic acid (OA), an inhibitor of type 1 and 2A phosphatases; 82% of the oocytes treated with the combination of OA/BL I underwent GVBD, and MAP kinase became activated, while cdc2 kinase remained inhibited. These results suggest that both chromosome condensation and GVBD could occur without activation of cdc2 kinase, whereas an increase in MAP kinase activity may be a requisite for GVBD in pig oocytes in conditions when cdc2 kinase activation is blocked by BL I.
Collapse
Affiliation(s)
- Michal Kubelka
- Department of Physiology of Reproduction, Institute of Animal Physiology and Genetics, Libechov, Czech Republic.
| | | | | | | | | |
Collapse
|
449
|
Bomar J, Moreira P, Balise JJ, Collas P. Differential regulation of maternal and paternal chromosome condensation in mitotic zygotes. J Cell Sci 2002; 115:2931-40. [PMID: 12082153 DOI: 10.1242/jcs.115.14.2931] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A-kinase anchoring protein AKAP95 is implicated in somatic mitotic chromosome condensation by recruiting the condensin complex. Here, we report a differential regulation of condensation of maternal and paternal chromosomes mediated by AKAP95 in mitotic mouse zygotes. AKAP95 is synthesized upon oocyte activation, targeted to the female pronucleus and specifically associates with maternal chromosomes at mitosis. AKAP95 mRNA is highly restricted to the vicinity of the meiotic spindle in metaphase II oocytes. In vivo displacement of endogenous AKAP95 in female pronuclei by microinjection of competitor peptides and rescue experiments show that AKPA95 is required for recruitment of the mCAP-D2 condensin subunit to, and condensation of, maternal chromosomes. In contrast, AKAP95 is dispensable for mCAP-D2 recruitment to,and condensation of, paternal chromosomes. Our results indicate that at first embryonic mitosis, paternal chromosomes target condensins and condense independently of AKAP95, whereas maternal chromosomes require AKAP95 for condensin recruitment and condensation. We propose a concept whereby condensation of chromosomes in gametes, zygotes and somatic cells involves related but distinct mechanisms.
Collapse
Affiliation(s)
- Jacqueline Bomar
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst 01003, USA
| | | | | | | |
Collapse
|
450
|
Huang JY, Raff JW. The dynamic localisation of the Drosophila APC/C: evidence for the existence of multiple complexes that perform distinct functions and are differentially localised. J Cell Sci 2002; 115:2847-56. [PMID: 12082146 DOI: 10.1242/jcs.115.14.2847] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Drosophila cells, the destruction of cyclin B is spatially regulated. In cellularised embryos, cyclin B is initially degraded on the mitotic spindle and is then degraded in the cytoplasm. In syncytial embryos,only the spindle-associated cyclin B is degraded at the end of mitosis. The anaphase promoting complex/cyclosome (APC/C) targets cyclin B for destruction,but its subcellular localisation remains controversial. We constructed GFP fusions of two core APC/C subunits, Cdc16 and Cdc27. These fusion proteins were incorporated into the endogenous APC/C and were largely localised in the cytoplasm during interphase in living syncytial embryos. Both fusion proteins rapidly accumulated in the nucleus prior to nuclear envelope breakdown but only weakly associated with mitotic spindles throughout mitosis. Thus, the global activation of a spatially restricted APC/C cannot explain the spatially regulated destruction of cyclin B. Instead, different subpopulations of the APC/C must be activated at different times to degrade cyclin B. Surprisingly,we noticed that GFP-Cdc27 associated with mitotic chromosomes, whereas GFP-Cdc16 did not. Moreover, reducing the levels of Cdc16 or Cdc27 by >90%in tissue culture cells led to a transient mitotic arrest that was both biochemically and morphologically distinct. Taken together, our results raise the intriguing possibility that there could be multiple forms of the APC/C that are differentially localised and perform distinct functions.
Collapse
Affiliation(s)
- Jun-yong Huang
- Wellcome Trust/Cancer Research UK Institute and Department of Genetics, University of Cambridge, UK
| | | |
Collapse
|