401
|
Natsume A, Ito M, Katsushima K, Ohka F, Hatanaka A, Shinjo K, Sato S, Takahashi S, Ishikawa Y, Takeuchi I, Shimogawa H, Uesugi M, Okano H, Kim SU, Wakabayashi T, Issa JPJ, Sekido Y, Kondo Y. Chromatin regulator PRC2 is a key regulator of epigenetic plasticity in glioblastoma. Cancer Res 2013; 73:4559-70. [PMID: 23720055 DOI: 10.1158/0008-5472.can-13-0109] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor cell plasticity contributes to functional and morphologic heterogeneity. To uncover the underlying mechanisms of this plasticity, we examined glioma stem-like cells (GSC) where we found that the biologic interconversion between GSCs and differentiated non-GSCs is functionally plastic and accompanied by gain or loss of polycomb repressive complex 2 (PRC2), a complex that modifies chromatin structure. PRC2 mediates lysine 27 trimethylation on histone H3 and in GSC it affected pluripotency or development-associated genes (e.g., Nanog, Wnt1, and BMP5) together with alterations in the subcellular localization of EZH2, a catalytic component of PRC2. Intriguingly, exogenous expression of EZH2-dNLS, which lacks nuclear localization sequence, impaired the repression of Nanog expression under differentiation conditions. RNA interference (RNAi)-mediated attenuation or pharmacologic inhibition of EZH2 had little to no effect on apoptosis or bromodeoxyuridine incorporation in GSCs, but it disrupted morphologic interconversion and impaired GSC integration into the brain tissue, thereby improving survival of GSC-bearing mice. Pathologic analysis of human glioma specimens revealed that the number of tumor cells with nuclear EZH2 is larger around tumor vessels and the invasive front, suggesting that nuclear EZH2 may help reprogram tumor cells in close proximity to this microenvironment. Our results indicate that epigenetic regulation by PRC2 is a key mediator of tumor cell plasticity, which is required for the adaptation of glioblastoma cells to their microenvironment. Thus, PRC2-targeted therapy may reduce tumor cell plasticity and tumor heterogeneity, offering a new paradigm for glioma treatment.
Collapse
Affiliation(s)
- Atsushi Natsume
- Department of Neurosurgery, Nagoya University School of Medicine, Divisions of Epigenomics and Molecular Oncology, Aichi Cancer Center Research Institute
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
402
|
Abstract
Cancer stem cells (CSCs) have been proposed as the driving force of tumorigenesis and the seeds of metastases. However, their existence and role remain a topic of intense debate. Recently, the identification of CSCs in endogenously developing mouse tumours has provided further support for this concept. Here I discuss the challenges in identifying CSCs, their dependency on a supportive niche and their role in metastasis, and propose that stemness is a flexible — rather than fixed — quality of tumour cells that can be lost and gained.
Collapse
Affiliation(s)
- Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
403
|
Marthiens V, Rujano MA, Pennetier C, Tessier S, Paul-Gilloteaux P, Basto R. Centrosome amplification causes microcephaly. Nat Cell Biol 2013; 15:731-40. [PMID: 23666084 DOI: 10.1038/ncb2746] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 04/04/2013] [Indexed: 12/13/2022]
Abstract
Centrosome amplification is a hallmark of human tumours. In flies, extra centrosomes cause spindle position defects that result in the expansion of the neural stem cell (NSC) pool and consequently in tumour formation. Here we investigated the consequences of centrosome amplification during mouse brain development and homeostasis. We show that centrosome amplification causes microcephaly due to inefficient clustering mechanisms, where NSCs divide in a multipolar fashion producing aneuploid cells that enter apoptosis. Importantly, we show that apoptosis inhibition causes the accumulation of highly aneuploid cells that lose their proliferative capacity and differentiate, thus depleting the pool of progenitors. Even if these conditions are not sufficient to halt brain development, they cause premature death due to tissue degeneration. Our results support an alternative concept to explain the etiology of microcephaly and show that centrosome amplification and aneuploidy can result in tissue degeneration rather than overproliferation and cancer.
Collapse
|
404
|
Vardabasso C, Hasson D, Ratnakumar K, Chung CY, Duarte LF, Bernstein E. Histone variants: emerging players in cancer biology. Cell Mol Life Sci 2013; 71:379-404. [PMID: 23652611 DOI: 10.1007/s00018-013-1343-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/09/2013] [Accepted: 04/11/2013] [Indexed: 01/01/2023]
Abstract
Histone variants are key players in shaping chromatin structure, and, thus, in regulating fundamental cellular processes such as chromosome segregation and gene expression. Emerging evidence points towards a role for histone variants in contributing to tumor progression, and, recently, the first cancer-associated mutation in a histone variant-encoding gene was reported. In addition, genetic alterations of the histone chaperones that specifically regulate chromatin incorporation of histone variants are rapidly being uncovered in numerous cancers. Collectively, these findings implicate histone variants as potential drivers of cancer initiation and/or progression, and, therefore, targeting histone deposition or the chromatin remodeling machinery may be of therapeutic value. Here, we review the mammalian histone variants of the H2A and H3 families in their respective cellular functions, and their involvement in tumor biology.
Collapse
Affiliation(s)
- Chiara Vardabasso
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | | | | | | | | | | |
Collapse
|
405
|
Barcia C, Mitxitorena I, Carrillo-de Sauvage MA, Gallego JM, Pérez-Vallés A, Barcia C. Imaging the microanatomy of astrocyte-T-cell interactions in immune-mediated inflammation. Front Cell Neurosci 2013; 7:58. [PMID: 23641198 PMCID: PMC3639405 DOI: 10.3389/fncel.2013.00058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/15/2013] [Indexed: 11/19/2022] Open
Abstract
The role of astrocytes in the immune-mediated inflammatory response in the brain is more prominent than previously thought. Astrocytes become reactive in response to neuro-inflammatory stimuli through multiple pathways, contributing significantly to the machinery that modifies the parenchymal environment. In particular, astrocytic signaling induces the establishment of critical relationships with infiltrating blood cells, such as lymphocytes, which is a fundamental process for an effective immune response. The interaction between astrocytes and T-cells involves complex modifications to both cell types, which undergo micro-anatomical changes and the redistribution of their binding and secretory domains. These modifications are critical for different immunological responses, such as for the effectiveness of the T-cell response, for the specific infiltration of these cells and their homing in the brain parenchyma, and for their correct apposition with antigen-presenting cells (APCs) to form immunological synapses (ISs). In this article, we review the current knowledge of the interactions between T-cells and astrocytes in the context of immune-mediated inflammation in the brain, based on the micro-anatomical imaging of these appositions by high-resolution confocal microscopy and three-dimensional rendering. The study of these dynamic interactions using detailed technical approaches contributes to understanding the function of astrocytes in inflammatory responses and paves the way for new therapeutic strategies.
Collapse
Affiliation(s)
- Carlos Barcia
- Department of Neurosurgery, Hospital General Universitari de València València, Spain
| | | | | | | | | | | |
Collapse
|
406
|
Function of oncogenes in cancer development: a changing paradigm. EMBO J 2013; 32:1502-13. [PMID: 23632857 DOI: 10.1038/emboj.2013.97] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/09/2013] [Indexed: 12/27/2022] Open
Abstract
Tumour-associated oncogenes induce unscheduled proliferation as well as genomic and chromosomal instability. According to current models, therapeutic strategies that block oncogene activity are likely to selectively target tumour cells. However, recent evidences have revealed that oncogenes are only essential for the proliferation of some specific tumour cell types, but not all. Indeed, the latest studies of the interactions between the oncogene and its target cell have shown that oncogenes contribute to cancer development not only by inducing proliferation but also by developmental reprogramming of the epigenome. This provides the first evidence that tumorigenesis can be initiated by stem cell reprogramming, and uncovers a new role for oncogenes in the origin of cancer. Here we analyse these evidences and propose an updated model of oncogene function that can explain the full range of genotype-phenotype associations found in human cancer. Finally, we discuss how this vision opens new avenues for developing novel anti-cancer interventions.
Collapse
|
407
|
The molecular and cell biology of pediatric low-grade gliomas. Oncogene 2013; 33:2019-26. [PMID: 23624918 DOI: 10.1038/onc.2013.148] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/05/2013] [Accepted: 03/07/2013] [Indexed: 12/13/2022]
Abstract
Pilocytic astrocytoma (PA) is the most common glial cell tumor arising in children. Sporadic cases are associated with KIAA1549:BRAF fusion rearrangements, while 15-20% of children develop PA in the context of the neurofibromatosis 1 (NF1) inherited tumor predisposition syndrome. The unique predilection of these tumors to form within the optic pathway and brainstem (NF1-PA) and cerebellum (sporadic PA) raises the possibility that gliomagenesis requires more than biallelic inactivation of the NF1 tumor suppressor gene or expression of the KIAA1549:BRAF transcript. Several etiologic explanations include differential susceptibilities of preneoplastic neuroglial cell types in different brain regions to these glioma-causing genetic changes, contributions from non-neoplastic cells and signals in the tumor microenvironment, and genomic modifiers that confer glioma risk. As clinically-faithful rodent models of sporadic PA are currently under development, Nf1 genetically-engineered mouse (GEM) models have served as tractable systems to study the role of the cell of origin, deregulated intracellular signaling, non-neoplastic cells in the tumor microenvironment and genomic modifiers in gliomagenesis. In this report, we highlight advances in Nf1-GEM modeling and review new experimental evidence that supports the emerging concept that Nf1- and KIAA1549:BRAF-induced gliomas arise from specific cell types in particular brain locations.
Collapse
|
408
|
Sampetrean O, Saya H. Characteristics of glioma stem cells. Brain Tumor Pathol 2013; 30:209-14. [DOI: 10.1007/s10014-013-0141-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 02/20/2013] [Indexed: 10/27/2022]
|
409
|
Abstract
Mel Greaves discusses the mechanisms underlying transformation in B cell chronic lymphocytic leukemia, including a new study suggesting a role for BCR ligation driven by recognition of an antigenic component of common yeast and fungi. Relatively few cancers arise in mature, differentiated cells. The propensity of mature B cells to transform has been linked to their longevity and proliferative potential, and stimulation of the B cell receptor (BCR) by cognate antigen may promote the transformation process. A study in this issue (Hoogeboom et al.) lends support to this notion, showing that cancer cells from a subset of patients with chronic lymphocytic leukemia (CLL) express a BCR specific for a sugar expressed by commensal yeast species. Another study, in contrast, suggests that B-CLL cells uniquely acquire the ability to signal in the complete absence of ligand.
Collapse
Affiliation(s)
- Mel Greaves
- Division of Molecular Pathology, Institute of Cancer Research, Sutton, Surrey SM2 5NG, England, UK.
| |
Collapse
|
410
|
Soda Y, Myskiw C, Rommel A, Verma IM. Mechanisms of neovascularization and resistance to anti-angiogenic therapies in glioblastoma multiforme. J Mol Med (Berl) 2013; 91:439-48. [PMID: 23512266 DOI: 10.1007/s00109-013-1019-z] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 02/26/2013] [Accepted: 02/28/2013] [Indexed: 12/22/2022]
Abstract
Glioblastoma multiforme (GBM) is the most malignant brain tumor and highly resistant to intensive combination therapies. GBM is one of the most vascularized tumors and vascular endothelial growth factor (VEGF) produced by tumor cells is a major factor regulating angiogenesis. Successful results of preclinical studies of anti-angiogenic therapies using xenograft mouse models of human GBM cell lines encouraged clinical studies of anti-angiogenic drugs, such as bevacizumab (Avastin), an anti-VEGF antibody. However, these clinical studies have shown that most patients become resistant to anti-VEGF therapy after an initial response. Recent studies have revealed some resistance mechanisms against anti-VEGF therapies involved in several types of cancer. In this review, we address mechanisms of angiogenesis, including unique features in GBMs, and resistance to anti-VEGF therapies frequently observed in GBM. Enhanced invasiveness is one such resistance mechanism and recent works report the contribution of activated MET signaling induced by inhibition of VEGF signaling. On the other hand, tumor cell-originated neovascularization including tumor-derived endothelial cell-induced angiogenesis and vasculogenic mimicry has been suggested to be involved in the resistance to anti-VEGF therapy. Therefore, these mechanisms should be targeted in addition to anti-angiogenic therapies to achieve better results for patients with GBM.
Collapse
Affiliation(s)
- Yasushi Soda
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
411
|
Francipane MG, Chandler J, Lagasse E. Cancer Stem Cells: A Moving Target. CURRENT PATHOBIOLOGY REPORTS 2013; 1:111-118. [PMID: 23914341 DOI: 10.1007/s40139-013-0010-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Even though the number of anti-cancer drugs entering clinical trials and approved by the FDA has increased in recent years, many cancer patients still experience poor survival outcome. The main explanation for such a dismal prognosis is that current therapies might leave behind a population of cancer cells with the capacity for long-term self-renewal, so-called cancer stem cells (CSCs), from which most tumors are believed to be derived and fueled. CSCs might favor local and distant recurrence even many years after initial treatment, thus representing a potential target for therapies aimed at improving clinical outcome. In this review, we will address the CSC hypothesis with a particular emphasis on its current paradigms and debates, and discuss several mechanisms of CSC resistance to conventional therapies.
Collapse
Affiliation(s)
- Maria Giovanna Francipane
- McGowan Institute for Regenerative Medicine, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA ; RiMed Foundation, 90133 Palermo, Italy
| | | | | |
Collapse
|
412
|
Friedman GK, Raborn J, Kelly VM, Cassady KA, Markert JM, Gillespie GY. Pediatric glioma stem cells: biologic strategies for oncolytic HSV virotherapy. Front Oncol 2013; 3:28. [PMID: 23450706 PMCID: PMC3584319 DOI: 10.3389/fonc.2013.00028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/04/2013] [Indexed: 01/17/2023] Open
Abstract
While glioblastoma multiforme (GBM) is the most common adult malignant brain tumor, GBMs in childhood represent less than 10% of pediatric malignant brain tumors and are phenotypically and molecularly distinct from adult GBMs. Similar to adult patients, outcomes for children with high-grade gliomas (HGGs) remain poor. Furthermore, the significant morbidity and mortality yielded by pediatric GBM is compounded by neurotoxicity for the developing brain caused by current therapies. Poor outcomes have been attributed to a subpopulation of chemotherapy and radiotherapy resistant cells, termed “glioma stem cells” (GSCs), “glioma progenitor cells,” or “glioma-initiating cells,” which have the ability to initiate and maintain the tumor and to repopulate the recurring tumor after conventional therapy. Future innovative therapies for pediatric HGG must be able to eradicate these therapy-resistant GSCs. Oncolytic herpes simplex viruses (oHSV), genetically engineered to be safe for normal cells and to express diverse foreign anti-tumor therapeutic genes, have been demonstrated in preclinical studies to infect and kill GSCs and tumor cells equally while sparing normal brain cells. In this review, we discuss the unique aspects of pediatric GSCs, including markers to identify them, the microenvironment they reside in, signaling pathways that regulate them, mechanisms of cellular resistance, and approaches to target GSCs, with a focus on the promising therapeutic, genetically engineered oHSV.
Collapse
Affiliation(s)
- Gregory K Friedman
- Brain Tumor Research Program, Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham Birmingham, AL, USA
| | | | | | | | | | | |
Collapse
|
413
|
Mukherjee J, Phillips JJ, Zheng S, Wiencke J, Ronen SM, Pieper RO. Pyruvate kinase M2 expression, but not pyruvate kinase activity, is up-regulated in a grade-specific manner in human glioma. PLoS One 2013; 8:e57610. [PMID: 23451252 PMCID: PMC3581484 DOI: 10.1371/journal.pone.0057610] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 01/24/2013] [Indexed: 02/04/2023] Open
Abstract
Normal tissues express the M1 isoform of pyruvate kinase (PK) that helps generate and funnel pyruvate into the mitochondria for ATP production. Tumors, in contrast, express the less active PKM2 isoform, which limits pyruvate production and spares glycolytic intermediates for the generation of macromolecules needed for proliferation. Although high PKM2 expression and low PK activity are considered defining features of tumors, very little is known about how PKM expression and PK activity change along the continuum from low grade to high grade tumors, and how these changes relate to tumor growth. To address this issue, we measured PKM isoform expression and PK activity in normal brain, neural progenitor cells, and in a series of over 100 astrocytomas ranging from benign grade I pilocytic astrocytomas to highly aggressive grade IV glioblastoma multiforme (GBM). All glioma exhibited comparably reduced levels of PKM1 expression and PK activity relative to normal brain. In contrast, while grade I-III gliomas all had modestly increased levels of PKM2 RNA and protein expression relative to normal brain, GBM, regardless of whether they arose de novo or progressed from lower grade tumors, showed a 3-5 fold further increase in PKM2 RNA and protein expression. Low levels of PKM1 expression and PK activity were important for cell growth as PKM1 over-expression and the accompanying increases in PK activity slowed the growth of GBM cells. The increased expression of PKM2, however, was also important, because shRNA-mediated PKM2 knockdown decreased total PKM2 and the already low levels of PK activity, but paradoxically also limited cell growth in vitro and in vivo. These results show that pyruvate kinase M expression, but not pyruvate kinase activity, is regulated in a grade-specific manner in glioma, but that changes in both PK activity and PKM2 expression contribute to growth of GBM.
Collapse
Affiliation(s)
- Joydeep Mukherjee
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, United States of America
- The Brain Tumor Research Center, University of California San Francisco, San Francisco, California, United States of America
| | - Joanna J. Phillips
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
- The Brain Tumor Research Center, University of California San Francisco, San Francisco, California, United States of America
| | - Shichun Zheng
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, United States of America
- The Brain Tumor Research Center, University of California San Francisco, San Francisco, California, United States of America
| | - John Wiencke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, United States of America
- The Brain Tumor Research Center, University of California San Francisco, San Francisco, California, United States of America
| | - Sabrina M. Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
- The Brain Tumor Research Center, University of California San Francisco, San Francisco, California, United States of America
| | - Russell O. Pieper
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, United States of America
- The Brain Tumor Research Center, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
414
|
Abstract
Glioma is a heterogeneous disease process with differential histology and treatment response. It was previously thought that the histological features of glial tumors indicated their cell of origin. However, the discovery of continuous neuro-gliogenesis in the normal adult brain and the identification of brain tumor stem cells within glioma have led to the hypothesis that these brain tumors originate from multipotent neural stem or progenitor cells, which primarily divide asymmetrically during the postnatal period. Asymmetric cell division allows these cell types to concurrently self-renew whilst also producing cells for the differentiation pathway. It has recently been shown that increased symmetrical cell division, favoring the self-renewal pathway, leads to oligodendroglioma formation from oligodendrocyte progenitor cells. In contrast, there is some evidence that asymmetric cell division maintenance in tumor stem-like cells within astrocytoma may lead to acquisition of treatment resistance. Therefore cell division mode in normal brain stem and progenitor cells may play a role in setting tumorigenic potential and the type of tumor formed. Moreover, heterogeneous tumor cell populations and their respective cell division mode may confer differential sensitivity to therapy. This review aims to shed light on the controllers of cell division mode which may be therapeutically targeted to prevent glioma formation and improve treatment response.
Collapse
|
415
|
Affiliation(s)
- Andrei V Krivtsov
- Human Oncology and Pathogenesis Program and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
416
|
|
417
|
Liao CH, Lai IC, Kuo HC, Chuang SE, Lee HL, Whang-Peng J, Yao CJ, Lai GM. [Breath test using C-13-trioleate in the evaluation of the rate of fatty acid metabolism after parenteral feeding of premature and newborn infants]. Mar Drugs 1989; 17:md17090525. [PMID: 31500384 PMCID: PMC6780514 DOI: 10.3390/md17090525] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
Malignant glioma (MG) is a poor prognostic brain tumor with inevitable recurrence after multimodality treatment. Searching for more effective treatment is urgently needed. Differentiation induction via epigenetic modification has been proposed as a potential anticancer strategy. Natural products are known as fruitful sources of epigenetic modifiers with wide safety margins. We thus explored the effects of oligo-fucoidan (OF) from brown seaweed on this notion in MG cells including Grade III U87MG cells and Grade IV glioblastoma multiforme (GBM)8401 cells and compared to the immortalized astrocyte SVGp12 cells. The results showed that OF markedly suppress the proliferation of MG cells and only slightly affected that of SVGp12 cells. OF inhibited the protein expressions of DNA methyltransferases 1, 3A and 3B (DNMT1, 3A and 3B) accompanied with obvious mRNA induction of differentiation markers (MBP, OLIG2, S100β, GFAP, NeuN and MAP2) both in U87MG and GBM8401 cells. Accordingly, the methylation of p21, a DNMT3B target gene, was decreased by OF. In combination with the clinical DNMT inhibitor decitabine, OF could synergize the growth inhibition and MBP induction in U87MG cells. Appropriated clinical trials are warranted to evaluate this potential complementary approach for MG therapy after confirmation of the effects in vivo.
Collapse
Affiliation(s)
- Chien-Huang Liao
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - I-Chun Lai
- Division of Radiation Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Hui-Ching Kuo
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Shuang-En Chuang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Hsin-Lun Lee
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Jacqueline Whang-Peng
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Chih-Jung Yao
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan.
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Gi-Ming Lai
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan.
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan.
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan.
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|