401
|
Drenovsky RE, Grewell BJ, D'Antonio CM, Funk JL, James JJ, Molinari N, Parker IM, Richards CL. A functional trait perspective on plant invasion. ANNALS OF BOTANY 2012; 110:141-53. [PMID: 22589328 PMCID: PMC3380596 DOI: 10.1093/aob/mcs100] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS Global environmental change will affect non-native plant invasions, with profound potential impacts on native plant populations, communities and ecosystems. In this context, we review plant functional traits, particularly those that drive invader abundance (invasiveness) and impacts, as well as the integration of these traits across multiple ecological scales, and as a basis for restoration and management. SCOPE We review the concepts and terminology surrounding functional traits and how functional traits influence processes at the individual level. We explore how phenotypic plasticity may lead to rapid evolution of novel traits facilitating invasiveness in changing environments and then 'scale up' to evaluate the relative importance of demographic traits and their links to invasion rates. We then suggest a functional trait framework for assessing per capita effects and, ultimately, impacts of invasive plants on plant communities and ecosystems. Lastly, we focus on the role of functional trait-based approaches in invasive species management and restoration in the context of rapid, global environmental change. CONCLUSIONS To understand how the abundance and impacts of invasive plants will respond to rapid environmental changes it is essential to link trait-based responses of invaders to changes in community and ecosystem properties. To do so requires a comprehensive effort that considers dynamic environmental controls and a targeted approach to understand key functional traits driving both invader abundance and impacts. If we are to predict future invasions, manage those at hand and use restoration technology to mitigate invasive species impacts, future research must focus on functional traits that promote invasiveness and invader impacts under changing conditions, and integrate major factors driving invasions from individual to ecosystem levels.
Collapse
Affiliation(s)
- Rebecca E Drenovsky
- Biology Department, John Carroll University, University Heights, OH 44118-4581, USA.
| | | | | | | | | | | | | | | |
Collapse
|
402
|
Haroldsen VM, Chi-Ham CL, Bennett AB. Transgene mobilization and regulatory uncertainty for non-GE fruit products of transgenic rootstocks. J Biotechnol 2012; 161:349-53. [PMID: 22749907 DOI: 10.1016/j.jbiotec.2012.06.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 05/08/2012] [Accepted: 06/18/2012] [Indexed: 11/27/2022]
Abstract
Genetically engineered (GE) rootstocks may offer some advantages for biotechnology applications especially in woody perennial crops such as grape or walnut. Transgrafting combines horticultural grafting practices with modern GE methods for crop improvement. Here, a non-GE conventional scion (upper stem portion) is grafted onto a transgenic GE rootstock. Thus, the scion does not contain the genetic modification present in the rootstock genome. We examined transgene presence in walnut and tomato GE rootstocks and non-GE fruit-bearing scions. Mobilization of transgene DNA, protein, and mRNA across the graft was not detected. Though transgenic siRNA mobilization was not observed in grafted tomatoes or walnut scions, transgenic siRNA signal was detected in walnut kernels. Prospective benefits from transgrafted plants include minimized risk of GE pollen flow (Lev-Yadun and Sederoff, 2001), possible use of more than one scion per approved GE rootstock which could help curb the estimated US$136 million (CropLife International, 2011) cost to bring a GE crop to international markets, as well as potential for improved consumer and market acceptance since the consumable product is not itself GE. Thus, transgrafting provides an alternative option for agricultural industries wishing to expand their biotechnology portfolio.
Collapse
Affiliation(s)
- Victor M Haroldsen
- Morrison and Foerster LLC, 425 Market Street, San Francisco, CA 94111, USA
| | | | | |
Collapse
|
403
|
Richards CL, Schrey AW, Pigliucci M. Invasion of diverse habitats by few Japanese knotweed genotypes is correlated with epigenetic differentiation. Ecol Lett 2012; 15:1016-25. [PMID: 22731923 DOI: 10.1111/j.1461-0248.2012.01824.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 05/28/2012] [Indexed: 12/30/2022]
Abstract
The expansion of invasive species challenges our understanding of the process of adaptation. Given that the invasion process often entails population bottlenecks, it is surprising that many invasives appear to thrive even with low levels of sequence-based genetic variation. Using Amplified Fragment Length Polymorphism (AFLP) and methylation sensitive-AFLP (MS-AFLP) markers, we tested the hypothesis that differentiation of invasive Japanese knotweed in response to new habitats is more correlated with epigenetic variation than DNA sequence variation. We found that the relatively little genetic variation present was differentiated among species, with less differentiation among sites within species. In contrast, we found a great deal of epigenetic differentiation among sites within each species and evidence that some epigenetic loci may respond to local microhabitat conditions. Our findings indicate that epigenetic effects could contribute to phenotypic variation in genetically depauperate invasive populations. Deciphering whether differences in methylation patterns are the cause or effect of habitat differentiation will require manipulative studies.
Collapse
Affiliation(s)
- Christina L Richards
- Department of Integrative Biology, University of South Florida, Tampa, FL 33617, USA.
| | | | | |
Collapse
|
404
|
Abstract
The epigenome plays a vital role in helping to maintain and regulate cell functions in all organisms. Alleles with differing epigenetic marks in the same nucleus do not function in isolation but can interact in trans to modify the epigenetic state of one or both alleles. This is particularly evident when two divergent epigenomes come together in a hybrid resulting in thousands of alterations to the methylome. These changes mainly involve the methylation patterns at one allele being changed to resemble the methylation patterns of the other allele, in processes we have termed trans-chromosomal methylation (TCM) and trans-chromosomal demethylation (TCdM). These processes are primarily modulated by siRNAs and the RNA directed DNA methylation pathway. Drawing from other examples of trans-allelic interactions, we describe the process of TCM and TCdM and the effect such changes can have on genome activity. Trans-allelic epigenetic interactions may be a common occurrence in many biological systems.
Collapse
Affiliation(s)
- Ian Greaves
- Commonwealth Scientific and Industrial Research Organization, Plant Industry, Canberra, Australia
| | | | | | | |
Collapse
|
405
|
Beasley DE, Bonisoli-Alquati A, Welch SM, Møller AP, Mousseau TA. Effects of parental radiation exposure on developmental instability in grasshoppers. J Evol Biol 2012; 25:1149-62. [PMID: 22507690 PMCID: PMC3964017 DOI: 10.1111/j.1420-9101.2012.02502.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mutagenic and epigenetic effects of environmental stressors and their transgenerational consequences are of interest to evolutionary biologists because they can amplify natural genetic variation. We studied the effect of parental exposure to radioactive contamination on offspring development in lesser marsh grasshopper Chorthippus albomarginatus. We used a geometric morphometric approach to measure fluctuating asymmetry (FA), wing shape and wing size. We measured time to sexual maturity to check whether parental exposure to radiation influenced offspring developmental trajectory and tested effects of radiation on hatching success and parental fecundity. Wings were larger in early maturing individuals born to parents from high radiation sites compared to early maturing individuals from low radiation sites. As time to sexual maturity increased, wing size decreased but more sharply in individuals from high radiation sites. Radiation exposure did not significantly affect FA or shape in wings nor did it significantly affect hatching success and fecundity. Overall, parental radiation exposure can adversely affect offspring development and fitness depending on developmental trajectories although the cause of this effect remains unclear. We suggest more direct measures of fitness and the inclusion of replication in future studies to help further our understanding of the relationship between developmental instability, fitness and environmental stress.
Collapse
Affiliation(s)
- D E Beasley
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| | | | | | | | | |
Collapse
|
406
|
Gill ME, Erkek S, Peters AHFM. Parental epigenetic control of embryogenesis: a balance between inheritance and reprogramming? Curr Opin Cell Biol 2012; 24:387-96. [DOI: 10.1016/j.ceb.2012.03.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/03/2012] [Accepted: 03/05/2012] [Indexed: 11/29/2022]
|
407
|
Yin H, Yan B, Sun J, Jia P, Zhang Z, Yan X, Chai J, Ren Z, Zheng G, Liu H. Graft-union development: a delicate process that involves cell-cell communication between scion and stock for local auxin accumulation. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4219-32. [PMID: 22511803 PMCID: PMC3398452 DOI: 10.1093/jxb/ers109] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 03/15/2012] [Accepted: 03/19/2012] [Indexed: 05/18/2023]
Abstract
Grafting is an ancient cloning method that has been used widely for thousands of years in agricultural practices. Graft-union development is also an intricate process that involves substantial changes such as organ regeneration and genetic material exchange. However, the molecular mechanisms for graft-union development are still largely unknown. Here, a micrografting method that has been used widely in Arabidopsis was improved to adapt it a smooth procedure to facilitate sample analysis and to allow it to easily be applied to various dicotyledonous plants. The developmental stage of the graft union was characterized based on this method. Histological analysis suggested that the transport activities of vasculature were recovered at 3 days after grafting (dag) and that auxin modulated the vascular reconnection at 2 dag. Microarray data revealed a signal-exchange process between cells of the scion and stock at 1 dag, which re-established the communication network in the graft union. This process was concomitant with the clearing of cell debris, and both processes were initiated by a wound-induced programme. The results demonstrate the feasibility and potential power of investigating various plant developmental processes by this method, and represent a primary and significant step in interpretation of the molecular mechanisms underlying graft-union development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Heng Liu
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
408
|
Shiao YH, Leighty RM, Wang C, Ge X, Crawford EB, Spurrier JM, McCann SD, Fields JR, Fornwald L, Riffle L, Driver C, Kasprzak KS, Quiñones OA, Wilson RE, Travlos GS, Alvord WG, Anderson LM. Molecular and organismal changes in offspring of male mice treated with chemical stressors. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:392-407. [PMID: 22674528 DOI: 10.1002/em.21701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Both gene methylation changes and genetic instability have been noted in offspring of male rodents exposed to radiation or chemicals, but few specific gene targets have been established. Previously, we identified the gene for ribosomal RNA, rDNA, as showing methylation change in sperm of mice treated with the preconceptional carcinogen, chromium(III) chloride. rDNA is a critical cell growth regulator. Here, we investigated the effects of paternal treatments on rDNA in offspring tissue. A total of 93 litters and 758 offspring were obtained, permitting rigorous mixed-effects models statistical analysis of the results. We show that the offspring of male mice treated with Cr(III) presented increased methylation in a promoter sequence of the rDNA gene, specifically in lung. Furthermore polymorphic variants of the multi-copy rDNA genes displayed altered frequencies indicative of structural changes, as a function of both tissue type and paternal treatments. Organismal effects also occurred: some groups of offspring of male mice treated with either Cr(III) or its vehicle, acidic saline, compared with those of untreated mice, had altered average body and liver weights and levels of serum glucose and leptin. Males treated directly with Cr(III) or acidic saline presented serum hormone changes consistent with a stress response. These results establish for the first time epigenetic and genetic instability effects in a gene of central physiological importance, in offspring of male mice exposed preconceptionally to chemicals, possibly related to a stress response in these males.
Collapse
Affiliation(s)
- Yih-Horng Shiao
- Laboratory of Comparative Carcinogenesis, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
409
|
He F, Zhang X, Hu J, Turck F, Dong X, Goebel U, Borevitz J, de Meaux J. Genome-wide analysis of cis-regulatory divergence between species in the Arabidopsis genus. Mol Biol Evol 2012; 29:3385-95. [PMID: 22641789 DOI: 10.1093/molbev/mss146] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cis-regulatory DNA has been suspected to play a preeminent role in adaptive evolution, but understanding the role of cis-regulatory mutations in gene expression divergence first requires an accurate analysis of the functional differences associated with these regions. We analyzed allele-specific expression (ASE) in leaf and floral tissues of F1 interspecific hybrids generated between the two closely related species Arabidopsis thaliana and A. lyrata with a whole-genome SNP (single nucleotide polymorphism) tiling array. We observed 2,205 genes showing ASE pattern in at least one tissue. Nearly 90% of genes displaying ASE preferentially expressed the allele of A. lyrata. Genome-wide comparison of sequence divergence revealed that genes displaying ASE had a higher ratio of nonsynonymous to synonymous substitutions in coding regions. We further observe that the epigenetic landscape of histone methylation in A. thaliana genome associate with ASE. The asymmetry in the direction of allele-specific expression suggests interspecific differences in the efficiency of gene silencing in F1 hybrids.
Collapse
Affiliation(s)
- Fei He
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné weg 10, 50829 Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
410
|
Dickins TE, Rahman Q. The extended evolutionary synthesis and the role of soft inheritance in evolution. Proc Biol Sci 2012; 279:2913-21. [PMID: 22593110 DOI: 10.1098/rspb.2012.0273] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In recent years, a number of researchers have advocated extending the modern synthesis in evolutionary biology. One of the core arguments made in favour of an extension comes from work on soft inheritance systems, including transgenerational epigenetic effects, cultural transmission and niche construction. In this study, we outline this claim and then take issue with it. We argue that the focus on soft inheritance has led to a conflation of proximate and ultimate causation, which has in turn obscured key questions about biological organization and calibration across the life span to maximize average lifetime inclusive fitness. We illustrate this by presenting hypotheses that we believe incorporate the core phenomena of soft inheritance and will aid in understanding them.
Collapse
Affiliation(s)
- Thomas E Dickins
- School of Psychology, University of East London, , London E15 4LZ, UK.
| | | |
Collapse
|
411
|
|
412
|
van Zanten M, Tessadori F, Peeters AJM, Fransz P. Shedding light on large-scale chromatin reorganization in Arabidopsis thaliana. MOLECULAR PLANT 2012; 5:583-90. [PMID: 22528207 DOI: 10.1093/mp/sss030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plants need to respond quickly and appropriately to various types of light signals from the environment to optimize growth and development. The immediate response to shading, reduced photon flux (low light), and changes in spectral quality involves changes in gene regulation. In the case of more persistent shade, the plant shows a dramatic change in the organization of chromatin. Both plant responses are controlled via photoreceptor signaling proteins. Recently, several studies have revealed similar features of chromatin reorganization in response to various abiotic and biotic signals, while others have unveiled intricate molecular networks of light signaling towards gene regulation. This opinion paper briefly describes the chromatin (de)compaction response from a light-signaling perspective to provide a link between chromatin and the molecular network of photoreceptors and E3 ubiquitin ligase complexes.
Collapse
Affiliation(s)
- Martijn van Zanten
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | |
Collapse
|
413
|
Abstract
Since Mendel, studies of phenotypic variation and disease risk have emphasized associations between genotype and phenotype among affected individuals in families and populations. Although this paradigm has led to important insights into the molecular basis for many traits and diseases, most of the genetic variants that control the inheritance of these conditions continue to elude detection. Recent studies suggest an alternative mode of inheritance where genetic variants that are present in one generation affect phenotypes in subsequent generations, thereby decoupling the conventional relations between genotype and phenotype, and perhaps, contributing to 'missing heritability'. Under some conditions, these transgenerational genetic effects can be as frequent and strong as conventional inheritance, and can persist for multiple generations. Growing evidence suggests that RNA mediates these heritable epigenetic changes. The primary challenge now is to identify the molecular basis for these effects, characterize mechanisms and determine whether transgenerational genetic effects occur in humans.
Collapse
Affiliation(s)
- Vicki R Nelson
- Department of Genetics, BRB731, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | |
Collapse
|
414
|
Kover PX, Mott R. Mapping the genetic basis of ecologically and evolutionarily relevant traits in Arabidopsis thaliana. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:212-7. [PMID: 22401882 DOI: 10.1016/j.pbi.2012.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/11/2012] [Accepted: 02/09/2012] [Indexed: 05/04/2023]
Abstract
There has been a long standing interest in the relationship between genetic and phenotypic variation in natural populations, in order to understand the genetic basis of adaptation and to discover natural alleles to improve crops. Here we review recent developments in mapping approaches that have significantly improved our ability to identify causal polymorphism explaining natural variation in ecological and evolutionarily relevant traits. However, challenges in interpreting these discoveries remain. In particular, we need more detailed transcriptomic, epigenomic, and gene network data to help understand the mechanisms behind identified associations. Also, more studies need to be performed under field conditions or using experimental evolution to determine whether polymorphisms identified in the lab are relevant for adaptation and improvement under natural conditions.
Collapse
Affiliation(s)
- Paula X Kover
- University of Bath, Department of Biology and Biochemistry, Claverton Down, BA2 7AY, UK.
| | | |
Collapse
|
415
|
Loss of DNA methylation affects the recombination landscape in Arabidopsis. Proc Natl Acad Sci U S A 2012; 109:5880-5. [PMID: 22451936 DOI: 10.1073/pnas.1120841109] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During sexual reproduction, one-half of the genetic material is deposited in gametes, and a complete set of chromosomes is restored upon fertilization. Reduction of the genetic information before gametogenesis occurs in meiosis, when cross-overs (COs) between homologous chromosomes secure an exchange of their genetic information. COs are not evenly distributed along chromosomes and are suppressed in chromosomal regions encompassing compact, hypermethylated centromeric and pericentromeric DNA. Therefore, it was postulated that DNA hypermethylation is inhibitory to COs. Here, when analyzing meiotic recombination in mutant plants with hypomethylated DNA, we observed unexpected and counterintuitive effects of DNA methylation losses on CO distribution. Recombination was further promoted in the hypomethylated chromosome arms while it was inhibited in heterochromatic regions encompassing pericentromeric DNA. Importantly, the total number of COs was not affected, implying that loss of DNA methylation led to a global redistribution of COs along chromosomes. To determine by which mechanisms altered levels of DNA methylation influence recombination--whether directly in cis or indirectly in trans by changing expression of genes encoding recombination components--we analyzed CO distribution in wild-type lines with randomly scattered and well-mapped hypomethylated chromosomal segments. The results of these experiments, supported by expression profiling data, suggest that DNA methylation affects meiotic recombination in cis. Because DNA methylation exhibits significant variation even within a single species, our results imply that it may influence the evolution of plant genomes through the control of meiotic recombination.
Collapse
|
416
|
The role of epigenetics in evolution: the extended synthesis. GENETICS RESEARCH INTERNATIONAL 2012; 2012:286164. [PMID: 22567381 PMCID: PMC3335599 DOI: 10.1155/2012/286164] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 12/15/2011] [Indexed: 01/25/2023]
|
417
|
Environmental heterogeneity and phenotypic divergence: can heritable epigenetic variation aid speciation? GENETICS RESEARCH INTERNATIONAL 2012; 2012:698421. [PMID: 22567398 PMCID: PMC3335561 DOI: 10.1155/2012/698421] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 11/07/2011] [Accepted: 11/23/2011] [Indexed: 01/09/2023]
Abstract
The dualism of genetic predisposition and environmental influences, their interactions, and respective roles in shaping the phenotype have been a hot topic in biological sciences for more than two centuries. Heritable epigenetic variation mediates between relatively slowly accumulating mutations in the DNA sequence and ephemeral adaptive responses to stress, thereby providing mechanisms for achieving stable, but potentially rapidly evolving phenotypic diversity as a response to environmental stimuli. This suggests that heritable epigenetic signals can play an important role in evolutionary processes, but so far this hypothesis has not been rigorously tested. A promising new area of research focuses on the interaction between the different molecular levels that produce phenotypic variation in wild, closely-related taxa that lack genome-wide genetic differentiation. By pinpointing specific adaptive traits and investigating the mechanisms responsible for phenotypic differentiation, such study systems could allow profound insights into the role of epigenetics in the evolution and stabilization of phenotypic discontinuities, and could add to our understanding of adaptive strategies to diverse environmental conditions and their dynamics.
Collapse
|
418
|
Schmitz RJ, Ecker JR. Epigenetic and epigenomic variation in Arabidopsis thaliana. TRENDS IN PLANT SCIENCE 2012; 17:149-54. [PMID: 22342533 PMCID: PMC3645451 DOI: 10.1016/j.tplants.2012.01.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/23/2011] [Accepted: 01/04/2012] [Indexed: 05/04/2023]
Abstract
Arabidopsis thaliana (Arabidopsis) is ideally suited for studies of natural phenotypic variation. This species has also provided an unparalleled experimental system to explore the mechanistic link between genetic and epigenetic variation, especially with regard to cytosine methylation. Using high-throughput sequencing methods, genotype to epigenotype to phenotype observations can now be extended to plant populations. We review the evidence for induced and spontaneous epigenetic variants that have been identified in Arabidopsis in the laboratory and discuss how these experimental observations could explain existing variation in the wild.
Collapse
Affiliation(s)
- Robert J Schmitz
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | |
Collapse
|
419
|
Abstract
The heterotic hybrid offspring of Arabidopsis accessions C24 and Landsberg erecta have altered methylomes. Changes occur most frequently at loci where parental methylation levels are different. There are context-specific biases in the nonadditive methylation patterns with (m)CG generally increased and (m)CHH decreased relative to the parents. These changes are a result of two main mechanisms, Trans Chromosomal Methylation and Trans Chromosomal deMethylation, where the methylation level of one parental allele alters to resemble that of the other parent. Regions of altered methylation are enriched around genic regions and are often correlated with changes in siRNA levels. We identified examples of genes with altered expression likely to be due to methylation changes and suggest that in crosses between the C24 and Ler accessions, epigenetic controls can be important in the generation of altered transcription levels that may contribute to the increased biomass of the hybrids.
Collapse
|
420
|
Epigenetic Variation May Compensate for Decreased Genetic Variation with Introductions: A Case Study Using House Sparrows (Passer domesticus) on Two Continents. GENETICS RESEARCH INTERNATIONAL 2012; 2012:979751. [PMID: 22567407 PMCID: PMC3335630 DOI: 10.1155/2012/979751] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/04/2011] [Accepted: 11/05/2011] [Indexed: 01/18/2023]
Abstract
Epigenetic mechanisms impact several phenotypic traits and may be important for ecology and evolution. The introduced house sparrow (Passer domesticus) exhibits extensive phenotypic variation among and within populations. We screened methylation in populations from Kenya and Florida to determine if methylation varied among populations, varied with introduction history (Kenyan invasion <50 years old, Florida invasion ~150 years old), and could potentially compensate for decrease genetic variation with introductions. While recent literature has speculated on the importance of epigenetic effects for biological invasions, this is the first such study among wild vertebrates. Methylation was more frequent in Nairobi, and outlier loci suggest that populations may be differentiated. Methylation diversity was similar between populations, in spite of known lower genetic diversity in Nairobi, which suggests that epigenetic variation may compensate for decreased genetic diversity as a source of phenotypic variation during introduction. Our results suggest that methylation differences may be common among house sparrows, but research is needed to discern whether methylation impacts phenotypic variation.
Collapse
|
421
|
Thomas MA, Schötz EM. SAPling: a Scan-Add-Print barcoding database system to label and track asexual organisms. ACTA ACUST UNITED AC 2012; 214:3518-23. [PMID: 21993779 DOI: 10.1242/jeb.059048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have developed a 'Scan-Add-Print' database system, SAPling, to track and monitor asexually reproducing organisms. Using barcodes to uniquely identify each animal, we can record information on the life of the individual in a computerized database containing its entire family tree. SAPling has enabled us to carry out large-scale population dynamics experiments with thousands of planarians and keep track of each individual. The database stores information such as family connections, birth date, division date and generation. We show that SAPling can be easily adapted to other asexually reproducing organisms and has a strong potential for use in large-scale and/or long-term population and senescence studies as well as studies of clonal diversity. The software is platform-independent, designed for reliability and ease of use, and provided open source from our webpage to allow project-specific customization.
Collapse
Affiliation(s)
- Michael A Thomas
- 170 Carl Icahn Laboratory, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
422
|
Daphnia as an emerging epigenetic model organism. GENETICS RESEARCH INTERNATIONAL 2012; 2012:147892. [PMID: 22567376 PMCID: PMC3335723 DOI: 10.1155/2012/147892] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 10/25/2011] [Indexed: 12/11/2022]
Abstract
Daphnia offer a variety of benefits for the study of epigenetics. Daphnia's parthenogenetic life cycle allows the study of epigenetic effects in the absence of confounding genetic differences. Sex determination and sexual reproduction are epigenetically determined as are several other well-studied alternate phenotypes that arise in response to environmental stressors. Additionally, there is a large body of ecological literature available, recently complemented by the genome sequence of one species and transgenic technology. DNA methylation has been shown to be altered in response to toxicants and heavy metals, although investigation of other epigenetic mechanisms is only beginning. More thorough studies on DNA methylation as well as investigation of histone modifications and RNAi in sex determination and predator-induced defenses using this ecologically and evolutionarily important organism will contribute to our understanding of epigenetics.
Collapse
|
423
|
Feil R, Fraga MF. Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet 2012; 13:97-109. [PMID: 22215131 DOI: 10.1038/nrg3142] [Citation(s) in RCA: 1185] [Impact Index Per Article: 98.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Epigenetic phenomena in animals and plants are mediated by DNA methylation and stable chromatin modifications. There has been considerable interest in whether environmental factors modulate the establishment and maintenance of epigenetic modifications, and could thereby influence gene expression and phenotype. Chemical pollutants, dietary components, temperature changes and other external stresses can indeed have long-lasting effects on development, metabolism and health, sometimes even in subsequent generations. Although the underlying mechanisms remain largely unknown, particularly in humans, mechanistic insights are emerging from experimental model systems. These have implications for structuring future research and understanding disease and development.
Collapse
Affiliation(s)
- Robert Feil
- Institute of Molecular Genetics (IGMM), CNRS UMR-5535 and University of Montpellier, 1919 route de Mende, 34293 Montpellier, France. robert.feil@igmm. cnrs.fr
| | | |
Collapse
|
424
|
Abstract
Epigenetic phenomena in animals and plants are mediated by DNA methylation and stable chromatin modifications. There has been considerable interest in whether environmental factors modulate the establishment and maintenance of epigenetic modifications, and could thereby influence gene expression and phenotype. Chemical pollutants, dietary components, temperature changes and other external stresses can indeed have long-lasting effects on development, metabolism and health, sometimes even in subsequent generations. Although the underlying mechanisms remain largely unknown, particularly in humans, mechanistic insights are emerging from experimental model systems. These have implications for structuring future research and understanding disease and development.
Collapse
Affiliation(s)
- Robert Feil
- Institute of Molecular Genetics (IGMM), CNRS UMR-5535 and University of Montpellier, 1919 route de Mende, 34293 Montpellier, France. robert.feil@igmm. cnrs.fr
| | | |
Collapse
|
425
|
Viejo M, Santamaría ME, Rodríguez JL, Valledor L, Meijón M, Pérez M, Pascual J, Hasbún R, Fernández Fraga M, Berdasco M, Toorop PE, Cañal MJ, Rodríguez Fernández R. Epigenetics, the role of DNA methylation in tree development. Methods Mol Biol 2012; 877:277-301. [PMID: 22610636 DOI: 10.1007/978-1-61779-818-4_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
During development of multicellular organisms, cells become differentiated by modulating different programs of gene expression. Cells have their own epigenetic signature which reflects genotype, developmental history, and environmental influences, and it is ultimately reflected in the phenotype of the cells and the organism. However, in normal development or disease situations, such as adaptation to climate change or during in vitro culture, some cells undergo major epigenetic reprogramming involving the removal of epigenetic marks in the nuclei followed by the establishment of a different new set of marks. Compared with animal cells, biotech-mediated achievements are reduced in plants despite the presence of cell polypotency. In forestry, any sustainable developments using biotech tools remain restricted to the lab, without progressing to the field for application. Such barriers in the translation between development and implementation need to be addressed by organizations that have the power to integrate these two fields. However, a lack of understanding of gene regulation is also to blame for this barrier. In recent years, great progress has been made in unraveling the control of gene expression. These advances are discussed in this chapter, including the possibility of applying this knowledge in forestry practice.
Collapse
Affiliation(s)
- Marcos Viejo
- Área de Fisiología Vegetal, Departamento BOS, Facultad de Biología, Universidad de Oviedo, Oviedo, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
426
|
Abstract
Spontaneous preterm birth (PTB; birth prior to 37 weeks of gestation) is a complex phenotype with multiple risk factors that complicate our understanding of its etiology. A number of recent studies have supported the hypothesis that epigenetic modifications such as DNA methylation induced by pregnancy-related risk factors may influence the risk of PTB or result in changes that predispose a neonate to adult-onset diseases. The critical role of timing of gene expression in the etiology of PTB makes it a highly relevant disorder in which to examine the potential role of epigenetic changes. Because changes in DNA methylation patterns can result in long-term consequences, it is of critical interest to identify the epigenetic patterns associated with adverse pregnancy outcomes. This review examines the potential role of DNA methylation as a risk factor for PTB and discusses several issues and limitations that should be considered when planning DNA methylation studies.
Collapse
Affiliation(s)
- Ramkumar Menon
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, The University of Texas Medical Branch at Galveston, TX 77555, USA.
| | | | | |
Collapse
|
427
|
Yelina NE, Choi K, Chelysheva L, Macaulay M, de Snoo B, Wijnker E, Miller N, Drouaud J, Grelon M, Copenhaver GP, Mezard C, Kelly KA, Henderson IR. Epigenetic remodeling of meiotic crossover frequency in Arabidopsis thaliana DNA methyltransferase mutants. PLoS Genet 2012. [PMID: 27472382 DOI: 10.1371/journal.pgen] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Meiosis is a specialized eukaryotic cell division that generates haploid gametes required for sexual reproduction. During meiosis, homologous chromosomes pair and undergo reciprocal genetic exchange, termed crossover (CO). Meiotic CO frequency varies along the physical length of chromosomes and is determined by hierarchical mechanisms, including epigenetic organization, for example methylation of the DNA and histones. Here we investigate the role of DNA methylation in determining patterns of CO frequency along Arabidopsis thaliana chromosomes. In A. thaliana the pericentromeric regions are repetitive, densely DNA methylated, and suppressed for both RNA polymerase-II transcription and CO frequency. DNA hypomethylated methyltransferase1 (met1) mutants show transcriptional reactivation of repetitive sequences in the pericentromeres, which we demonstrate is coupled to extensive remodeling of CO frequency. We observe elevated centromere-proximal COs in met1, coincident with pericentromeric decreases and distal increases. Importantly, total numbers of CO events are similar between wild type and met1, suggesting a role for interference and homeostasis in CO remodeling. To understand recombination distributions at a finer scale we generated CO frequency maps close to the telomere of chromosome 3 in wild type and demonstrate an elevated recombination topology in met1. Using a pollen-typing strategy we have identified an intergenic nucleosome-free CO hotspot 3a, and we demonstrate that it undergoes increased recombination activity in met1. We hypothesize that modulation of 3a activity is caused by CO remodeling driven by elevated centromeric COs. These data demonstrate how regional epigenetic organization can pattern recombination frequency along eukaryotic chromosomes.
Collapse
Affiliation(s)
- Nataliya E Yelina
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
428
|
Saze H. Transgenerational inheritance of induced changes in the epigenetic state of chromatin in plants. Genes Genet Syst 2012; 87:145-52. [DOI: 10.1266/ggs.87.145] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Hidetoshi Saze
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University
- PRESTO, Japan Science and Technology Agency (JST)
| |
Collapse
|
429
|
Herman JJ, Sultan SE. Adaptive transgenerational plasticity in plants: case studies, mechanisms, and implications for natural populations. FRONTIERS IN PLANT SCIENCE 2011; 2:102. [PMID: 22639624 PMCID: PMC3355592 DOI: 10.3389/fpls.2011.00102] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 12/07/2011] [Indexed: 05/18/2023]
Abstract
Plants respond to environmental conditions not only by plastic changes to their own development and physiology, but also by altering the phenotypes expressed by their offspring. This transgenerational plasticity was initially considered to entail only negative effects of stressful parental environments, such as production of smaller seeds by resource- or temperature-stressed parent plants, and was therefore viewed as environmental noise. Recent evolutionary ecology studies have shown that in some cases, these inherited environmental effects can include specific growth adjustments that are functionally adaptive to the parental conditions that induced them, which can range from contrasting states of controlled laboratory environments to the complex habitat variation encountered by natural plant populations. Preliminary findings suggest that adaptive transgenerational effects can be transmitted by means of diverse mechanisms including changes to seed provisioning and biochemistry, and epigenetic modifications such as DNA methylation that can persist across multiple generations. These non-genetically inherited adaptations can influence the ecological breadth and evolutionary dynamics of plant taxa and promote the spread of invasive plants. Interdisciplinary studies that join mechanistic and evolutionary ecology approaches will be an important source of future insights.
Collapse
|
430
|
The impact of the organism on its descendants. GENETICS RESEARCH INTERNATIONAL 2011; 2012:640612. [PMID: 22567396 PMCID: PMC3335618 DOI: 10.1155/2012/640612] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 09/30/2011] [Accepted: 10/24/2011] [Indexed: 11/18/2022]
Abstract
Historically, evolutionary biologists have taken the view that an understanding of development is irrelevant to theories of evolution. However, the integration of several disciplines in recent years suggests that this position is wrong. The capacity of the organism to adapt to challenges from the environment can set up conditions that affect the subsequent evolution of its descendants. Moreover, molecular events arising from epigenetic processes can be transmitted from one generation to the next and influence genetic mutation. This in turn can facilitate evolution in the conditions in which epigenetic change was first initiated.
Collapse
|
431
|
Liu W, Deng RF, Liu WP, Wang ZM, Ye WH, Wang LY, Cao HL, Shen H. Phenotypic differentiation is associated with gender plasticity and its responsive delay to environmental changes in Alternanthera philoxeroides--phenotypic differentiation in alligator weed. PLoS One 2011; 6:e27238. [PMID: 22125608 PMCID: PMC3220695 DOI: 10.1371/journal.pone.0027238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 10/12/2011] [Indexed: 01/27/2023] Open
Abstract
Phenotypic plasticity is common in many taxa, and it may increase an organism's fitness in heterogeneous environments. However, in some cases, the frequency of environmental changes can be faster than the ability of the individual to produce new adaptive phenotypes. The importance of such a time delay in terms of individual fitness and species adaptability has not been well studied. Here, we studied gender plasticity of Alternanthera philoxeroides to address this issue through a reciprocal transplant experiment. We observed that the genders of A. philoxeroides were plastic and reversible between monoclinous and pistillody depending on habitats, the offspring maintained the maternal genders in the first year but changed from year 2 to 5, and there was a cubic relationship between the rate of population gender changes and environmental variations. This relationship indicates that the species must overcome a threshold of environmental variations to switch its developmental path ways between the two genders. This threshold and the maternal gender stability cause a significant delay of gender changes in new environments. At the same time, they result in and maintain the two distinct habitat dependent gender phenotypes. We also observed that there was a significant and adaptive life-history differentiation between monoclinous and pistillody individuals and the gender phenotypes were developmentally linked with the life-history traits. Therefore, the gender phenotypes are adaptive. Low seed production, seed germination failure and matching phenotypes to habitats by gender plasticity indicate that the adaptive phenotypic diversity in A. philoxeroides may not be the result of ecological selection, but of gender plasticity. The delay of the adaptive gender phenotype realization in changing environments can maintain the differentiation between gender systems and their associated life-history traits, which may be an important component in evolution of novel traits and taxonomic diversity.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, People's Republic of China
- Department of Biology, Graduate University Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ru-Fang Deng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, People's Republic of China
- Department of Biology, Graduate University Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wen-Ping Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, People's Republic of China
- Department of Biology, Graduate University Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhang-Ming Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Wan-Hui Ye
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Lan-Ying Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, People's Republic of China
- Department of Biology, Graduate University Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hong-Lin Cao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Hao Shen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
432
|
Eichten SR, Swanson-Wagner RA, Schnable JC, Waters AJ, Hermanson PJ, Liu S, Yeh CT, Jia Y, Gendler K, Freeling M, Schnable PS, Vaughn MW, Springer NM. Heritable epigenetic variation among maize inbreds. PLoS Genet 2011; 7:e1002372. [PMID: 22125494 PMCID: PMC3219600 DOI: 10.1371/journal.pgen.1002372] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 09/20/2011] [Indexed: 11/26/2022] Open
Abstract
Epigenetic variation describes heritable differences that are not attributable to changes in DNA sequence. There is the potential for pure epigenetic variation that occurs in the absence of any genetic change or for more complex situations that involve both genetic and epigenetic differences. Methylation of cytosine residues provides one mechanism for the inheritance of epigenetic information. A genome-wide profiling of DNA methylation in two different genotypes of Zea mays (ssp. mays), an organism with a complex genome of interspersed genes and repetitive elements, allowed the identification and characterization of examples of natural epigenetic variation. The distribution of DNA methylation was profiled using immunoprecipitation of methylated DNA followed by hybridization to a high-density tiling microarray. The comparison of the DNA methylation levels in the two genotypes, B73 and Mo17, allowed for the identification of approximately 700 differentially methylated regions (DMRs). Several of these DMRs occur in genomic regions that are apparently identical by descent in B73 and Mo17 suggesting that they may be examples of pure epigenetic variation. The methylation levels of the DMRs were further studied in a panel of near-isogenic lines to evaluate the stable inheritance of the methylation levels and to assess the contribution of cis- and trans- acting information to natural epigenetic variation. The majority of DMRs that occur in genomic regions without genetic variation are controlled by cis-acting differences and exhibit relatively stable inheritance. This study provides evidence for naturally occurring epigenetic variation in maize, including examples of pure epigenetic variation that is not conditioned by genetic differences. The epigenetic differences are variable within maize populations and exhibit relatively stable trans-generational inheritance. The detected examples of epigenetic variation, including some without tightly linked genetic variation, may contribute to complex trait variation. Heritable variation within a species provides the basis for natural and artificial selection. A substantial portion of heritable variation is based on alterations in DNA sequence among individuals and is termed genetic variation. There is also evidence for epigenetic variation, which refers to heritable differences that are not caused by DNA sequence changes. Methylation of cytosine residues provides one molecular mechanism for epigenetic variation in many eukaryotic species. The genome-wide distribution of DNA methylation was assessed in two different inbred genotypes of maize to identify differentially methylated regions that may contribute to epigenetic variation. There are hundreds of genomic regions that have differences in DNA methylation levels in these two different genotypes, including methylation differences in regions without genetic variation. By studying the inheritance of the differential methylation in near-isogenic progeny of the two inbred lines, it is possible to demonstrate relatively stable inheritance of epigenetic variation, even in the absence of DNA sequence changes. The epigenetic variation among individuals of the same species may provide important contributions to phenotypic variation within a species even in the absence of genetic differences.
Collapse
Affiliation(s)
- Steve R. Eichten
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Ruth A. Swanson-Wagner
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - James C. Schnable
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Amanda J. Waters
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Peter J. Hermanson
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Sanzhen Liu
- Iowa State University, Ames, Iowa, United States of America
| | - Cheng-Ting Yeh
- Iowa State University, Ames, Iowa, United States of America
| | - Yi Jia
- Iowa State University, Ames, Iowa, United States of America
| | - Karla Gendler
- Texas Advanced Computing Center, University of Texas–Austin, Austin, Texas, United States of America
| | - Michael Freeling
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | | | - Matthew W. Vaughn
- Texas Advanced Computing Center, University of Texas–Austin, Austin, Texas, United States of America
- * E-mail: (MWV); (NMS)
| | - Nathan M. Springer
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
- * E-mail: (MWV); (NMS)
| |
Collapse
|
433
|
Bonduriansky R, Crean AJ, Day T. The implications of nongenetic inheritance for evolution in changing environments. Evol Appl 2011; 5:192-201. [PMID: 25568041 PMCID: PMC3353344 DOI: 10.1111/j.1752-4571.2011.00213.x] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 10/06/2011] [Indexed: 11/28/2022] Open
Abstract
Nongenetic inheritance is a potentially important but poorly understood factor in population responses to rapid environmental change. Accumulating evidence indicates that nongenetic inheritance influences a diverse array of traits in all organisms and can allow for the transmission of environmentally induced phenotypic changes ('acquired traits'), as well as spontaneously arising and highly mutable variants. We review models of adaptation to changing environments under the assumption of a broadened model of inheritance that incorporates nongenetic mechanisms of transmission, and survey relevant empirical examples. Theory suggests that nongenetic inheritance can increase the rate of both phenotypic and genetic change and, in some cases, alter the direction of change. Empirical evidence shows that a diversity of phenotypes - spanning a continuum from adaptive to pathological - can be transmitted nongenetically. The presence of nongenetic inheritance therefore complicates our understanding of evolutionary responses to environmental change. We outline a research program encompassing experimental studies that test for transgenerational effects of a range of environmental factors, followed by theoretical and empirical studies on the population-level consequences of such effects.
Collapse
Affiliation(s)
- Russell Bonduriansky
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, NSW, Australia
| | - Angela J Crean
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, NSW, Australia
| | - Troy Day
- Department of Mathematics and Statistics, Queen's University Kingston, ON, Canada ; Department of Biology, Queen's University Kingston, ON, Canada
| |
Collapse
|
434
|
Day T, Bonduriansky R. A unified approach to the evolutionary consequences of genetic and nongenetic inheritance. Am Nat 2011; 178:E18-36. [PMID: 21750377 DOI: 10.1086/660911] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Inheritance-the influence of ancestors on the phenotypes of their descendants-translates natural selection into evolutionary change. For the past century, inheritance has been conceptualized almost exclusively as the transmission of DNA sequence variation from parents to offspring in accordance with Mendelian rules, but advances in cell and developmental biology have now revealed a rich array of inheritance mechanisms. This empirical evidence calls for a unified conception of inheritance that combines genetic and nongenetic mechanisms and encompasses the known range of transgenerational effects, including the transmission of genetic and epigenetic variation, the transmission of plastic phenotypes (acquired traits), and the effects of parental environment and genotype on offspring phenotype. We propose a unified theoretical framework based on the Price equation that can be used to model evolution under an expanded inheritance concept that combines the effects of genetic and nongenetic inheritance. To illustrate the utility and generality of this framework, we show how it can be applied to a variety of scenarios, including nontransmissible environmental noise, maternal effects, indirect genetic effects, transgenerational epigenetic inheritance, RNA-mediated inheritance, and cultural inheritance.
Collapse
Affiliation(s)
- Troy Day
- Department of Mathematics and Statistics , Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | | |
Collapse
|
435
|
Abstract
Type 2 Diabetes Mellitus (T2DM) is a metabolic disorder influenced by interactions between genetic and environmental factors. Epigenetics conveys specific environmental influences into phenotypic traits through a variety of mechanisms that are often installed in early life, then persist in differentiated tissues with the power to modulate the expression of many genes, although undergoing time-dependent alterations. There is still no evidence that epigenetics contributes significantly to the causes or transmission of T2DM from one generation to another, thus, to the current environment-driven epidemics, but it has become so likely, as pointed out in this paper, that one can expect an efflorescence of epigenetic knowledge about T2DM in times to come.
Collapse
|
436
|
Brachi B, Morris GP, Borevitz JO. Genome-wide association studies in plants: the missing heritability is in the field. Genome Biol 2011; 12:232. [PMID: 22035733 PMCID: PMC3333769 DOI: 10.1186/gb-2011-12-10-232] [Citation(s) in RCA: 304] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Genome-wide association studies (GWAS) have been even more successful in plants than in humans. Mapping approaches can be extended to dissect adaptive genetic variation from structured background variation in an ecological context.
Collapse
Affiliation(s)
- Benjamin Brachi
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
437
|
Foerster AM, Dinh HQ, Sedman L, Wohlrab B, Mittelsten Scheid O. Genetic rearrangements can modify chromatin features at epialleles. PLoS Genet 2011; 7:e1002331. [PMID: 22028669 PMCID: PMC3197671 DOI: 10.1371/journal.pgen.1002331] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 08/18/2011] [Indexed: 12/22/2022] Open
Abstract
Analogous to genetically distinct alleles, epialleles represent heritable states of different gene expression from sequence-identical genes. Alleles and epialleles both contribute to phenotypic heterogeneity. While alleles originate from mutation and recombination, the source of epialleles is less well understood. We analyze active and inactive epialleles that were found at a transgenic insert with a selectable marker gene in Arabidopsis. Both converse expression states are stably transmitted to progeny. The silent epiallele was previously shown to change its state upon loss-of-function of trans-acting regulators and drug treatments. We analyzed the composition of the epialleles, their chromatin features, their nuclear localization, transcripts, and homologous small RNA. After mutagenesis by T-DNA transformation of plants carrying the silent epiallele, we found new active alleles. These switches were associated with different, larger or smaller, and non-overlapping deletions or rearrangements in the 3' regions of the epiallele. These cis-mutations caused different degrees of gene expression stability depending on the nature of the sequence alteration, the consequences for transcription and transcripts, and the resulting chromatin organization upstream. This illustrates a tight dependence of epigenetic regulation on local structures and indicates that sequence alterations can cause epigenetic changes at some distance in regions not directly affected by the mutation. Similar effects may also be involved in gene expression and chromatin changes in the vicinity of transposon insertions or excisions, recombination events, or DNA repair processes and could contribute to the origin of new epialleles.
Collapse
Affiliation(s)
- Andrea M. Foerster
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna, Austria
| | - Huy Q. Dinh
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna, Austria
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories (MFPL), Vienna, Austria
| | - Laura Sedman
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna, Austria
| | - Bonnie Wohlrab
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna, Austria
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna, Austria
- * E-mail:
| |
Collapse
|
438
|
Bestermann WH. The ADMA-Metformin Hypothesis: Linking the Cardiovascular Consequences of the Metabolic Syndrome and Type 2 Diabetes. Cardiorenal Med 2011; 1:211-219. [PMID: 22135630 DOI: 10.1159/000332382] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 08/04/2011] [Indexed: 12/16/2022] Open
Abstract
Metformin and asymmetric dimethylarginine (ADMA) are structural analogs. They have opposite effects at multiple points on complex signaling pathways that coordinate energy, molecular synthesis, growth, and metabolism with nutrient intake. Excess saturated fats and glucose may initiate the methylation of arginine residues in proteins involved in the transcription of genes mediating inflammation, cell proliferation, apoptosis, and oncogenesis. Free ADMA may appear in the circulation after proteolysis of these proteins when the work of transcription is complete and ADMA subsequently functions as a signaling molecule. In children, ADMA levels are not significantly related to the usual metabolic syndrome risk factors but instead there is a significant association between ADMA and alkaline phosphatase - a marker of normal growth. There is only one direct study that shows that ADMA negates the metabolic effects of metformin. There are no investigations that demonstrate that metformin blocks the effect of ADMA and so this review must be considered hypothesis generating. The potential implications of the metformin-ADMA relationship merit further investigation.
Collapse
|
439
|
Schmitz RJ, Schultz MD, Lewsey MG, O'Malley RC, Urich MA, Libiger O, Schork NJ, Ecker JR. Transgenerational epigenetic instability is a source of novel methylation variants. Science 2011; 334:369-73. [PMID: 21921155 DOI: 10.1126/science.1212959] [Citation(s) in RCA: 458] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Epigenetic information, which may affect an organism's phenotype, can be stored and stably inherited in the form of cytosine DNA methylation. Changes in DNA methylation can produce meiotically stable epialleles that affect transcription and morphology, but the rates of spontaneous gain or loss of DNA methylation are unknown. We examined spontaneously occurring variation in DNA methylation in Arabidopsis thaliana plants propagated by single-seed descent for 30 generations. We identified 114,287 CG single methylation polymorphisms and 2485 CG differentially methylated regions (DMRs), both of which show patterns of divergence compared with the ancestral state. Thus, transgenerational epigenetic variation in DNA methylation may generate new allelic states that alter transcription, providing a mechanism for phenotypic diversity in the absence of genetic mutation.
Collapse
Affiliation(s)
- Robert J Schmitz
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
440
|
Grativol C, Hemerly AS, Ferreira PCG. Genetic and epigenetic regulation of stress responses in natural plant populations. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:176-85. [PMID: 21914492 DOI: 10.1016/j.bbagrm.2011.08.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 11/30/2022]
Abstract
Plants have developed intricate mechanisms involving gene regulatory systems to adjust to stresses. Phenotypic variation in plants under stress is classically attributed to DNA sequence variants. More recently, it was found that epigenetic modifications - DNA methylation-, chromatin- and small RNA-based mechanisms - can contribute separately or together to phenotypes by regulating gene expression in response to the stress effect. These epigenetic modifications constitute an additional layer of complexity to heritable phenotypic variation and the evolutionary potential of natural plant populations because they can affect fitness. Natural populations can show differences in performance when they are exposed to changes in environmental conditions, partly because of their genetic variation but also because of their epigenetic variation. The line between these two components is blurred because little is known about the contribution of genotypes and epigenotypes to stress tolerance in natural populations. Recent insights in this field have just begun to shed light on the behavior of genetic and epigenetic variation in natural plant populations under biotic and abiotic stresses. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.
Collapse
Affiliation(s)
- Clícia Grativol
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
441
|
Shimizu KK, Kudoh H, Kobayashi MJ. Plant sexual reproduction during climate change: gene function in natura studied by ecological and evolutionary systems biology. ANNALS OF BOTANY 2011; 108:777-87. [PMID: 21852275 PMCID: PMC3170158 DOI: 10.1093/aob/mcr180] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 05/18/2011] [Indexed: 05/19/2023]
Abstract
BACKGROUND It is essential to understand and predict the effects of changing environments on plants. This review focuses on the sexual reproduction of plants, as previous studies have suggested that this trait is particularly vulnerable to climate change, and because a number of ecologically and evolutionarily relevant genes have been identified. SCOPE It is proposed that studying gene functions in naturally fluctuating conditions, or gene functions in natura, is important to predict responses to changing environments. First, we discuss flowering time, an extensively studied example of phenotypic plasticity. The quantitative approaches of ecological and evolutionary systems biology have been used to analyse the expression of a key flowering gene, FLC, of Arabidopsis halleri in naturally fluctuating environments. Modelling showed that FLC acts as a quantitative tracer of the temperature over the preceding 6 weeks. The predictions of this model were verified experimentally, confirming its applicability to future climate changes. Second, the evolution of self-compatibility as exemplifying an evolutionary response is discussed. Evolutionary genomic and functional analyses have indicated that A. thaliana became self-compatible via a loss-of-function mutation in the male specificity gene, SCR/SP11. Self-compatibility evolved during glacial-interglacial cycles, suggesting its association with mate limitation during migration. Although the evolution of self-compatibility may confer short-term advantages, it is predicted to increase the risk of extinction in the long term because loss-of-function mutations are virtually irreversible. CONCLUSIONS Recent studies of FLC and SCR have identified gene functions in natura that are unlikely to be found in laboratory experiments. The significance of epigenetic changes and the study of non-model species with next-generation DNA sequencers is also discussed.
Collapse
Affiliation(s)
- Kentaro K Shimizu
- Institute of Plant Biology, University Research Priority Program in Systems Biology/Functional Genomics & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland.
| | | | | |
Collapse
|
442
|
Delker C, Quint M. Expression level polymorphisms: heritable traits shaping natural variation. TRENDS IN PLANT SCIENCE 2011; 16:481-488. [PMID: 21700486 DOI: 10.1016/j.tplants.2011.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 05/12/2011] [Accepted: 05/18/2011] [Indexed: 05/31/2023]
Abstract
Natural accessions of many species harbor a wealth of genetic variation visible in a large array of phenotypes. Although expression level polymorphisms (ELPs) in several genes have been shown to contribute to variation in diverse traits, their general impact on adaptive variation has likely been underestimated. At present, ELPs have predominantly been correlated to quantitative trait loci (eQTLs) that occupy central hubs in signaling networks, which pleiotropically affect numerous traits. To increase the sensitivity of detecting minor effect eQTLs or those that act in a trait-specific manner, we emphasize the need for more systematic approaches. This requires, but is not limited to, refining experimental designs such as reduction of tissue complexity and combinatorial methods including a priori defined networks.
Collapse
Affiliation(s)
- Carolin Delker
- Leibniz Institute of Plant Biochemistry, Independent Junior Research Group, Department of Molecular Signal Processing, Weinberg 3, 06120 Halle (Saale), Germany
| | | |
Collapse
|
443
|
Simon JC, Pfrender ME, Tollrian R, Tagu D, Colbourne JK. Genomics of environmentally induced phenotypes in 2 extremely plastic arthropods. J Hered 2011; 102:512-25. [PMID: 21525179 PMCID: PMC3156564 DOI: 10.1093/jhered/esr020] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 02/27/2011] [Accepted: 03/02/2011] [Indexed: 11/14/2022] Open
Abstract
Understanding how genes and the environment interact to shape phenotypes is of fundamental importance for resolving important issues in adaptive evolution. Yet, for most model species with mature genetics and accessible genomic resources, we know little about the natural environmental factors that shape their evolution. By contrast, animal species with deeply understood ecologies and well characterized responses to environmental cues are rarely subjects of genomic investigations. Here, we preview advances in genomics in aphids and waterfleas that may help transform research on the regulatory mechanisms of phenotypic plasticity. This insect and crustacean duo has the capacity to produce extremely divergent phenotypes in response to environmental stimuli. Sexual fate and reproductive mode are condition-dependent in both groups, which are also capable of altering morphology, physiology and behavior in response to biotic and abiotic cues. Recently, the genome sequences for the pea aphid Acyrthosiphon pisum and the waterflea Daphnia pulex were described by their respective research communities. We propose that an integrative study of genome biology focused on the condition-dependent transcriptional basis of their shared plastic traits and specialized mode of reproduction will provide broad insight into adaptive plasticity and genome by environment interactions. We highlight recent advances in understanding the genome regulation of alternative phenotypes and environmental cue processing, and we propose future research avenues to discover gene networks and epigenetic mechanisms underlying phenotypic plasticity.
Collapse
Affiliation(s)
- Jean-Christophe Simon
- INRA, UMR BiO3P, Biologie des Organismes et des Populations appliquée à la Protection des Plantes, Le Rheu cedex, France.
| | | | | | | | | |
Collapse
|
444
|
Wooten EC, Huggins GS. Mind the dbGAP: the application of data mining to identify biological mechanisms. Mol Interv 2011; 11:95-102. [PMID: 21540468 DOI: 10.1124/mi.11.2.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Eric C Wooten
- MCRI Center for Translational Genomics, Molecular Cardiology Research Institute, Tufts University School of Medicine, Tufts Medical Center, Boston, MA, USA.
| | | |
Collapse
|
445
|
Hauser MT, Aufsatz W, Jonak C, Luschnig C. Transgenerational epigenetic inheritance in plants. BIOCHIMICA ET BIOPHYSICA ACTA 2011. [PMID: 21515434 DOI: 10.1016/j.bbagrm.2011.03.007.transgenerational] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Interest in transgenerational epigenetic inheritance has intensified with the boosting of knowledge on epigenetic mechanisms regulating gene expression during development and in response to internal and external signals such as biotic and abiotic stresses. Starting with an historical background of scantily documented anecdotes and their consequences, we recapitulate the information gathered during the last 60 years on naturally occurring and induced epialleles and paramutations in plants. We present the major players of epigenetic regulation and their importance in controlling stress responses. The effect of diverse stressors on the epigenetic status and its transgenerational inheritance is summarized from a mechanistic viewpoint. The consequences of transgenerational epigenetic inheritance are presented, focusing on the knowledge about its stability, and in relation to genetically fixed mutations, recombination, and genomic rearrangement. We conclude with an outlook on the importance of transgenerational inheritance for adaptation to changing environments and for practical applications. This article is part of a Special Issue entitled "Epigenetic control of cellular and developmental processes in plants".
Collapse
Affiliation(s)
- Marie-Theres Hauser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, Austria
| | | | | | | |
Collapse
|
446
|
Scoville AG, Barnett LL, Bodbyl-Roels S, Kelly JK, Hileman LC. Differential regulation of a MYB transcription factor is correlated with transgenerational epigenetic inheritance of trichome density in Mimulus guttatus. THE NEW PHYTOLOGIST 2011; 191:251-263. [PMID: 21352232 PMCID: PMC3107365 DOI: 10.1111/j.1469-8137.2011.03656.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
• Epigenetic inheritance, transgenerational transmission of traits not proximally determined by DNA sequence, has been linked to transmission of chromatin modifications and gene regulation, which are known to be sensitive to environmental factors. Mimulus guttatus increases trichome (plant hair) density in response to simulated herbivore damage. Increased density is expressed in progeny even if progeny do not experience damage. To better understand epigenetic inheritance of trichome production, we tested the hypothesis that candidate gene expression states are inherited in response to parental damage. • Using M. guttatus recombinant inbred lines, offspring of leaf-damaged and control plants were raised without damage. Relative expression of candidate trichome development genes was measured in offspring. Line and parental damage effects on trichome density were measured. Associations between gene expression, trichome density, and response to parental damage were determined. • We identified M. guttatus MYB MIXTA-like 8 as a possible negative regulator of trichome development. We found that parental leaf damage induces down-regulation of MYB MIXTA-like 8 in progeny, which is associated with epigenetically inherited increased trichome density. • Our results link epigenetic transmission of an ecologically important trait with differential gene expression states - providing insight into a mechanism underlying environmentally induced 'soft inheritance'.
Collapse
Affiliation(s)
- Alison G Scoville
- Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, KS 66045, USA
| | - Laryssa L Barnett
- Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, KS 66045, USA
| | - Sarah Bodbyl-Roels
- Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, KS 66045, USA
| | - John K Kelly
- Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, KS 66045, USA
| | - Lena C Hileman
- Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
447
|
De Block M, Van Lijsebettens M. Energy efficiency and energy homeostasis as genetic and epigenetic components of plant performance and crop productivity. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:275-82. [PMID: 21411363 DOI: 10.1016/j.pbi.2011.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/22/2011] [Accepted: 02/22/2011] [Indexed: 05/04/2023]
Abstract
The importance of energy metabolism in plant performance and plant productivity is conceptually well recognized. In the eighties, several independent studies in Lolium perenne (ryegrass), Zea mays (maize), and Festuca arundinacea (tall fescue) correlated low respiration rates with high yields. Similar reports in the nineties largely confirmed this correlation in Solanum lycopersicum (tomato) and Cucumis sativus (cucumber). However, selection for reduced respiration does not always result in high-yielding cultivars. Indeed, the ratio between energy content and respiration, defined here as energy efficiency, rather than respiration on its own, has a major impact on the yield potential of a crop. Besides energy efficiency, energy homeostasis, representing the balance between energy production and consumption in a changing environment, also contributes to an enhanced plant performance and this happens mainly through an increased stress tolerance. Although a few single gene approaches look promising, probably whole interacting networks have to be modulated, as is done by classical breeding, to improve the energy status of plants. Recent developments show that both energy efficiency and energy homeostasis have an epigenetic component that can be directed and stabilized by artificial selection (i.e. selective breeding). This novel approach offers new opportunities to improve yield potential and stress tolerance in a wide variety of crops.
Collapse
|
448
|
Mirouze M, Paszkowski J. Epigenetic contribution to stress adaptation in plants. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:267-74. [PMID: 21450514 DOI: 10.1016/j.pbi.2011.03.004] [Citation(s) in RCA: 286] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/01/2011] [Accepted: 03/03/2011] [Indexed: 05/18/2023]
Abstract
Plant epigenetics has recently gained unprecedented interest, not only as a subject of basic research but also as a possible new source of beneficial traits for plant breeding. We discuss here mechanisms of epigenetic regulation that should be considered when undertaking the latter. Since these mechanisms are responsible for the formation of heritable epigenetic gene variants (epialleles) and also regulate transposons mobility, both aspects could be exploited to broaden plant phenotypic and genetic variation, which could improve long-term plant adaptation to environmental challenges and, thus, increase productivity.
Collapse
Affiliation(s)
- Marie Mirouze
- Department of Plant Biology, Sciences III, University of Geneva, 30 Quai Ernest-Ansermet, Geneva 4, Switzerland.
| | | |
Collapse
|
449
|
Genome-wide epigenetic perturbation jump-starts patterns of heritable variation found in nature. Genetics 2011; 188:1015-7. [PMID: 21596900 DOI: 10.1534/genetics.111.128744] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We extensively phenotyped 6000 Arabidopsis plants with experimentally perturbed DNA methylomes as well as a diverse panel of natural accessions in a common garden. We found that alterations in DNA methylation not only caused heritable phenotypic diversity but also produced heritability patterns closely resembling those of the natural accessions. Our findings indicate that epigenetically induced and naturally occurring variation in complex traits share part of their polygenic architecture and may offer complementary adaptation routes in ecological settings.
Collapse
|
450
|
Vandegehuchte MB, Janssen CR. Epigenetics and its implications for ecotoxicology. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:607-624. [PMID: 21424724 DOI: 10.1007/s10646-011-0634-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/05/2011] [Indexed: 05/30/2023]
Abstract
Epigenetics is the study of mitotically or meiotically heritable changes in gene function that occur without a change in the DNA sequence. Interestingly, epigenetic changes can be triggered by environmental factors. Environmental exposure to e.g. metals, persistent organic pollutants or endocrine disrupting chemicals has been shown to modulate epigenetic marks, not only in mammalian cells or rodents, but also in environmentally relevant species such as fish or water fleas. The associated changes in gene expression often lead to modifications in the affected organism's phenotype. Epigenetic changes can in some cases be transferred to subsequent generations, even when these generations are no longer exposed to the external factor which induced the epigenetic change, as observed in a study with fungicide exposed rats. The possibility of this phenomenon in other species was demonstrated in water fleas exposed to the epigenetic drug 5-azacytidine. This way, populations can experience the effects of their ancestors' exposure to chemicals, which has implications for environmental risk assessment. More basic research is needed to assess the potential phenotypic and population-level effects of epigenetic modifications in different species and to evaluate the persistence of chemical exposure-induced epigenetic effects in multiple subsequent generations.
Collapse
Affiliation(s)
- Michiel B Vandegehuchte
- Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University (UGent), Jozef Plateaustraat 22, 9000 Ghent, Belgium.
| | | |
Collapse
|