401
|
McCaffrey AP, Ohashi K, Meuse L, Shen S, Lancaster AM, Lukavsky PJ, Sarnow P, Kay MA. Determinants of hepatitis C translational initiation in vitro, in cultured cells and mice. Mol Ther 2002; 5:676-84. [PMID: 12027551 DOI: 10.1006/mthe.2002.0600] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) is an RNA virus infecting 1 in every 40 people worldwide. Development of new therapeutics for treating HCV has been hampered by the lack of small-animal models. We have adapted existing hydrodynamic transfection methods to optimize the delivery of RNAs to the cytoplasm of mouse liver cells in vivo. Transfected HCV genomic RNA failed to replicate in mouse liver, suggesting a post-entry block to viral replication. Real-time imaging of HCV internal ribosome entry site (IRES) firefly luciferase reporter mRNA translation in living mice demonstrated that the HCV IRES was functional in mouse liver. We then used this system as a model for studying HCV RNA translation in mice. We compared translation by several mutant HCV IRES variants in cell lysates, cultured cells, and mouse liver. We measured the contribution to translation of a cap, HCV 3'-untranslated region (UTR), poly(A) tail, domains II, IIIb, IIIabc, IIIabcd, IIId, and the initiator codon. Efficient translation required a 3'-UTR in mice and HeLa cells, but not in rabbit reticulocyte lysates. Translational regulation of transfected RNAs was stringent in mice. The method we describe could be useful for studies in mice of antisense or ribozyme inhibitors targeting the IRES as well as other RNA biochemical studies in vivo.
Collapse
Affiliation(s)
- Anton P McCaffrey
- Program in Human Gene Therapy, Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
402
|
Egger D, Wölk B, Gosert R, Bianchi L, Blum HE, Moradpour D, Bienz K. Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. J Virol 2002; 76:5974-84. [PMID: 12021330 PMCID: PMC136238 DOI: 10.1128/jvi.76.12.5974-5984.2002] [Citation(s) in RCA: 633] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Plus-strand RNA viruses characteristically replicate their genome in association with altered cellular membranes. In the present study, the capacity of hepatitis C virus (HCV) proteins to elicit intracellular membrane alterations was investigated by expressing, in tetracycline-regulated cell lines, a comprehensive panel of HCV proteins individually as well as in the context of the entire HCV polyprotein. As visualized by electron microscopy (EM), expression of the combined structural proteins core-E1-E2-p7, the NS3-4A complex, and protein NS4B induced distinct membrane alterations. By immunogold EM (IEM), the membrane-altering proteins were always found to localize to the respective altered membranes. NS4B, a protein of hitherto unknown function, induced a tight structure, designated membranous web, consisting of vesicles in a membranous matrix. Expression of the entire HCV polyprotein gave rise to membrane budding into rough endoplasmic reticulum vacuoles, to the membranous web, and to tightly associated vesicles often surrounding the membranous web. By IEM, all HCV proteins were found to be associated with the NS4B-induced membranous web, forming a membrane-associated multiprotein complex. A similar web-like structure in livers of HCV-infected chimpanzees was previously described (Pfeifer et al., Virchows Arch. B., 33:233-243, 1980). In view of this finding and the observation that all HCV proteins accumulate on the membranous web, we propose that the membranous web forms the viral replication complex in HCV-infected cells.
Collapse
Affiliation(s)
- Denise Egger
- Institute for Medical Microbiology, University of Basel, CH-4003 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
403
|
Bukh J, Forns X, Emerson SU, Purcell RH. Studies of hepatitis C virus in chimpanzees and their importance for vaccine development. Intervirology 2002; 44:132-42. [PMID: 11509874 DOI: 10.1159/000050040] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Persistent infection with hepatitis C virus (HCV) is an important cause of chronic liver disease worldwide. Therefore, the development of vaccines to prevent HCV infection, or at least to prevent progression to chronicity, is a major goal. Potential HCV vaccine candidates include recombinant proteins, recombinant viruses, DNA constructs, synthetic peptides and virus-like particles. Various vaccine candidates have been shown to generate humoral and cellular immune responses in animals, primarily in mice. However, the efficacy of most vaccine candidates in protecting against HCV has not been tested because the chimpanzee, the only animal other than humans that is susceptible to HCV, is not readily available, requires special facilities, and is very expensive. The course of infection in chimpanzees is similar in its diversity to that in humans and detailed studies in this model are beginning to define the immune responses that can terminate HCV infection. Of relevance for vaccine evaluation was the titration in chimpanzees of different HCV variants to provide well-characterized challenge pools. In addition, monoclonal virus pools generated from chimpanzees infected with cloned viruses make it possible now to examine immunity to HCV without the confounding factor of antigenic diversity of the challenge virus (quasispecies). The vaccine trials performed in chimpanzees to date all have tested the efficacy of immunizations with various forms of the envelope proteins of HCV.
Collapse
Affiliation(s)
- J Bukh
- Hepatitis Viruses and Molecular Hepatitis Sections, Laboratory of Infectious Diseases, NIAID, National Institutes of Health, Bethesda, Md 20892-0740, USA.
| | | | | | | |
Collapse
|
404
|
Du MX, Johnson RB, Sun XL, Staschke KA, Colacino J, Wang QM. Comparative characterization of two DEAD-box RNA helicases in superfamily II: human translation-initiation factor 4A and hepatitis C virus non-structural protein 3 (NS3) helicase. Biochem J 2002; 363:147-55. [PMID: 11903057 PMCID: PMC1222461 DOI: 10.1042/0264-6021:3630147] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Eukaryotic initiation factor 4A (eIF4A) is an ATP-dependent RNA helicase and is homologous to the non-structural protein 3 (NS3) helicase domain encoded by hepatitis C virus (HCV). Reported here is the comparative characterization of human eIF4A and HCV NS3 helicase in an effort to better understand viral and cellular helicases of superfamily II and to assist in designing specific inhibitors against HCV infections. Both eIF4A and HCV NS3 helicase domain were expressed in bacterial cells as histidine-tagged proteins and purified to homogeneity. Purified eIF4A exhibited RNA-unwinding activity and acted on RNA or RNA/DNA but not DNA duplexes. In the absence of cellular cofactors, eIF4A operated unwinding in both the 3' to 5' and 5' to 3' directions, and was able to unwind blunt-ended RNA duplex, suggesting that bidirectionality is an intrinsic property of eIF4A. In contrast, HCV NS3 helicase showed unidirectional 3' to 5' unwinding of RNA and RNA/DNA, as well as of DNA duplexes. With respect to NTPase activity, eIF4A hydrolysed only ATP or dATP in the presence of RNAs, whereas HCV NS3 helicase could hydrolyse all ribo- and deoxyribo-NTPs in an RNA-independent manner. In parallel, only ATP or dATP could drive the unwinding activity of eIF4A whereas HCV NS3 could function with all eight standard NTPs and dNTPs. The observed differences in their substrate specificity may prove to be useful in designing specific inhibitors targeting HCV NS3 helicase but not human eIF4A.
Collapse
Affiliation(s)
- Mark X Du
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | | | | | | |
Collapse
|
405
|
Carrère-Kremer S, Montpellier-Pala C, Cocquerel L, Wychowski C, Penin F, Dubuisson J. Subcellular localization and topology of the p7 polypeptide of hepatitis C virus. J Virol 2002; 76:3720-30. [PMID: 11907211 PMCID: PMC136108 DOI: 10.1128/jvi.76.8.3720-3730.2002] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2001] [Accepted: 01/16/2002] [Indexed: 12/11/2022] Open
Abstract
Although biological and biochemical data have been accumulated on most hepatitis C virus proteins, the structure and function of the 63-amino-acid p7 polypeptide of this virus have never been investigated. In this work, sequence analyses predicted that p7 contains two transmembrane passages connected by a short hydrophilic segment. The C-terminal transmembrane domain of p7 was predicted to function as a signal sequence, which was confirmed experimentally by analyzing the translocation of a reporter glycoprotein fused at its C terminus. The p7 polypeptide was tagged either with the ectodomain of CD4 or with a Myc epitope to study its membrane integration, its subcellular localization, and its topology. Alkaline extraction studies confirmed that p7 is an integral membrane polypeptide. The CD4-p7 chimera was detected by immunofluorescence on the surface of nonpermeabilized cells, indicating that it is exported to the plasma membrane. However, pulse-chase analyses showed that only approximately 20% of endoglycosidase H-resistant CD4-p7 was detected after long chase times, suggesting that a large proportion of p7 stays in an early compartment of the secretory pathway. Finally, by inserting a Myc epitope in several positions of p7 and analyzing the accessibility of this epitope on the plasma membrane of HepG2 cells, we showed that p7 has a double membrane-spanning topology, with both its N and C termini oriented toward the extracellular environment. Altogether, these data indicate that p7 is a polytopic membrane protein that could have a functional role in several compartments of the secretory pathway.
Collapse
Affiliation(s)
- Séverine Carrère-Kremer
- CNRS-FRE2369, Institut de Biologie de Lille/Institut Pasteur de Lille, 59021 Lille Cedex, France
| | | | | | | | | | | |
Collapse
|
406
|
Abstract
Hepatitis C virus (HCV) is a leading cause of chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. Numerous advances have been made in the understanding of HCV replication, including detailed molecular characterization of its viral proteins and genomic RNA. The inability to grow HCV in cell culture had impeded the development of antiviral agents against this virus. To overcome this obstacle, a number of unique tools have been prepared, such as molecular clones that are infectious in the chimpanzee animal model of infection, and the development of a subgenomic replicon system in Huh7 cells. In addition, the major non-structural proteins have been crystallized, thus enabling rational drug design directed to these targets. Current developments in antiviral agents are reviewed in the context of these potential new viral targets for the future treatment of HCV in chronically infected individuals.
Collapse
Affiliation(s)
- Stephen A Locarnini
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne, LB 815, Carlton South, Victoria 3053, Australia.
| | | |
Collapse
|
407
|
Brass V, Bieck E, Montserret R, Wölk B, Hellings JA, Blum HE, Penin F, Moradpour D. An amino-terminal amphipathic alpha-helix mediates membrane association of the hepatitis C virus nonstructural protein 5A. J Biol Chem 2002; 277:8130-9. [PMID: 11744739 DOI: 10.1074/jbc.m111289200] [Citation(s) in RCA: 282] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A), a phosphoprotein of unknown function, is believed to be a component of a membrane-associated viral replication complex. The determinants for membrane association of NS5A, however, have not been defined. By double label immunofluorescence analyses, NS5A was found to be associated with the endoplasmic reticulum (ER) or an ER-derived modified compartment both when expressed alone or in the context of the entire HCV polyprotein. Systematic deletion and green fluorescent protein fusion analyses allowed us to map the membrane anchor to the amino-terminal 30 amino acid residues of NS5A. Membrane association occurred by a posttranslational mechanism and resulted in properties of an integral membrane protein. Circular dichroism structural studies of a synthetic peptide corresponding to the NS5A membrane anchor, designated NS5A(1-31), demonstrated the presence of an amphipathic alpha-helix that was found to be highly conserved among 280 HCV isolates of various genotypes. The detergent-binding properties of this helical peptide together with the nature and location of its amino acids suggest a mechanism of membrane insertion via the helix hydrophobic side, yielding a topology parallel to the lipid bilayer in the cytoplasmic leaflet of the ER membrane. These findings have important implications for the structural and functional organization of the HCV replication complex and may define novel targets for antiviral intervention.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acids/chemistry
- Blotting, Western
- Cell Line
- Cell Membrane/metabolism
- Chromatography, Gel
- Circular Dichroism
- Detergents/pharmacology
- Dose-Response Relationship, Drug
- Endoplasmic Reticulum/metabolism
- Fluorescent Antibody Technique, Indirect
- Genotype
- Green Fluorescent Proteins
- Humans
- Lipids/chemistry
- Luminescent Proteins/metabolism
- Microscopy, Fluorescence
- Models, Genetic
- Molecular Sequence Data
- Peptides/chemistry
- Protein Binding
- Protein Biosynthesis
- Protein Processing, Post-Translational
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Protein Synthesis Inhibitors/pharmacology
- Recombinant Fusion Proteins/metabolism
- Sequence Homology, Amino Acid
- Subcellular Fractions/metabolism
- Tetracycline/pharmacology
- Time Factors
- Transcription, Genetic
- Transfection
- Viral Nonstructural Proteins/chemistry
- Viral Nonstructural Proteins/metabolism
Collapse
Affiliation(s)
- Volker Brass
- Department of Medicine II, University of Freiburg, D-79106 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
408
|
Affiliation(s)
- Volker Brass
- Department of Medicine II, University of Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
409
|
Ikeda M, Yi M, Li K, Lemon SM. Selectable subgenomic and genome-length dicistronic RNAs derived from an infectious molecular clone of the HCV-N strain of hepatitis C virus replicate efficiently in cultured Huh7 cells. J Virol 2002; 76:2997-3006. [PMID: 11861865 PMCID: PMC135991 DOI: 10.1128/jvi.76.6.2997-3006.2002] [Citation(s) in RCA: 328] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Dicistronic, selectable subgenomic replicons derived from the Con1 strain of hepatitis C virus (HCV) are capable of autonomous replication in cultured Huh7 cells (Lohmann et al., Science 285:110-113, 1999). However, adaptive mutations in the NS3, NS5A, and/or NS5B proteins are required for efficient replication of these RNAs and increase by orders of magnitude the numbers of G418-resistant colonies selected following transfection of Huh7 cells. Here, we demonstrate that a subgenomic replicon (NNeo/3-5B) derived from an infectious molecular clone of a second genotype 1b virus, HCV-N (Beard et al., Hepatology 30:316-324, 1999) is also capable of efficient replication in Huh7 cells. G418-resistant cells selected following transfection with NNeo/3-5B RNA contained abundant NS5A antigen and HCV RNA detectable by Northern analysis. Replicon RNA in one of three clonally isolated cell lines contained no mutations in the NS3-NS5B polyprotein, confirming that adaptive mutations are not required for efficient replication in these cells. However, the deletion of a unique 4-amino-acid insertion that is present within the interferon sensitivity-determining region (ISDR) of the NS5A protein in wild-type HCV-N drastically decreased the number of G418-resistant colonies obtained following transfection of Huh7 cells. This effect could be reversed by inclusion of a previously described Con1 cell culture-adaptive mutation (S2005-->I), confirming that this natural insertion has a controlling role in determining the replication capacity of wild-type HCV-N RNA in Huh7 cells. Additional selectable, dicistronic RNAs encoding NS2-NS5B, E1-NS5B, or the full-length HCV polyprotein were also capable of replication and gave rise to G418-resistant cell clones following transfection of Huh7 cells. We conclude that RNA derived from this documented infectious molecular clone has a unique capacity for replication in Huh7 cells in the absence of additional cell culture-adaptive mutations.
Collapse
Affiliation(s)
- Masanori Ikeda
- Department of Microbiology & Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1019, USA
| | | | | | | |
Collapse
|
410
|
Labonté P, Morin N, Bowlin T, Mounir S. Basal replication of hepatitis C virus in nude mice harboring human tumor. J Med Virol 2002; 66:312-9. [PMID: 11793382 DOI: 10.1002/jmv.2147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) can infect and propagate in humans and chimpanzees. Whereas the chimpanzee has been used as an animal model for infection, ethical considerations, conservation, and the prohibitively high cost preclude progress for experimental research on the biology of the virus. The development of a small animal model for HCV infection is thus desirable to facilitate studies on the infectious cycle of the virus and for the evaluation of drugs for the treatment of HCV infections in humans. As an alternative to the chimpanzee model, we have established a model based on ex vivo infection of orthotopically-implanted human hepatocellular carcinoma cells (HCC) in athymic nude mice. The results show that up to 42 days post-infection, HCV RNA was present in the tumor cells as well as in the liver and serum of infected mice. Furthermore, a direct correlation between size of the tumor and the presence of HCV RNA in the liver was observed, which is concordant with the finding that HCV RNA was detectable only in mice harboring human tumor. Immunohistochemistry analysis of infected liver specimens showed cells expressing the HCV encoded NS5B protein. A few mice developed a humoral response against the nonstructural viral proteins, providing further evidence for expression of these proteins during viral infection. In summary, these results suggest that mice harboring orthotopic tumors support a basal level of HCV replication in vivo.
Collapse
|
411
|
Pletneva MA, Sosnovtsev SV, Green KY. The genome of hawaii virus and its relationship with other members of the caliciviridae. Virus Genes 2002; 23:5-16. [PMID: 11556401 DOI: 10.1023/a:1011138125317] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Hawaii virus (Hu/NLV/GII/Hawaii virus/1971/US), a member of the genus 'Norwalk-like viruses' (NLVs) in the family Caliciviridae, has served as one of the reference strains for the fastidious caliciviruses associated with epidemic gastroenteritis in humans. The consensus sequence of the RNA genome of Hawaii virus was determined in order to establish its relatedness with other members of the family. The RNA genome is 7,513 nucleotides (nts) in length, excluding the 3'-end poly (A) tract, and is organized into three major open reading frames (ORFI, nts 5-5,104; ORF2, nts 5,085-6,692; and ORF3, nts 6,692-7,471). Phylogenetic analysis showed the closest relatedness of Hawaii virus throughout its genome to Lordsdale virus, a Genogroup II NLV. Analysis of the predicted secondary structure of the RNA from the 5'-end of the genome and the putative beginning of the subgenomic RNA showed the presence of two hairpin structures at both ends that are similar to each other and to those of other NLVs.
Collapse
Affiliation(s)
- M A Pletneva
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
412
|
Affiliation(s)
- Robert E Lanford
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas 78227, USA>
| | | |
Collapse
|
413
|
Wellnitz S, Klumpp B, Barth H, Ito S, Depla E, Dubuisson J, Blum HE, Baumert TF. Binding of hepatitis C virus-like particles derived from infectious clone H77C to defined human cell lines. J Virol 2002; 76:1181-93. [PMID: 11773394 PMCID: PMC135804 DOI: 10.1128/jvi.76.3.1181-1193.2002] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) is a leading cause of chronic hepatitis in the world. The study of viral entry and infection has been hampered by the inability to efficiently propagate the virus in cultured cells and the lack of a small-animal model. Recent studies have shown that in insect cells, the HCV structural proteins assemble into HCV-like particles (HCV-LPs) with morphological, biophysical, and antigenic properties similar to those of putative virions isolated from HCV-infected humans. In this study, we used HCV-LPs derived from infectious clone H77C as a tool to examine virus-cell interactions. The binding of partially purified particles to human cell lines was analyzed by fluorescence-activated cell sorting with defined monoclonal antibodies to envelope glycoprotein E2. HCV-LPs demonstrated dose-dependent and saturable binding to defined human lymphoma and hepatoma cell lines but not to mouse cell lines. Binding could be inhibited by monoclonal anti-E2 antibodies, indicating that the HCV-LP-cell interaction was mediated by envelope glycoprotein E2. Binding appeared to be CD81 independent and did not correlate with low-density lipoprotein receptor expression. Heat denaturation of HCV-LPs drastically reduced binding, indicating that the interaction of HCV-LPs with target cells was dependent on the proper conformation of the particles. In conclusion, our data demonstrate that insect cell-derived HCV-LPs bind specifically to defined human cell lines. Since the envelope proteins of HCV-LPs are presumably presented in a virion-like conformation, the binding of HCV-LPs to target cells may allow the study of virus-host cell interactions, including the isolation of HCV receptor candidates and antibody-mediated neutralization of binding.
Collapse
Affiliation(s)
- Sabine Wellnitz
- Department of Medicine II, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
414
|
Mottola G, Cardinali G, Ceccacci A, Trozzi C, Bartholomew L, Torrisi MR, Pedrazzini E, Bonatti S, Migliaccio G. Hepatitis C virus nonstructural proteins are localized in a modified endoplasmic reticulum of cells expressing viral subgenomic replicons. Virology 2002; 293:31-43. [PMID: 11853397 DOI: 10.1006/viro.2001.1229] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For many years our knowledge on hepatitis C virus (HCV) replication has been based on in vitro experiments or transfection studies. Recently, the first reliable system for studying viral replication in tissue culture cells was developed. Taking advantage of this system, we examined in detail the localization of viral nonstructural (NS) proteins in cells containing functional replication complexes. By fractionation experiments and immunomicroscopy, we observed that all NS proteins were associated with the endoplasmic reticulum (ER) membranes, confirming the hypothesis that the ER is the site of membrane-associated HCV RNA replication. Interestingly, NS3 and NS4A were preferentially localized in endoplasmic reticulum cisternae surrounding mitochondria, suggesting additional subcellular compartment-related functions for these viral proteins. Furthermore, the immunoelectron microscopy revealed the loss of the organization and other morphological alterations of the ER (convoluted cisternae and paracrystalline structures), resembling alterations observed in liver biopsies of HCV-infected individuals and in flavivirus-infected cells.
Collapse
Affiliation(s)
- Giovanna Mottola
- Dipartimento di Biochemie e Biotecnologie, Università de Napoli Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
415
|
Zhao X, Tang ZY, Klumpp B, Wolff-Vorbeck G, Barth H, Levy S, von Weizsäcker F, Blum HE, Baumert TF. Primary hepatocytes of Tupaia belangeri as a potential model for hepatitis C virus infection. J Clin Invest 2002; 109:221-32. [PMID: 11805134 PMCID: PMC150834 DOI: 10.1172/jci13011] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hepatitis C virus (HCV) is a major cause of chronic hepatitis worldwide, but the study of HCV infection has been hampered by the lack of an in vitro or in vivo small animal model. The tree shrew Tupaia belangeri is susceptible to infection with a variety of human viruses in vivo, including hepatitis viruses. We show that primary Tupaia hepatocytes can be infected with serum- or plasma-derived HCV from infected humans, as measured by de novo synthesis of HCV RNA, analysis of viral quasispecies evolution, and detection of viral proteins. Production of infectious virus could be demonstrated by passage to naive hepatocytes. To assess whether viral entry in Tupaia hepatocytes was dependent on the recently isolated HCV E2 binding protein CD81, we identified and characterized Tupaia CD81. Sequence analysis of cloned Tupaia cDNA revealed a high degree of homology between Tupaia and human CD81 large extracellular loops (LEL). Cellular binding of E2 and HCV infection could not be inhibited by anti-CD81 antibodies or soluble CD81-LEL, suggesting that viral entry can occur through receptors other than CD81. Thus, primary Tupaia hepatocytes provide a potential model for the study of HCV infection of hepatocytes.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Base Sequence
- Cells, Cultured
- DNA, Complementary/analysis
- Hepacivirus/classification
- Hepacivirus/genetics
- Hepacivirus/physiology
- Hepatocytes/cytology
- Hepatocytes/metabolism
- Hepatocytes/virology
- Humans
- Membrane Proteins
- Models, Biological
- Molecular Sequence Data
- RNA, Viral/analysis
- Receptors, Virus/biosynthesis
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Sequence Homology, Nucleic Acid
- Tetraspanin 28
- Tupaia
- Viral Envelope Proteins/metabolism
- Viral Proteins/biosynthesis
Collapse
Affiliation(s)
- Xiping Zhao
- Department of Medicine II, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
416
|
Zhao X, Tang ZY, Klumpp B, Wolff-Vorbeck G, Barth H, Levy S, Weizsäcker FV, Blum HE, Baumert TF. Primary hepatocytes of Tupaia belangeri as a potential model for hepatitis C virus infection. J Clin Invest 2002. [DOI: 10.1172/jci0213011] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
417
|
Moradpour D, Bieck E, Hügle T, Wels W, Wu JZ, Hong Z, Blum HE, Bartenschlager R. Functional properties of a monoclonal antibody inhibiting the hepatitis C virus RNA-dependent RNA polymerase. J Biol Chem 2002; 277:593-601. [PMID: 11641406 DOI: 10.1074/jbc.m108748200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), represented by nonstructural protein 5B (NS5B), has recently emerged as a promising target for antiviral intervention. Here, we describe the isolation, functional characterization, and molecular cloning of a monoclonal antibody (mAb) inhibiting the HCV RdRp. This mAb, designated 5B-12B7, binds with high affinity to a conformational epitope in the palm subdomain of the HCV RdRp and recognizes native NS5B expressed in the context of the entire HCV polyprotein or subgenomic replicons. Complete inhibition of RdRp activity in vitro was observed at equimolar concentrations of NS5B and mAb 5B-12B7, whereas RdRp activities of classical swine fever virus NS5B and poliovirus 3D polymerase were not affected. mAb 5B-12B7 selectively inhibited NTP binding to HCV NS5B, whereas binding of template RNA was unaffected, thus explaining the mechanism of action at the molecular level. The mAb 5B-12B7 heavy and light chain variable domains were cloned by reverse transcription-PCR, and a single chain Fv fragment was assembled for expression in Escherichia coli and in eukaryotic cells. The mAb 5B-12B7 single chain Fv fragment bound to NS5B both in vitro and in transfected human cell lines and therefore may be potentially useful for intracellular immunization against HCV. More important, detailed knowledge of the mAb 5B-12B7 contact sites on the enzyme may facilitate the development of small molecule RdRp inhibitors as novel antiviral agents.
Collapse
Affiliation(s)
- Darius Moradpour
- Department of Medicine II, University of Freiburg, D-79106 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
418
|
Moriya O, Matsui M, Osorio M, Miyazawa H, Rice CM, Feinstone SM, Leppla SH, Keith JM, Akatsuka T. Induction of hepatitis C virus-specific cytotoxic T lymphocytes in mice by immunization with dendritic cells treated with an anthrax toxin fusion protein. Vaccine 2001; 20:789-96. [PMID: 11738742 DOI: 10.1016/s0264-410x(01)00407-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
As a novel and safe vaccine strategy, the anthrax toxin-mediated antigen delivery system composed of lethal factor (LF) fusion protein and protective antigen (PA) has been studied to prime hepatitis C virus (HCV) core-specific cytotoxic T lymphocytes (CTLs) in vivo. The core epitope fused to LF (LF-core) together with PA induces a negligible core-specific CTL response in mice, whereas core-specific CTL are effectively primed in mice by injecting dendritic cells (DCs) treated in vitro with LF-core and PA. These findings imply that LF fusion protein plus PA in combination with dendritic cells may be useful for a novel T cell vaccine against HCV infection.
Collapse
Affiliation(s)
- O Moriya
- Department of Microbiology, Saitama Medical School, Moroyama-Cho, Iruma-Gun, Saitama 350-0495, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
419
|
Puig-Basagoiti F, Sáiz JC. [Subgenomic replications of hepatitis C virus (HCV): new possibilities for hepatitis C prophylaxis and treatment]. GASTROENTEROLOGIA Y HEPATOLOGIA 2001; 24:506-10. [PMID: 11730621 DOI: 10.1016/s0210-5705(01)70224-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- F Puig-Basagoiti
- Hepatología, Institut de Malalties Digestives, IDIBAPS, Hospital Clínic, Barcelona
| | | |
Collapse
|
420
|
Schmidt-Mende J, Bieck E, Hugle T, Penin F, Rice CM, Blum HE, Moradpour D. Determinants for membrane association of the hepatitis C virus RNA-dependent RNA polymerase. J Biol Chem 2001; 276:44052-63. [PMID: 11557752 DOI: 10.1074/jbc.m103358200] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), represented by nonstructural protein 5B (NS5B), is believed to form a membrane-associated RNA replication complex together with other nonstructural proteins and as yet unidentified host components. However, the determinants for membrane association of this essential viral enzyme have not been defined. By double label immunofluorescence analyses, NS5B was found in the endoplasmic reticulum (ER) or an ER-like modified compartment both when expressed alone or in the context of the entire HCV polyprotein. The carboxyl-terminal 21 amino acid residues were necessary and sufficient to target NS5B or a heterologous protein to the cytosolic side of the ER membrane. This hydrophobic domain is highly conserved among 269 HCV isolates analyzed and predicted to form a transmembrane alpha-helix. Association of NS5B with the ER membrane occurred by a posttranslational mechanism that was ATP-independent. These features define the HCV RdRp as a new member of the tail-anchored protein family, a class of integral membrane proteins that are membrane-targeted posttranslationally via a carboxyl-terminal insertion sequence. Formation of the HCV replication complex, therefore, involves specific determinants for membrane association that represent potential targets for antiviral intervention.
Collapse
Affiliation(s)
- J Schmidt-Mende
- Department of Medicine II, University of Freiburg, D-79106 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
421
|
Thomson M, Nascimbeni M, Gonzales S, Murthy KK, Rehermann B, Liang TJ. Emergence of a distinct pattern of viral mutations in chimpanzees infected with a homogeneous inoculum of hepatitis C virus. Gastroenterology 2001; 121:1226-33. [PMID: 11677216 DOI: 10.1053/gast.2001.28669] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Prospective, long-term study of viral evolution and immunologic responses in chimpanzees infected with a homogeneous hepatitis C virus (HCV) population is crucial in understanding the pathogenesis of HCV-host interactions. METHODS A molecular clone was constructed of HCV genotype 1b and RNA transcribed from this clone inoculated intrahepatically into chimpanzee X0142. Serum was taken from X0142 at week 2 and inoculated intravenously into a second chimpanzee (X0234). Detailed virologic, serologic, and immunologic analyses of these 2 chimpanzees were performed. RESULTS Both chimpanzees developed persistent viremia, with titers of 10(3) to 10(5) genomes/mL, for 80 weeks (X0142) and 55 weeks (X0234) of follow-up. A late antibody response against the nonstructural proteins and a weak, transient T-helper proliferative response were detected in both animals. In X0142, 25 mutations emerged in the virus population by week 78 and 15 in X0234 by week 35. A relatively large proportion of mutations affecting protein sequences appeared in the NS5A gene (33% in X0142 and X0234 combined), and 5 mutations were common to both chimpanzees. CONCLUSIONS In this long-term study of the molecular evolution of HCV genotype 1b from a cloned source, the appearance of a distinct pattern of mutations is suggestive of an adaptive response of HCV in vivo. In addition, a limited virus-specific immunity may contribute to HCV persistence.
Collapse
Affiliation(s)
- M Thomson
- Liver Diseases Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1800, USA
| | | | | | | | | | | |
Collapse
|
422
|
Reigadas S, Ventura M, Sarih-Cottin L, Castroviejo M, Litvak S, Astier-Gin T. HCV RNA-dependent RNA polymerase replicates in vitro the 3' terminal region of the minus-strand viral RNA more efficiently than the 3' terminal region of the plus RNA. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5857-67. [PMID: 11722573 DOI: 10.1046/j.0014-2956.2001.02532.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The NS5B protein, or RNA-dependent RNA polymerase of the hepatitis virus type C, catalyzes the replication of the viral genomic RNA. Little is known about the recognition domains of the viral genome by the NS5B. To better understand the initiation of RNA synthesis on HCV genomic RNA, we used in vitro transcribed RNAs as templates for in vitro RNA synthesis catalyzed by the HCV NS5B. These RNA templates contained different regions of the 3' end of either the plus or the minus RNA strands. Large differences were obtained depending on the template. A few products shorter than the template were synthesized by using the 3' UTR of the (+) strand RNA. In contrast the 341 nucleotides at the 3' end of the HCV minus-strand RNA were efficiently copied by the purified HCV NS5B in vitro. At least three elements were found to be involved in the high efficiency of the RNA synthesis directed by the HCV NS5B with templates derived from the 3' end of the minus-strand RNA: (a) the presence of a C residue as the 3' terminal nucleotide; (b) one or two G residues at positions +2 and +3; (c) other sequences and/or structures inside the following 42-nucleotide stretch. These results indicate that the 3' end of the minus-strand RNA of HCV possesses some sequences and structure elements well recognized by the purified NS5B.
Collapse
Affiliation(s)
- S Reigadas
- UMR 5097 CNRS Université Victor Ségalen Bordeaux 2, IFR 66 Pathologies Infectieuses, Bordeaux, France
| | | | | | | | | | | |
Collapse
|
423
|
Wedemeyer H, Gagneten S, Davis A, Bartenschlager R, Feinstone S, Rehermann B. Oral immunization with HCV-NS3-transformed Salmonella: induction of HCV-specific CTL in a transgenic mouse model. Gastroenterology 2001; 121:1158-66. [PMID: 11677208 DOI: 10.1053/gast.2001.29311] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS The ability to induce cytotoxic T cells is considered an important feature of a candidate hepatitis C virus (HCV) vaccine. We used an oral immunization strategy with attenuated HCV-NS3-transformed Salmonella typhimurium to deliver DNA directly to the gut-associated lymphoid tissue. METHODS HLA-A2.1 transgenic mice were immunized once with transformed attenuated Salmonella. HCV-specific CD8+ T cells were analyzed in vitro as well as in vivo by challenge of mice with recombinant HCV-NS3 vaccinia virus. RESULTS Salmonella (10(8) colony-forming units; 20 microg plasmid DNA) induced cytotoxic and IFN-gamma-producing CD8+ T cells specific for the immunodominant epitope NS3-1073 in 26 of 30 mice (86%) that persisted for at least 10 months. A second epitope (NS3-1169) was also recognized by cytotoxic and IFN-gamma-producing T cells, whereas a third one (NS3-1406) stimulated IFN-gamma production without cytotoxicity. The minimal amount of plasmid DNA required to induce CTLs was 2 ng. Upon challenge with recombinant HCV-NS3-expressing vaccinia virus, vaccinia titers were significantly lower in mice immunized with Salmonella-NS3 than in mice immunized with control Salmonella, demonstrating the in vivo function of CTLs. CONCLUSIONS Oral immunization with attenuated Salmonella typhimurium as a carrier for HCV DNA induces long-lasting T-cell responses.
Collapse
Affiliation(s)
- H Wedemeyer
- Liver Diseases Section, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1800, USA
| | | | | | | | | | | |
Collapse
|
424
|
Abstract
Since the genomic sequence of HCV was determined, significant progress has been made towards understanding the functions of the HCV-encoded proteins, despite the lack of an efficient in-vitro replication system or convenient small-animal model. The identity of the receptor for HCV remains elusive, however. Low-density lipoprotein receptor, CD81, and GAGs may all act as receptors for HCV, either sequentially or by different viral quasispecies. Recent work using pseudotypic VSV bearing E1 or E2 chimeric molecules showed that entry of the E1 pseudotype can be inhibited by recombinant LDLr, whereas the E2 pseudotype is more sensitive to inhibition by recombinant CD81 or heparin. These results suggest that E1 and E2 may be responsible for interactions with different cellular molecules. It is also conceivable that additional, yet unidentified, cellular proteins are involved in viral binding and entry. Intriguingly, the reports of HCV-RNA associated with PBMC suggest that HCV infection may not be restricted to hepatocytes. Thus, separate reservoirs of virus may exist, and HCV may use different receptors to access these different cell types.
Collapse
Affiliation(s)
- M Flint
- Division of Oncology, Department of Medicine, Stanford University Medical Center, Stanford, California, USA
| | | | | |
Collapse
|
425
|
Yeh CT, Lai HY, Chen TC, Chu CM, Liaw YF. Identification of a hepatic factor capable of supporting hepatitis C virus replication in a nonpermissive cell line. J Virol 2001; 75:11017-24. [PMID: 11602742 PMCID: PMC114682 DOI: 10.1128/jvi.75.22.11017-11024.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although hepatitis C virus E2 protein can bind to human cells by interacting with a putative viral receptor, CD81, the interaction alone is not sufficient to establish permissiveness for hepatitis C virus infection. Using an Epstein-Barr virus-based extrachromosomal replication system, we have screened through a human liver cDNA library and successfully identified a cDNA capable of supporting hepatitis C virus replication in an otherwise nonpermissive cell line. This cDNA encodes a protein exhibiting homology to a group of proteins derived from various evolutionarily distant species, including Oryza sativa submergence-induced protein 2A. The mRNAs encoding this factor are heterogeneous at the 5' ends and are ubiquitously expressed in multiple tissues, albeit in a very small amount. The longest mRNA contains an in-frame and upstream initiation codon and codes for a larger protein. This 5'-extended form of mRNA was detected in hepatocellular carcinoma, but not in normal liver tissue. Immunofluorescence analysis demonstrated that the hepatic factor was distributed evenly in cells, but occasionally formed aggregations in the peri- or intranuclear areas. In summary, we have identified a hepatic factor capable of supporting hepatitis C virus replication in an otherwise nonpermissive cell line. This factor belongs to a previously uncharacterized protein family. The physiological function of this protein awaits further study.
Collapse
Affiliation(s)
- C T Yeh
- Liver Research Unit, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
426
|
Abstract
Although recent evidence indicates that the quasispecies nature of HCV constitutes a critical strategy for the virus to survive in the host, the mechanisms of viral persistence remain unknown. Similarly, the correlates of immune protection in a limited proportion of individuals who succeed in clearing HCV are still largely undefined. Understanding the mechanisms of sterilizing immunity is essential for devising preventive measures against HCV and unraveling how the virus eludes such immunity. As in other viral infections, the complex interactions between the virus and the host early in the course of HCV infection probably determine the outcome of the disease (i.e., resolution or persistence). The evidence now accumulated on HCV and other models of viral infection is compatible with the hypothesis that both cellular and humoral components are needed for definitive viral clearance. Nevertheless, detailed studies of the specific cellular and humoral immune responses during the incubation period and the acute phase of hepatitis C, in relation to the viral quasispecies evolution and the clinical outcome, are still lacking both in humans and in the chimpanzee model. Until such studies are performed, most ideas of viral clearance mechanisms remain hypothetical, and the immunologic basis of HCV clearance will continue to be inferred from associations rather than from causal relationships.
Collapse
Affiliation(s)
- P Farci
- Department of Medical Sciences, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
427
|
Abstract
The Hepatitis C virus is a positive-stranded RNA virus which is the causal agent for a chronic liver infection afflicting more than 170,000,000 people world-wide. The HCV genome is approximately 9.6 kb in length and the proteome encoded is a polyprotein of a little more than 3000 amino acid residues. This polyprotein is processed by a combination of host and viral proteases into structural and non-structural proteins. The functions of most of these proteins have been established by analogy to other viruses and by sequence homology to known proteins, as well as subsequent biochemical analysis. Two of the non-structural proteins, NS4b and NS5a, are still of unknown function. The development of antivirals for this infectious agent has been hampered by the lack of robust and economical cell culture and animal infection systems. Recent progress in the molecular virology of HCV has come about due to the definition of molecular clones, which are infectious in the chimpanzee, the development of a subgenomic replicon system in Huh7 cells, and the description of a transgenic mouse model for HCV infection. Recent progress in the structural biology of the virus has led to the determination of high resolution three-dimensional structures of a number of the key virally encoded enzymes, including the NS3 protease, NS3 helicase, and NS5b RNA-dependent RNA polymerase. In some cases these structures have been determined in complex with substrates, co-factors (NS4a), and inhibitors. Finally, a variety of techniques have been used to define host factors, which may be required for HCV replication, although this work is just beginning.
Collapse
Affiliation(s)
- S Rosenberg
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
428
|
Dash S, Kalkeri G, McClure HM, Garry RF, Clejan S, Thung SN, Murthy KK. Transmission of HCV to a chimpanzee using virus particles produced in an RNA-transfected HepG2 cell culture. J Med Virol 2001; 65:276-81. [PMID: 11536233 DOI: 10.1002/jmv.2030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It was demonstrated previously that HepG2 cells produce negative strand RNA and virus-like particles after transfection with RNA transcribed from a full-length hepatitis C virus (HCV) cDNA clone [Dash et al. (1997) American Journal of Pathology, 151:363-373]. To determine in vivo infectivity of these in vitro synthesized viral particles, a chimpanzee was inoculated intravenously with HCV derived from HepG2 cells. The infected chimpanzee was examined serially for elevation of liver enzymes, for the presence of HCV RNA in the serum by reverse transcription nested polymerase chain reaction (RT-PCR), anti-HCV antibodies in the serum, and inflammation in the liver. The chimpanzee developed elevated levels of liver enzymes after the second week, but the levels fluctuated over a 10-week period. HCV RNA was detected in the serum of the chimpanzee at the second, seventh and ninth weeks after inoculation, and remained positive up to 25 weeks. Liver biopsies at Weeks 18 and 19 revealed of mild inflammation. Nucleotide sequence analysis of HCV recovered from the infected chimpanzee at the second and ninth weeks showed 100% sequence homology with the clone used for transfection studies. Serum anti-HCV antibodies were not detected by EIA during the 25 weeks follow-up period. These results suggest that intravenous administration of the virus-like particles derived from RNA-transfected HepG2 cells are infectious, and therefore, the pMO9.6-T7 clone is an infectious clone. These results provide new information that in vitro synthesized HCV particles produced from full-length HCV clone can cause infection in a chimpanzee. This study will facilitate the use of innovative approaches to the study of assembly of HCV particles and mechanisms of virus infectivity in cell culture.
Collapse
Affiliation(s)
- S Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Science Center, New Orleans, Louisana 70112, USA.
| | | | | | | | | | | | | |
Collapse
|
429
|
Abstract
Infections with the hepatitis C virus (HCV) are a major cause of acute and chronic liver disease. The high prevalence of the virus, the insidious course of the disease and the poor prognosis for long-term persistent infection make this pathogen a serious medical and socioeconomical problem. The identification of the viral genome approximately 10 years ago rapidly led to the delineation of the genomic organization and the structural and biochemical characterization of several virus proteins. However, studies of the viral life cycle as well as the development of antiviral drugs have been difficult because of the lack of a robust and reliable cell culture system. Numerous attempts have been undertaken in the past few years but only recently a highly efficient cell culture model could be developed. This system is based on the self replication of engineered HCV minigenomes (replicons) in a transfected human hepatoma cell line. A summary of the various HCV cell culture models with a focus on the replicon system and its use for drug development is described.
Collapse
Affiliation(s)
- R Bartenschlager
- Institute for Virology, Johannes-Gutenberg University Mainz, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany.
| | | |
Collapse
|
430
|
Sbardellati A, Scarselli E, Verschoor E, De Tomassi A, Lazzaro D, Traboni C. Generation of infectious and transmissible virions from a GB virus B full-length consensus clone in tamarins. J Gen Virol 2001; 82:2437-2448. [PMID: 11562537 DOI: 10.1099/0022-1317-82-10-2437] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The strong similarity between GB virus B (GBV-B) and hepatitis C virus (HCV) makes tamarins infected by GBV-B an acceptable surrogate animal model for HCV infection. Even more attractive, for drug discovery purposes, is the idea of constructing chimeric viruses by inserting HCV genes of interest into a GBV-B genome frame. To accomplish this, infectious cDNA clones of both viruses must be available. The characterization of several HCV molecular clones capable of infecting chimpanzees has been published, whereas only one infectious GBV-B clone inducing hepatitis in tamarins has been reported so far. Here we describe the infection of tamarins by intrahepatic injection of RNA transcribed from a genomic GBV-B clone (FL-3) and transmission of the disease from infected to naive tamarins via serum inoculation. The disease resulting from both direct and secondary infection was characterized for viral RNA titre and hepatitis parameters as well as for viral RNA distribution in the hepatic tissue. Host humoral immune response to GBV-B antigens was also monitored. The progression of the disease was compared to that induced by intravenous injection of different amounts of the non-recombinant virus.
Collapse
Affiliation(s)
- Andrea Sbardellati
- Istituto di Ricerche di Biologia Molecolare P. Angeletti (IRBM), Via Pontina Km 30.600, 00040 Pomezia (Roma), Italy1
| | - Elisa Scarselli
- Istituto di Ricerche di Biologia Molecolare P. Angeletti (IRBM), Via Pontina Km 30.600, 00040 Pomezia (Roma), Italy1
| | - Ernst Verschoor
- Biomedical Primate Research Centre (BPRC), PO Box 3306, 2280 GH Rijswijk, The Netherlands2
| | - Amedeo De Tomassi
- Istituto di Ricerche di Biologia Molecolare P. Angeletti (IRBM), Via Pontina Km 30.600, 00040 Pomezia (Roma), Italy1
| | - Domenico Lazzaro
- Istituto di Ricerche di Biologia Molecolare P. Angeletti (IRBM), Via Pontina Km 30.600, 00040 Pomezia (Roma), Italy1
| | - Cinzia Traboni
- Istituto di Ricerche di Biologia Molecolare P. Angeletti (IRBM), Via Pontina Km 30.600, 00040 Pomezia (Roma), Italy1
| |
Collapse
|
431
|
Abstract
Chronic hepatitis C virus (HCV) infections can be cured only in a fraction of patients treated with alpha interferon (IFN-alpha) and ribavirin combination therapy. The mechanism of the IFN-alpha response against HCV is not understood, but evidence for a role for viral nonstructural protein 5A (NS5A) in IFN resistance has been provided. To elucidate the mechanism by which NS5A and possibly other viral proteins inhibit the cellular antiviral program, we have constructed a subgenomic replicon from a known infectious HCV clone and demonstrated that it has an approximately 1,000-fold-higher transduction efficiency than previously used subgenomes. We found that IFN-alpha reduced replication of HCV subgenomic replicons approximately 10-fold. The estimated half-life of viral RNA in the presence of the cytokine was about 12 h. HCV replication was sensitive to IFN-alpha independently of whether the replicon expressed an NS5A protein associated with sensitivity or resistance to the cytokine. Furthermore, our results indicated that HCV replicons can persist in Huh7 cells in the presence of high concentrations of IFN-alpha. Finally, under our conditions, selection for IFN-alpha-resistant variants did not occur.
Collapse
Affiliation(s)
- J T Guo
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | |
Collapse
|
432
|
Nam JH, Bukh J, Purcell RH, Emerson SU. High-level expression of hepatitis C virus (HCV) structural proteins by a chimeric HCV/BVDV genome propagated as a BVDV pseudotype. J Virol Methods 2001; 97:113-23. [PMID: 11483222 DOI: 10.1016/s0166-0934(01)00339-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A chimeric cDNA genome was constructed in which the core, E1 and E2 genes of hepatitis C virus (HCV) replaced the core, E(rns), E1 and E2 genes of bovine viral diarrhea virus (BVDV). High levels of HCV structural proteins were expressed in a small number of human or bovine cells following transfection with chimeric RNA. However, in one cell line, bovine embryonic trachea cells [EBTr(A)], the number of cells expressing HCV proteins increased to greater than 70% following serial passage of culture medium. These cells were persistently infected with a non-cytopathogenic BVDV helper virus. In these cells, the chimeric genome was packaged into infectious particles that accumulated in the culture medium at a titer as high as 10(7)-10(9) genome equivalents per ml. The virus particles were pseudotypes, because they were neutralized by anti-BVDV but not by anti-HCV.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Blotting, Western
- Cattle
- DNA, Recombinant/genetics
- Diarrhea Viruses, Bovine Viral/genetics
- Diarrhea Viruses, Bovine Viral/immunology
- Diarrhea Viruses, Bovine Viral/physiology
- Gene Expression Regulation, Viral
- Genetic Engineering
- Genome, Viral
- Helper Viruses/genetics
- Helper Viruses/physiology
- Hepacivirus/genetics
- Hepacivirus/physiology
- Humans
- Immune Sera/immunology
- Microscopy, Fluorescence
- Radioimmunoprecipitation Assay
- Transfection
- Tumor Cells, Cultured
- Viral Structural Proteins/biosynthesis
- Viral Structural Proteins/genetics
- Virus Replication
Collapse
Affiliation(s)
- J H Nam
- Hepatitis Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0740, USA
| | | | | | | |
Collapse
|
433
|
Gong G, Waris G, Tanveer R, Siddiqui A. Human hepatitis C virus NS5A protein alters intracellular calcium levels, induces oxidative stress, and activates STAT-3 and NF-kappa B. Proc Natl Acad Sci U S A 2001; 98:9599-604. [PMID: 11481452 PMCID: PMC55498 DOI: 10.1073/pnas.171311298] [Citation(s) in RCA: 498] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2001] [Accepted: 06/19/2001] [Indexed: 12/13/2022] Open
Abstract
The nonstructural protein 5A (NS5A) encoded by the human hepatitis C virus RNA genome is shown here to induce the activation of NF-kappaB and STAT-3 transcription factors from its cytoplasmic residence via oxidative stress. NS5A causes the disturbance of intracellular calcium. Ca2+ signaling triggers the elevation of reactive oxygen species in mitochondria, leading to the translocation of NF-kappaB and STAT-3 into the nucleus. Evidence is presented for the constitutive activation of STAT-3 by NS5A. In the presence of antioxidants [pyrrolidine dithiocarbamate (PDTC), N-acetyl l-cysteine (NAC)] or Ca2+ chelators (EGTA-AM, TMB-8), NS5A-induced activation of NF-kappaB and STAT-3 was eliminated. These results provide an insight into the mechanism by which NS5A can alter intracellular events relevant to liver pathogenesis associated with the viral infection.
Collapse
Affiliation(s)
- G Gong
- Department of Microbiology and Program in Molecular Biology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | |
Collapse
|
434
|
Affiliation(s)
- N Fausto
- Department of Pathology, School of Medicine, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
435
|
Weiner AJ, Paliard X, Selby MJ, Medina-Selby A, Coit D, Nguyen S, Kansopon J, Arian CL, Ng P, Tucker J, Lee CT, Polakos NK, Han J, Wong S, Lu HH, Rosenberg S, Brasky KM, Chien D, Kuo G, Houghton M. Intrahepatic genetic inoculation of hepatitis C virus RNA confers cross-protective immunity. J Virol 2001; 75:7142-8. [PMID: 11435595 PMCID: PMC114443 DOI: 10.1128/jvi.75.15.7142-7148.2001] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Naturally occurring hepatitis C virus (HCV) infection has long been thought to induce a weak immunity which is insufficient to protect an individual from subsequent infections and has cast doubt on the ability to develop effective vaccines. A series of intrahepatic genetic inoculations (IHGI) with type 1a HCV RNA were performed in a chimpanzee to determine whether a form of genetic immunization might stimulate protective immunity. We demonstrate that the chimpanzee not only developed protective immunity to the homologous type 1a RNA after rechallenge by IHGI but was also protected from chronic HCV infection after sequential rechallenge with 100 50% chimpanzee infectious doses of a heterologous type 1a (H77) and 1b (HC-J4) whole-virus inoculum. These results offer encouragement to pursue the development of HCV vaccines.
Collapse
Affiliation(s)
- A J Weiner
- Chiron Corporation, Emeryville, California 94608, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
436
|
Xu Z, Choi J, Yen T, Lu W, Strohecker A, Govindarajan S, Chien D, Selby MJ, Ou JH. Synthesis of a novel hepatitis C virus protein by ribosomal frameshift. EMBO J 2001; 20:3840-8. [PMID: 11447125 PMCID: PMC125543 DOI: 10.1093/emboj/20.14.3840] [Citation(s) in RCA: 206] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2000] [Revised: 05/25/2001] [Accepted: 05/25/2001] [Indexed: 12/17/2022] Open
Abstract
Hepatitis C virus (HCV) is an important human pathogen that affects approximately 100 million people worldwide. Its RNA genome codes for a polyprotein, which is cleaved by viral and cellular proteases to produce at least 10 mature viral protein products. We report here the discovery of a novel HCV protein synthesized by ribosomal frameshift. This protein, which we named the F protein, is synthesized from the initiation codon of the polyprotein sequence followed by ribosomal frameshift into the -2/+1 reading frame. This ribosomal frameshift requires only codons 8-14 of the core protein-coding sequence, and the shift junction is located at or near codon 11. An F protein analog synthesized in vitro reacted with the sera of HCV patients but not with the sera of hepatitis B patients, indicating the expression of the F protein during natural HCV infection. This unexpected finding may open new avenues for the development of anti-HCV drugs.
Collapse
Affiliation(s)
| | | | - T.S.Benedict Yen
- Department of Molecular Microbiology and Immunology, University of Southern California, 2011 Zonal Avenue, HMR-401, Los Angeles, CA 90033,
Department of Pathology, University of California, and Pathology Service, Veterans Affairs Medical Center, San Francisco, CA 94121, Department of Pathology, University of Southern California and Rancho Los Amigos Medical Center, Downey, CA 90242 and Chiron Corporation, Emeryville, CA 94608, USA Corresponding author e-mail:
| | | | | | - Sugantha Govindarajan
- Department of Molecular Microbiology and Immunology, University of Southern California, 2011 Zonal Avenue, HMR-401, Los Angeles, CA 90033,
Department of Pathology, University of California, and Pathology Service, Veterans Affairs Medical Center, San Francisco, CA 94121, Department of Pathology, University of Southern California and Rancho Los Amigos Medical Center, Downey, CA 90242 and Chiron Corporation, Emeryville, CA 94608, USA Corresponding author e-mail:
| | - David Chien
- Department of Molecular Microbiology and Immunology, University of Southern California, 2011 Zonal Avenue, HMR-401, Los Angeles, CA 90033,
Department of Pathology, University of California, and Pathology Service, Veterans Affairs Medical Center, San Francisco, CA 94121, Department of Pathology, University of Southern California and Rancho Los Amigos Medical Center, Downey, CA 90242 and Chiron Corporation, Emeryville, CA 94608, USA Corresponding author e-mail:
| | - Mark J. Selby
- Department of Molecular Microbiology and Immunology, University of Southern California, 2011 Zonal Avenue, HMR-401, Los Angeles, CA 90033,
Department of Pathology, University of California, and Pathology Service, Veterans Affairs Medical Center, San Francisco, CA 94121, Department of Pathology, University of Southern California and Rancho Los Amigos Medical Center, Downey, CA 90242 and Chiron Corporation, Emeryville, CA 94608, USA Corresponding author e-mail:
| | - Jing-hsiung Ou
- Department of Molecular Microbiology and Immunology, University of Southern California, 2011 Zonal Avenue, HMR-401, Los Angeles, CA 90033,
Department of Pathology, University of California, and Pathology Service, Veterans Affairs Medical Center, San Francisco, CA 94121, Department of Pathology, University of Southern California and Rancho Los Amigos Medical Center, Downey, CA 90242 and Chiron Corporation, Emeryville, CA 94608, USA Corresponding author e-mail:
| |
Collapse
|
437
|
Abstract
The chimpanzee (Pan troglodytes) is the only experimental animal susceptible to infection with hepatitis C virus (HCV). The chimpanzee model of HCV infection was instrumental in the initial studies on non-A, non-B hepatitis, including observations on the clinical course of infection, determination of the physical properties of the virus, and eventual cloning of the HCV nucleic acid. This review focuses on more recent aspects of the use of the chimpanzee in HCV research. The chimpanzee model has been critical for the analysis of early events in HCV infection because it represents a population for which samples are available from the time of exposure and all exposed animals are examined. For this reason, the chimpanzee represents a truly nonselected population. In contrast, human cohorts are often selected for disease status or antibody reactivity and typically include individuals that have been infected for decades. The chimpanzee model is essential to an improved understanding of the factors involved in viral clearance, analysis of the immune response to infection, and the development of vaccines. The development of infectious cDNA clones of HCV was dependent on the use of chimpanzees, and they will continue to be needed in the use of reverse genetics to evaluate critical sequences for viral replication. In addition, chimpanzees have been used in conjunction with DNA microarray technology to probe the entire spectrum of changes in liver gene expression during the course of HCV infection. The chimpanzee will continue to provide a critical aspect to the understanding of HCV disease and the development of therapeutic modalities.
Collapse
Affiliation(s)
- R E Lanford
- Department of Virology and Immunology, Southwest Regional Primate Research Center, Southwest Foundation for Biomedical Research, San Antonio, Texas, USA
| | | | | | | |
Collapse
|
438
|
Abstract
Hepatitis C virus (HCV) is a global public health problem, with approximately 3% of the world population now infected. The clinical course of HCV often involves chronic infection, which can lead to liver dysfunction and hepatocellular carcinoma. Because HCV cannot be efficiently propagated in cell culture, researchers have relied heavily on animal models to study the physical characteristics of HCV and the course of events associated with HCV infection. The chimpanzee is the only nonhuman primate actually proven to be susceptible to HCV infection and has commonly been used to study viral hepatitis induced by HCV. Molecular cloning of the HCV genome has now allowed HCV transmission studies in chimpanzees to progress from the early work of characterizing infectious serum to a current focus of characterizing infectious HCV molecular clones. Moreover, the cloned HCV genome has paved the way for the development of alternative animal models for HCV, most notably transgenic mouse models for the study of HCV pathogenesis. The authors review these animal model applications of the HCV molecular clones, including construction and transmission of mutant viral genomes. The expression of specific viral protein products in these animal models will provide important insight into the structure-function relation that specific HCV genome sequences impart on virus replication and pathogenesis.
Collapse
Affiliation(s)
- M Gale
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | |
Collapse
|
439
|
Affiliation(s)
- G M Lauer
- Infectious Disease Division and Partners AIDS Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | | |
Collapse
|
440
|
Steffan A, Marianneau P, Caussin-Schwemling C, Royer C, Schmitt C, Jaeck D, Wolf P, Gendrault J, Stoll-Keller F. Ultrastructural observations in hepatitis C virus-infected lymphoid cells. Microbes Infect 2001; 3:193-202. [PMID: 11358713 DOI: 10.1016/s1286-4579(01)01369-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It is currently unclear whether the hepatocellular damage in chronic hepatitis C virus (HCV) infection is produced through the intrahepatic action of the anti-HCV immune response or through a direct cytopathic effect. In order to investigate the features of HCV replication (morphogenesis and cytopathic effect), we studied the infection of a permissive lymphocytic B cell line, Daudi cells, which were infected with sera of HCV-positive patients, and were examined after various time points under electron microscope. Viral genomic RNA was detected by in situ hybridization, and apoptosis with the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) method. The amount of viral genomic RNA was observed to increase during infection. HCV replicated rapidly, since characteristics of viral morphogenesis resembling those of yellow fever virus in a hepatoma cell line could be found 2 days after infection. These included the following: a) several viral particles identical in size (about 42 nm) and structure (a spherical 30-nm-sized electron-dense nucleocapsid surrounded by a membrane) to yellow fever virus were present in the cytoplasm of cells displaying already typical signs of the early stage of apoptosis; b) numerous membrane-bound organelles and in particular the endoplasmic reticulum and vacuoles were observed; c) proliferation of membranes was apparent; and d) intracytoplasmic electron-dense inclusion bodies which have been demonstrated to correspond to nucleocapsids for other flaviviruses were detected. Several cells presented electron-dense areas in the endoplasmic reticulum displaying 30-nm circular structures lying among an amorphous material. Striking cytopathic features with ballooning, extremely enlarged vacuoles and signs of apoptosis were found in cells often containing sequestered aggregates of virus-like particles. By in situ hybridization we found that such enlarged cells contained HCV RNA. Our results thus indicate that the ultrastructural features of HCV viral particles and their morphogenesis resemble that of yellow fever virus and dengue virus. In Daudi cells, HCV infection seems to rapidly trigger apoptotic cell death, and efficient release of viral particles does not seem to take place.
Collapse
Affiliation(s)
- A Steffan
- Laboratoire de virologie de la faculté de médecine de Strasbourg, Inserm U74, 3, rue Koeberlé, 67000, Strasbourg, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
441
|
Lanford RE, Lee H, Chavez D, Guerra B, Brasky KM. Infectious cDNA clone of the hepatitis C virus genotype 1 prototype sequence. J Gen Virol 2001; 82:1291-1297. [PMID: 11369872 DOI: 10.1099/0022-1317-82-6-1291] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A full-length cDNA clone of the hepatitis C virus (HCV) genotype 1 prototype (subtype 1a) sequence was constructed. Synthetic RNA produced from the initial cDNA clone was not infectious following intrahepatic inoculation of a chimpanzee. A consensus clone was prepared by comparison with multiple full-length HCV sequences of genotypes 1, 2 and 3. A total of 11 non-consensus amino acid residues were altered by mutagenesis. Synthetic RNA from the repaired clone initiated a typical, acute-resolving HCV infection following intrahepatic inoculation of a chimpanzee. In addition, at least one of three chimeric cDNA clones constructed between the HCV-1 and H77 genotype 1a strains of HCV was infectious in a chimpanzee. This is the first example of an infectious chimeric HCV clone. An infectious cDNA clone of HCV-1 will be of particular value, since it is the prototype HCV sequence and many commonly used reagents are based on this sequence.
Collapse
Affiliation(s)
- Robert E Lanford
- Department of Virology and Immunology1 and Department of Laboratory Animal Medicine2, Southwest Regional Primate Research Center, Southwest Foundation for Biomedical Research, 7620 NW Loop 410, San Antonio, TX 78227, USA
| | - Helen Lee
- Department of Virology and Immunology1 and Department of Laboratory Animal Medicine2, Southwest Regional Primate Research Center, Southwest Foundation for Biomedical Research, 7620 NW Loop 410, San Antonio, TX 78227, USA
| | - Deborah Chavez
- Department of Virology and Immunology1 and Department of Laboratory Animal Medicine2, Southwest Regional Primate Research Center, Southwest Foundation for Biomedical Research, 7620 NW Loop 410, San Antonio, TX 78227, USA
| | - Bernadette Guerra
- Department of Virology and Immunology1 and Department of Laboratory Animal Medicine2, Southwest Regional Primate Research Center, Southwest Foundation for Biomedical Research, 7620 NW Loop 410, San Antonio, TX 78227, USA
| | - Kathleen M Brasky
- Department of Virology and Immunology1 and Department of Laboratory Animal Medicine2, Southwest Regional Primate Research Center, Southwest Foundation for Biomedical Research, 7620 NW Loop 410, San Antonio, TX 78227, USA
| |
Collapse
|
442
|
Kato N. Genome of human hepatitis C virus (HCV): gene organization, sequence diversity, and variation. MICROBIAL & COMPARATIVE GENOMICS 2001; 5:129-51. [PMID: 11252351 DOI: 10.1089/omi.1.2000.5.129] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hepatitis C virus (HCV) is the major etiologic agent of non-A, non-B hepatitis. HCV infection frequently causes chronic hepatitis, which progresses to liver cirrhosis and hepatocellular carcinoma. Since the discovery of HCV in 1989, a large number of genetic analyses of HCV have been reported, and the viral genome structure has been elucidated. An enveloped virus, HCV belongs to the family Flaviviridae, whose genome consists of a positive-stranded RNA molecule of about 9.6 kilobases and encodes a large polyprotein precursor (about 3000 amino acids). This precursor protein is cleaved by the host and viral proteinase to generate at least 10 proteins: the core, envelope 1 (E1), E2, p7, nonstructural (NS) 2, NS3, NS4A, NS4B, NS5A, and NS5B. These HCV proteins not only function in viral replication but also affect a variety of cellular functions. HCV has been found to have remarkable genetic heterogeneity. To date, more than 30 HCV genotypes have been identified worldwide. Furthermore, HCV may show quasispecies distribution in an infected individual. These findings may have important implications in diagnosis, pathogenesis, treatment, and vaccine development. The hypervariable region 1 found within the envelope E2 protein was shown to be a major site for the genetic evolution of HCV after the onset of hepatitis, and might be involved in escape from the host immunesurveillance system.
Collapse
Affiliation(s)
- N Kato
- Department of Molecular Biology, Institute of Cellular and Molecular Biology, Okayama University Medical School, Japan.
| |
Collapse
|
443
|
Hügle T, Fehrmann F, Bieck E, Kohara M, Kräusslich HG, Rice CM, Blum HE, Moradpour D. The hepatitis C virus nonstructural protein 4B is an integral endoplasmic reticulum membrane protein. Virology 2001; 284:70-81. [PMID: 11352669 DOI: 10.1006/viro.2001.0873] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hepatitis C virus (HCV) nonstructural protein 4B (NS4B) is a relatively hydrophobic 27-kDa protein of unknown function. A tetracycline-regulated gene expression system, a novel monoclonal antibody, and in vitro transcription-translation were employed to investigate the subcellular localization and to characterize the membrane association of this viral protein. When expressed individually or in the context of the entire HCV polyprotein, NS4B was localized in the endoplasmic reticulum (ER), as shown by subcellular fractionation, immunofluorescence analyses, and double-label confocal laser scanning microscopy. In this compartment NS4B colocalized with the other HCV nonstructural proteins. Association of NS4B with the ER membrane occurred cotranslationally, presumably via engagement of the signal recognition particle by an internal signal sequence. In membrane extraction and proteinase protection assays NS4B displayed properties of a cytoplasmically oriented integral membrane protein. Taken together, our findings suggest that NS4B is a component of a membrane-associated cytoplasmic HCV replication complex. An efficient replication system will be essential to further define the role of NS4B in the viral life cycle.
Collapse
Affiliation(s)
- T Hügle
- Department of Medicine II, University of Freiburg, Freiburg, D-79106, Germany
| | | | | | | | | | | | | | | |
Collapse
|
444
|
Abstract
Hepatitis C virus pathogenesis and cycle are difficult to study because of the lack of culture system able to replicate efficiently the virus. Furthermore such a system will permit screen new antiviral drugs. Studies were realized to select cell culture system able to allow hepatitis C virus replication. Primary cell cultures and cell lines were used to performed HCV culture. Most of these works used lymphocyte and hepatocyte primary cultures or cell lines because of HCV tropism in these cells in vivo. Animals and arthropods cell lines were used as well for their capacity to bind and replicate HCV. The aim of this review is to present the different cell systems used to replicate HCV in culture and the results obtained.
Collapse
Affiliation(s)
- R Germi
- Laboratoire de virologie moléculaire et structurale, faculté de médecine/pharmacie de Grenoble, France.
| | | | | | | | | |
Collapse
|
445
|
Meier V, Mihm S, Braun Wietzke P, Ramadori G. HCV-RNA positivity in peripheral blood mononuclear cells of patients with chronic HCV infection: does it really mean viral replication? World J Gastroenterol 2001; 7:228-34. [PMID: 11819765 PMCID: PMC4723527 DOI: 10.3748/wjg.v7.i2.228] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyze the association of HCV-RNA with peripheral blood mononuclear cells (PBMC) and to answer the question whether HCV-RNA positivity in PBMC is due to viral replication.
METHODS: HCV-RNA was monitored in serum and PBMC preparations from 15 patients with chronic HCV infection before, during and after an IFN-α therapy using a nested RT/PCR technique. In a second approach, PBMC from healthy donors were incubated in HCV positive plasma.
RESULTS: In the IFN-α responding patients, HCV-RNA disappeared first from total RNA preparations of PBMC and then from serum. In contrast, in relapsing patients, HCV-RNA reappeared first in serum and then in PBMC. A quantitative analysis of the HCV-RNA concentration in serum was performed before and after transition from detectable to non detectable HCV-RNA in PBMC-RNA and vice versa. When HCV-RNA was detectable in PBMC preparations, the HCV concentration in serum was significantly higher than the serum HCV-RNA concentration when HCV-RNA in PBMC was not detectable. Furthermore, at no time during the observation period was HCV specific RNA observed in PBMC, if HCV-RNA in serum was under the detection limit. Incubation of PBMC from healthy donors with several dilutions of HCV positive plasma for two hours showed a concentration dependent PCR positivity for HCV-RNA in reisolated PBMC.
CONCLUSION: The detectability of HCV-RNA in total RNA from PBMC seems to depend on the HCV concentration in serum. Contamination or passive adsorption by circulating virus could be the reason for detection of HCV-RNA in PBMC preparations of chronically infected patients.
Collapse
Affiliation(s)
- V Meier
- Georg-August-Universität Gottingen, Zentrum innere medizin, Abteilung FUr Gastroenterologie Und Endokrinologie, Robert Koch Strasse 40, 37075 Göttingen, Germany
| | | | | | | |
Collapse
|
446
|
de Oliveira JM, Rispeter K, Viazov S, Saback FL, Roggendorf M, Yoshida CF. Differences in HCV antibody patterns in haemodialysis patients infected with the same virus isolate. J Med Virol 2001; 63:265-70. [PMID: 11241456 DOI: 10.1002/1096-9071(200104)63:4<265::aid-jmv1000>3.0.co;2-v] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Eight cases of de novo hepatitis C virus (HCV) infection in a haemodialysis unit in Rio de Janeiro, Brazil, were retrospectively studied. HCV viraemia was demonstrated by RT nested PCR in seven of the seroconverters. Genotyping showed that six patients were infected with a genotype 1b strain and one with a genotype 1a strain. A phylogenetic analysis of nucleotide sequences of the HCV core region revealed that five of the six 1b isolates form a separate cluster when compared with other 38 HCV 1b core sequences randomly chosen from the GenBank. The revealed sequence similarities indicated the nosocomial spread of a single HCV strain within the unit. To investigate whether the patients infected with the same viral isolate display similar patterns of antibody response to individual proteins, serial serum samples were examined. A line immunoassay for qualitative and semi-quantitative determination of specific antibodies against recombinant and synthetic HCV antigens was employed. Despite infection with the same virus strain, the patients sera demonstrated different patterns of reactivity against individual structural and nonstructural HCV proteins immediately after seroconversion. For each patient, however, antibody responses remained mostly stable throughout the follow-up of 8 to 24 months.
Collapse
Affiliation(s)
- J M de Oliveira
- Fundacao Oswaldo Cruz, Departamento de Virologia, Avenida Brasil, Manguinhos, Rio de Janeiro, Brazil.
| | | | | | | | | | | |
Collapse
|
447
|
Wang QM, Heinz BA. Recent advances in prevention and treatment of hepatitis C virus infections. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2001; 55:1-32. [PMID: 11127961 DOI: 10.1007/978-3-0348-8385-6_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hepatitis C virus (HCV) is the leading cause of chronic hepatitis in humans. As members of the flavivirus family, HCVs are a group of small single-stranded, positive-sense RNA viruses. Upon translation of the genome, a polyprotein precursor is synthesized and further processed by both cellular and viral proteases to generate functional viral proteins. Treatment options are currently limited to the administration of alpha-interferon alone or in combination with ribavirin. Unfortunately, these approaches are characterized by relatively poor efficacy and an unfavorable side-effect profile. Therefore, intensive effort is directed at the discovery of novel molecules to treat this disease. These new approaches include the development of prophylactic and therapeutic vaccines, the identification of interferons with improved pharmacokinetic characteristics, and the discovery of novel drugs designed to inhibit the function of three major viral proteins: protease, helicase and polymerase. Finally, the HCV RNA genome itself, particularly the IRES element, is being actively exploited as an antiviral target using antisense molecules and catalytic ribozymes. This review summarizes the most recent findings in each of these areas. Although not intended to be comprehensive, it should serve as a first resource for those individuals who desire updated information in this rapidly changing field.
Collapse
Affiliation(s)
- Q M Wang
- Infectious Diseases Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | |
Collapse
|
448
|
Netter HJ, Macnaughton TB, Woo WP, Tindle R, Gowans EJ. Antigenicity and immunogenicity of novel chimeric hepatitis B surface antigen particles with exposed hepatitis C virus epitopes. J Virol 2001; 75:2130-41. [PMID: 11160717 PMCID: PMC114797 DOI: 10.1128/jvi.75.5.2130-2141.2001] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2000] [Accepted: 12/05/2000] [Indexed: 01/20/2023] Open
Abstract
The small envelope protein of hepatitis B virus (HBsAg-S) can self-assemble into highly organized virus like particles (VLPs) and induce an effective immune response. In this study, a restriction enzyme site was engineered into the cDNA of HBsAg-S at a position corresponding to the exposed site within the hydrophilic a determinant region (amino acid [aa] 127-128) to create a novel HBsAg vaccine vector allowing surface orientation of the inserted sequence. We inserted sequences of various lengths from hypervariable region 1 (HVR1) of the hepatitis C virus (HCV) E2 protein containing immunodominant epitopes and demonstrated secretion of the recombinant HBsAg VLPs from transfected mammalian cells. A number of different recombinant proteins were synthesized, and HBsAg VLPs containing inserts up to 36 aa were secreted with an efficiency similar to that of wild-type HBsAg. The HVR1 region exposed on the particles retained an antigenic structure similar to that recognized immunologically during natural infection. VLPs containing epitopes from either HCV-1a or -1b strains were produced that induced strain-specific antibody responses in immunized mice. Injection of a combination of these VLPs induced antibodies against both HVR1 epitopes that resulted in higher titers than were achieved by vaccination with the individual VLPs, suggesting a synergistic effect. This may lead to the development of recombinant particles which are able to induce a broad anti-HCV immune response against the HCV quasispecies or other quasispecies-like infectious agents.
Collapse
Affiliation(s)
- H J Netter
- Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Herston, Queensland 4029, Australia.
| | | | | | | | | |
Collapse
|
449
|
Fang JW, Moyer RW. The effects of the conserved extreme 3' end sequence of hepatitis C virus (HCV) RNA on the in vitro stabilization and translation of the HCV RNA genome. J Hepatol 2001. [PMID: 11059869 DOI: 10.1016/s0168-8278(00)80016-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
BACKGROUND/AIMS The discovery of an additional 98-base in the extreme 3' end of the hepatitis C virus (HCV) has fueled much speculation as to the role of this sequence on the behavior of the virus. It is now known that this additional 98-base sequence is present and conserved amongst HCV genotypes. This sequence is capable of forming complex and stable high-order structures that may be important in stabilizing the RNA to degradation, facilitating translation and regulating replication of the virus. We have examined the possible role of the HCV extreme 3' end sequence in stabilizing the HCV RNA genome and regulating translation in vitro. METHODS The extreme 3' end sequence was cloned to downstream of two pre-existing two HCV clones: HCV1 (genotype 1a) and HCV-BK (genotype 1b). The reconstructed full-length clones were then tested in vitro for their stability and translation efficiency. RESULTS We showed that the addition of the conserved 3' end sequence greatly enhanced the stability of HCV1 RNA but had only minimal effect on HCV-BK RNA in mammalian cytoplasmic extracts, suggesting that the requirements for HCV RNA stability vary amongst isolates. Following the optimization of in vitro translation conditions, it was demonstrated that the addition of this 3' end sequence did not affect the translation level from either HCV clone. CONCLUSIONS The conserved 3' end of the HCV genome confers differential stabilizing effects on two HCV genotype 1 isolates and has no obvious role in the in vitro translation of either clone.
Collapse
Affiliation(s)
- J W Fang
- Department of Pediatrics, University of Florida, Gainesville, USA.
| | | |
Collapse
|
450
|
Forns X. [Molecular biology of hepatitis C virus: implications for the development of new therapies and prophylactic vaccine]. Med Clin (Barc) 2001; 116:191-7. [PMID: 11222177 DOI: 10.1016/s0025-7753(01)71766-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- X Forns
- Unidad de Hepatología. Institut de Malalties Digestives. Hospital Clínic de Barcelona
| |
Collapse
|