401
|
Engel P, Kwong WK, McFrederick Q, Anderson KE, Barribeau SM, Chandler JA, Cornman RS, Dainat J, de Miranda JR, Doublet V, Emery O, Evans JD, Farinelli L, Flenniken ML, Granberg F, Grasis JA, Gauthier L, Hayer J, Koch H, Kocher S, Martinson VG, Moran N, Munoz-Torres M, Newton I, Paxton RJ, Powell E, Sadd BM, Schmid-Hempel P, Schmid-Hempel R, Song SJ, Schwarz RS, vanEngelsdorp D, Dainat B. The Bee Microbiome: Impact on Bee Health and Model for Evolution and Ecology of Host-Microbe Interactions. mBio 2016; 7:e02164-15. [PMID: 27118586 PMCID: PMC4850275 DOI: 10.1128/mbio.02164-15] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As pollinators, bees are cornerstones for terrestrial ecosystem stability and key components in agricultural productivity. All animals, including bees, are associated with a diverse community of microbes, commonly referred to as the microbiome. The bee microbiome is likely to be a crucial factor affecting host health. However, with the exception of a few pathogens, the impacts of most members of the bee microbiome on host health are poorly understood. Further, the evolutionary and ecological forces that shape and change the microbiome are unclear. Here, we discuss recent progress in our understanding of the bee microbiome, and we present challenges associated with its investigation. We conclude that global coordination of research efforts is needed to fully understand the complex and highly dynamic nature of the interplay between the bee microbiome, its host, and the environment. High-throughput sequencing technologies are ideal for exploring complex biological systems, including host-microbe interactions. To maximize their value and to improve assessment of the factors affecting bee health, sequence data should be archived, curated, and analyzed in ways that promote the synthesis of different studies. To this end, the BeeBiome consortium aims to develop an online database which would provide reference sequences, archive metadata, and host analytical resources. The goal would be to support applied and fundamental research on bees and their associated microbes and to provide a collaborative framework for sharing primary data from different research programs, thus furthering our understanding of the bee microbiome and its impact on pollinator health.
Collapse
Affiliation(s)
- Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Waldan K Kwong
- Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Quinn McFrederick
- Department of Entomology, University of California, Riverside, California, USA
| | | | | | - James Angus Chandler
- Department of Microbiology, California Academy of Sciences, San Francisco, California, USA
| | - R Scott Cornman
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, USA
| | - Jacques Dainat
- Bioinformatics Infrastructure for Life Sciences (BILS), Linköpings Universitet Victoria Westling, Linköping, Sweden, and Department of Medical Biochemistry and Microbiology Uppsala University, Uppsala, Sweden
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Vincent Doublet
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Olivier Emery
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Jay D Evans
- USDA, ARS Bee Research Laboratory, Beltsville, Maryland, USA
| | | | - Michelle L Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, USA
| | | | - Juris A Grasis
- Department of Biology, North Life Sciences, San Diego State University, San Diego, California, USA
| | - Laurent Gauthier
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | | | - Hauke Koch
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| | - Sarah Kocher
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge , Massachusetts , USA
| | | | - Nancy Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Monica Munoz-Torres
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley , California , USA
| | - Irene Newton
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Robert J Paxton
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Eli Powell
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Ben M Sadd
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | | | | | - Se Jin Song
- University of Colorado at Boulder, Boulder, Colorado, USA
| | - Ryan S Schwarz
- USDA, ARS Bee Research Laboratory, Beltsville, Maryland, USA
| | | | - Benjamin Dainat
- Agroscope, Swiss Bee Research Centre, Bern, Switzerland Bee Health Extension Service, Apiservice, Bern , Switzerland
| |
Collapse
|
402
|
Patterns of molecular evolution of RNAi genes in social and socially parasitic bumblebees. INFECTION GENETICS AND EVOLUTION 2016; 42:53-9. [PMID: 27117935 DOI: 10.1016/j.meegid.2016.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/19/2016] [Accepted: 04/22/2016] [Indexed: 01/16/2023]
Abstract
The high frequency of interactions amongst closely related individuals in social insect colonies enhances pathogen transmission. Group-mediated behavior supporting immune defenses tends to decrease selection acting on immune genes. Along with low effective population sizes this might result in relaxed constraint and rapid evolution of immune system genes. Here, we show that antiviral siRNA genes show high rates of molecular evolution with argonaute 2, armitage and maelstrom evolving faster in social bumblebees compared to their socially parasitic cuckoo bumblebees that lack a worker caste. RNAi genes show frequent positive selection at the codon level additionally supported by the occurrence of parallel evolution. Their evolutionary rate is linked to their pathway specific position with genes directly interacting with viruses showing the highest rates of molecular evolution. We suggest that higher pathogen load in social insects indeed drives the molecular evolution of immune genes including antiviral siRNA, if not compensated by behavior.
Collapse
|
403
|
Nunn CL, Jordán F, McCabe CM, Verdolin JL, Fewell JH. Infectious disease and group size: more than just a numbers game. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0111. [PMID: 25870397 DOI: 10.1098/rstb.2014.0111] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Increased risk of infectious disease is assumed to be a major cost of group living, yet empirical evidence for this effect is mixed. We studied whether larger social groups are more subdivided structurally. If so, the social subdivisions that form in larger groups may act as barriers to the spread of infection, weakening the association between group size and infectious disease. To investigate this 'social bottleneck' hypothesis, we examined the association between group size and four network structure metrics in 43 vertebrate and invertebrate species. We focused on metrics involving modularity, clustering, distance and centralization. In a meta-analysis of intraspecific variation in social networks, modularity showed positive associations with network size, with a weaker but still positive effect in cross-species analyses. Network distance also showed a positive association with group size when using intraspecific variation. We then used a theoretical model to explore the effects of subgrouping relative to other effects that influence disease spread in socially structured populations. Outbreaks reached higher prevalence when groups were larger, but subgrouping reduced prevalence. Subgrouping also acted as a 'brake' on disease spread between groups. We suggest research directions to understand the conditions under which larger groups become more subdivided, and to devise new metrics that account for subgrouping when investigating the links between sociality and infectious disease risk.
Collapse
Affiliation(s)
- Charles L Nunn
- Department of Evolutionary Anthropology, Duke University, Box 90383, Durham, NC 27708, USA Duke Global Health Institute, Duke University, 310 Trent Drive, Durham, NC 27710, USA
| | - Ferenc Jordán
- The Microsoft Research-University of Trento COSBI, Piazza Manifattura 1, 38068 Rovereto, Italy Balaton Limnological Institute, Centre for Ecological Research HAS, Klebelsberg K. u. 3, 8237 Tihany, Hungary
| | - Collin M McCabe
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 01238, USA
| | - Jennifer L Verdolin
- National Evolutionary Synthesis Center, Duke University, Durham, NC 27705, USA
| | - Jennifer H Fewell
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
404
|
Rahnamaeian M, Cytryńska M, Zdybicka-Barabas A, Dobslaff K, Wiesner J, Twyman RM, Zuchner T, Sadd BM, Regoes RR, Schmid-Hempel P, Vilcinskas A. Insect antimicrobial peptides show potentiating functional interactions against Gram-negative bacteria. Proc Biol Sci 2016; 282:20150293. [PMID: 25833860 PMCID: PMC4426631 DOI: 10.1098/rspb.2015.0293] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) and proteins are important components of innate
immunity against pathogens in insects. The production of AMPs is costly owing to
resource-based trade-offs, and strategies maximizing the efficacy of AMPs at low
concentrations are therefore likely to be advantageous. Here, we show the
potentiating functional interaction of co-occurring insect AMPs (the bumblebee
linear peptides hymenoptaecin and abaecin) resulting in more potent
antimicrobial effects at low concentrations. Abaecin displayed no detectable
activity against Escherichia coli when tested alone at
concentrations of up to 200 μM, whereas hymenoptaecin affected bacterial
cell growth and viability but only at concentrations greater than 2 μM.
In combination, as little as 1.25 μM abaecin enhanced the bactericidal
effects of hymenoptaecin. To understand these potentiating functional
interactions, we investigated their mechanisms of action using atomic force
microscopy and fluorescence resonance energy transfer-based quenching assays.
Abaecin was found to reduce the minimal inhibitory concentration of
hymenoptaecin and to interact with the bacterial chaperone DnaK (an
evolutionarily conserved central organizer of the bacterial chaperone network)
when the membrane was compromised by hymenoptaecin. These naturally occurring
potentiating interactions suggest that combinations of AMPs could be used
therapeutically against Gram-negative bacterial pathogens that have acquired
resistance to common antibiotics.
Collapse
Affiliation(s)
- Mohammad Rahnamaeian
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, Giessen 35394, Germany
| | - Małgorzata Cytryńska
- Department of Immunobiology, Institute of Biology and Biochemistry, Maria Curie-Sklodowska University, Akademicka Street 19, Lublin 20-033, Poland
| | - Agnieszka Zdybicka-Barabas
- Department of Immunobiology, Institute of Biology and Biochemistry, Maria Curie-Sklodowska University, Akademicka Street 19, Lublin 20-033, Poland
| | - Kristin Dobslaff
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy and Center of Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, Leipzig 04103, Germany
| | - Jochen Wiesner
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, Giessen 35394, Germany
| | - Richard M Twyman
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, Giessen 35394, Germany TRM Ltd, PO Box 93, York YO43 3WE, UK
| | - Thole Zuchner
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy and Center of Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, Leipzig 04103, Germany
| | - Ben M Sadd
- School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, IL 61790, USA
| | - Roland R Regoes
- ETH Zürich, Institute of Integrative Biology, ETH-Zentrum CHN, Universitätsstrasse 16, Zürich 8092, Switzerland
| | - Paul Schmid-Hempel
- ETH Zürich, Institute of Integrative Biology, ETH-Zentrum CHN, Universitätsstrasse 16, Zürich 8092, Switzerland
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, Giessen 35394, Germany Institute of Phytopathology and Applied Zoology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, Giessen 35392, Germany
| |
Collapse
|
405
|
Christen V, Mittner F, Fent K. Molecular Effects of Neonicotinoids in Honey Bees (Apis mellifera). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:4071-81. [PMID: 26990785 DOI: 10.1021/acs.est.6b00678] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Neonicotinoids are implicated in the decline of bee populations. As agonists of nicotinic acetylcholine receptors, they disturb acetylcholine receptor signaling leading to neurotoxicity. Several behavioral studies showed the link between neonicotinoid exposure and adverse effects on foraging activity and reproduction. However, molecular effects underlying these effects are poorly understood. Here we elucidated molecular effects at environmental realistic levels of three neonicotinoids and nicotine, and compared laboratory studies to field exposures with acetamiprid. We assessed transcriptional alterations of eight selected genes in caged honey bees exposed to different concentrations of the neonicotinoids acetamiprid, clothianidin, imidacloporid, and thiamethoxam, as well as nicotine. We determined transcripts of several targets, including nicotinic acetylcholine receptor α 1 and α 2 subunit, the multifunctional gene vitellogenin, immune system genes apidaecin and defensin-1, stress-related gene catalase and two genes linked to memory formation, pka and creb. Vitellogenin showed a strong increase upon neonicotinoid exposures in the laboratory and field, while creb and pka transcripts were down-regulated. The induction of vitellogenin suggests adverse effects on foraging activity, whereas creb and pka down-regulation may be implicated in decreased long-term memory formation. Transcriptional alterations occurred at environmental concentrations and provide an explanation for the molecular basis of observed adverse effects of neonicotinoids to bees.
Collapse
Affiliation(s)
- Verena Christen
- University of Applied Sciences and Arts Northwestern Switzerland (FHNW) , School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Fabian Mittner
- University of Applied Sciences and Arts Northwestern Switzerland (FHNW) , School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland (FHNW) , School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
- Swiss Federal Institute of Technology Zürich (ETH Zürich) , Department of Environmental System Sciences, Institute of Biogeochemistry and Pollution Dynamics, CH-8092 Zürich, Switzerland
| |
Collapse
|
406
|
Transcriptional profiling analysis of Spodoptera litura larvae challenged with Vip3Aa toxin and possible involvement of trypsin in the toxin activation. Sci Rep 2016; 6:23861. [PMID: 27025647 PMCID: PMC4812304 DOI: 10.1038/srep23861] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/15/2016] [Indexed: 01/02/2023] Open
Abstract
Vip proteins, a new group of insecticidal toxins produced by Bacillus thuringiensis, are effective against specific pests including Spodoptera litura. Here, we report construction of a transcriptome database of S. litura by de novo assembly along with detection of the transcriptional response of S. litura larvae to Vip3Aa toxin. In total, 56,498 unigenes with an N50 value of 1,853 bp were obtained. Results of transcriptome abundance showed that Vip3Aa toxin provoked a wide transcriptional response of the S. litura midgut. The differentially expressed genes were enriched for immunity-related, metabolic-related and Bt-related genes. Twenty-nine immunity-related genes, 102 metabolic-related genes and 62 Bt-related genes with differential expression were found. On the basis of transcriptional profiling analysis, we focus on the functional validation of trypsin which potentially participated in the activation of Vip3Aa protoxin. Zymogram analysis indicated that the presence of many proteases, including trypsin, in S. litura larvae midgut. Results of enzymolysis in vitro of Vip3Aa by trypsin, and bioassay and histopathology of the trypsin-digested Vip3Aa toxin showed that trypsin was possibly involved in the Vip3Aa activation. This study provides a transcriptome foundation for the identification and functional validation of the differentially expressed genes in an agricultural important pest, S. litura.
Collapse
|
407
|
Smart M, Pettis J, Rice N, Browning Z, Spivak M. Linking Measures of Colony and Individual Honey Bee Health to Survival among Apiaries Exposed to Varying Agricultural Land Use. PLoS One 2016; 11:e0152685. [PMID: 27027871 PMCID: PMC4814072 DOI: 10.1371/journal.pone.0152685] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/17/2016] [Indexed: 11/19/2022] Open
Abstract
We previously characterized and quantified the influence of land use on survival and productivity of colonies positioned in six apiaries and found that colonies in apiaries surrounded by more land in uncultivated forage experienced greater annual survival, and generally more honey production. Here, detailed metrics of honey bee health were assessed over three years in colonies positioned in the same six apiaries. The colonies were located in North Dakota during the summer months and were transported to California for almond pollination every winter. Our aim was to identify relationships among measures of colony and individual bee health that impacted and predicted overwintering survival of colonies. We tested the hypothesis that colonies in apiaries surrounded by more favorable land use conditions would experience improved health. We modeled colony and individual bee health indices at a critical time point (autumn, prior to overwintering) and related them to eventual spring survival for California almond pollination. Colony measures that predicted overwintering apiary survival included the amount of pollen collected, brood production, and Varroa destructor mite levels. At the individual bee level, expression of vitellogenin, defensin1, and lysozyme2 were important markers of overwinter survival. This study is a novel first step toward identifying pertinent physiological responses in honey bees that result from their positioning near varying landscape features in intensive agricultural environments.
Collapse
Affiliation(s)
- Matthew Smart
- University of Minnesota, Department of Entomology, St. Paul, MN, United States of America
- * E-mail:
| | - Jeff Pettis
- USDA-ARS-Bee Research Lab, Beltsville, MD, United States of America
| | - Nathan Rice
- USDA-ARS-Bee Research Lab, Beltsville, MD, United States of America
| | - Zac Browning
- Browning’s Honey Company, Jamestown, ND, United States of America
| | - Marla Spivak
- University of Minnesota, Department of Entomology, St. Paul, MN, United States of America
| |
Collapse
|
408
|
A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health. Proc Natl Acad Sci U S A 2016; 113:3203-8. [PMID: 26951652 DOI: 10.1073/pnas.1523515113] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Honey bee colony losses are triggered by interacting stress factors consistently associated with high loads of parasites and/or pathogens. A wealth of biotic and abiotic stressors are involved in the induction of this complex multifactorial syndrome, with the parasitic mite Varroa destructor and the associated deformed wing virus (DWV) apparently playing key roles. The mechanistic basis underpinning this association and the evolutionary implications remain largely obscure. Here we narrow this research gap by demonstrating that DWV, vectored by the Varroa mite, adversely affects humoral and cellular immune responses by interfering with NF-κB signaling. This immunosuppressive effect of the viral pathogen enhances reproduction of the parasitic mite. Our experimental data uncover an unrecognized mutualistic symbiosis between Varroa and DWV, which perpetuates a loop of reciprocal stimulation with escalating negative effects on honey bee immunity and health. These results largely account for the remarkable importance of this mite-virus interaction in the induction of honey bee colony losses. The discovery of this mutualistic association and the elucidation of the underlying regulatory mechanisms sets the stage for a more insightful analysis of how synergistic stress factors contribute to colony collapse, and for the development of new strategies to alleviate this problem.
Collapse
|
409
|
Johnston BA, Hooks KB, McKinstry M, Snow JW. Divergent forms of endoplasmic reticulum stress trigger a robust unfolded protein response in honey bees. JOURNAL OF INSECT PHYSIOLOGY 2016; 86:1-10. [PMID: 26699660 DOI: 10.1016/j.jinsphys.2015.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/04/2015] [Accepted: 12/12/2015] [Indexed: 06/05/2023]
Abstract
Honey bee colonies in the United States have suffered from an increased rate of die-off in recent years, stemming from a complex set of interacting stresses that remain poorly described. While we have some understanding of the physiological stress responses in the honey bee, our molecular understanding of honey bee cellular stress responses is incomplete. Thus, we sought to identify and began functional characterization of the components of the UPR in honey bees. The IRE1-dependent splicing of the mRNA for the transcription factor Xbp1, leading to translation of an isoform with more transactivation potential, represents the most conserved of the UPR pathways. Honey bees and other Apoidea possess unique features in the Xbp1 mRNA splice site, which we reasoned could have functional consequences for the IRE1 pathway. However, we find robust induction of target genes upon UPR stimulation. In addition, the IRE1 pathway activation, as assessed by splicing of Xbp1 mRNA upon UPR, is conserved. By providing foundational knowledge about the UPR in the honey bee and the relative sensitivity of this species to divergent stresses, this work stands to improve our understanding of the mechanistic underpinnings of honey bee health and disease.
Collapse
Affiliation(s)
- Brittany A Johnston
- Biology Department, Barnard College, New York, NY 10027, USA; Biology Department, The City College of New York - CUNY, New York, NY 10031, USA
| | - Katarzyna B Hooks
- Faculty of Life Sciences, University of Manchester, Manchester, UK; U1053 INSERM, Université de Bordeaux, France
| | - Mia McKinstry
- Biology Department, Barnard College, New York, NY 10027, USA
| | - Jonathan W Snow
- Biology Department, Barnard College, New York, NY 10027, USA.
| |
Collapse
|
410
|
Cizelj I, Glavan G, Božič J, Oven I, Mrak V, Narat M. Prochloraz and coumaphos induce different gene expression patterns in three developmental stages of the Carniolan honey bee (Apis mellifera carnica Pollmann). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 128:68-75. [PMID: 26969442 DOI: 10.1016/j.pestbp.2015.09.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/29/2015] [Accepted: 09/29/2015] [Indexed: 06/05/2023]
Abstract
The Carniolan honey bee, Apis mellifera carnica, is a Slovenian autochthonous subspecies of honey bee. In recent years, the country has recorded an annual loss of bee colonies through mortality of up to 35%. One possible reason for such high mortality could be the exposure of honey bees to xenobiotic residues that have been found in honey bee and beehive products. Acaricides are applied by beekeepers to control varroosis, while the most abundant common agricultural chemicals found in honey bee and beehive products are fungicides, which may enter the system when applied to nearby flowering crops and fruit plants. Acaricides and fungicides are not intrinsically highly toxic to bees but their action in combination might lead to higher honey bee sensitivity or mortality. In the present study we investigated the molecular immune response of honey bee workers at different developmental stages (prepupa, white-eyed pupa, adult) exposed to the acaricide coumaphos and the fungicide prochloraz individually and in combination. Expression of 17 immune-related genes was examined by quantitative RT-PCR. In treated prepupae downregulation of most immune-related genes was observed in all treatments, while in adults upregulation of most of the genes was recorded. Our study shows for the first time that negative impacts of prochloraz and a combination of coumaphos and prochloraz differ among the different developmental stages of honey bees. The main effect of the xenobiotic combination was found to be upregulation of the antimicrobial peptide genes abaecin and defensin-1 in adult honey bees. Changes in immune-related gene expression could result in depressed immunity of honey bees and their increased susceptibility to various pathogens.
Collapse
Affiliation(s)
- Ivanka Cizelj
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, SI-1230 Domžale, Slovenia
| | - Gordana Glavan
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Janko Božič
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Irena Oven
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, SI-1230 Domžale, Slovenia
| | - Vesna Mrak
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, SI-1230 Domžale, Slovenia
| | - Mojca Narat
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, SI-1230 Domžale, Slovenia.
| |
Collapse
|
411
|
Brandt A, Gorenflo A, Siede R, Meixner M, Büchler R. The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L.). JOURNAL OF INSECT PHYSIOLOGY 2016; 86:40-7. [PMID: 26776096 DOI: 10.1016/j.jinsphys.2016.01.001] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 05/21/2023]
Abstract
A strong immune defense is vital for honey bee health and colony survival. This defense can be weakened by environmental factors that may render honey bees more vulnerable to parasites and pathogens. Honey bees are frequently exposed to neonicotinoid pesticides, which are being discussed as one of the stress factors that may lead to colony failure. We investigated the sublethal effects of the neonicotinoids thiacloprid, imidacloprid, and clothianidin on individual immunity, by studying three major aspects of immunocompetence in worker bees: total hemocyte number, encapsulation response, and antimicrobial activity of the hemolymph. In laboratory experiments, we found a strong impact of all three neonicotinoids. Thiacloprid (24h oral exposure, 200 μg/l or 2000 μg/l) and imidacloprid (1 μg/l or 10 μg/l) reduced hemocyte density, encapsulation response, and antimicrobial activity even at field realistic concentrations. Clothianidin had an effect on these immune parameters only at higher than field realistic concentrations (50-200 μg/l). These results suggest that neonicotinoids affect the individual immunocompetence of honey bees, possibly leading to an impaired disease resistance capacity.
Collapse
Affiliation(s)
- Annely Brandt
- LLH Bee Institute, Erlenstr. 9, 35274 Kirchhain, Germany.
| | - Anna Gorenflo
- LLH Bee Institute, Erlenstr. 9, 35274 Kirchhain, Germany
| | - Reinhold Siede
- LLH Bee Institute, Erlenstr. 9, 35274 Kirchhain, Germany
| | - Marina Meixner
- LLH Bee Institute, Erlenstr. 9, 35274 Kirchhain, Germany
| | - Ralph Büchler
- LLH Bee Institute, Erlenstr. 9, 35274 Kirchhain, Germany
| |
Collapse
|
412
|
Zhao W, Lu L, Yang P, Cui N, Kang L, Cui F. Organ-specific transcriptome response of the small brown planthopper toward rice stripe virus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 70:60-72. [PMID: 26678499 DOI: 10.1016/j.ibmb.2015.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/15/2015] [Accepted: 11/30/2015] [Indexed: 05/13/2023]
Abstract
Rice stripe virus (RSV) causes rice stripe disease and is transmitted by the small brown planthopper (Laodelphax striatellus, SBPH) in a persistent, circulative, and propagative manner. The alimentary canal and salivary gland of SBPH play important roles in viral replication and transmission. However, little is known about the underlying molecular functions of these two organs in the interaction between RSV and SBPH. In this study, organ-specific transcriptomes of the alimentary canal and salivary gland were analyzed in viruliferous and naïve SBPH. The number of differentially expressed unigenes in the alimentary canal was considerably greater than that in the salivary gland after RSV infection, and only 23 unigenes were co-regulated in the two organs. In the alimentary canal, genes involved in lysosome, digestion and detoxification were activated upon RSV infection, whereas the genes related to DNA replication and repair were suppressed. RSV activated RNA transport and repressed the MAPK, mTOR, Wnt, and TGF-beta signaling pathways in the salivary gland. The overall immune reaction toward RSV was much stronger in the salivary gland than in the alimentary canal. RSV activated the pattern recognition molecules and Toll pathway in the salivary gland but inhibited these two reactions in the alimentary canal. The responses from reactive oxygen and the immune-responsive effectors were stronger in the salivary gland than in the alimentary canal after RSV infection. These findings provide clues on the roles of the two organs in confronting RSV infection and aid in the understanding of the interaction between RSV and SBPHs.
Collapse
Affiliation(s)
- Wan Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lixia Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Pengcheng Yang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Na Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
413
|
Lynch ZR, Schlenke TA, de Roode JC. Evolution of behavioural and cellular defences against parasitoid wasps in the Drosophila melanogaster subgroup. J Evol Biol 2016; 29:1016-29. [PMID: 26859227 DOI: 10.1111/jeb.12842] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 01/04/2023]
Abstract
It may be intuitive to predict that host immune systems will evolve to counter a broad range of potential challenges through simultaneous investment in multiple defences. However, this would require diversion of resources from other traits, such as growth, survival and fecundity. Therefore, ecological immunology theory predicts that hosts will specialize in only a subset of possible defences. We tested this hypothesis through a comparative study of a cellular immune response and a putative behavioural defence used by eight fruit fly species against two parasitoid wasp species (one generalist and one specialist). Fly larvae can survive infection by melanotically encapsulating wasp eggs, and female flies can potentially reduce infection rates in their offspring by laying fewer eggs when wasps are present. The strengths of both defences varied significantly but were not negatively correlated across our chosen host species; thus, we found no evidence for a trade-off between behavioural and cellular immunity. Instead, cellular defences were significantly weaker against the generalist wasp, whereas behavioural defences were similar in strength against both wasps and positively correlated between wasps. We investigated the adaptive significance of wasp-induced oviposition reduction behaviour by testing whether wasp-exposed parents produce offspring with stronger cellular defences, but we found no support for this hypothesis. We further investigated the sensory basis of this behaviour by testing mutants deficient in either vision or olfaction, both of which failed to reduce their oviposition rates in the presence of wasps, suggesting that both senses are necessary for detecting and responding to wasps.
Collapse
Affiliation(s)
- Z R Lynch
- Department of Biology, Emory University, Atlanta, GA, USA
| | - T A Schlenke
- Department of Biology, Emory University, Atlanta, GA, USA.,Department of Biology, Reed College, Portland, OR, USA
| | - J C de Roode
- Department of Biology, Emory University, Atlanta, GA, USA
| |
Collapse
|
414
|
Ryabov EV, Fannon JM, Moore JD, Wood GR, Evans DJ. The Iflaviruses Sacbrood virus and Deformed wing virus evoke different transcriptional responses in the honeybee which may facilitate their horizontal or vertical transmission. PeerJ 2016; 4:e1591. [PMID: 26819848 PMCID: PMC4727977 DOI: 10.7717/peerj.1591] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/21/2015] [Indexed: 11/24/2022] Open
Abstract
Sacbrood virus (SBV) and Deformed wing virus (DWV) are evolutionarily related positive-strand RNA viruses, members of the Iflavirus group. They both infect the honeybee Apis mellifera but have strikingly different levels of virulence when transmitted orally. Honeybee larvae orally infected with SBV usually accumulate high levels of the virus, which halts larval development and causes insect death. In contrast, oral DWV infection at the larval stage usually causes asymptomatic infection with low levels of the virus, although high doses of ingested DWV could lead to DWV replicating to high levels. We investigated effects of DWV and SBV infection on the transcriptome of honeybee larvae and pupae using global RNA-Seq and real-time PCR analysis. This showed that high levels of SBV replication resulted in down-regulation of the genes involved in cuticle and muscle development, together with changes in expression of putative immune-related genes. In particular, honeybee larvae with high levels of SBV replication, with and without high levels of DWV replication, showed concerted up-regulated expression of antimicrobial peptides (AMPs), and down-regulated expression of the prophenoloxidase activating enzyme (PPAE) together with up-regulation of the expression of a putative serpin, which could lead to the suppression of the melanisation pathway. The effects of high SBV levels on expression of these immune genes were unlikely to be a consequence of SBV-induced developmental changes, because similar effects were observed in honeybee pupae infected by injection. In the orally infected larvae with high levels of DWV replication alone we observed no changes of AMPs or of gene expression in the melanisation pathway. In the injected pupae, high levels of DWV alone did not alter expression of the tested melanisation pathway genes, but resulted in up-regulation of the AMPs, which could be attributed to the effect of DWV on the regulation of AMP expression in response to wounding. We propose that the difference in expression of the honeybee immune genes induced by SBV and DWV may be an evolutionary adaptation to the different predominant transmission routes used by these viruses.
Collapse
Affiliation(s)
- Eugene V. Ryabov
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Jessica M. Fannon
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Jonathan D. Moore
- Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom
| | - Graham R. Wood
- Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom
| | - David J. Evans
- Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, United Kingdom
| |
Collapse
|
415
|
Buechel SD, Schmid-Hempel P. Colony pace: a life-history trait affecting social insect epidemiology. Proc Biol Sci 2016; 283:rspb.2015.1919. [PMID: 26763696 DOI: 10.1098/rspb.2015.1919] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Among colonies of social insects, the worker turnover rate (colony 'pace') typically shows considerable variation. This has epidemiological consequences for parasites, because in 'fast-paced' colonies, with short-lived workers, the time of parasite residence in a given host will be reduced, and further transmission may thus get less likely. Here, we test this idea and ask whether pace is a life-history strategy against infectious parasites. We infected bumblebees (Bombus terrestris) with the infectious gut parasite Crithidia bombi, and experimentally manipulated birth and death rates to mimic slow and fast pace. We found that fewer workers and, importantly, fewer last-generation workers that are responsible for rearing sexuals were infected in colonies with faster pace. This translates into increased fitness in fast-paced colonies, as daughter queens exposed to fewer infected workers in the nest are less likely to become infected themselves, and have a higher chance of founding their own colonies in the next year. High worker turnover rate can thus act as a strategy of defence against a spreading infection in social insect colonies.
Collapse
Affiliation(s)
- Séverine Denise Buechel
- Institute of Integrative Biology (IBZ), ETH Zürich, ETH Zentrum CHN Universitätsstrasse 16, Zürich 8092, Switzerland
| | - Paul Schmid-Hempel
- Institute of Integrative Biology (IBZ), ETH Zürich, ETH Zentrum CHN Universitätsstrasse 16, Zürich 8092, Switzerland
| |
Collapse
|
416
|
Ronai I, Vergoz V, Oldroyd B. The Mechanistic, Genetic, and Evolutionary Basis of Worker Sterility in the Social Hymenoptera. ADVANCES IN THE STUDY OF BEHAVIOR 2016. [DOI: 10.1016/bs.asb.2016.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
417
|
Lu HL, St. Leger R. Insect Immunity to Entomopathogenic Fungi. GENETICS AND MOLECULAR BIOLOGY OF ENTOMOPATHOGENIC FUNGI 2016; 94:251-85. [DOI: 10.1016/bs.adgen.2015.11.002] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
418
|
Brutscher LM, Flenniken ML. RNAi and Antiviral Defense in the Honey Bee. J Immunol Res 2015; 2015:941897. [PMID: 26798663 PMCID: PMC4698999 DOI: 10.1155/2015/941897] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/25/2015] [Accepted: 11/29/2015] [Indexed: 01/08/2023] Open
Abstract
Honey bees play an important agricultural and ecological role as pollinators of numerous agricultural crops and other plant species. Therefore, investigating the factors associated with high annual losses of honey bee colonies in the US is an important and active area of research. Pathogen incidence and abundance correlate with Colony Collapse Disorder- (CCD-) affected colonies in the US and colony losses in the US and in some European countries. Honey bees are readily infected by single-stranded positive sense RNA viruses. Largely dependent on the host immune response, virus infections can either remain asymptomatic or result in deformities, paralysis, or death of adults or larvae. RNA interference (RNAi) is an important antiviral defense mechanism in insects, including honey bees. Herein, we review the role of RNAi in honey bee antiviral defense and highlight some parallels between insect and mammalian immune systems. A more thorough understanding of the role of pathogens on honey bee health and the immune mechanisms bees utilize to combat infectious agents may lead to the development of strategies that enhance honey bee health and result in the discovery of additional mechanisms of immunity in metazoans.
Collapse
Affiliation(s)
- Laura M. Brutscher
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717-3150, USA
- Institute on Ecosystems, Montana State University, Bozeman, MT 59717-3490, USA
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717-3460, USA
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717-3150, USA
- Institute on Ecosystems, Montana State University, Bozeman, MT 59717-3490, USA
| |
Collapse
|
419
|
Diez L, Lejeune P, Detrain C. Keep the nest clean: survival advantages of corpse removal in ants. Biol Lett 2015; 10:rsbl.2014.0306. [PMID: 25009241 PMCID: PMC4126623 DOI: 10.1098/rsbl.2014.0306] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Sociality increases exposure to pathogens. Therefore, social insects have developed a wide range of behavioural defences, known as 'social immunity'. However, the benefits of these behaviours in terms of colony survival have been scarcely investigated. We tested the survival advantage of prophylaxis, i.e. corpse removal, in ants. Over 50 days, we compared the survival of ants in colonies that were free to remove corpses with those that were restricted in their corpse removal. From Day 8 onwards, the survival of adult workers was significantly higher in colonies that were allowed to remove corpses normally. Overall, larvae survived better than adults, but were slightly affected by the presence of corpses in the nest. When removal was restricted, ants removed as many corpses as they could and moved the remaining corpses away from brood, typically to the nest corners. These results show the importance of nest maintenance and prophylactic behaviour in social insects.
Collapse
Affiliation(s)
- Lise Diez
- Unit of Social Ecology, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Philippe Lejeune
- Unité de Gestion des Ressources forestières et des Milieux Naturels, Université de Liège, Gembloux, Belgium
| | - Claire Detrain
- Unit of Social Ecology, Université Libre de Bruxelles, Bruxelles, Belgium
| |
Collapse
|
420
|
Vannette RL, Mohamed A, Johnson BR. Forager bees (Apis mellifera) highly express immune and detoxification genes in tissues associated with nectar processing. Sci Rep 2015; 5:16224. [PMID: 26549293 PMCID: PMC4637902 DOI: 10.1038/srep16224] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 10/12/2015] [Indexed: 12/04/2022] Open
Abstract
Pollinators, including honey bees, routinely encounter potentially harmful microorganisms and phytochemicals during foraging. However, the mechanisms by which honey bees manage these potential threats are poorly understood. In this study, we examine the expression of antimicrobial, immune and detoxification genes in Apis mellifera and compare between forager and nurse bees using tissue-specific RNA-seq and qPCR. Our analysis revealed extensive tissue-specific expression of antimicrobial, immune signaling, and detoxification genes. Variation in gene expression between worker stages was pronounced in the mandibular and hypopharyngeal gland (HPG), where foragers were enriched in transcripts that encode antimicrobial peptides (AMPs) and immune response. Additionally, forager HPGs and mandibular glands were enriched in transcripts encoding detoxification enzymes, including some associated with xenobiotic metabolism. Using qPCR on an independent dataset, we verified differential expression of three AMP and three P450 genes between foragers and nurses. High expression of AMP genes in nectar-processing tissues suggests that these peptides may contribute to antimicrobial properties of honey or to honey bee defense against environmentally-acquired microorganisms. Together, these results suggest that worker role and tissue-specific expression of AMPs, and immune and detoxification enzymes may contribute to defense against microorganisms and xenobiotic compounds acquired while foraging.
Collapse
Affiliation(s)
- Rachel L Vannette
- Department of Biology, Stanford University, 488 Herrin Labs, Stanford, 94043, United States.,Department of Entomology and Nematology, University of California, 043 Briggs Hall Davis, CA 95616, United States
| | - Abbas Mohamed
- Department of Entomology and Nematology, University of California, 043 Briggs Hall Davis, CA 95616, United States
| | - Brian R Johnson
- Department of Entomology and Nematology, University of California, 043 Briggs Hall Davis, CA 95616, United States
| |
Collapse
|
421
|
Youngsteadt E, Appler RH, López-Uribe MM, Tarpy DR, Frank SD. Urbanization Increases Pathogen Pressure on Feral and Managed Honey Bees. PLoS One 2015; 10:e0142031. [PMID: 26536606 PMCID: PMC4633120 DOI: 10.1371/journal.pone.0142031] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/17/2015] [Indexed: 12/11/2022] Open
Abstract
Given the role of infectious disease in global pollinator decline, there is a need to understand factors that shape pathogen susceptibility and transmission in bees. Here we ask how urbanization affects the immune response and pathogen load of feral and managed colonies of honey bees (Apis mellifera Linnaeus), the predominant economically important pollinator worldwide. Using quantitative real-time PCR, we measured expression of 4 immune genes and relative abundance of 10 honey bee pathogens. We also measured worker survival in a laboratory bioassay. We found that pathogen pressure on honey bees increased with urbanization and management, and the probability of worker survival declined 3-fold along our urbanization gradient. The effect of management on pathogens appears to be mediated by immunity, with feral bees expressing immune genes at nearly twice the levels of managed bees following an immune challenge. The effect of urbanization, however, was not linked with immunity; instead, urbanization may favor viability and transmission of some disease agents. Feral colonies, with lower disease burdens and stronger immune responses, may illuminate ways to improve honey bee management. The previously unexamined effects of urbanization on honey-bee disease are concerning, suggesting that urban areas may favor problematic diseases of pollinators.
Collapse
Affiliation(s)
- Elsa Youngsteadt
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - R. Holden Appler
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Margarita M. López-Uribe
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, United States of America
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - David R. Tarpy
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, United States of America
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| | - Steven D. Frank
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
422
|
Feng M, Fang Y, Han B, Xu X, Fan P, Hao Y, Qi Y, Hu H, Huo X, Meng L, Wu B, Li J. In-Depth N-Glycosylation Reveals Species-Specific Modifications and Functions of the Royal Jelly Protein from Western (Apis mellifera) and Eastern Honeybees (Apis cerana). J Proteome Res 2015; 14:5327-40. [PMID: 26496797 DOI: 10.1021/acs.jproteome.5b00829] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Royal jelly (RJ), secreted by honeybee workers, plays diverse roles as nutrients and defense agents for honeybee biology and human health. Despite being reported to be glycoproteins, the glycosylation characterization and functionality of RJ proteins in different honeybee species are largely unknown. An in-depth N-glycoproteome analysis and functional assay of RJ produced by Apis mellifera lingustica (Aml) and Apis cerana cerana (Acc) were conducted. RJ produced by Aml yielded 80 nonredundant N-glycoproteins carrying 190 glycosites, of which 23 novel proteins harboring 35 glycosites were identified. For Acc, all 43 proteins glycosylated at 138 glycosites were reported for the first time. Proteins with distinct N-glycoproteomic characteristics in terms of glycoprotein species, number of N-glycosylated sites, glycosylation motif, abundance level of glycoproteins, and N-glycosites were observed in this two RJ samples. The fact that the low inhibitory efficiency of N-glycosylated major royal jelly protein 2 (MRJP2) against Paenibacillus larvae (P. larvae) and the absence of antibacterial related glycosylated apidaecin, hymenoptaecin, and peritrophic matrix in the Aml RJ compared to Acc reveal the mechanism for why the Aml larvae are susceptible to P. larvae, the causative agent of a fatal brood disease (American foulbrood, AFB). The observed antihypertension activity of N-glycosylated MRJP1 in two RJ samples and a stronger activity found in Acc than in Aml reveal that specific RJ protein and modification are potentially useful for the treatment of hypertensive disease for humans. Our data gain novel understanding that the western and eastern bees have evolved species-specific strategies of glycosylation to fine-tune protein activity for optimizing molecular function as nutrients and immune agents for the good of honeybee and influence on the health promoting activity for human as well. This serves as a valuable resource for the targeted probing of the biological functions of RJ proteins for honeybee and medical communities.
Collapse
Affiliation(s)
- Mao Feng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing 100093, China
| | - Yu Fang
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing 100093, China
| | - Bin Han
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing 100093, China
| | - Xiang Xu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing 100093, China
| | - Pei Fan
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing 100093, China.,College of Bioengineering, Henan University of Technology , Zhengzhou 450001, China
| | - Yue Hao
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing 100093, China
| | - Yuping Qi
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing 100093, China
| | - Han Hu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing 100093, China
| | - Xinmei Huo
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing 100093, China
| | - Lifeng Meng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing 100093, China
| | - Bin Wu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing 100093, China
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences , Beijing 100093, China
| |
Collapse
|
423
|
Appler RH, Frank SD, Tarpy DR. Within-Colony Variation in the Immunocompetency of Managed and Feral Honey Bees (Apis mellifera L.) in Different Urban Landscapes. INSECTS 2015; 6:912-25. [PMID: 26529020 PMCID: PMC4693178 DOI: 10.3390/insects6040912] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/19/2015] [Accepted: 10/21/2015] [Indexed: 12/03/2022]
Abstract
Urbanization has the potential to dramatically affect insect populations worldwide, although its effects on pollinator populations are just beginning to be understood. We compared the immunocompetency of honey bees sampled from feral (wild-living) and managed (beekeeper-owned) honey bee colonies. We sampled foragers from feral and managed colonies in rural, suburban, and urban landscapes in and around Raleigh, NC, USA. We then analyzed adult workers using two standard bioassays for insect immune function (encapsulation response and phenoloxidase activity). We found that there was far more variation within colonies for encapsulation response or phenoloxidase activity than among rural to urban landscapes, and we did not observe any significant difference in immune response between feral and managed bees. These findings suggest that social pollinators, like honey bees, may be sufficiently robust or variable in their immune responses to obscure any subtle effects of urbanization. Additional studies of immune physiology and disease ecology of social and solitary bees in urban, suburban, and natural ecosystems will provide insights into the relative effects of changing urban environments on several important factors that influence pollinator productivity and health.
Collapse
Affiliation(s)
- R Holden Appler
- Department of Entomology, North Carolina State University, Raleigh, NC 27695, USA.
| | - Steven D Frank
- Department of Entomology, North Carolina State University, Raleigh, NC 27695, USA.
| | - David R Tarpy
- Department of Entomology, North Carolina State University, Raleigh, NC 27695, USA.
- Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
424
|
Zhang W, Chen J, Keyhani NO, Zhang Z, Li S, Xia Y. Comparative transcriptomic analysis of immune responses of the migratory locust, Locusta migratoria, to challenge by the fungal insect pathogen, Metarhizium acridum. BMC Genomics 2015; 16:867. [PMID: 26503342 PMCID: PMC4624584 DOI: 10.1186/s12864-015-2089-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/15/2015] [Indexed: 01/20/2023] Open
Abstract
Background The migratory locust, Locusta migratoria manilensis, is an immensely destructive agricultural pest that forms a devastating and voracious gregarious phase. The fungal insect pathogen, Metarhizium acridum, is a specialized locust pathogen that has been used as a potent mycoinsecticide for locust control. Little, however, is known about locust immune tissue, i.e. fat body and hemocyte, responses to challenge by this fungus. Methods RNA-seq (RNA sequencing) technology were applied to comparatively examine the different roles of locust fat body and hemocytes, the two major contributors to the insect immune response, in defense against M. acridum. According to the sequence identity to homologies of other species explored immune response genes, immune related unigenes were screened in all transcriptome wide range from locust and the differential expressed genes were identified in these two tissues, respectively. Results Analysis of differentially expressed locust genes revealed 4660 and 138 up-regulated, and 1647 and 23 down-regulated transcripts in the fat body and hemocytes, respectively after inoculation with M. acridum spores. GO (Gene Ontology) enrichment analysis showed membrane biogenesis related proteins and effector proteins significantly differentially expressed in hemocytes, while the expression of energy metabolism and development related transcripts were enriched in the fat body after fungal infection. A total of 470 immune related unigenes were identified, including members of the three major insect immune pathways, i.e. Toll, Imd (immune deficiency) and JAK/STAT (janus kinase/signal transduction and activator of transcription). Of these, 58 and three were differentially expressed in the insect fat body or hemocytes after infection, respectively. Of differential expressed transcripts post challenge, 43 were found in both the fat body and hemocytes, including the LmLys4 lysozyme, representing a microbial cell wall targeting enzyme. Conclusions These data indicate that locust fat body and hemocytes adopt different strategies in response to M. acridum infection. Fat body gene expression after M. acridum challenge appears to function mainly through activation of innate immune related genes, energy metabolism and development related genes. Hemocyte responses attempt to limit fungal infection primarily through regulation of membrane related genes and activation of cellular immune responses and release of humoral immune factors. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2089-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Zhang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Jianhong Chen
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA.
| | - Zhengyi Zhang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Sai Li
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China. .,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 400045, People's Republic of China. .,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, 400045, People's Republic of China.
| |
Collapse
|
425
|
Liu L, Li G, Sun P, Lei C, Huang Q. Experimental verification and molecular basis of active immunization against fungal pathogens in termites. Sci Rep 2015; 5:15106. [PMID: 26458743 PMCID: PMC4602225 DOI: 10.1038/srep15106] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/15/2015] [Indexed: 01/30/2023] Open
Abstract
Termites are constantly exposed to many pathogens when they nest and forage in the field, so they employ various immune strategies to defend against pathogenic infections. Here, we demonstrate that the subterranean termite Reticulitermes chinensis employs active immunization to defend against the entomopathogen Metarhizium anisopliae. Our results showed that allogrooming frequency increased significantly between fungus-treated termites and their nestmates. Through active social contact, previously healthy nestmates only received small numbers of conidia from fungus-treated individuals. These nestmates experienced low-level fungal infections, resulting in low mortality and apparently improved antifungal defences. Moreover, infected nestmates promoted the activity of two antioxidant enzymes (SOD and CAT) and upregulated the expression of three immune genes (phenoloxidase, transferrin, and termicin). We found 20 differentially expressed proteins associated with active immunization in R. chinensis through iTRAQ proteomics, including 12 stress response proteins, six immune signalling proteins, and two immune effector molecules. Subsequently, two significantly upregulated (60S ribosomal protein L23 and isocitrate dehydrogenase) and three significantly downregulated (glutathione S-transferase D1, cuticle protein 19, and ubiquitin conjugating enzyme) candidate immune proteins were validated by MRM assays. These findings suggest that active immunization in termites may be regulated by different immune proteins.
Collapse
Affiliation(s)
- Long Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Ganghua Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Pengdong Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Chaoliang Lei
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Qiuying Huang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
426
|
Borba RS, Klyczek KK, Mogen KL, Spivak M. Seasonal benefits of a natural propolis envelope to honey bee immunity and colony health. ACTA ACUST UNITED AC 2015; 218:3689-99. [PMID: 26449975 DOI: 10.1242/jeb.127324] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/21/2015] [Indexed: 12/30/2022]
Abstract
Honey bees, as social insects, rely on collective behavioral defenses that produce a colony-level immune phenotype, or social immunity, which in turn impacts the immune response of individuals. One behavioral defense is the collection and deposition of antimicrobial plant resins, or propolis, in the nest. We tested the effect of a naturally constructed propolis envelope within standard beekeeping equipment on the pathogen and parasite load of large field colonies, and on immune system activity, virus and storage protein levels of individual bees over the course of a year. The main effect of the propolis envelope was a decreased and more uniform baseline expression of immune genes in bees during summer and autumn months each year, compared with the immune activity in bees with no propolis envelope in the colony. The most important function of the propolis envelope may be to modulate costly immune system activity. As no differences were found in levels of bacteria, pathogens and parasites between the treatment groups, the propolis envelope may act directly on the immune system, reducing the bees' need to activate the physiologically costly production of humoral immune responses. Colonies with a natural propolis envelope had increased colony strength and vitellogenin levels after surviving the winter in one of the two years of the study, despite the fact that the biological activity of the propolis diminished over the winter. A natural propolis envelope acts as an important antimicrobial layer enshrouding the colony, benefiting individual immunity and ultimately colony health.
Collapse
Affiliation(s)
- Renata S Borba
- Department of Entomology, University of Minnesota, 1980 Folwell Avenue, Saint Paul, MN 55108, USA
| | - Karen K Klyczek
- Biology Department, University of Wisconsin-River Falls, 410 S. 3rd Street, River Falls, WI 54022, USA
| | - Kim L Mogen
- Biology Department, University of Wisconsin-River Falls, 410 S. 3rd Street, River Falls, WI 54022, USA
| | - Marla Spivak
- Department of Entomology, University of Minnesota, 1980 Folwell Avenue, Saint Paul, MN 55108, USA
| |
Collapse
|
427
|
Vojvodic S, Johnson BR, Harpur BA, Kent CF, Zayed A, Anderson KE, Linksvayer TA. The transcriptomic and evolutionary signature of social interactions regulating honey bee caste development. Ecol Evol 2015; 5:4795-807. [PMID: 26640660 PMCID: PMC4662310 DOI: 10.1002/ece3.1720] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/13/2015] [Accepted: 08/19/2015] [Indexed: 11/07/2022] Open
Abstract
The caste fate of developing female honey bee larvae is strictly socially regulated by adult nurse workers. As a result of this social regulation, nurse-expressed genes as well as larval-expressed genes may affect caste expression and evolution. We used a novel transcriptomic approach to identify genes with putative direct and indirect effects on honey bee caste development, and we subsequently studied the relative rates of molecular evolution at these caste-associated genes. We experimentally induced the production of new queens by removing the current colony queen, and we used RNA sequencing to study the gene expression profiles of both developing larvae and their caregiving nurses before and after queen removal. By comparing the gene expression profiles of queen-destined versus worker-destined larvae as well as nurses observed feeding these two types of larvae, we identified larval and nurse genes associated with caste development. Of 950 differentially expressed genes associated with caste, 82% were expressed in larvae with putative direct effects on larval caste, and 18% were expressed in nurses with putative indirect effects on caste. Estimated selection coefficients suggest that both nurse and larval genes putatively associated with caste are rapidly evolving, especially those genes associated with worker development. Altogether, our results suggest that indirect effect genes play important roles in both the expression and evolution of socially influenced traits such as caste.
Collapse
Affiliation(s)
- Svjetlana Vojvodic
- Center for Insect Science University of Arizona Tucson Arizona ; Department of Biological Sciences Rowan University Glassboro New Jersey
| | - Brian R Johnson
- Department of Entomology University of California Davis California
| | - Brock A Harpur
- Department of Biology York University Toronto Ontario Canada
| | - Clement F Kent
- Department of Biology York University Toronto Ontario Canada
| | - Amro Zayed
- Department of Biology York University Toronto Ontario Canada
| | - Kirk E Anderson
- Carl Hayden Bee Research Center USDA Tucson Arizona ; Department of Entomology University of Arizona Tucson Arizona
| | | |
Collapse
|
428
|
Natsopoulou ME, McMahon DP, Paxton RJ. Parasites modulate within-colony activity and accelerate the temporal polyethism schedule of a social insect, the honey bee. Behav Ecol Sociobiol 2015; 70:1019-1031. [PMID: 27397965 PMCID: PMC4917585 DOI: 10.1007/s00265-015-2019-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 09/24/2015] [Accepted: 09/29/2015] [Indexed: 12/11/2022]
Abstract
Task allocation in social insect colonies is generally organised into an age-related division of labour, termed the temporal polyethism schedule, which may in part have evolved to reduce infection of the colony's brood by pests and pathogens. The temporal polyethism schedule is sensitive to colony perturbations that may lead to adaptive changes in task allocation, maintaining colony homeostasis. Though social insects can be infected by a range of parasites, little is known of how these parasites impact within-colony behaviour and the temporal polyethism schedule. We use honey bees (Apis mellifera) experimentally infected by two of their emerging pathogens, Deformed wing virus (DWV), which is relatively understudied concerning its behavioural impact on its host, and the exotic microsporidian Nosema ceranae. We examined parasite effects on host temporal polyethism and patterns of activity within the colony. We found that pathogens accelerated the temporal polyethism schedule, but without reducing host behavioural repertoire. Infected hosts exhibited increased hyperactivity, allocating more time to self-grooming and foraging-related tasks. The strength of behavioural alterations we observed was found to be pathogen specific; behavioural modifications were more pronounced in virus-treated hosts versus N. ceranae-treated hosts, with potential benefits for the colony in terms of reducing within-colony transmission. Investigating the effects of multiple pathogens on behavioural patterns of social insects could play a crucial role in understanding pathogen spread within a colony and their effects on colony social organisation.
Collapse
Affiliation(s)
- Myrsini E Natsopoulou
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| | - Dino P McMahon
- Institute of Biology, Free University Berlin, Schwendenerstr.1, 14195 Berlin, Germany ; Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany
| | - Robert J Paxton
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| |
Collapse
|
429
|
Ptaszyńska AA, Borsuk G, Zdybicka-Barabas A, Cytryńska M, Małek W. Are commercial probiotics and prebiotics effective in the treatment and prevention of honeybee nosemosis C? Parasitol Res 2015; 115:397-406. [PMID: 26437644 PMCID: PMC4700093 DOI: 10.1007/s00436-015-4761-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/28/2015] [Indexed: 12/30/2022]
Abstract
The study was conducted to investigate the effect of Lactobacillus rhamnosus (a commercial probiotic) and inulin (a prebiotic) on the survival rates of honeybees infected and uninfected with Nosema ceranae, the level of phenoloxidase (PO) activity, the course of nosemosis, and the effect on the prevention of nosemosis development in bees. The cells of L. rhamnosus exhibited a high rate of survival in 56.56 % sugar syrup, which was used to feed the honeybees. Surprisingly, honeybees fed with sugar syrup supplemented with a commercial probiotic and a probiotic + prebiotic were more susceptible to N. ceranae infection, and their lifespan was much shorter. The number of microsporidian spores in the honeybees fed for 9 days prior to N. ceranae infection with a sugar syrup supplemented with a commercial probiotic was 25 times higher (970 million spores per one honeybee) than in a control group fed with pure sucrose syrup (38 million spores per one honeybee). PO activity reached its highest level in the hemolymph of this honeybee control group uninfected with N. ceranae. The addition of probiotics or both probiotics and prebiotics to the food of uninfected bees led to the ~2-fold decrease in the PO activity. The infection of honeybees with N. ceranae accompanied an almost 20-fold decrease in the PO level. The inulin supplemented solely at a concentration of 2 μg/mL was the only administrated factor which did not significantly affect honeybees’ survival, the PO activity, or the nosemosis infection level. In conclusion, the supplementation of honeybees’ diet with improperly selected probiotics or both probiotics and prebiotics does not prevent nosemosis development, can de-regulate insect immune systems, and may significantly increase bee mortality.
Collapse
Affiliation(s)
- Aneta A Ptaszyńska
- Department of Botany and Mycology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, 19 Akademicka st., 20-033, Lublin, Poland.
| | - Grzegorz Borsuk
- Department of Biological Basis of Animal Production, Faculty of Biology and Animal Breeding, University of Life Sciences, 13 Akademicka st., 20-950, Lublin, Poland
| | - Agnieszka Zdybicka-Barabas
- Department of Immunobiology, Institute of Biology, Maria Curie-Skłodowska University, 19 Akademicka st., 20-033, Lublin, Poland
| | - Małgorzata Cytryńska
- Department of Immunobiology, Institute of Biology, Maria Curie-Skłodowska University, 19 Akademicka st., 20-033, Lublin, Poland
| | - Wanda Małek
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, 19 Akademicka st., 20-033, Lublin, Poland
| |
Collapse
|
430
|
Meng Q, Yu HY, Zhang H, Zhu W, Wang ML, Zhang JH, Zhou GL, Li X, Qin QL, Hu SN, Zou Z. Transcriptomic insight into the immune defenses in the ghost moth, Hepialus xiaojinensis, during an Ophiocordyceps sinensis fungal infection. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 64:1-15. [PMID: 26165779 DOI: 10.1016/j.ibmb.2015.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/27/2015] [Accepted: 06/28/2015] [Indexed: 06/04/2023]
Abstract
Hepialus xiaojinensis is an economically important species of Lepidopteran insect. The fungus Ophiocordyceps sinensis can infect its larvae, which leads to mummification after 5-12 months, providing a valuable system with which to study interactions between the insect hosts and pathogenic fungi. However, little sequence information is available for this insect. A time-course analysis of the fat body transcriptome was performed to explore the host immune response to O. sinensis infection. In total, 50,164 unigenes were obtained by assembling the reads from two high-throughput approaches: 454 pyrosequencing and Illumina Hiseq2000. Hierarchical clustering and functional examination revealed four major gene clusters. Clusters 1-3 included transcripts markedly induced by the fungal infection within 72 h. Cluster 4, with a lower number of transcripts, was suppressed during the early phase of infection but returned to normal expression levels sometime before 1 year. Based on sequence similarity to orthologs known to participate in immune defenses, 258 candidate immunity-related transcripts were identified, and their functions were hypothesized. The genes were more primitive than those in other Lepidopteran insects. In addition, lineage-specific family expansion of the clip-domain serine proteases and C-type lectins were apparent and likely caused by selection pressures. Global expression profiles of immunity-related genes indicated that H. xiaojinensis was capable of a rapid response to an O. sinensis challenge; however, the larvae developed tolerance to the fungus after prolonged infection, probably due to immune suppression. Specifically, antimicrobial peptide mRNAs could not be detected after chronic infection, because key components of the Toll pathway (MyD88, Pelle and Cactus) were downregulated. Taken together, this study provides insights into the defense system of H. xiaojinensis, and a basis for understanding the molecular aspects of the interaction between the host and the entomopathogen.
Collapse
Affiliation(s)
- Qian Meng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai-Ying Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Huan Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Wei Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng-Long Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Ji-Hong Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Gui-Ling Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Xuan Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Qi-Lian Qin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China.
| | - Song-Nian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China.
| |
Collapse
|
431
|
Michaud S, Boncristiani HF, Gouw JW, Strand MK, Pettis J, Rueppell O, Foster LJ. Response of the honey bee (Apis mellifera) proteome to Israeli acute paralysis virus (IAPV) infection. CAN J ZOOL 2015. [DOI: 10.1139/cjz-2014-0181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent declines in honey bee (Apis mellifera L., 1758) populations worldwide have spurred significant research into the impact of pathogens on colony health. The role of the Israeli acute paralysis virus (IAPV) on hive mortality has become of particular concern since being correlated with colony losses. However, the molecular interactions between IAPV and its host remain largely unknown. To investigate changes in host protein expression during IAPV infection, mass-spectrometry-based quantitative proteomics was used to compare IAPV-infected and healthy pupae. Proteins whose expression levels changed significantly during infection were identified and functional analysis was performed to determine host systems and pathways perturbed by IAPV infection. Among the A. mellifera proteins most affected by IAPV, those involving translation and the ubiquitin–proteasome pathway were most highly enriched and future investigation of these pathways will be useful in identifying host proteins required for infection. This analysis represents an important first step towards understanding the honey bee host response to IAPV infection through the systems-level analysis of protein expression.
Collapse
Affiliation(s)
- Sarah Michaud
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, The University of British Columbia, 2125 East Mall, Vancouver, BC V6T 1Z4, Canada
| | | | - Joost W. Gouw
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, The University of British Columbia, 2125 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Micheline K. Strand
- Life Sciences Division, US Army Research Office, Research Triangle Park, NC 27709, USA
| | - Jeffrey Pettis
- US Department of Agriculture – Agricultural Research Service, Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27403, USA
| | - Leonard J. Foster
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, The University of British Columbia, 2125 East Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
432
|
Grozinger CM, Robinson GE. The power and promise of applying genomics to honey bee health. CURRENT OPINION IN INSECT SCIENCE 2015; 10:124-132. [PMID: 26273565 PMCID: PMC4528376 DOI: 10.1016/j.cois.2015.03.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
New genomic tools and resources are now being used to both understand honey bee health and develop tools to better manage it. Here, we describe the use of genomic approaches to identify and characterize bee parasites and pathogens, examine interactions among these parasites and pathogens, between them and their bee hosts, and to identify genetic markers for improved breeding of more resilient bee stocks. We also discuss several new genomic techniques that can be used to more efficiently study, monitor and improve bee health. In the case of using RNAi-based technologies to mitigate diseases in bee populations, we highlight advantages, disadvantages and strategies to reduce risk. The increased use of genomic analytical tools and manipulative technologies has already led to significant advances, and holds great promise for improvements in the health of honey bees and other critical pollinator species.
Collapse
Affiliation(s)
- Christina M. Grozinger
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, University Park, PA 16803
| | - Gene E. Robinson
- Department of Entomology, Neuroscience Program, Institute for Genomic Biology, University of Illinois, Urbana-Champaign, 61801
| |
Collapse
|
433
|
Abstract
Insects are an important model for the study of innate immune systems, but remarkably little is known about the immune system of other arthropod groups despite their importance as disease vectors, pests, and components of biological diversity. Using comparative genomics, we have characterized the immune system of all the major groups of arthropods beyond insects for the first time--studying five chelicerates, a myriapod, and a crustacean. We found clear traces of an ancient origin of innate immunity, with some arthropods having Toll-like receptors and C3-complement factors that are more closely related in sequence or structure to vertebrates than other arthropods. Across the arthropods some components of the immune system, such as the Toll signaling pathway, are highly conserved. However, there is also remarkable diversity. The chelicerates apparently lack the Imd signaling pathway and beta-1,3 glucan binding proteins--a key class of pathogen recognition receptors. Many genes have large copy number variation across species, and this may sometimes be accompanied by changes in function. For example, we find that peptidoglycan recognition proteins have frequently lost their catalytic activity and switch between secreted and intracellular forms. We also find that there has been widespread and extensive duplication of the cellular immune receptor Dscam (Down syndrome cell adhesion molecule), which may be an alternative way to generate the high diversity produced by alternative splicing in insects. In the antiviral short interfering RNAi pathway Argonaute 2 evolves rapidly and is frequently duplicated, with a highly variable copy number. Our results provide a detailed analysis of the immune systems of several important groups of animals for the first time and lay the foundations for functional work on these groups.
Collapse
Affiliation(s)
- William J Palmer
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Francis M Jiggins
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
434
|
DeGrandi-Hoffman G, Chen Y. Nutrition, immunity and viral infections in honey bees. CURRENT OPINION IN INSECT SCIENCE 2015; 10:170-176. [PMID: 29588005 DOI: 10.1016/j.cois.2015.05.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 05/11/2023]
Abstract
Viruses and other pathogens can spread rapidly in social insect colonies from close contacts among nestmates, food sharing and periods of confinement. Here we discuss how honey bees decrease the risk of disease outbreaks by a combination of behaviors (social immunity) and individual immune function. There is a relationship between the effectiveness of social and individual immunity and the nutritional state of the colony. Parasitic Varroa mites undermine the relationship because they reduce nutrient levels, suppress individual immune function and transmit viruses. Future research directions to better understand the dynamics of the nutrition-immunity relationship based on levels of stress, time of year and colony demographics are discussed.
Collapse
Affiliation(s)
- Gloria DeGrandi-Hoffman
- Carl Hayden Bee Research Center, USDA-ARS, 2000 East Allen Road, Tucson, AZ 85719, United States.
| | - Yanping Chen
- Bee Research Laboratory, USDA-ARS, Beltsville, MD 20705, United States
| |
Collapse
|
435
|
Brutscher LM, Daughenbaugh KF, Flenniken ML. Antiviral Defense Mechanisms in Honey Bees. CURRENT OPINION IN INSECT SCIENCE 2015; 10:71-82. [PMID: 26273564 PMCID: PMC4530548 DOI: 10.1016/j.cois.2015.04.016] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Honey bees are significant pollinators of agricultural crops and other important plant species. High annual losses of honey bee colonies in North America and in some parts of Europe have profound ecological and economic implications. Colony losses have been attributed to multiple factors including RNA viruses, thus understanding bee antiviral defense mechanisms may result in the development of strategies that mitigate colony losses. Honey bee antiviral defense mechanisms include RNA-interference, pathogen-associated molecular pattern (PAMP) triggered signal transduction cascades, and reactive oxygen species generation. However, the relative importance of these and other pathways is largely uncharacterized. Herein we review the current understanding of honey bee antiviral defense mechanisms and suggest important avenues for future investigation.
Collapse
Affiliation(s)
- Laura M Brutscher
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA ; Institute on Ecosystems, Montana State University, Bozeman, MT, USA ; Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Katie F Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Michelle L Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA ; Institute on Ecosystems, Montana State University, Bozeman, MT, USA ; Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
436
|
Evison SE. Chalkbrood: epidemiological perspectives from the host-parasite relationship. CURRENT OPINION IN INSECT SCIENCE 2015; 10:65-70. [PMID: 29588016 DOI: 10.1016/j.cois.2015.04.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/23/2015] [Accepted: 04/28/2015] [Indexed: 06/08/2023]
Abstract
Chalkbrood is a fungal brood disease of the honey bee, Apis mellifera, caused by the parasite Ascosphaera apis. Considered as a stress-related disease, the severity of chalkbrood outbreaks depend on a multitude of interacting factors. The specific relationship between host and parasite in this disease is interesting because the parasite is both heterothallic and semelparous. Recent studies highlight that this specific host-parasite relationship is influenced by factors such as interactions with other parasite strains or species, and environmental perturbations. To understand how to protect pollinators most effectively, it is crucial that future research takes a more ecologically relevant approach by studying the basic biology of the host-parasite relationship in the context of the multi-factorial processes that influence it.
Collapse
Affiliation(s)
- Sophie Ef Evison
- Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
437
|
|
438
|
Gupta SK, Kupper M, Ratzka C, Feldhaar H, Vilcinskas A, Gross R, Dandekar T, Förster F. Scrutinizing the immune defence inventory of Camponotus floridanus applying total transcriptome sequencing. BMC Genomics 2015. [PMID: 26198742 PMCID: PMC4508827 DOI: 10.1186/s12864-015-1748-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Defence mechanisms of organisms are shaped by their lifestyle, environment and pathogen pressure. Carpenter ants are social insects which live in huge colonies comprising genetically closely related individuals in high densities within nests. This lifestyle potentially facilitates the rapid spread of pathogens between individuals. In concert with their innate immune system, social insects may apply external immune defences to manipulate the microbial community among individuals and within nests. Additionally, carpenter ants carry a mutualistic intracellular and obligate endosymbiotic bacterium, possibly maintained and regulated by the innate immune system. Thus, different selective forces could shape internal immune defences of Camponotus floridanus. RESULTS The immune gene repertoire of C. floridanus was investigated by re-evaluating its genome sequence combined with a full transcriptome analysis of immune challenged and control animals using Illumina sequencing. The genome was re-annotated by mapping transcriptome reads and masking repeats. A total of 978 protein sequences were characterised further by annotating functional domains, leading to a change in their original annotation regarding function and domain composition in about 8% of all proteins. Based on homology analysis with key components of major immune pathways of insects, the C. floridanus immune-related genes were compared to those of Drosophila melanogaster, Apis mellifera, and other hymenoptera. This analysis revealed that overall the immune system of carpenter ants comprises many components found in these insects. In addition, several C. floridanus specific genes of yet unknown functions but which are strongly induced after immune challenge were discovered. In contrast to solitary insects like Drosophila or the hymenopteran Nasonia vitripennis, the number of genes encoding pattern recognition receptors specific for bacterial peptidoglycan (PGN) and a variety of known antimicrobial peptide (AMP) genes is lower in C. floridanus. The comparative analysis of gene expression post immune-challenge in different developmental stages of C. floridanus suggests a stronger induction of immune gene expression in larvae in comparison to adults. CONCLUSIONS The comparison of the immune system of C. floridanus with that of other insects revealed the presence of a broad immune repertoire. However, the relatively low number of PGN recognition proteins and AMPs, the identification of Camponotus specific putative immune genes, and stage specific differences in immune gene regulation reflects Camponotus specific evolution including adaptations to its lifestyle.
Collapse
Affiliation(s)
- Shishir K Gupta
- Department of Bioinformatics, Biocentre, University of Würzburg, Am Hubland, D-97074, Würzburg, Germany. .,Department of Microbiology, Biocentre, University of Würzburg, Am Hubland, D-97074, Würzburg, Germany.
| | - Maria Kupper
- Department of Microbiology, Biocentre, University of Würzburg, Am Hubland, D-97074, Würzburg, Germany.
| | - Carolin Ratzka
- Department of Microbiology, Biocentre, University of Würzburg, Am Hubland, D-97074, Würzburg, Germany.
| | - Heike Feldhaar
- Department of Animal Ecology, University of Bayreuth, 95440, Bayreuth, Germany.
| | - Andreas Vilcinskas
- Institute of Phytopathology and Applied Zoology, Justus-Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| | - Roy Gross
- Department of Microbiology, Biocentre, University of Würzburg, Am Hubland, D-97074, Würzburg, Germany.
| | - Thomas Dandekar
- Department of Bioinformatics, Biocentre, University of Würzburg, Am Hubland, D-97074, Würzburg, Germany. .,EMBL Heidelberg, BioComputing Unit, Meyerhofstraße 1, 69117, Heidelberg, Germany.
| | - Frank Förster
- Department of Bioinformatics, Biocentre, University of Würzburg, Am Hubland, D-97074, Würzburg, Germany.
| |
Collapse
|
439
|
Genetic diversity within honey bee colonies affects pathogen load and relative virus levels in honey bees, Apis mellifera L. Behav Ecol Sociobiol 2015. [DOI: 10.1007/s00265-015-1965-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
440
|
Fuller ZL, Niño EL, Patch HM, Bedoya-Reina OC, Baumgarten T, Muli E, Mumoki F, Ratan A, McGraw J, Frazier M, Masiga D, Schuster S, Grozinger CM, Miller W. Genome-wide analysis of signatures of selection in populations of African honey bees (Apis mellifera) using new web-based tools. BMC Genomics 2015; 16:518. [PMID: 26159619 PMCID: PMC4496815 DOI: 10.1186/s12864-015-1712-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 06/22/2015] [Indexed: 11/10/2022] Open
Abstract
Background With the development of inexpensive, high-throughput sequencing technologies, it has become feasible to examine questions related to population genetics and molecular evolution of non-model species in their ecological contexts on a genome-wide scale. Here, we employed a newly developed suite of integrated, web-based programs to examine population dynamics and signatures of selection across the genome using several well-established tests, including FST, pN/pS, and McDonald-Kreitman. We applied these techniques to study populations of honey bees (Apis mellifera) in East Africa. In Kenya, there are several described A. mellifera subspecies, which are thought to be localized to distinct ecological regions. Results We performed whole genome sequencing of 11 worker honey bees from apiaries distributed throughout Kenya and identified 3.6 million putative single-nucleotide polymorphisms. The dense coverage allowed us to apply several computational procedures to study population structure and the evolutionary relationships among the populations, and to detect signs of adaptive evolution across the genome. While there is considerable gene flow among the sampled populations, there are clear distinctions between populations from the northern desert region and those from the temperate, savannah region. We identified several genes showing population genetic patterns consistent with positive selection within African bee populations, and between these populations and European A. mellifera or Asian Apis florea. Conclusions These results lay the groundwork for future studies of adaptive ecological evolution in honey bees, and demonstrate the use of new, freely available web-based tools and workflows (http://usegalaxy.org/r/kenyanbee) that can be applied to any model system with genomic information. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1712-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zachary L Fuller
- Department of Biology, Pennsylvania State University, University Park, PA, USA.
| | - Elina L Niño
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, University Park, PA, USA.
| | - Harland M Patch
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, University Park, PA, USA.
| | - Oscar C Bedoya-Reina
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, PA, USA.
| | - Tracey Baumgarten
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, University Park, PA, USA.
| | - Elliud Muli
- Department of Biological Sciences, South Eastern Kenya University (SEKU), P.O. Box 170-90200, Kitui, Kenya.
| | - Fiona Mumoki
- The International Center of Insect Physiology and Ecology (icipe), PO Box 30772-00100, Nairobi, Kenya.
| | - Aakrosh Ratan
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, PA, USA.
| | - John McGraw
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA.
| | - Maryann Frazier
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, University Park, PA, USA.
| | - Daniel Masiga
- The International Center of Insect Physiology and Ecology (icipe), PO Box 30772-00100, Nairobi, Kenya.
| | - Stephen Schuster
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, PA, USA.
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, University Park, PA, USA.
| | - Webb Miller
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
441
|
Collison E, Hird H, Cresswell J, Tyler C. Interactive effects of pesticide exposure and pathogen infection on bee health - a critical analysis. Biol Rev Camb Philos Soc 2015; 91:1006-1019. [PMID: 26150129 DOI: 10.1111/brv.12206] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 05/26/2015] [Accepted: 06/05/2015] [Indexed: 01/21/2023]
Abstract
Bees are fundamentally important for pollination services and declines in populations could have significant economic and environmental implications. Pesticide exposure and pathogen infection are recognised as potential stressors impacting upon bee populations and recently there has been a surge in research on pesticide-disease interactions to reflect environmentally realistic scenarios better. We critically analyse the findings on pesticide-disease interactions, including effects on the survival, pathogen loads and immunity of bees, and assess the suitability of various endpoints to inform our mechanistic understanding of these interactions. We show that pesticide exposure and pathogen infection have not yet been found to interact to affect worker survival under field-realistic scenarios. Colony-level implications of pesticide effects on Nosema infections, viral loads and honey bee immunity remain unclear as these effects have been observed in a laboratory setting only using a small range of pesticide exposures, generally exceeding those likely to occur in the natural environment, and assessing a highly selected series of immune-related endpoints. Future research priorities include the need for a better understanding of pesticide effects on the antimicrobial peptide (AMP) component of an individual's immune response and on social defence behaviours. Interactions between pesticide exposure and bacterial and fungal infections have yet to be addressed. The paucity of studies in non-Apis bee species is a further major knowledge gap.
Collapse
Affiliation(s)
- Elizabeth Collison
- Department of Biosciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, EX4 4QD, U.K.. .,Fera Science Ltd. (Fera), Sand Hutton, York, YO41 1LZ, U.K..
| | - Heather Hird
- Fera Science Ltd. (Fera), Sand Hutton, York, YO41 1LZ, U.K
| | - James Cresswell
- Department of Biosciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, EX4 4QD, U.K
| | - Charles Tyler
- Department of Biosciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, EX4 4QD, U.K
| |
Collapse
|
442
|
Zhang X, He Y, Cao X, Gunaratna RT, Chen YR, Blissard G, Kanost MR, Jiang H. Phylogenetic analysis and expression profiling of the pattern recognition receptors: Insights into molecular recognition of invading pathogens in Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 62:38-50. [PMID: 25701384 PMCID: PMC4476941 DOI: 10.1016/j.ibmb.2015.02.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 02/02/2015] [Indexed: 05/24/2023]
Abstract
Pattern recognition receptors (PRRs) detect microbial pathogens and trigger innate immune responses. Previous biochemical studies have elucidated the physiological functions of eleven PRRs in Manduca sexta but our understanding of the recognition process is still limited, lacking genomic perspectives. While 34 C-type lectin-domain proteins and 16 Toll-like receptors are reported in the companion papers, we present here 120 other putative PRRs identified through the genome annotation. These include 76 leucine-rich repeat (LRR) proteins, 14 peptidoglycan recognition proteins, 6 EGF/Nim-domain proteins, 5 β-1,3-glucanase-related proteins, 4 galectins, 4 fibrinogen-related proteins, 3 thioester proteins, 5 immunoglobulin-domain proteins, 2 hemocytins, and 1 Reeler. Sequence alignment and phylogenetic analysis reveal the evolution history of a diverse repertoire of proteins for pathogen recognition. While functions of insect LRR proteins are mostly unknown, their structure diversification is phenomenal: In addition to the Toll homologs, 22 LRR proteins with a signal peptide are expected to be secreted; 18 LRR proteins lacking signal peptides may be cytoplasmic; 36 LRRs with a signal peptide and a transmembrane segment may be non-Toll receptors on the surface of cells. Expression profiles of the 120 genes in 52 tissue samples reflect complex regulation in various developmental stages and physiological states, including some likely by Rel family transcription factors via κB motifs in the promoter regions. This collection of information is expected to facilitate future biochemical studies detailing their respective roles in this model insect.
Collapse
Affiliation(s)
- Xiufeng Zhang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ramesh T Gunaratna
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yun-ru Chen
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Gary Blissard
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
443
|
Cao X, He Y, Hu Y, Wang Y, Chen YR, Bryant B, Clem RJ, Schwartz LM, Blissard G, Jiang H. The immune signaling pathways of Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 62:64-74. [PMID: 25858029 PMCID: PMC4476939 DOI: 10.1016/j.ibmb.2015.03.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 05/10/2023]
Abstract
Signal transduction pathways and their coordination are critically important for proper functioning of animal immune systems. Our knowledge of the constituents of the intracellular signaling network in insects mainly comes from genetic analyses in Drosophila melanogaster. To facilitate future studies of similar systems in the tobacco hornworm and other lepidopteran insects, we have identified and examined the homologous genes in the genome of Manduca sexta. Based on 1:1 orthologous relationships in most cases, we hypothesize that the Toll, Imd, MAPK-JNK-p38 and JAK-STAT pathways are intact and operative in this species, as are most of the regulatory mechanisms. Similarly, cellular processes such as autophagy, apoptosis and RNA interference probably function in similar ways, because their mediators and modulators are mostly conserved in this lepidopteran species. We have annotated a total of 186 genes encoding 199 proteins, studied their domain structures and evolution, and examined their mRNA levels in tissues at different life stages. Such information provides a genomic perspective of the intricate signaling system in a non-drosophiline insect.
Collapse
Affiliation(s)
- Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yingxia Hu
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yun-Ru Chen
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Bart Bryant
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Rollie J Clem
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | - Gary Blissard
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
444
|
He Y, Cao X, Li K, Hu Y, Chen YR, Blissard G, Kanost MR, Jiang H. A genome-wide analysis of antimicrobial effector genes and their transcription patterns in Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 62:23-37. [PMID: 25662101 PMCID: PMC4476920 DOI: 10.1016/j.ibmb.2015.01.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 01/13/2015] [Accepted: 01/23/2015] [Indexed: 05/09/2023]
Abstract
Antimicrobial proteins/peptides (AMPs) are effectors of innate immune systems against pathogen infection in multicellular organisms. Over half of the AMPs reported so far come from insects, and these effectors act in concert to suppress or kill bacteria, fungi, viruses, and parasites. In this work, we have identified 86 AMP genes in the Manduca sexta genome, most of which seem likely to be functional. They encode 15 cecropins, 6 moricins, 6 defensins, 3 gallerimycins, 4 X-tox splicing variants, 14 diapausins, 15 whey acidic protein homologs, 11 attacins, 1 gloverin, 4 lebocins, 6 lysozyme-related proteins, and 4 transferrins. Some of these genes (e.g. attacins, cecropins) constitute large clusters, likely arising after rounds of gene duplication. We compared the amino acid sequences of M. sexta AMPs with their homologs in other insects to reveal conserved structural features and phylogenetic relationships. Expression data showed that many of them are synthesized in fat body and midgut during the larval-pupal molt. Certain genes contain one or more predicted κB binding sites and other regulatory elements in their promoter regions, which may account for the dramatic mRNA level increases in fat body and hemocytes after an immune challenge. Consistent with these strong mRNA increases, many AMPs become highly abundant in the larval plasma at 24 h after the challenge, as demonstrated in our previous peptidomic study. Taken together, these data suggest the existence of a large repertoire of AMPs in M. sexta, whose expression is up-regulated via immune signaling pathways to fight off invading pathogens in a coordinated manner.
Collapse
Affiliation(s)
- Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Kai Li
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA; Institute of Biological Sciences, Donghua University, Songjiang, Shanghai 310029, China
| | - Yingxia Hu
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yun-ru Chen
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Gary Blissard
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
445
|
Steinmann N, Corona M, Neumann P, Dainat B. Overwintering Is Associated with Reduced Expression of Immune Genes and Higher Susceptibility to Virus Infection in Honey Bees. PLoS One 2015; 10:e0129956. [PMID: 26121358 PMCID: PMC4486728 DOI: 10.1371/journal.pone.0129956] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 05/14/2015] [Indexed: 12/22/2022] Open
Abstract
The eusocial honey bee, Apis mellifera, has evolved remarkable abilities to survive extreme seasonal differences in temperature and availability of resources by dividing the worker caste into two groups that differ in physiology and lifespan: summer and winter bees. Most of the recent major losses of managed honey bee colonies occur during the winter, suggesting that winter bees may have compromised immune function and higher susceptibility to diseases. We tested this hypothesis by comparing the expression of eight immune genes and naturally occurring infection levels of deformed wing virus (DWV), one of the most widespread viruses in A. mellifera populations, between summer and winter bees. Possible interactions between immune response and physiological activity were tested by measuring the expression of vitellogenin and methyl farnesoate epoxidase, a gene coding for the last enzyme involved in juvenile hormone biosynthesis. Our data show that high DWV loads in winter bees correlate with reduced expression of genes involved in the cellular immune response and physiological activity and high expression of humoral immune genes involved in antibacterial defense compared with summer bees. This expression pattern could reflect evolutionary adaptations to resist bacterial pathogens and economize energy during the winter under a pathogen landscape with reduced risk of pathogenic viral infections. The outbreak of Varroa destructor infestation could have overcome these adaptations by promoting the transmission of viruses. Our results suggest that reduced cellular immune function during the winter may have increased honey bee’s susceptibility to DWV. These results contribute to our understanding of honey bee colony losses in temperate regions.
Collapse
Affiliation(s)
- Nadja Steinmann
- Agroscope—Swiss Bee Research Center—Liebefeld, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
- Institute of Bee Health, Vetsuisse Faculty and Faculty of Medicine, University of Bern, Bremgartenstr. 109a, 3001 Bern, Switzerland
| | - Miguel Corona
- Bee Research Laboratory USDA-ARS, Beltsville, MD 20705, United States of America
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty and Faculty of Medicine, University of Bern, Bremgartenstr. 109a, 3001 Bern, Switzerland
| | - Benjamin Dainat
- Agroscope—Swiss Bee Research Center—Liebefeld, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
- Swiss Bee Health Service, apiservice, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
- * E-mail:
| |
Collapse
|
446
|
Fei D, Zhang H, Diao Q, Jiang L, Wang Q, Zhong Y, Fan Z, Ma M. Codon Optimization, Expression in Escherichia coli, and Immunogenicity of Recombinant Chinese Sacbrood Virus (CSBV) Structural Proteins VP1, VP2, and VP3. PLoS One 2015; 10:e0128486. [PMID: 26067659 PMCID: PMC4466328 DOI: 10.1371/journal.pone.0128486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/27/2015] [Indexed: 11/26/2022] Open
Abstract
Chinese sacbrood virus (CSBV) is a small RNA virus family belonging to the genus Iflavirus that causes larval death, and even the collapse of entire bee colonies. The virus particle is spherical, non-enveloped, and its viral capsid is composed of four proteins, although the functions of the structural proteins are unclear. In this study, we used codon recoding to express the recombinant proteins VP1, VP2, and VP3 in Escherichia coli. SDS-PAGE analysis and Western blotting revealed that the target genes were expressed at high levels. Mice were then immunized with the purified, recombinant proteins, and antibody levels and lymphocyte proliferation were analyzed by ELISA and the MTT assay, respectively. The results show that the recombinant proteins induced high antibody levels and promoted lymphocyte proliferation. Polyclonal antibodies directed against these proteins will aid future studies of the molecular pathogenesis of CSBV.
Collapse
Affiliation(s)
- Dongliang Fei
- Animal Husbandry and Veterinary Institute, Liaoning Medical University, Jinzhou, China
| | - Haochun Zhang
- Animal Husbandry and Veterinary Institute, Liaoning Medical University, Jinzhou, China
| | - Qingyun Diao
- Honeybee Research Institute, the Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lili Jiang
- Animal Husbandry and Veterinary Institute, Liaoning Medical University, Jinzhou, China
| | - Qiang Wang
- Liaoning Water Conservancy Vocational College, Shenyang, China
| | - Yi Zhong
- Animal Husbandry and Veterinary Institute, Liaoning Medical University, Jinzhou, China
| | - Zhaobin Fan
- Animal Husbandry and Veterinary Institute, Liaoning Medical University, Jinzhou, China
| | - Mingxiao Ma
- Animal Husbandry and Veterinary Institute, Liaoning Medical University, Jinzhou, China
- * E-mail:
| |
Collapse
|
447
|
Kapheim KM, Pan H, Li C, Salzberg SL, Puiu D, Magoc T, Robertson HM, Hudson ME, Venkat A, Fischman BJ, Hernandez A, Yandell M, Ence D, Holt C, Yocum GD, Kemp WP, Bosch J, Waterhouse RM, Zdobnov EM, Stolle E, Kraus FB, Helbing S, Moritz RFA, Glastad KM, Hunt BG, Goodisman MAD, Hauser F, Grimmelikhuijzen CJP, Pinheiro DG, Nunes FMF, Soares MPM, Tanaka ÉD, Simões ZLP, Hartfelder K, Evans JD, Barribeau SM, Johnson RM, Massey JH, Southey BR, Hasselmann M, Hamacher D, Biewer M, Kent CF, Zayed A, Blatti C, Sinha S, Johnston JS, Hanrahan SJ, Kocher SD, Wang J, Robinson GE, Zhang G. Social evolution. Genomic signatures of evolutionary transitions from solitary to group living. Science 2015; 348:1139-43. [PMID: 25977371 PMCID: PMC5471836 DOI: 10.1126/science.aaa4788] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/06/2015] [Indexed: 12/14/2022]
Abstract
The evolution of eusociality is one of the major transitions in evolution, but the underlying genomic changes are unknown. We compared the genomes of 10 bee species that vary in social complexity, representing multiple independent transitions in social evolution, and report three major findings. First, many important genes show evidence of neutral evolution as a consequence of relaxed selection with increasing social complexity. Second, there is no single road map to eusociality; independent evolutionary transitions in sociality have independent genetic underpinnings. Third, though clearly independent in detail, these transitions do have similar general features, including an increase in constrained protein evolution accompanied by increases in the potential for gene regulation and decreases in diversity and abundance of transposable elements. Eusociality may arise through different mechanisms each time, but would likely always involve an increase in the complexity of gene networks.
Collapse
Affiliation(s)
- Karen M Kapheim
- Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Biology, Utah State University, Logan, UT 84322, USA.
| | - Hailin Pan
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518083, China
| | - Cai Li
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518083, China. Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, 1350, Denmark
| | - Steven L Salzberg
- Departments of Biomedical Engineering, Computer Science, and Biostatistics, Johns Hopkins University, Baltimore, MD 21218, USA. Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniela Puiu
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tanja Magoc
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hugh M Robertson
- Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Matthew E Hudson
- Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Aarti Venkat
- Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Brielle J Fischman
- Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Program in Ecology and Evolutionary Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Biology, Hobart and William Smith Colleges, Geneva, NY 14456, USA
| | - Alvaro Hernandez
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mark Yandell
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA. USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, UT 84112, USA
| | - Daniel Ence
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Carson Holt
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA. USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, UT 84112, USA
| | - George D Yocum
- U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) Red River Valley Agricultural Research Center, Biosciences Research Laboratory, Fargo, ND 58102, USA
| | - William P Kemp
- U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) Red River Valley Agricultural Research Center, Biosciences Research Laboratory, Fargo, ND 58102, USA
| | - Jordi Bosch
- Center for Ecological Research and Forestry Applications (CREAF), Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain
| | - Robert M Waterhouse
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland. Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland. Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland
| | - Eckart Stolle
- Institute of Biology, Department Zoology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 4, D-06099 Halle (Saale), Germany. Queen Mary University of London, School of Biological and Chemical Sciences Organismal Biology Research Group, London E1 4NS, UK
| | - F Bernhard Kraus
- Institute of Biology, Department Zoology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 4, D-06099 Halle (Saale), Germany. Department of Laboratory Medicine, University Hospital Halle, Ernst Grube Strasse 40, D-06120 Halle (Saale), Germany
| | - Sophie Helbing
- Institute of Biology, Department Zoology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 4, D-06099 Halle (Saale), Germany
| | - Robin F A Moritz
- Institute of Biology, Department Zoology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 4, D-06099 Halle (Saale), Germany. German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Karl M Glastad
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Brendan G Hunt
- Department of Entomology, University of Georgia, Griffin, GA 30223, USA
| | | | - Frank Hauser
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Cornelis J P Grimmelikhuijzen
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Guariz Pinheiro
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil. Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), 14884-900 Jaboticabal, SP, Brazil
| | - Francis Morais Franco Nunes
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Michelle Prioli Miranda Soares
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
| | - Érica Donato Tanaka
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | - Zilá Luz Paulino Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
| | - Klaus Hartfelder
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | - Jay D Evans
- USDA-ARS Bee Research Lab, Beltsville, MD 20705 USA
| | - Seth M Barribeau
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Reed M Johnson
- Department of Entomology, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, OH 44691, USA
| | - Jonathan H Massey
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bruce R Southey
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Martin Hasselmann
- Department of Population Genomics, Institute of Animal Husbandry and Animal Breeding, University of Hohenheim, Germany
| | - Daniel Hamacher
- Department of Population Genomics, Institute of Animal Husbandry and Animal Breeding, University of Hohenheim, Germany
| | - Matthias Biewer
- Department of Population Genomics, Institute of Animal Husbandry and Animal Breeding, University of Hohenheim, Germany
| | - Clement F Kent
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada. Janelia Farm Research Campus, Howard Hughes Medical Institue, Ashburn, VA 20147, USA
| | - Amro Zayed
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Charles Blatti
- Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Saurabh Sinha
- Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Shawn J Hanrahan
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Sarah D Kocher
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Jun Wang
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518083, China. Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark. Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia. Macau University of Science and Technology, Avenida Wai long, Taipa, Macau 999078, China. Department of Medicine, University of Hong Kong, Hong Kong.
| | - Gene E Robinson
- Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Center for Advanced Study Professor in Entomology and Neuroscience, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518083, China. Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
448
|
Meunier J. Social immunity and the evolution of group living in insects. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140102. [PMID: 25870389 PMCID: PMC4410369 DOI: 10.1098/rstb.2014.0102] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2014] [Indexed: 01/25/2023] Open
Abstract
The evolution of group living requires that individuals limit the inherent risks of parasite infection. To this end, group living insects have developed a unique capability of mounting collective anti-parasite defences, such as allogrooming and corpse removal from the nest. Over the last 20 years, this phenomenon (called social immunity) was mostly studied in eusocial insects, with results emphasizing its importance in derived social systems. However, the role of social immunity in the early evolution of group living remains unclear. Here, I investigate this topic by first presenting the definitions of social immunity and discussing their applications across social systems. I then provide an up-to-date appraisal of the collective and individual mechanisms of social immunity described in eusocial insects and show that they have counterparts in non-eusocial species and even solitary species. Finally, I review evidence demonstrating that the increased risks of parasite infection in group living species may both decrease and increase the level of personal immunity, and discuss how the expression of social immunity could drive these opposite effects. By highlighting similarities and differences of social immunity across social systems, this review emphasizes the potential importance of this phenomenon in the early evolution of the multiple forms of group living in insects.
Collapse
Affiliation(s)
- Joël Meunier
- Zoological Institute, Evolutionary Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
449
|
Xia X, Yu L, Xue M, Yu X, Vasseur L, Gurr GM, Baxter SW, Lin H, Lin J, You M. Genome-wide characterization and expression profiling of immune genes in the diamondback moth, Plutella xylostella (L.). Sci Rep 2015; 5:9877. [PMID: 25943446 PMCID: PMC4421797 DOI: 10.1038/srep09877] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 03/23/2015] [Indexed: 11/09/2022] Open
Abstract
The diamondback moth, Plutella xylostella (L.), is a destructive pest that attacks cruciferous crops worldwide. Immune responses are important for interactions between insects and pathogens and information on these underpins the development of strategies for biocontrol-based pest management. Little, however, is known about immune genes and their regulation patterns in P. xylostella. A total of 149 immune-related genes in 20 gene families were identified through comparison of P. xylostella genome with the genomes of other insects. Complete and conserved Toll, IMD and JAK-STAT signaling pathways were found in P. xylostella. Genes involved in pathogen recognition were expanded and more diversified than genes associated with intracellular signal transduction. Gene expression profiles showed that the IMD pathway may regulate expression of antimicrobial peptide (AMP) genes in the midgut, and be related to an observed down-regulation of AMPs in experimental lines of insecticide-resistant P. xylostella. A bacterial feeding study demonstrated that P. xylostella could activate different AMPs in response to bacterial infection. This study has established a framework of comprehensive expression profiles that highlight cues for immune regulation in a major pest. Our work provides a foundation for further studies on the functions of P. xylostella immune genes and mechanisms of innate immunity.
Collapse
Affiliation(s)
- Xiaofeng Xia
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Liying Yu
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Minqian Xue
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Xiaoqiang Yu
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- School of biological sciences, University of Missouri-Kansas city, Kansas City, Missouri 64110-2499, USA
| | - Liette Vasseur
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, L2S 3A1 Canada
| | - Geoff M. Gurr
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Graham Centre, Charles Sturt University, Orange, New South Wales 2800, Australia
| | - Simon W. Baxter
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- School of Biological Sciences, the University of Adelaide, Adelaide, South Australia, Australia
| | - Hailan Lin
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| | - Junhan Lin
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Fujian Vocational College of Bioengineering, Fuzhou 350002, China
| | - Minsheng You
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
| |
Collapse
|
450
|
Zaluski R, Kadri SM, Alonso DP, Martins Ribolla PE, de Oliveira Orsi R. Fipronil promotes motor and behavioral changes in honey bees (Apis mellifera) and affects the development of colonies exposed to sublethal doses. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:1062-1069. [PMID: 25703042 DOI: 10.1002/etc.2889] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/11/2014] [Accepted: 01/08/2015] [Indexed: 06/04/2023]
Abstract
Bees play a crucial role in pollination and generate honey and other hive products; therefore, their worldwide decline is cause for concern. New broad-spectrum systemic insecticides such as fipronil can harm bees and their use has been discussed as a potential threat to bees' survival. In the present study, the authors evaluate the in vitro toxicity of fipronil and note behavioral and motor activity changes in Africanized adult Apis mellifera that ingest or come into contact with lethal or sublethal doses of fipronil. The effects of sublethal doses on brood viability, population growth, behavior, and the expression of the defensin 1 gene in adult bees were studied in colonies fed with contaminated sugar syrup (8 µg fipronil L(-1) ). Fipronil is highly toxic to bees triggering agitation, seizures, tremors, and paralysis. Bees that are exposed to a lethal or sublethal doses showed reduced motor activity. The number of eggs that hatched, the area occupied by worker eggs, and the number of larvae and pupae that developed were reduced, adult bees showed lethargy, and colonies were abandoned when they were exposed to sublethal doses of fipronil. No change was seen in the bees' expression of defensin 1. The authors conclude that fipronil is highly toxic to honey bees and even sublethal doses may negatively affect the development and maintenance of colonies.
Collapse
Affiliation(s)
- Rodrigo Zaluski
- Núcleo de Ensino, Ciência e Tecnologia em Apicultura Racional (NECTAR), Departamento de Produção Animal, Faculdade de Medicina Veterinária e Zootecnia, UNESP Univ Estadual Paulista, Botucatu, Botucatu, São Paulo, Brazil
| | | | | | | | | |
Collapse
|