401
|
Locke MN, Thorner J. Rab5 GTPases are required for optimal TORC2 function. J Cell Biol 2019; 218:961-976. [PMID: 30578283 PMCID: PMC6400565 DOI: 10.1083/jcb.201807154] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 11/16/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022] Open
Abstract
Target of rapamycin complex-2 (TORC2), a conserved protein kinase complex, is an indispensable regulator of plasma membrane homeostasis. In budding yeast (Saccharomyces cerevisiae), the essential downstream effector of TORC2 is protein kinase Ypk1 and its paralog Ypk2. Muk1, a Rab5-specific guanine nucleotide exchange factor (GEF), was identified in our prior global screen for candidate Ypk1 targets. We confirm here that Muk1 is a substrate of Ypk1 and demonstrate that Ypk1-mediated phosphorylation stimulates Muk1 function in vivo. Strikingly, yeast lacking its two Rab5 GEFs (Muk1 and Vps9) or its three Rab5 paralogs (Vps21/Ypt51, Ypt52, and Ypt53) or overexpressing Msb3, a Rab5-directed GTPase-activating protein, all exhibit pronounced reduction in TORC2-mediated phosphorylation and activation of Ypk1. Vps21 coimmunoprecipitates with TORC2, and immuno-enriched TORC2 is less active in vitro in the absence of Rab5 GTPases. Thus, TORC2-dependent and Ypk1-mediated activation of Muk1 provides a control circuit for positive (self-reinforcing) up-regulation to sustain TORC2-Ypk1 signaling.
Collapse
Affiliation(s)
- Melissa N Locke
- Division of Biochemistry, Biophysics, and Structural Biology and Division of Cell and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics, and Structural Biology and Division of Cell and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
402
|
de Oliveira MVV, Jin X, Chen X, Griffith D, Batchu S, Maeda HA. Imbalance of tyrosine by modulating TyrA arogenate dehydrogenases impacts growth and development of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:901-922. [PMID: 30457178 DOI: 10.1111/tpj.14169] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
l-Tyrosine is an essential aromatic amino acid required for the synthesis of proteins and a diverse array of plant natural products; however, little is known on how the levels of tyrosine are controlled in planta and linked to overall growth and development. Most plants synthesize tyrosine by TyrA arogenate dehydrogenases, which are strongly feedback-inhibited by tyrosine and encoded by TyrA1 and TyrA2 genes in Arabidopsis thaliana. While TyrA enzymes have been extensively characterized at biochemical levels, their in planta functions remain uncertain. Here we found that TyrA1 suppression reduces seed yield due to impaired anther dehiscence, whereas TyrA2 knockout leads to slow growth with reticulate leaves. The tyra2 mutant phenotypes were exacerbated by TyrA1 suppression and rescued by the expression of TyrA2, TyrA1 or tyrosine feeding. Low-light conditions synchronized the tyra2 and wild-type growth, and ameliorated the tyra2 leaf reticulation. After shifting to normal light, tyra2 transiently decreased tyrosine and subsequently increased aspartate before the appearance of the leaf phenotypes. Overexpression of the deregulated TyrA enzymes led to hyper-accumulation of tyrosine, which was also accompanied by elevated aspartate and reticulate leaves. These results revealed that TyrA1 and TyrA2 have distinct and overlapping functions in flower and leaf development, respectively, and that imbalance of tyrosine, caused by altered TyrA activity and regulation, impacts growth and development of Arabidopsis. The findings provide critical bases for improving the production of tyrosine and its derived natural products, and further elucidating the coordinated metabolic and physiological processes to maintain tyrosine levels in plants.
Collapse
Affiliation(s)
- Marcos V V de Oliveira
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Xing Jin
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Xuan Chen
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Daniel Griffith
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| | - Sai Batchu
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
- Department of Biology, The College of New Jersey, Biology Building, 2000 Pennington Road, Ewing, NJ, 08628, USA
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA
| |
Collapse
|
403
|
Abstract
The organs require oxygen and other types of nutrients (amino acids, sugars, and lipids) to function, the heart consuming large amounts of fatty acids for oxidation and adenosine triphosphate (ATP) generation.
Collapse
|
404
|
Schwachtje J, Whitcomb SJ, Firmino AAP, Zuther E, Hincha DK, Kopka J. Induced, Imprinted, and Primed Responses to Changing Environments: Does Metabolism Store and Process Information? FRONTIERS IN PLANT SCIENCE 2019; 10:106. [PMID: 30815006 PMCID: PMC6381073 DOI: 10.3389/fpls.2019.00106] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/23/2019] [Indexed: 05/21/2023]
Abstract
Metabolism is the system layer that determines growth by the rate of matter uptake and conversion into biomass. The scaffold of enzymatic reaction rates drives the metabolic network in a given physico-chemical environment. In response to the diverse environmental stresses, plants have evolved the capability of integrating macro- and micro-environmental events to be prepared, i.e., to be primed for upcoming environmental challenges. The hierarchical view on stress signaling, where metabolites are seen as final downstream products, has recently been complemented by findings that metabolites themselves function as stress signals. We present a systematic concept of metabolic responses that are induced by environmental stresses and persist in the plant system. Such metabolic imprints may prime metabolic responses of plants for subsequent environmental stresses. We describe response types with examples of biotic and abiotic environmental stresses and suggest that plants use metabolic imprints, the metabolic changes that last beyond recovery from stress events, and priming, the imprints that function to prepare for upcoming stresses, to integrate diverse environmental stress histories. As a consequence, even genetically identical plants should be studied and understood as phenotypically plastic organisms that continuously adjust their metabolic state in response to their individually experienced local environment. To explore the occurrence and to unravel functions of metabolic imprints, we encourage researchers to extend stress studies by including detailed metabolic and stress response monitoring into extended recovery phases.
Collapse
Affiliation(s)
- Jens Schwachtje
- Department of Molecular Physiology, Applied Metabolome Analysis, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | | | | | | | | |
Collapse
|
405
|
Abstract
In eukaryotes, TORC1/MTORC1 is a critical regulator of growth and proliferation. In response to nutrient abundance TORC1/MTORC1 favors anabolic processes and retards degradative ones. In S. cerevisiae, TORC1 is conventionally known to localize on the vacuolar membrane. In the course of their recent investigations, Hatakeyama et al. discovered a novel second site of TORC1 localization- the prevacuolar endosome. Their article, highlighted here, discusses the mechanism of TORC1 localization to the prevacuolar endosome and highlights a hitherto unappreciated mechanism by which 2 spatially separated pools of TORC1 execute the distinct functions of promoting anabolism and inhibiting degradation.
Collapse
Affiliation(s)
- Vikramjit Lahiri
- a Life Sciences Institute, and Department of Molecular, Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI , USA
| | - Daniel J Klionsky
- a Life Sciences Institute, and Department of Molecular, Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
406
|
Sullivan A, Wallace RL, Wellington R, Luo X, Capaldi AP. Multilayered regulation of TORC1-body formation in budding yeast. Mol Biol Cell 2019; 30:400-410. [PMID: 30485160 PMCID: PMC6589571 DOI: 10.1091/mbc.e18-05-0297] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 11/08/2018] [Accepted: 11/20/2018] [Indexed: 02/05/2023] Open
Abstract
The target of rapamycin kinase complex 1 (TORC1) regulates cell growth and metabolism in eukaryotes. In Saccharomyces cerevisiae, TORC1 activity is known to be controlled by the conserved GTPases, Gtr1/2, and movement into and out of an inactive agglomerate/body. However, it is unclear whether/how these regulatory steps are coupled. Here we show that active Gtr1/2 is a potent inhibitor of TORC1-body formation, but cells missing Gtr1/2 still form TORC1-bodies in a glucose/nitrogen starvation-dependent manner. We also identify 13 new activators of TORC1-body formation and show that seven of these proteins regulate the Gtr1/2-dependent repression of TORC1-body formation, while the remaining proteins drive the subsequent steps in TORC1 agglomeration. Finally, we show that the conserved phosphatidylinositol-3-phosphate (PI(3)P) binding protein, Pib2, forms a complex with TORC1 and overrides the Gtr1/2-dependent repression of TORC1-body formation during starvation. These data provide a unified, systems-level model of TORC1 regulation in yeast.
Collapse
Affiliation(s)
- Arron Sullivan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721-0206
| | - Ryan L. Wallace
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721-0206
| | - Rachel Wellington
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721-0206
| | - Xiangxia Luo
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721-0206
| | - Andrew P. Capaldi
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721-0206
| |
Collapse
|
407
|
Teng X, Hardwick JM. Whi2: a new player in amino acid sensing. Curr Genet 2019; 65:701-709. [PMID: 30701278 DOI: 10.1007/s00294-018-00929-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/30/2018] [Accepted: 12/31/2018] [Indexed: 12/26/2022]
Abstract
A critical function of human, yeast, and bacterial cells is the ability to sense and respond to available nutrients such as glucose and amino acids. Cells must also detect declining nutrient levels to adequately prepare for starvation conditions by inhibiting cell growth and activating autophagy. The evolutionarily conserved protein complex TORC1 regulates these cellular responses to nutrients, and in particular to amino acid availability. Recently, we found that yeast Whi2 (Saccharomyces cerevisiae) and a human counterpart, KCTD11, that shares a conserved BTB structural domain, are required to suppress TORC1 activity under low amino acid conditions. Using yeast, the mechanisms were more readily dissected. Unexpectedly, Whi2 suppresses TORC1 activity independently of the well-known SEACIT-GTR pathway, analogous to the GATOR1-RAG pathway in mammals. Instead, Whi2 requires the plasma membrane-associated phosphatases Psr1 and Psr2, which were known to bind Whi2, although their role was unknown. Yeast WHI2 was previously reported to be involved in regulating several fundamental cellular processes including cell cycle arrest, general stress responses, the Ras-cAMP-PKA pathway, autophagy, and mitophagy, and to be frequently mutated in the yeast knockout collections and in genome evolution studies. Most of these observations are likely explained by the ability of Whi2 to inhibit TORC1. Thus, understanding the function of yeast Whi2 will provide deeper insights into the disease-related KCTD family proteins and the pathogenesis of plant and human fungal infections.
Collapse
Affiliation(s)
- Xinchen Teng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China. .,W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| | - J Marie Hardwick
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
408
|
Umekawa M. Regulation and Physiology of Autophagy Induced by Glucose Starvation “The role of autophagy for the degradation of intracellular mannosyl glycan in yeast”. TRENDS GLYCOSCI GLYC 2019. [DOI: 10.4052/tigg.1748.1e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
409
|
Umekawa M. Regulation and Physiology of Autophagy Induced by Glucose Starvation “The role of autophagy for the degradation of intracellular mannosyl glycan in yeast”. TRENDS GLYCOSCI GLYC 2019. [DOI: 10.4052/tigg.1748.1j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
410
|
Parenteau J, Maignon L, Berthoumieux M, Catala M, Gagnon V, Abou Elela S. Introns are mediators of cell response to starvation. Nature 2019; 565:612-617. [DOI: 10.1038/s41586-018-0859-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 12/07/2018] [Indexed: 11/09/2022]
|
411
|
Barbosa MC, Grosso RA, Fader CM. Hallmarks of Aging: An Autophagic Perspective. Front Endocrinol (Lausanne) 2019; 9:790. [PMID: 30687233 PMCID: PMC6333684 DOI: 10.3389/fendo.2018.00790] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/17/2018] [Indexed: 12/16/2022] Open
Abstract
Autophagy is a major protein turnover pathway by which cellular components are delivered into the lysosomes for degradation and recycling. This intracellular process is able to maintain cellular homeostasis under stress conditions, and its dysregulation could lead to the development of physiological alterations. The autophagic activity has been found to decrease with age, likely contributing to the accumulation of damaged macromolecules and organelles during aging. Interestingly, failure of the autophagic process has been reported to worsen aging-associated diseases, such as neurodegeneration or cancer, among others. Likewise, it has been proposed in different organisms that maintenance of a proper autophagic activity contributes to extending longevity. In this review, we discuss recent papers showing the impact of autophagy on cell activity and age-associated diseases, highlighting the relevance of this process to the hallmarks of aging. Thus, understanding how autophagy plays an important role in aging opens new avenues for the discovery of biochemical and pharmacological targets and the development of novel anti-aging therapeutic approaches.
Collapse
Affiliation(s)
- María Carolina Barbosa
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Rubén Adrián Grosso
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Claudio Marcelo Fader
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Facultad de Odontología, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
412
|
Boutouja F, Stiehm CM, Platta HW. mTOR: A Cellular Regulator Interface in Health and Disease. Cells 2019; 8:cells8010018. [PMID: 30609721 PMCID: PMC6356367 DOI: 10.3390/cells8010018] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/25/2018] [Accepted: 01/01/2019] [Indexed: 12/19/2022] Open
Abstract
The mechanistic target of Rapamycin (mTOR) is a ubiquitously-conserved serine/threonine kinase, which has a central function in integrating growth signals and orchestrating their physiologic effects on cellular level. mTOR is the core component of differently composed signaling complexes that differ in protein composition and molecular targets. Newly identified classes of mTOR inhibitors are being developed to block autoimmune diseases and transplant rejections but also to treat obesity, diabetes, and different types of cancer. Therefore, the selective and context-dependent inhibition of mTOR activity itself might come into the focus as molecular target to prevent severe diseases and possibly to extend life span. This review provides a general introduction to the molecular composition and physiologic function of mTOR complexes as part of the Special Issue “2018 Select Papers by Cells’ Editorial Board Members”.
Collapse
Affiliation(s)
- Fahd Boutouja
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| | - Christian M Stiehm
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| | - Harald W Platta
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| |
Collapse
|
413
|
Rodríguez-Romero J, Marconi M, Ortega-Campayo V, Demuez M, Wilkinson MD, Sesma A. Virulence- and signaling-associated genes display a preference for long 3'UTRs during rice infection and metabolic stress in the rice blast fungus. THE NEW PHYTOLOGIST 2019; 221:399-414. [PMID: 30169888 DOI: 10.1111/nph.15405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
Generation of mRNA isoforms by alternative polyadenylation (APA) and their involvement in regulation of fungal cellular processes, including virulence, remains elusive. Here, we investigated genome-wide polyadenylation site (PAS) selection in the rice blast fungus to understand how APA regulates pathogenicity. More than half of Magnaporthe oryzae transcripts undergo APA and show novel motifs in their PAS region. Transcripts with shorter 3'UTRs are more stable and abundant in polysomal fractions, suggesting they are being translated more efficiently. Importantly, rice colonization increases the use of distal PASs of pathogenicity genes, especially those participating in signalling pathways like 14-3-3B, whose long 3'UTR is required for infection. Cleavage factor I (CFI) Rbp35 regulates expression and distal PAS selection of virulence and signalling-associated genes, tRNAs and transposable elements, pointing its potential to drive genomic rearrangements and pathogen evolution. We propose a noncanonical PAS selection mechanism for Rbp35 that recognizes UGUAH, unlike humans, without CFI25. Our results showed that APA controls turnover and translation of transcripts involved in fungal growth and environmental adaptation. Furthermore, these data provide useful information for enhancing genome annotations and for cross-species comparisons of PASs and PAS usage within the fungal kingdom and the tree of life.
Collapse
Affiliation(s)
- Julio Rodríguez-Romero
- Centre for Plant Biotechnology and Genomics (CBGP UPM-INIA), Universidad Politécnica de Madrid (UPM) & Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, UPM, Campus Ciudad Universitaria, 28040, Madrid, Spain
| | - Marco Marconi
- Centre for Plant Biotechnology and Genomics (CBGP UPM-INIA), Universidad Politécnica de Madrid (UPM) & Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, UPM, Campus Ciudad Universitaria, 28040, Madrid, Spain
| | - Víctor Ortega-Campayo
- Centre for Plant Biotechnology and Genomics (CBGP UPM-INIA), Universidad Politécnica de Madrid (UPM) & Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, UPM, Campus Ciudad Universitaria, 28040, Madrid, Spain
| | - Marie Demuez
- Centre for Plant Biotechnology and Genomics (CBGP UPM-INIA), Universidad Politécnica de Madrid (UPM) & Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, UPM, Campus Ciudad Universitaria, 28040, Madrid, Spain
| | - Mark D Wilkinson
- Centre for Plant Biotechnology and Genomics (CBGP UPM-INIA), Universidad Politécnica de Madrid (UPM) & Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, UPM, Campus Ciudad Universitaria, 28040, Madrid, Spain
| | - Ane Sesma
- Centre for Plant Biotechnology and Genomics (CBGP UPM-INIA), Universidad Politécnica de Madrid (UPM) & Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal, UPM, Campus Ciudad Universitaria, 28040, Madrid, Spain
| |
Collapse
|
414
|
Werth EG, McConnell EW, Couso Lianez I, Perrine Z, Crespo JL, Umen JG, Hicks LM. Investigating the effect of target of rapamycin kinase inhibition on the Chlamydomonas reinhardtii phosphoproteome: from known homologs to new targets. THE NEW PHYTOLOGIST 2019; 221:247-260. [PMID: 30040123 DOI: 10.1111/nph.15339] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/11/2018] [Indexed: 05/20/2023]
Abstract
Target of rapamycin (TOR) kinase is a conserved regulator of cell growth whose activity is modulated in response to nutrients, energy and stress. Key proteins involved in the pathway are conserved in the model photosynthetic microalga Chlamydomonas reinhardtii, but the substrates of TOR kinase and downstream signaling network have not been elucidated. Our study provides a new resource for investigating the phosphorylation networks governed by the TOR kinase pathway in Chlamydomonas. We used quantitative phosphoproteomics to investigate the effects of inhibiting Chlamydomonas TOR kinase on dynamic protein phosphorylation. Wild-type and AZD-insensitive Chlamydomonas strains were treated with TOR-specific chemical inhibitors (rapamycin, AZD8055 and Torin1), after which differentially affected phosphosites were identified. Our quantitative phosphoproteomic dataset comprised 2547 unique phosphosites from 1432 different proteins. Inhibition of TOR kinase caused significant quantitative changes in phosphorylation at 258 phosphosites, from 219 unique phosphopeptides. Our results include Chlamydomonas homologs of TOR signaling-related proteins, including a site on RPS6 with a decrease in phosphorylation. Additionally, phosphosites on proteins involved in translation and carotenoid biosynthesis were identified. Follow-up experiments guided by these phosphoproteomic findings in lycopene beta/epsilon cyclase showed that carotenoid levels are affected by TORC1 inhibition and carotenoid production is under TOR control in algae.
Collapse
Affiliation(s)
- Emily G Werth
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Evan W McConnell
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Inmaculada Couso Lianez
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Sevilla, Avda. Américo Vespucio 49, 41092, Sevilla, Spain
| | - Zoee Perrine
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Jose L Crespo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Sevilla, Avda. Américo Vespucio 49, 41092, Sevilla, Spain
| | - James G Umen
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
415
|
Takeuchi T, Benning C. Nitrogen-dependent coordination of cell cycle, quiescence and TAG accumulation in Chlamydomonas. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:292. [PMID: 31890020 PMCID: PMC6927116 DOI: 10.1186/s13068-019-1635-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/12/2019] [Indexed: 05/07/2023]
Abstract
Microalgae hold great promises as sustainable cellular factories for the production of alternative fuels, feeds, and biopharmaceuticals for human health. While the biorefinery approach for fuels along with the coproduction of high-value compounds with industrial, therapeutic, or nutraceutical applications have the potential to make algal biofuels more economically viable, a number of challenges continue to hamper algal production systems at all levels. One such hurdle includes the metabolic trade-off often observed between the increased yields of desired products, such as triacylglycerols (TAG), and the growth of an organism. Initial genetic engineering strategies to improve lipid productivity in microalgae, which focused on overproducing the enzymes involved in fatty acid and TAG biosynthesis or inactivating competing carbon (C) metabolism, have seen some successes albeit at the cost of often greatly reduced biomass. Emergent approaches that aim at modifying the dynamics of entire metabolic pathways by engineering of pertinent transcription factors or signaling networks appear to have successfully achieved a balance between growth and neutral lipid accumulation. However, the biological knowledge of key signaling networks and molecular components linking these two processes is still incomplete in photosynthetic eukaryotes, making it difficult to optimize metabolic engineering strategies for microalgae. Here, we focus on nitrogen (N) starvation of the model green microalga, Chlamydomonas reinhardtii, to present the current understanding of the nutrient-dependent switch between proliferation and quiescence, and the drastic reprogramming of metabolism that results in the storage of C compounds following N starvation. We discuss the potential components mediating the transcriptional repression of cell cycle genes and the establishment of quiescence in Chlamydomonas, and highlight the importance of signaling pathways such as those governed by the target of rapamycin (TOR) and sucrose nonfermenting-related (SnRK) kinases in the coordination of metabolic status with cellular growth. A better understanding of how the cell division cycle is regulated in response to nutrient scarcity and of the signaling pathways linking cellular growth to energy and lipid homeostasis, is essential to improve the prospects of biofuels and biomass production in microalgae.
Collapse
Affiliation(s)
- Tomomi Takeuchi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
416
|
Gao Q, Zhou G, Lin SJ, Paus R, Yue Z. How chemotherapy and radiotherapy damage the tissue: Comparative biology lessons from feather and hair models. Exp Dermatol 2018; 28:413-418. [PMID: 30457678 DOI: 10.1111/exd.13846] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/11/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022]
Abstract
Chemotherapy and radiotherapy are common modalities for cancer treatment. While targeting rapidly growing cancer cells, they also damage normal tissues and cause adverse effects. From the initial insult such as DNA double-strand break, production of reactive oxygen species (ROS) and a general stress response, there are complex regulatory mechanisms that control the actual tissue damage process. Besides apoptosis, a range of outcomes for the damaged cells are possible including cell cycle arrest, senescence, mitotic catastrophe, and inflammatory responses and fibrosis at the tissue level. Feather and hair are among the most actively proliferating (mini-)organs and are highly susceptible to both chemotherapy and radiotherapy damage, thus provide excellent, experimentally tractable model systems for dissecting how normal tissues respond to such injuries. Taking a comparative biology approach to investigate this has turned out to be particularly productive. Started in chicken feather and then extended to murine hair follicles, it was revealed that in addition to p53-mediated apoptosis, several other previously overlooked mechanisms are involved. Specifically, Shh, Wnt, mTOR, cytokine signalling and ROS-mediated degradation of adherens junctions have been implicated in the damage and/or reparative regeneration process. Moreover, we show here that inflammatory responses, which can be prominent upon histological examination of chemo- or radiotherapy-damaged hair follicle, may not be essential for the hair loss phenotype. These studies point to fundamental, evolutionarily conserved mechanisms in controlling tissue responses in vivo, and suggest novel strategies for the prevention and management of adverse effects that arise from chemo- or radiotherapy.
Collapse
Affiliation(s)
- QingXiang Gao
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, China
| | - GuiXuan Zhou
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, China
| | - Sung-Jan Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.,Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Ralf Paus
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida.,Centre for Dermatology Research, University of Manchester, Manchester, UK
| | - ZhiCao Yue
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
417
|
The emerging interrelation between ROCO and related kinases, intracellular Ca 2+ signaling, and autophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:1054-1067. [PMID: 30582936 DOI: 10.1016/j.bbamcr.2018.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022]
Abstract
ROCO kinases form a family of proteins characterized by kinase activity in addition to the presence of the so-called ROC (Ras of complex proteins)/COR (C-terminal of ROC) domains having a role in their GTPase activity. These are the death-associated protein kinase (DAPK) 1 and the leucine-rich repeat kinases (LRRK) 1 and 2. These kinases all play roles in cellular life and death decisions and in autophagy in particular. Related to the ROCO kinases is DAPK 2 that however cannot be classified as a ROCO protein due to the absence of the ROC/COR domains. This review aims to bring together what is known about the relation between these proteins and intracellular Ca2+ signals in the induction and regulation of autophagy. Interestingly, DAPK 1 and 2 and LRRK2 are all linked to Ca2+ signaling in their effects on autophagy, though in various ways. Present evidence supports an upstream role for LRRK2 that via lysosomal and endoplasmic reticulum Ca2+ release can trigger autophagy induction. In contrast herewith, DAPK1 and 2 react on existing Ca2+ signals to stimulate the autophagic pathway. Further research will be needed for obtaining a full understanding of the role of these various kinases in autophagy and to assess their exact relation with intracellular Ca2+ signaling as this would be helpful in the development of novel therapeutic strategies against neurodegenerative disorders, cancer and auto-immune diseases. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
|
418
|
β-N-methylamino-L-alanine (BMAA) suppresses cell cycle progression of non-neuronal cells. Sci Rep 2018; 8:17995. [PMID: 30573743 PMCID: PMC6301973 DOI: 10.1038/s41598-018-36418-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 11/21/2018] [Indexed: 12/25/2022] Open
Abstract
β-N-methylamino-L-alanine (BMAA), a natural non-proteinaceous amino acid, is a neurotoxin produced by a wide range of cyanobacteria living in various environments. BMAA is a candidate environmental risk factor for neurodegenerative diseases such as amyotrophic lateral sclerosis and Parkinson-dementia complex. Although BMAA is known to exhibit weak neuronal excitotoxicity via glutamate receptors, the underlying mechanism of toxicity has yet to be fully elucidated. To examine the glutamate receptor-independent toxicity of BMAA, we investigated the effects of BMAA in non-neuronal cell lines. BMAA potently suppressed the cell cycle progression of NIH3T3 cells at the G1/S checkpoint without inducing plasma membrane damage, apoptosis, or overproduction of reactive oxygen species, which were previously reported for neurons and neuroblastoma cells treated with BMAA. We found no evidence that activation of glutamate receptors was involved in the suppression of the G1/S transition by BMAA. Our results indicate that BMAA affects cellular functions, such as the division of non-neuronal cells, through glutamate receptor-independent mechanisms.
Collapse
|
419
|
Padilla CA, Bárcena JA, López-Grueso MJ, Requejo-Aguilar R. The regulation of TORC1 pathway by the yeast chaperones Hsp31 is mediated by SFP1 and affects proteasomal activity. Biochim Biophys Acta Gen Subj 2018; 1863:534-546. [PMID: 30578832 DOI: 10.1016/j.bbagen.2018.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/05/2018] [Accepted: 12/17/2018] [Indexed: 12/25/2022]
Abstract
The Saccharomyces cerevisiae heat shock proteins Hsp31-34 are members of DJ-1/ThiJ/Pfpl superfamily that includes human DJ-1 (Park7), a protein involved in heritable Parkinsonism. Although, homologs of these proteins can be found in most organisms their functions are unclear. We have carried out a quantitative proteomics analysis of yeast cells devoid of the whole set of Hsp31 family of proteins, as a model of Parkinson Disease (PD), under conditions of glucose availability and starvation. The protein profile indicates a constitutive activation of the enzyme TORC1 that makes the cells more sensitive to stress conditions. TORC1 activation prevents the cells from diauxic shift and entry into the stationary phase inducing cell death. Sfp1 stays at the helm among the several transcription factors governing the cell adaptation to Hsp31-34 deficiency. We show that Sfp1 remains mainly in the nucleus likely releasing TORC1 from inhibition by cytosolic Sfp1. Impairment of glycolysis leads to increased levels of methylglyoxal and accumulation of glycated proteins. We also show an increase in proteasome subunits in the Hsp31-34 mutant, under the control of Rpn4 transcription factor. This increase is abnormally accompanied by a decrease in proteasomal activity which could lead to accumulation of aberrant proteins and contributing to cell death.
Collapse
Affiliation(s)
- C A Padilla
- Departament of Biochemistry and Molecular Biology, University of Cordoba, 14071 Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Avda. Menéndez Pidal s/n Córdoba, Spain
| | - J A Bárcena
- Departament of Biochemistry and Molecular Biology, University of Cordoba, 14071 Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Avda. Menéndez Pidal s/n Córdoba, Spain
| | - M J López-Grueso
- Departament of Biochemistry and Molecular Biology, University of Cordoba, 14071 Córdoba, Spain
| | - R Requejo-Aguilar
- Departament of Biochemistry and Molecular Biology, University of Cordoba, 14071 Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Avda. Menéndez Pidal s/n Córdoba, Spain.
| |
Collapse
|
420
|
Walvekar AS, Srinivasan R, Gupta R, Laxman S. Methionine coordinates a hierarchically organized anabolic program enabling proliferation. Mol Biol Cell 2018; 29:3183-3200. [PMID: 30354837 PMCID: PMC6340205 DOI: 10.1091/mbc.e18-08-0515] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/12/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
Methionine availability during overall amino acid limitation metabolically reprograms cells to support proliferation, the underlying basis for which remains unclear. Here we construct the organization of this methionine-mediated anabolic program using yeast. Combining comparative transcriptome analysis and biochemical and metabolic flux-based approaches, we discover that methionine rewires overall metabolic outputs by increasing the activity of a key regulatory node. This comprises the pentose phosphate pathway (PPP) coupled with reductive biosynthesis, the glutamate dehydrogenase (GDH)-dependent synthesis of glutamate/glutamine, and pyridoxal-5-phosphate (PLP)-dependent transamination capacity. This PPP-GDH-PLP node provides the required cofactors and/or substrates for subsequent rate-limiting reactions in the synthesis of amino acids and therefore nucleotides. These rate-limiting steps in amino acid biosynthesis are also induced in a methionine-dependent manner. This thereby results in a biochemical cascade establishing a hierarchically organized anabolic program. For this methionine-mediated anabolic program to be sustained, cells co-opt a "starvation stress response" regulator, Gcn4p. Collectively, our data suggest a hierarchical metabolic framework explaining how methionine mediates an anabolic switch.
Collapse
Affiliation(s)
- Adhish S. Walvekar
- Institute for Stem Cell biology and Regenerative Medicine (inStem), NCBS-TIFR campus, Bangalore 560065, India
| | - Rajalakshmi Srinivasan
- Institute for Stem Cell biology and Regenerative Medicine (inStem), NCBS-TIFR campus, Bangalore 560065, India
| | - Ritu Gupta
- Institute for Stem Cell biology and Regenerative Medicine (inStem), NCBS-TIFR campus, Bangalore 560065, India
| | - Sunil Laxman
- Institute for Stem Cell biology and Regenerative Medicine (inStem), NCBS-TIFR campus, Bangalore 560065, India
| |
Collapse
|
421
|
Hill SM, Wrobel L, Rubinsztein DC. Post-translational modifications of Beclin 1 provide multiple strategies for autophagy regulation. Cell Death Differ 2018; 26:617-629. [PMID: 30546075 DOI: 10.1038/s41418-018-0254-9] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/19/2018] [Accepted: 11/28/2018] [Indexed: 01/07/2023] Open
Abstract
Autophagy is a conserved intracellular degradation pathway essential for protein homeostasis, survival and development. Defects in autophagic pathways have been connected to a variety of human diseases, including cancer and neurodegeneration. In the process of macroautophagy, cytoplasmic cargo is enclosed in a double-membrane structure and fused to the lysosome to allow for digestion and recycling of material. Autophagosome formation is primed by the ULK complex, which enables the downstream production of PI(3)P, a key lipid signalling molecule, on the phagophore membrane. The PI(3)P is generated by the PI3 kinase (PI3K) complex, consisting of the core components VPS34, VPS15 and Beclin 1. Beclin 1 is a central player in autophagy and constitutes a molecular platform for the regulation of autophagosome formation and maturation. Post-translational modifications of Beclin 1 affect its stability, interactions and ability to regulate PI3K activity, providing the cell with a plethora of strategies to fine-tune the levels of autophagy. Being such an important regulator, Beclin 1 is a potential target for therapeutic intervention and interfering with the post-translational regulation of Beclin 1 could be one way of manipulating the levels of autophagy. In this review, we provide an overview of the known post-translational modifications of Beclin 1 that govern its role in autophagy and how these modifications are maintained by input from several upstream signalling pathways. ▓.
Collapse
Affiliation(s)
- Sandra M Hill
- Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Lidia Wrobel
- Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK. .,UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
422
|
Abstract
Oncogenic signalling and metabolic alterations are interrelated in cancer cells. mTOR, which is frequently activated in cancer, controls cell growth and metabolism. mTOR signalling regulates amino acid, glucose, nucleotide, fatty acid and lipid metabolism. Conversely, metabolic inputs, such as amino acids, activate mTOR. In this Review, we discuss how mTOR signalling rewires cancer cell metabolism and delineate how changes in metabolism, in turn, sustain mTOR signalling and tumorigenicity. Several drugs are being developed to perturb cancer cell metabolism. However, their efficacy as stand-alone therapies, similar to mTOR inhibitors, is limited. Here, we discuss how the interdependence of mTOR signalling and metabolism can be exploited for cancer therapy.
Collapse
Affiliation(s)
| | - Sujin Park
- Biozentrum, University of Basel, Basel, Switzerland
| | | |
Collapse
|
423
|
Teng X, Yau E, Sing C, Hardwick JM. Whi2 signals low leucine availability to halt yeast growth and cell death. FEMS Yeast Res 2018; 18:5083179. [PMID: 30165592 PMCID: PMC6149368 DOI: 10.1093/femsyr/foy095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/26/2018] [Indexed: 12/16/2022] Open
Abstract
Cells are exquisitely tuned to environmental ques. Amino acid availability is rapidly sensed, allowing cells to adjust molecular processes and implement short or long-term metabolic shifts accordingly. How levels of most individual amino acids may be sensed and subsequently signaled to inform cells of their nutrient status is largely unknown. We made the unexpected observation that small changes in the levels of specific amino acids can have a profound effect on yeast cell growth, leading to the identification of yeast Whi2 as a negative regulator of cell growth in low amino acids. Although Whi2 was originally thought to be fungi-specific, Whi2 appears to share a conserved structural domain found in a family of 25 largely uncharacterized human genes encoding the KCTD (potassium channel tetramerization domain) protein family. Insights gained from yeast Whi2 are likely to be revealing about human KCTDs, many of which have been implicated or demonstrated to cause disease when mutated. Here we report new evidence that Whi2 responds to specific amino acids in the medium, particularly low leucine levels. We also discuss the known pathways of amino acid signaling and potential points of regulation by Whi2 in nutrient signaling in yeast and mammals.
Collapse
Affiliation(s)
- Xinchen Teng
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205-2103, USA
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 215123 Suzhou, Jiangsu Province, People's Republic of China
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2103, USA
| | - Eric Yau
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205-2103, USA
| | - Cierra Sing
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205-2103, USA
| | - J Marie Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205-2103, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2103, USA
| |
Collapse
|
424
|
Leskoske KL, Roelants FM, Emmerstorfer-Augustin A, Augustin CM, Si EP, Hill JM, Thorner J. Phosphorylation by the stress-activated MAPK Slt2 down-regulates the yeast TOR complex 2. Genes Dev 2018; 32:1576-1590. [PMID: 30478248 PMCID: PMC6295167 DOI: 10.1101/gad.318709.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/10/2018] [Indexed: 12/13/2022]
Abstract
Here, Leskoske et al. studied how TORC2 activity is modulated in response to changes in the status of the cell envelope. They demonstrate that TORC2 subunit Avo2 is a direct target of Slt2, the MAPK of the cell wall integrity pathway, and their findings provide new insights into TORC2 function and regulation. Saccharomyces cerevisiae target of rapamycin (TOR) complex 2 (TORC2) is an essential regulator of plasma membrane lipid and protein homeostasis. How TORC2 activity is modulated in response to changes in the status of the cell envelope is unclear. Here we document that TORC2 subunit Avo2 is a direct target of Slt2, the mitogen-activated protein kinase (MAPK) of the cell wall integrity pathway. Activation of Slt2 by overexpression of a constitutively active allele of an upstream Slt2 activator (Pkc1) or by auxin-induced degradation of a negative Slt2 regulator (Sln1) caused hyperphosphorylation of Avo2 at its MAPK phosphoacceptor sites in a Slt2-dependent manner and diminished TORC2-mediated phosphorylation of its major downstream effector, protein kinase Ypk1. Deletion of Avo2 or expression of a phosphomimetic Avo2 allele rendered cells sensitive to two stresses (myriocin treatment and elevated exogenous acetic acid) that the cell requires Ypk1 activation by TORC2 to survive. Thus, Avo2 is necessary for optimal TORC2 activity, and Slt2-mediated phosphorylation of Avo2 down-regulates TORC2 signaling. Compared with wild-type Avo2, phosphomimetic Avo2 shows significant displacement from the plasma membrane, suggesting that Slt2 inhibits TORC2 by promoting Avo2 dissociation. Our findings are the first demonstration that TORC2 function is regulated by MAPK-mediated phosphorylation.
Collapse
Affiliation(s)
- Kristin L Leskoske
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Françoise M Roelants
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Anita Emmerstorfer-Augustin
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Christoph M Augustin
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, California 94720, USA
| | - Edward P Si
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Jennifer M Hill
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Jeremy Thorner
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
425
|
Salvia R, Nardiello M, Scieuzo C, Scala A, Bufo SA, Rao A, Vogel H, Falabella P. Novel Factors of Viral Origin Inhibit TOR Pathway Gene Expression. Front Physiol 2018; 9:1678. [PMID: 30534083 PMCID: PMC6275226 DOI: 10.3389/fphys.2018.01678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 11/08/2018] [Indexed: 01/06/2023] Open
Abstract
Polydnaviruses (PDVs) are obligate symbionts of endoparasitoid wasps, which exclusively attack the larval stages of their lepidopteran hosts. The Polydnavirus is injected by the parasitoid female during oviposition to selectively infect host tissues by the expression of viral genes without undergoing replication. Toxoneuron nigriceps bracovirus (TnBV) is associated with Toxoneuron nigriceps (Hymenoptera: Braconidae) wasp, an endoparasitoid of the tobacco budworm larval stages, Heliothis virescens (Lepidoptera: Noctuidae). Previous studies showed that TnBV is responsible for alterations in host physiology. The arrest of ecdysteroidogenesis is the main alteration which occurs in last (fifth) instar larvae and, as a consequence, prevents pupation. TnBV induces the functional inactivation of H. virescens prothoracic glands (PGs), resulting in decreased protein synthesis and phosphorylation. Previous work showed the involvement of the PI3K/Akt/TOR pathway in H. virescens PG ecdysteroidogenesis. Here, we demonstrate that this cellular signaling is one of the targets of TnBV infection. Western blot analysis and enzyme immunoassay (EIA) showed that parasitism inhibits ecdysteroidogenesis and the phosphorylation of the two targets of TOR (4E-BP and S6K), despite the stimulation of PTTH contained in the brain extract. Using a transcriptomic approach, we identified viral genes selectively expressed in last instar H. virescens PGs, 48 h after parasitization, and evaluated expression levels of PI3K/Akt/TOR pathway genes in these tissues. The relative expression of selected genes belonging to the TOR pathway (tor, 4e-bp, and s6k) in PGs of parasitized larvae was further confirmed by qRT-PCR. The down-regulation of these genes in PGs of parasitized larvae supports the hypothesis of TnBV involvement in blocking ecdysteroidogenesis, through alterations of the PI3K/Akt/TOR pathway at the transcriptional level.
Collapse
Affiliation(s)
- Rosanna Salvia
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Marisa Nardiello
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Andrea Scala
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Sabino A. Bufo
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Asha Rao
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Patrizia Falabella
- Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
426
|
Is the Response of Tumours Dependent on the Dietary Input of Some Amino Acids or Ratios among Essential and Non-Essential Amino Acids? All That Glitters Is Not Gold. Int J Mol Sci 2018; 19:ijms19113631. [PMID: 30453654 PMCID: PMC6275049 DOI: 10.3390/ijms19113631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/08/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023] Open
Abstract
Energy production is the main task of the cancer cell metabolism because the costs of duplicating are enormous. Although energy is derived in cells by dismantling the carbon-to-carbon bonds of any macronutrient, cancer nutritional needs for energetic purposes have been studied primarily as being dependent on glycolysis. Since the end of the last century, the awareness of the dependence of cancer metabolism on amino acids not only for protein synthesis but also to match energy needs has grown. The roles of specific amino acids such as glutamine, glycine and serine have been explored in different experimental conditions and reviewed. Moreover, epidemiological evidence has revealed that some amino acids used as a supplement for therapeutic reasons, particularly the branched-chain ones, may reduce the incidence of liver cancer and a specific molecular mechanism has been proposed as functional to their protective action. By contrast and puzzling clinicians, the metabolomic signature of some pathologies connected to an increased risk of cancer, such as prolonged hyperinsulinemia in insulin-resistant patients, is identified by elevated plasma levels of the same branched-chain amino acids. Most recently, certain formulations of amino acids, deeply different from the amino acid compositions normally present in foods, have shown the power to master cancer cells epigenetically, slowing growth or driving cancer cells to apoptotic death, while being both beneficial for normal cell function and the animal’s health and lifespan. In this review, we will analyze and try to disentangle some of the many knots dealing with the complexities of amino acid biology and links to cancer metabolism.
Collapse
|
427
|
Metz KA, Teng X, Coppens I, Lamb HM, Wagner BE, Rosenfeld JA, Chen X, Zhang Y, Kim HJ, Meadow ME, Wang TS, Haberlandt ED, Anderson GW, Leshinsky-Silver E, Bi W, Markello TC, Pratt M, Makhseed N, Garnica A, Danylchuk NR, Burrow TA, Jayakar P, McKnight D, Agadi S, Gbedawo H, Stanley C, Alber M, Prehl I, Peariso K, Ong MT, Mordekar SR, Parker MJ, Crooks D, Agrawal PB, Berry GT, Loddenkemper T, Yang Y, Maegawa GHB, Aouacheria A, Markle JG, Wohlschlegel JA, Hartman AL, Hardwick JM. KCTD7 deficiency defines a distinct neurodegenerative disorder with a conserved autophagy-lysosome defect. Ann Neurol 2018; 84:766-780. [PMID: 30295347 DOI: 10.1002/ana.25351] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 08/27/2018] [Accepted: 09/23/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Several small case series identified KCTD7 mutations in patients with a rare autosomal recessive disorder designated progressive myoclonic epilepsy (EPM3) and neuronal ceroid lipofuscinosis (CLN14). Despite the name KCTD (potassium channel tetramerization domain), KCTD protein family members lack predicted channel domains. We sought to translate insight gained from yeast studies to uncover disease mechanisms associated with deficiencies in KCTD7 of unknown function. METHODS Novel KCTD7 variants in new and published patients were assessed for disease causality using genetic analyses, cell-based functional assays of patient fibroblasts and knockout yeast, and electron microscopy of patient samples. RESULTS Patients with KCTD7 mutations can exhibit movement disorders or developmental regression before seizure onset, and are distinguished from similar disorders by an earlier age of onset. Although most published KCTD7 patient variants were excluded from a genome sequence database of normal human variations, most newly identified patient variants are present in this database, potentially challenging disease causality. However, genetic analysis and impaired biochemical interactions with cullin 3 support a causal role for patient KCTD7 variants, suggesting deleterious alleles of KCTD7 and other rare disease variants may be underestimated. Both patient-derived fibroblasts and yeast lacking Whi2 with sequence similarity to KCTD7 have impaired autophagy consistent with brain pathology. INTERPRETATION Biallelic KCTD7 mutations define a neurodegenerative disorder with lipofuscin and lipid droplet accumulation but without defining features of neuronal ceroid lipofuscinosis or lysosomal storage disorders. KCTD7 deficiency appears to cause an underlying autophagy-lysosome defect conserved in yeast, thereby assigning a biological role for KCTD7. Ann Neurol 2018;84:774-788.
Collapse
Affiliation(s)
- Kyle A Metz
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Xinchen Teng
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Heather M Lamb
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Bart E Wagner
- Histopathology Department, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Xianghui Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Yu Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Hee Jong Kim
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Michael E Meadow
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Tim Sen Wang
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Edda D Haberlandt
- Clinical Department of Pediatrics I, Innsbruck Medical University, Innsbruck, Austria.,Department of Child and Youth Health, Hospital of Dornbirn, Dornbirn, Austria
| | - Glenn W Anderson
- Histopathology Department, Great Ormond Street Hospital for Children, London, United Kingdom
| | | | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Thomas C Markello
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Marsha Pratt
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK
| | - Nawal Makhseed
- Department of Pediatrics, Jahra Hospital, Ministry of Health, Al Jahra, Kuwait
| | - Adolfo Garnica
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, AR
| | - Noelle R Danylchuk
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, AR
| | - Thomas A Burrow
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, AR
| | - Parul Jayakar
- Division of Genetics and Metabolism, Nicklaus Children's Hospital, Miami, FL
| | | | - Satish Agadi
- Department of Neurology, Texas Children's Hospital, Houston, TX
| | | | | | - Michael Alber
- Pediatric Neurology and Developmental Medicine, University of Tübingen, Tübingen, Germany
| | | | - Katrina Peariso
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Min Tsui Ong
- Department of Paediatric Neurology, Sheffield Children's National Health Service Foundation Trust, Sheffield, United Kingdom
| | - Santosh R Mordekar
- Department of Paediatric Neurology, Sheffield Children's National Health Service Foundation Trust, Sheffield, United Kingdom
| | - Michael J Parker
- Sheffield Clinical Genetics Service, Sheffield Children's National Health Service Foundation Trust, Sheffield, United Kingdom
| | - Daniel Crooks
- Department of Neuropathology, Walton Centre National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Pankaj B Agrawal
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Gerard T Berry
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | | | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Gustavo H B Maegawa
- Department of Pediatrics/Genetics and Metabolism, University of Florida, Gainesville, FL
| | - Abdel Aouacheria
- Montpellier Institute of Evolution Sciences, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Janet G Markle
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Adam L Hartman
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - J Marie Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
428
|
Mara P, Fragiadakis GS, Gkountromichos F, Alexandraki D. The pleiotropic effects of the glutamate dehydrogenase (GDH) pathway in Saccharomyces cerevisiae. Microb Cell Fact 2018; 17:170. [PMID: 30384856 PMCID: PMC6211499 DOI: 10.1186/s12934-018-1018-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/29/2018] [Indexed: 12/19/2022] Open
Abstract
Ammonium assimilation is linked to fundamental cellular processes that include the synthesis of non-essential amino acids like glutamate and glutamine. In Saccharomyces cerevisiae glutamate can be synthesized from α-ketoglutarate and ammonium through the action of NADP-dependent glutamate dehydrogenases Gdh1 and Gdh3. Gdh1 and Gdh3 are evolutionarily adapted isoforms and cover the anabolic role of the GDH-pathway. Here, we review the role and function of the GDH pathway in glutamate metabolism and we discuss the additional contributions of the pathway in chromatin regulation, nitrogen catabolite repression, ROS-mediated apoptosis, iron deficiency and sphingolipid-dependent actin cytoskeleton modulation in S.cerevisiae. The pleiotropic effects of GDH pathway in yeast biology highlight the importance of glutamate homeostasis in vital cellular processes and reveal new features for conserved enzymes that were primarily characterized for their metabolic capacity. These newly described features constitute insights that can be utilized for challenges regarding genetic engineering of glutamate homeostasis and maintenance of redox balances, biosynthesis of important metabolites and production of organic substrates. We also conclude that the discussed pleiotropic features intersect with basic metabolism and set a new background for further glutamate-dependent applied research of biotechnological interest.
Collapse
Affiliation(s)
- P. Mara
- Department of Chemistry, University of Crete, Voutes University Campus, 71003 Heraklion, Crete Greece
- Present Address: Woods Hole Oceanographic Institution, Woods Hole, MA 02543 USA
| | - G. S. Fragiadakis
- Institute of Molecular Biology & Biotechnology, FORTH, Nikolaou Plastira 100 GR-70013, Heraklion, Crete Greece
| | - F. Gkountromichos
- Department of Biology, University of Crete, Voutes University Campus, 71003 Heraklion, Crete Greece
- Faculty of Biology, Biocenter, Ludwig-Maximilians-University of Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - D. Alexandraki
- Department of Biology, University of Crete, Voutes University Campus, 71003 Heraklion, Crete Greece
- Institute of Molecular Biology & Biotechnology, FORTH, Nikolaou Plastira 100 GR-70013, Heraklion, Crete Greece
| |
Collapse
|
429
|
Laribee RN. Transcriptional and Epigenetic Regulation by the Mechanistic Target of Rapamycin Complex 1 Pathway. J Mol Biol 2018; 430:4874-4890. [PMID: 30359581 DOI: 10.1016/j.jmb.2018.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 11/28/2022]
Abstract
Nutrient availability impacts health such that nutrient excess states can dysregulate epigenetic and transcriptional pathways to cause many diseases. Increasing evidence implicates aberrant regulation of nutrient signaling cascades as one means of communicating nutrient information to the epigenetic and transcriptional regulatory machinery. One such signaling cascade, the mechanistic target of rapamycin complex 1 (mTORC1), is conserved from yeast to man, and it is deregulated in diverse disease states. The catalytic subunit of the mTORC1 kinase complex (Tor1 or Tor2 in budding yeast and mTor in mammals) phosphorylates several downstream effectors regulating transcriptional and translational responses controlling growth and proliferation. Delineating mechanisms of cytoplasmic nutrient mTORC1 activation continues to be a major research focus. However, Tor kinases not only localize to the cytoplasm but also are found in the nucleus where they selectively bind and regulate genes controlling cellular metabolism and anabolism. The nuclear mTORC1 functions are now beginning to be defined, and they suggest that mTORC1 has a critical role in regulating the complex transcriptional activities required for ribosomal biogenesis. The mTORC1 pathway also interacts with epigenetic regulators required for modifying chromatin structure and function to control gene expression. Because altered nutrient states exert both individual and transgenerational phenotypic changes, mTORC1 signaling to chromatin effectors may have a significant role in mediating the effects of diet and nutrients on the epigenome. This article will discuss the recent inroads into the function of nuclear mTORC1 and its role in epigenetic and transcriptional regulation.
Collapse
Affiliation(s)
- R Nicholas Laribee
- Department of Pathology and Laboratory Medicine, and Center for Cancer Research, University of Tennessee Health Science Center, 19 South Manassas, Cancer Research Building Rm 318, Memphis, TN 38163, USA.
| |
Collapse
|
430
|
Liu J, Liu L, Tian Z, Li Y, Shi C, Shi J, Wei S, Zhao Y, Zhang C, Bai B, Chen Z, Zhang H. In Silico Discovery of a Small Molecule Suppressing Lung Carcinoma A549 Cells Proliferation and Inducing Autophagy via mTOR Pathway Inhibition. Mol Pharm 2018; 15:5427-5436. [PMID: 30346178 DOI: 10.1021/acs.molpharmaceut.8b00996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jiyuan Liu
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Li Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, Shaanxi Province 710072, China
- Laboratory Animal Center, Air Force Medical University, No. 169 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Zhen Tian
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road, NO. 48, Yangzhou, Jiangsu Province 225009, China
| | - Yifan Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Changhong Shi
- Laboratory Animal Center, Air Force Medical University, No. 169 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, Shaanxi Province 710072, China
| | - Sanhua Wei
- Department of Clinical Laboratory and Research Center, Tangdu Hospital, Air Force Medical University, No. 569 Xinsi Road, Xi’an, Shaanxi 710038, China
| | - Yong Zhao
- Laboratory Animal Center, Air Force Medical University, No. 169 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Caiqing Zhang
- Laboratory Animal Center, Air Force Medical University, No. 169 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Bing Bai
- Laboratory Animal Center, Air Force Medical University, No. 169 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Zhinan Chen
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, School of Basic Medicine, Air Force Medical University, Xi’an, Shaanxi Province 710032, China
| | - Hai Zhang
- Laboratory Animal Center, Air Force Medical University, No. 169 Changle West Road, Xi’an, Shaanxi Province 710032, China
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, School of Basic Medicine, Air Force Medical University, Xi’an, Shaanxi Province 710032, China
| |
Collapse
|
431
|
Yu SC, Kuemmel F, Skoufou-Papoutsaki MN, Spanu PD. Yeast transformation efficiency is enhanced by TORC1- and eisosome-dependent signaling. Microbiologyopen 2018; 8:e00730. [PMID: 30311441 PMCID: PMC6528558 DOI: 10.1002/mbo3.730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022] Open
Abstract
Transformation of baker's yeast (Saccharomyces cerevisiae) plays a key role in several experimental techniques, yet the molecular mechanisms underpinning transformation are still unclear. The addition of amino acids to the growth and transformation medium increases transformation efficiency. Here, we show that target of rapamycin complex 1 (TORC1) activated by amino acids enhances transformation via ubiquitin‐mediated endocytosis. We created mutants of the TORC1 pathway, alpha‐arrestins, and eisosome‐related genes. Our results demonstrate that the TORC1‐Npr1‐Art1/Rsp5 pathway regulates yeast transformation. Based on our previous study, activation of this pathway results in up to a 200‐fold increase in transformation efficiency, or greater. Additionally, we suggest DNA may be taken up by domains at the membrane compartment of Can1 (MCC) in the plasma membrane formed by eisosomes. Yeast studies on transformation could be used as a platform to understand the mechanism of DNA uptake in mammalian systems, which is clinically relevant to optimize gene therapy.
Collapse
Affiliation(s)
- Sheng-Chun Yu
- Department of Life Sciences, Imperial College London, London, UK
| | - Florian Kuemmel
- Department of Life Sciences, Imperial College London, London, UK
| | | | - Pietro D Spanu
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
432
|
Mubeen U, Jüppner J, Alpers J, Hincha DK, Giavalisco P. Target of Rapamycin Inhibition in Chlamydomonas reinhardtii Triggers de Novo Amino Acid Synthesis by Enhancing Nitrogen Assimilation. THE PLANT CELL 2018; 30:2240-2254. [PMID: 30228127 PMCID: PMC6241278 DOI: 10.1105/tpc.18.00159] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/30/2018] [Accepted: 09/13/2018] [Indexed: 05/19/2023]
Abstract
The Target of Rapamycin (TOR) kinase is a central regulator of growth and metabolism in all eukaryotic organisms, including animals, fungi, and plants. Even though the inputs and outputs of TOR signaling are well characterized for animals and fungi, our understanding of the upstream regulators of TOR and its downstream targets is still fragmentary in photosynthetic organisms. In this study, we employed the rapamycin-sensitive green alga Chlamydomonas reinhardtii to elucidate the molecular cause of the amino acid accumulation that occurs after rapamycin-induced inhibition of TOR. Using different growth conditions and stable 13C- and 15N-isotope labeling, we show that this phenotype is accompanied by increased nitrogen (N) uptake, which is induced within minutes of TOR inhibition. Interestingly, this increased N influx is accompanied by increased activities of glutamine synthetase and glutamine oxoglutarate aminotransferase, the main N-assimilating enzymes, which are responsible for the rise in levels of several amino acids, which occurs within a few minutes. Accordingly, we conclude that even though translation initiation and autophagy have been reported to be the main downstream targets of TOR, the upregulation of de novo amino acid synthesis seems to be one of the earliest responses induced after the inhibition of TOR in Chlamydomonas.
Collapse
Affiliation(s)
- Umarah Mubeen
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Jessica Jüppner
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Jessica Alpers
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Dirk K Hincha
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Patrick Giavalisco
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
433
|
Coccetti P, Nicastro R, Tripodi F. Conventional and emerging roles of the energy sensor Snf1/AMPK in Saccharomyces cerevisiae. MICROBIAL CELL 2018; 5:482-494. [PMID: 30483520 PMCID: PMC6244292 DOI: 10.15698/mic2018.11.655] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
All proliferating cells need to match metabolism, growth and cell cycle progression with nutrient availability to guarantee cell viability in spite of a changing environment. In yeast, a signaling pathway centered on the effector kinase Snf1 is required to adapt to nutrient limitation and to utilize alternative carbon sources, such as sucrose and ethanol. Snf1 shares evolutionary conserved functions with the AMP-activated Kinase (AMPK) in higher eukaryotes which, activated by energy depletion, stimulates catabolic processes and, at the same time, inhibits anabolism. Although the yeast Snf1 is best known for its role in responding to a number of stress factors, in addition to glucose limitation, new unconventional roles of Snf1 have recently emerged, even in glucose repressing and unstressed conditions. Here, we review and integrate available data on conventional and non-conventional functions of Snf1 to better understand the complexity of cellular physiology which controls energy homeostasis.
Collapse
Affiliation(s)
- Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,SYSBIO, Centre of Systems Biology, Milan, Italy
| | - Raffaele Nicastro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,Present address: Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,SYSBIO, Centre of Systems Biology, Milan, Italy
| |
Collapse
|
434
|
Cao R. mTOR Signaling, Translational Control, and the Circadian Clock. Front Genet 2018; 9:367. [PMID: 30250482 PMCID: PMC6139299 DOI: 10.3389/fgene.2018.00367] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/22/2018] [Indexed: 11/13/2022] Open
Abstract
Almost all cellular processes are regulated by the approximately 24 h rhythms that are endogenously driven by the circadian clock. mRNA translation, as the most energy consuming step in gene expression, is temporally controlled by circadian rhythms. Recent research has uncovered key mechanisms of translational control that are orchestrated by circadian rhythmicity and in turn feed back to the clock machinery to maintain robustness and accuracy of circadian timekeeping. Here I review recent progress in our understanding of translation control mechanisms in the circadian clock, focusing on a role for the mammalian/mechanistic target of rapamycin (mTOR) signaling pathway in modulating entrainment, synchronization and autonomous oscillation of circadian clocks. I also discuss the relevance of circadian mTOR functions in disease.
Collapse
Affiliation(s)
- Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States.,Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
435
|
Kessi-Pérez EI, Salinas F, Molinet J, González A, Muñiz S, Guillamón JM, Hall MN, Larrondo LF, Martínez C. Indirect monitoring of TORC1 signalling pathway reveals molecular diversity among different yeast strains. Yeast 2018; 36:65-74. [PMID: 30094872 DOI: 10.1002/yea.3351] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/07/2018] [Accepted: 07/29/2018] [Indexed: 11/08/2022] Open
Abstract
Saccharomyces cerevisiae is the main species responsible for the alcoholic fermentation in wine production. One of the main problems in this process is the deficiency of nitrogen sources in the grape must, which can lead to stuck or sluggish fermentations. Currently, yeast nitrogen consumption and metabolism are under active inquiry, with emphasis on the study of the TORC1 signalling pathway, given its central role responding to nitrogen availability and influencing growth and cell metabolism. However, the mechanism by which different nitrogen sources activates TORC1 is not completely understood. Existing methods to evaluate TORC1 activation by nitrogen sources are time-consuming, making difficult the analyses of large numbers of strains. In this work, a new indirect method for monitoring TORC1 pathway was developed on the basis of the luciferase reporter gene controlled by the promoter region of RPL26A gene, a gene known to be expressed upon TORC1 activation. The method was tested in strains representative of the clean lineages described so far in S. cerevisiae. The activation of the TORC1 pathway by a proline-to-glutamine upshift was indirectly evaluated using our system and the traditional direct methods based on immunoblot (Sch9 and Rps6 phosphorylation). Regardless of the different molecular readouts obtained with both methodologies, the general results showed a wide phenotypic variation between the representative strains analysed. Altogether, this easy-to-use assay opens the possibility to study the molecular basis for the differential TORC1 pathway activation, allowing to interrogate a larger number of strains in the context of nitrogen metabolism phenotypic differences.
Collapse
Affiliation(s)
- Eduardo I Kessi-Pérez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Francisco Salinas
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Jennifer Molinet
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | | | - Sara Muñiz
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Paterna, Valencia, Spain
| | - José M Guillamón
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Paterna, Valencia, Spain
| | | | - Luis F Larrondo
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudio Martínez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile.,Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| |
Collapse
|
436
|
Zelezniak A, Vowinckel J, Capuano F, Messner CB, Demichev V, Polowsky N, Mülleder M, Kamrad S, Klaus B, Keller MA, Ralser M. Machine Learning Predicts the Yeast Metabolome from the Quantitative Proteome of Kinase Knockouts. Cell Syst 2018; 7:269-283.e6. [PMID: 30195436 PMCID: PMC6167078 DOI: 10.1016/j.cels.2018.08.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/29/2018] [Accepted: 07/31/2018] [Indexed: 02/08/2023]
Abstract
A challenge in solving the genotype-to-phenotype relationship is to predict a cell’s metabolome, believed to correlate poorly with gene expression. Using comparative quantitative proteomics, we found that differential protein expression in 97 Saccharomyces cerevisiae kinase deletion strains is non-redundant and dominated by abundance changes in metabolic enzymes. Associating differential enzyme expression landscapes to corresponding metabolomes using network models provided reasoning for poor proteome-metabolome correlations; differential protein expression redistributes flux control between many enzymes acting in concert, a mechanism not captured by one-to-one correlation statistics. Mapping these regulatory patterns using machine learning enabled the prediction of metabolite concentrations, as well as identification of candidate genes important for the regulation of metabolism. Overall, our study reveals that a large part of metabolism regulation is explained through coordinated enzyme expression changes. Our quantitative data indicate that this mechanism explains more than half of metabolism regulation and underlies the interdependency between enzyme levels and metabolism, which renders the metabolome a predictable phenotype. The proteome of kinase knockouts is dominated by enzyme abundance changes The enzyme expression profiles of kinase knockouts are non-redundant Metabolism is regulated by many expression changes acting in concert Machine learning accurately predicts the metabolome from enzyme abundance
Collapse
Affiliation(s)
- Aleksej Zelezniak
- The Francis Crick Institute, Molecular Biology of Metabolism laboratory, London, UK; Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Jakob Vowinckel
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK; Biognosys AG, Schlieren, Switzerland
| | - Floriana Capuano
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Christoph B Messner
- The Francis Crick Institute, Molecular Biology of Metabolism laboratory, London, UK
| | - Vadim Demichev
- The Francis Crick Institute, Molecular Biology of Metabolism laboratory, London, UK; Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Nicole Polowsky
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Michael Mülleder
- The Francis Crick Institute, Molecular Biology of Metabolism laboratory, London, UK; Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Stephan Kamrad
- The Francis Crick Institute, Molecular Biology of Metabolism laboratory, London, UK; Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Bernd Klaus
- Centre for Statistical Data Analysis, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Markus A Keller
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK; Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Ralser
- The Francis Crick Institute, Molecular Biology of Metabolism laboratory, London, UK; Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK; Department of Biochemistry, Charité Universitaetsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
437
|
Ragulator and SLC38A9 activate the Rag GTPases through noncanonical GEF mechanisms. Proc Natl Acad Sci U S A 2018; 115:9545-9550. [PMID: 30181260 DOI: 10.1073/pnas.1811727115] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) growth pathway detects nutrients through a variety of sensors and regulators that converge on the Rag GTPases, which form heterodimers consisting of RagA or RagB tightly bound to RagC or RagD and control the subcellular localization of mTORC1. The Rag heterodimer uses a unique "locking" mechanism to stabilize its active (GTPRagA-RagCGDP) or inactive (GDPRagA-RagCGTP) nucleotide states. The Ragulator complex tethers the Rag heterodimer to the lysosomal surface, and the SLC38A9 transmembrane protein is a lysosomal arginine sensor that upon activation stimulates mTORC1 activity through the Rag GTPases. How Ragulator and SLC38A9 control the nucleotide loading state of the Rag GTPases remains incompletely understood. Here we find that Ragulator and SLC38A9 are each unique guanine exchange factors (GEFs) that collectively push the Rag GTPases toward the active state. Ragulator triggers GTP release from RagC, thus resolving the locked inactivated state of the Rag GTPases. Upon arginine binding, SLC38A9 converts RagA from the GDP- to the GTP-loaded state, and therefore activates the Rag GTPase heterodimer. Altogether, Ragulator and SLC38A9 act on the Rag GTPases to activate the mTORC1 pathway in response to nutrient sufficiency.
Collapse
|
438
|
Zhang Y, Zhang Y, McFarlane HE, Obata T, Richter AS, Lohse M, Grimm B, Persson S, Fernie AR, Giavalisco P. Inhibition of TOR Represses Nutrient Consumption, Which Improves Greening after Extended Periods of Etiolation. PLANT PHYSIOLOGY 2018; 178:101-117. [PMID: 30049747 PMCID: PMC6130015 DOI: 10.1104/pp.18.00684] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/15/2018] [Indexed: 05/08/2023]
Abstract
Upon illumination, etiolated seedlings experience a transition from heterotrophic to photoautotrophic growth. During this process, the tetrapyrrole biosynthesis pathway provides chlorophyll for photosynthesis. This pathway has to be tightly controlled to prevent the accumulation of photoreactive metabolites and to provide stoichiometric amounts of chlorophyll for its incorporation into photosynthetic protein complexes. Therefore, plants have evolved regulatory mechanisms to synchronize the biosynthesis of chlorophyll and chlorophyll-binding proteins. Two phytochrome-interacting factors (PIF1 and PIF3) and the DELLA proteins, which are controlled by the gibberellin pathway, are key regulators of this process. Here, we show that impairment of TARGET OF RAPAMYCIN (TOR) activity in Arabidopsis (Arabidopsis thaliana), either by mutation of the TOR complex component RAPTOR1B or by treatment with TOR inhibitors, leads to a significantly reduced accumulation of the photoreactive chlorophyll precursor protochlorophyllide in darkness but an increased greening rate of etiolated seedlings after exposure to light. Detailed profiling of metabolic, transcriptomic, and physiological parameters revealed that the TOR-repressed lines not only grow slower, they grow in a nutrient-saving mode, which allows them to resist longer periods of low nutrient availability. Our results also indicated that RAPTOR1B acts upstream of the gibberellin-DELLA pathway and its mutation complements the repressed greening phenotype of pif1 and pif3 after etiolation.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Youjun Zhang
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Heather E McFarlane
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- School of Biosciences, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Toshihiro Obata
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Institute of Agriculture and Natural Resources, University of Nebraska, Lincoln, Nebraska 68588
| | - Andreas S Richter
- Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät, Institut für Biologie, AG Pflanzenphysiologie, 10115 Berlin, Germany
| | - Mark Lohse
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Targenomix, 14476 Potsdam, Germany
| | - Bernhard Grimm
- Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät, Institut für Biologie, AG Pflanzenphysiologie, 10115 Berlin, Germany
| | - Staffan Persson
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- School of Biosciences, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Patrick Giavalisco
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| |
Collapse
|
439
|
Fonseca BD, Lahr RM, Damgaard CK, Alain T, Berman AJ. LARP1 on TOP of ribosome production. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1480. [PMID: 29722158 PMCID: PMC6214789 DOI: 10.1002/wrna.1480] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 12/27/2022]
Abstract
The ribosome is an essential unit of all living organisms that commands protein synthesis, ultimately fuelling cell growth (accumulation of cell mass) and cell proliferation (increase in cell number). The eukaryotic ribosome consists of 4 ribosomal RNAs (rRNAs) and 80 ribosomal proteins (RPs). Despite its fundamental role in every living organism, our present understanding of how higher eukaryotes produce the various ribosome components is incomplete. Uncovering the mechanisms utilized by human cells to generate functional ribosomes will likely have far-reaching implications in human disease. Recent biochemical and structural studies revealed La-related protein 1 (LARP1) as a key new player in RP production. LARP1 is an RNA-binding protein that belongs to the LARP superfamily; it controls the translation and stability of the mRNAs that encode RPs and translation factors, which are characterized by a 5' terminal oligopyrimidine (5'TOP) motif and are thus known as TOP mRNAs. The activity of LARP1 is regulated by the mammalian target of rapamycin complex 1 (mTORC1): a eukaryotic protein kinase complex that integrates nutrient sensing with mRNA translation, particularly that of TOP mRNAs. In this review, we provide an overview of the role of LARP1 in the control of ribosome production in multicellular eukaryotes. This article is categorized under: Translation > Translation Regulation RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Processing > Capping and 5' End Modifications.
Collapse
Affiliation(s)
| | | | | | - Tommy Alain
- Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada
| | | |
Collapse
|
440
|
He M, Xu Y, Chen J, Luo Y, Lv Y, Su J, Kershaw MJ, Li W, Wang J, Yin J, Zhu X, Liu X, Chern M, Ma B, Wang J, Qin P, Chen W, Wang Y, Wang W, Ren Z, Wu X, Li P, Li S, Peng Y, Lin F, Talbot NJ, Chen X. MoSnt2-dependent deacetylation of histone H3 mediates MoTor-dependent autophagy and plant infection by the rice blast fungus Magnaporthe oryzae. Autophagy 2018; 14:1543-1561. [PMID: 29929416 DOI: 10.1080/15548627.2018.1458171] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Autophagy is essential for appressorium-mediated plant infection by Magnaporthe oryzae, the causal agent of rice blast disease and a major threat to global food security. The regulatory mechanism of pathogenicity-associated autophagy, however, remains largely unknown. Here, we report the identification and functional characterization of a plausible ortholog of yeast SNT2 in M. oryzae, which we term MoSNT2. Deletion mutants of MoSNT2 are compromised in autophagy homeostasis and display severe defects in autophagy-dependent fungal cell death and pathogenicity. These mutants are also impaired in infection structure development, conidiation, oxidative stress tolerance and cell wall integrity. MoSnt2 recognizes histone H3 acetylation through its PHD1 domain and thereby recruits the histone deacetylase complex, resulting in deacetylation of H3. MoSnt2 binds to promoters of autophagy genes MoATG6, 15, 16, and 22 to regulate their expression. In addition, MoTor controls MoSNT2 expression to regulate MoTor signaling which leads to autophagy and rice infection. Our study provides evidence of a direct link between MoSnt2 and MoTor signaling and defines a novel epigenetic mechanism by which MoSNT2 regulates infection-associated autophagy and plant infection by the rice blast fungus. ABBREVIATIONS M. oryzae: Magnaporthe oryzae; S. cerevisiae: Saccharomyces cerevisiae; F. oxysporum: Fusarium oxysporum; U. maydis: Ustilago maydis; Compl.: complemented strains of ΔMosnt2 expressing MoSNT2-GFP; ATG: autophagy-related; HDAC: histone deacetylase complex; Tor: target of rapamycin kinase; MTOR: mechanistic target of rapamycin kinase in mammals; MoSnt2: DNA binding SaNT domain protein in M. oryzae; MoTor: target of rapamycin kinase in M. oryzae; MoAtg8: autophagy-related protein 8 in M. oryzae; MoHos2: hda one similar protein in M. oryzae; MoeIf4G: eukaryotic translation initiation factor 4 G in M. oryzae; MoRs2: ribosomal protein S2 in M. oryzae; MoRs3: ribosomal protein S3 in M. oryzae; MoIcl1: isocitrate lyase in M. oryzae; MoSet1: histone H3K4 methyltransferase in M. oryzae; Asd4: ascus development 4; Abl1: AMP-activated protein kinase β subunit-like protein; Tig1: TBL1-like gene required for invasive growth; Rpd3: reduced potassium dependency; KAT8: lysine (K) acetyltransferase 8; PHD: plant homeodomain; ELM2: Egl-27 and MTA1 homology 2; GFP: green fluorescent protein; YFP: yellow fluorescent protein; YFPCTF: C-terminal fragment of YFP; YFPNTF: N-terminal fragment of YFP; GST: glutathione S-transferase; bp: base pairs; DEGs: differentially expressed genes; CM: complete medium; MM-N: minimum medium minus nitrogen; CFW: calcofluor white; CR: congo red; DAPI: 4', 6-diamidino-2-phenylindole; BiFC: bimolecular fluorescence complementation; RT: reverse transcription; PCR: polymerase chain reaction; qPCR: quantitative polymerase chain reaction; RNAi: RNA interference; ChIP: chromatin immunoprecipitation.
Collapse
Affiliation(s)
- Min He
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China.,b School of Biosciences , University of Exeter , Exeter , UK
| | - Youpin Xu
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Jinhua Chen
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Yuan Luo
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Yang Lv
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Jia Su
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | | | - Weitao Li
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Jing Wang
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Junjie Yin
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Xiaobo Zhu
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Xiaohong Liu
- c State Key Laboratory for Rice Biology, Biotechnology Institute , Zhejiang University , Hangzhou , China
| | - Mawsheng Chern
- d Department of Plant Pathology , University of California , Davis , CA , USA
| | - Bingtian Ma
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Jichun Wang
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Peng Qin
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Weilan Chen
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Yuping Wang
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Wenming Wang
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Zhenglong Ren
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Xianjun Wu
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Ping Li
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Shigui Li
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Youliang Peng
- e State Key Laboratory of Agrobiotechnology and MOA, Key Laboratory of Plant Pathology , China Agricultural University , Beijing , China
| | - Fucheng Lin
- c State Key Laboratory for Rice Biology, Biotechnology Institute , Zhejiang University , Hangzhou , China
| | | | - Xuewei Chen
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| |
Collapse
|
441
|
Chen X, Wang G, Zhang Y, Dayhoff-Brannigan M, Diny NL, Zhao M, He G, Sing CN, Metz KA, Stolp ZD, Aouacheria A, Cheng WC, Hardwick JM, Teng X. Whi2 is a conserved negative regulator of TORC1 in response to low amino acids. PLoS Genet 2018; 14:e1007592. [PMID: 30142151 PMCID: PMC6126876 DOI: 10.1371/journal.pgen.1007592] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 09/06/2018] [Accepted: 07/26/2018] [Indexed: 01/29/2023] Open
Abstract
Yeast WHI2 was originally identified in a genetic screen for regulators of cell cycle arrest and later suggested to function in general stress responses. However, the function of Whi2 is unknown. Whi2 has predicted structure and sequence similarity to human KCTD family proteins, which have been implicated in several cancers and are causally associated with neurological disorders but are largely uncharacterized. The identification of conserved functions between these yeast and human proteins may provide insight into disease mechanisms. We report that yeast WHI2 is a new negative regulator of TORC1 required to suppress TORC1 activity and cell growth specifically in response to low amino acids. In contrast to current opinion, WHI2 is dispensable for TORC1 inhibition in low glucose. The only widely conserved mechanism that actively suppresses both yeast and mammalian TORC1 specifically in response to low amino acids is the conserved SEACIT/GATOR1 complex that inactivates the TORC1-activating RAG-like GTPases. Unexpectedly, Whi2 acts independently and simultaneously with these established GATOR1-like Npr2-Npr3-Iml1 and RAG-like Gtr1-Gtr2 complexes, and also acts independently of the PKA pathway. Instead, Whi2 inhibits TORC1 activity through its binding partners, protein phosphatases Psr1 and Psr2, which were previously thought to only regulate amino acid levels downstream of TORC1. Furthermore, the ability to suppress TORC1 is conserved in the SKP1/BTB/POZ domain-containing, Whi2-like human protein KCTD11 but not other KCTD family members tested.
Collapse
Affiliation(s)
- Xianghui Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Guiqin Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yu Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Margaret Dayhoff-Brannigan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Nicola L. Diny
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Mingjun Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Ge He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Cierra N. Sing
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Kyle A. Metz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Zachary D. Stolp
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Abdel Aouacheria
- ISEM, Institut des Sciences de l’Evolution de Montpellier, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Wen-Chih Cheng
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - J. Marie Hardwick
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Xinchen Teng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
442
|
Nguyen TL, Nokin MJ, Egorov M, Tomé M, Bodineau C, Di Primo C, Minder L, Wdzieczak-Bakala J, Garcia-Alvarez MC, Bignon J, Thoison O, Delpech B, Surpateanu G, Frapart YM, Peyrot F, Abbas K, Terés S, Evrard S, Khatib AM, Soubeyran P, Iorga BI, Durán RV, Collin P. mTOR Inhibition via Displacement of Phosphatidic Acid Induces Enhanced Cytotoxicity Specifically in Cancer Cells. Cancer Res 2018; 78:5384-5397. [PMID: 30054335 DOI: 10.1158/0008-5472.can-18-0232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/09/2018] [Accepted: 07/23/2018] [Indexed: 11/16/2022]
Abstract
The mTOR is a central regulator of cell growth and is highly activated in cancer cells to allow rapid tumor growth. The use of mTOR inhibitors as anticancer therapy has been approved for some types of tumors, albeit with modest results. We recently reported the synthesis of ICSN3250, a halitulin analogue with enhanced cytotoxicity. We report here that ICSN3250 is a specific mTOR inhibitor that operates through a mechanism distinct from those described for previous mTOR inhibitors. ICSN3250 competed with and displaced phosphatidic acid from the FRB domain in mTOR, thus preventing mTOR activation and leading to cytotoxicity. Docking and molecular dynamics simulations evidenced not only the high conformational plasticity of the FRB domain, but also the specific interactions of both ICSN3250 and phosphatidic acid with the FRB domain in mTOR. Furthermore, ICSN3250 toxicity was shown to act specifically in cancer cells, as noncancer cells showed up to 100-fold less sensitivity to ICSN3250, in contrast to other mTOR inhibitors that did not show selectivity. Thus, our results define ICSN3250 as a new class of mTOR inhibitors that specifically targets cancer cells.Significance: ICSN3250 defines a new class of mTORC1 inhibitors that displaces phosphatidic acid at the FRB domain of mTOR, inducing cell death specifically in cancer cells but not in noncancer cells. Cancer Res; 78(18); 5384-97. ©2018 AACR.
Collapse
Affiliation(s)
- Tra-Ly Nguyen
- Institut Européen de Chimie et Biologie, INSERM U1218, Université de Bordeaux, Pessac, France
| | - Marie-Julie Nokin
- Institut Européen de Chimie et Biologie, INSERM U1218, Université de Bordeaux, Pessac, France.,Metastasis Research Laboratory, GIGA-Cancer, University of Liège (ULiège), Liège, Belgium
| | - Maxim Egorov
- ATLANTHERA, Cedex, France.,Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Mercedes Tomé
- Laboratoire de l'Angiogénèse et du Microenvironnement des Cancers, INSERM U1029, Université de Bordeaux, Allée Geoffroy Saint Hilaire, Bâtiment, Pessac, France
| | - Clément Bodineau
- Institut Européen de Chimie et Biologie, INSERM U1218, Université de Bordeaux, Pessac, France
| | - Carmelo Di Primo
- Université de Bordeaux, Laboratoire ARNA, Bordeaux, France; INSERM U1212, CNRS UMR 5320, Institut Européen de Chimie et Biologie, CNRS UMS3033/INSERMUS001, Pessac, France
| | - Lætitia Minder
- Université de Bordeaux, CNRS UMS3033/INSERM US001, Institut Européen de Chimie et Biologie, Pessac, France
| | | | | | - Jérôme Bignon
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Odile Thoison
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Bernard Delpech
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Georgiana Surpateanu
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Yves-Michel Frapart
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR8601, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Fabienne Peyrot
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR8601, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Ecole Supérieure du Professorat et de l'Education de l'Académie de Paris, Sorbonne Université, Paris, France
| | - Kahina Abbas
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR8601, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Silvia Terés
- Institut Européen de Chimie et Biologie, INSERM U1218, Université de Bordeaux, Pessac, France
| | - Serge Evrard
- Institut Bergonié, Digestive Tumours Unit, Université de Bordeaux, Bordeaux, France
| | - Abdel-Majid Khatib
- Laboratoire de l'Angiogénèse et du Microenvironnement des Cancers, INSERM U1029, Université de Bordeaux, Allée Geoffroy Saint Hilaire, Bâtiment, Pessac, France
| | - Pierre Soubeyran
- Institut Bergonié, INSERM U1218, Université de Bordeaux, Bordeaux, France
| | - Bogdan I Iorga
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France.
| | - Raúl V Durán
- Institut Européen de Chimie et Biologie, INSERM U1218, Université de Bordeaux, Pessac, France.
| | - Pascal Collin
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France.,Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR8601, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Paris Diderot, UFR Odontologie, Paris, France
| |
Collapse
|
443
|
The Small Yeast GTPase Rho5 and Its Dimeric GEF Dck1/Lmo1 Respond to Glucose Starvation. Int J Mol Sci 2018; 19:ijms19082186. [PMID: 30049968 PMCID: PMC6121567 DOI: 10.3390/ijms19082186] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 12/25/2022] Open
Abstract
Rho5 is a small GTPase of Saccharomyces cerevisiae and a homolog of mammalian Rac1. The latter regulates glucose metabolism and actin cytoskeleton dynamics, and its misregulation causes cancer and a variety of other diseases. In yeast, Rho5 has been implicated in different signal transduction pathways, governing cell wall integrity and the responses to high medium osmolarity and oxidative stress. It has also been proposed to affect mitophagy and apoptosis. Here, we demonstrate that Rho5 rapidly relocates from the plasma membrane to mitochondria upon glucose starvation, mediated by its dimeric GDP/GTP exchange factor (GEF) Dck1/Lmo1. A function in response to glucose availability is also suggested by synthetic genetic phenotypes of a rho5 deletion with gpr1, gpa2, and sch9 null mutants. On the other hand, the role of mammalian Rac1 in regulating the action cytoskeleton does not seem to be strongly conserved in S. cerevisiae Rho5. We propose that Rho5 serves as a central hub in integrating various stress conditions, including a crosstalk with the cAMP/PKA (cyclic AMP activating protein kinase A) and Sch9 branches of glucose signaling pathways.
Collapse
|
444
|
Tulsian R, Velingkaar N, Kondratov R. Caloric restriction effects on liver mTOR signaling are time-of-day dependent. Aging (Albany NY) 2018; 10:1640-1648. [PMID: 30018180 PMCID: PMC6075448 DOI: 10.18632/aging.101498] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/10/2018] [Indexed: 04/08/2023]
Abstract
The regulation of mechanistic target of rapamycin (mTOR) signaling contributes to the metabolic effects of a calorie restriction (CR) diet. We assayed the effect of CR on the activity of mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) in the liver of mice at six different times across the day. CR effects on mTORC1 and mTORC2 activities were time-of-day dependent. CR induced mTORC1 activity at one time, reduced at two times and has no effect during other times. CR induced mTORC2 activity at one time of the day and has no effects at other times. Circadian clocks are implemented in the regulation of mTOR signaling in mammals and mechanisms of CR. We assayed the effect of CR on mTOR signaling in the liver of mice deficient for circadian transcriptional regulators BMAL1 and CRYs. The CR induced suppression of mTORC1 activity was observed in both clock mutants, while up regulation of mTORC2 was observed in the liver of CRY deficient but not in the liver of BMAL1 deficient mice. Our finding revealed that CR has different time dependent effect on the activity of mTOR complexes 1 and 2 and suggest that circadian clock protein BMAL1 is involved in the up regulation of mTORC2 upon CR in mammals.
Collapse
Affiliation(s)
- Richa Tulsian
- Department of Biological, Geological, and Environmental Sciences and Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, OH 44115, USA
| | - Nikkhil Velingkaar
- Department of Biological, Geological, and Environmental Sciences and Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, OH 44115, USA
| | - Roman Kondratov
- Department of Biological, Geological, and Environmental Sciences and Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, OH 44115, USA
| |
Collapse
|
445
|
Abstract
Target of rapamycin (TOR) is an evolutionarily conserved protein kinase that plays a central role in both plants and animals, despite their distinct developmental programs and survival strategies. Indeed, TOR integrates nutrient, energy, hormone, growth factor and environmental inputs to control proliferation, growth and metabolism in diverse multicellular organisms. Here, we compare the molecular composition, upstream regulators and downstream signaling relays of TOR complexes in plants and animals. We also explore and discuss the pivotal functions of TOR signaling in basic cellular processes, such as translation, cell division and stem/progenitor cell regulation during plant development.
Collapse
Affiliation(s)
- Lin Shi
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Yue Wu
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Jen Sheen
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
446
|
Liu Y, Okamoto K. The TORC1 signaling pathway regulates respiration-induced mitophagy in yeast. Biochem Biophys Res Commun 2018; 502:76-83. [DOI: 10.1016/j.bbrc.2018.05.123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 01/02/2023]
|
447
|
Ratnayake L, Adhvaryu KK, Kafes E, Motavaze K, Lakin-Thomas P. A component of the TOR (Target Of Rapamycin) nutrient-sensing pathway plays a role in circadian rhythmicity in Neurospora crassa. PLoS Genet 2018; 14:e1007457. [PMID: 29924817 PMCID: PMC6028147 DOI: 10.1371/journal.pgen.1007457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 07/02/2018] [Accepted: 05/31/2018] [Indexed: 01/06/2023] Open
Abstract
The TOR (Target of Rapamycin) pathway is a highly-conserved signaling pathway in eukaryotes that regulates cellular growth and stress responses. The cellular response to amino acids or carbon sources such as glucose requires anchoring of the TOR kinase complex to the lysosomal/vacuolar membrane by the Ragulator (mammals) or EGO (yeast) protein complex. Here we report a connection between the TOR pathway and circadian (daily) rhythmicity. The molecular mechanism of circadian rhythmicity in all eukaryotes has long been thought to be transcription/translation feedback loops (TTFLs). In the model eukaryote Neurospora crassa, a TTFL including FRQ (frequency) and WCC (white collar complex) has been intensively studied. However, it is also well-known that rhythmicity can be seen in the absence of TTFL functioning. We previously isolated uv90 as a mutation that compromises FRQ-less rhythms and also damps the circadian oscillator when FRQ is present. We have now mapped the uv90 gene and identified it as NCU05950, homologous to the TOR pathway proteins EGO1 (yeast) and LAMTOR1 (mammals), and we have named the N. crassa protein VTA (vacuolar TOR-associated protein). The protein is anchored to the outer vacuolar membrane and deletion of putative acylation sites destroys this localization as well as the protein’s function in rhythmicity. A deletion of VTA is compromised in its growth responses to amino acids and glucose. We conclude that a key protein in the complex that anchors TOR to the vacuole plays a role in maintaining circadian (daily) rhythmicity. Our results establish a connection between the TOR pathway and circadian rhythms and point towards a network integrating metabolism and the circadian system. Circadian clocks drive 24-hour rhythms in living things at all levels of organization, from single cells to whole organisms. In spite of the importance of daily clocks for organizing the activities and internal functions of organisms, there are still many unsolved problems concerning the molecular mechanisms. In eukaryotes, a set of “clock proteins” turns on and off specific genes in a 24-hour feedback loop. This “clock gene feedback loop” has been the dominant idea about how clocks work for many years. However, some rhythms can still be seen when these feedback loops are not functioning. Using the fungus Neurospora crassa as a model organism, we have discovered a gene that is important for maintaining rhythms that continue without the known feedback loop. We have found that this gene codes for a protein that was already known to be important in helping cells to adjust their growth rate to adapt to varying availability of nutrients. Because the same gene is found in all eukaryotes, including mammals, this finding may point towards a universal clock mechanism that integrates nutritional needs with daily rhythms.
Collapse
|
448
|
Hoxhaj G, Hughes-Hallett J, Timson RC, Ilagan E, Yuan M, Asara JM, Ben-Sahra I, Manning BD. The mTORC1 Signaling Network Senses Changes in Cellular Purine Nucleotide Levels. Cell Rep 2018; 21:1331-1346. [PMID: 29091770 DOI: 10.1016/j.celrep.2017.10.029] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/22/2017] [Accepted: 10/06/2017] [Indexed: 12/11/2022] Open
Abstract
Mechanistic (or mammalian) target of rapamycin complex 1 (mTORC1) integrates signals from growth factors and nutrients to control biosynthetic processes, including protein, lipid, and nucleic acid synthesis. We find that the mTORC1 pathway is responsive to changes in purine nucleotides in a manner analogous to its sensing of amino acids. Depletion of cellular purines, but not pyrimidines, inhibits mTORC1, and restoration of intracellular adenine nucleotides via addition of exogenous purine nucleobases or nucleosides acutely reactivates mTORC1. Adenylate sensing by mTORC1 is dependent on the tuberous sclerosis complex (TSC) protein complex and its regulation of Rheb upstream of mTORC1, but independent of energy stress and AMP-activated protein kinase (AMPK). Even though mTORC1 signaling is not acutely sensitive to changes in intracellular guanylates, long-term depletion of guanylates decreases Rheb protein levels. Our findings suggest that nucleotide sensing, like amino acid sensing, enables mTORC1 to tightly coordinate nutrient availability with the synthesis of macromolecules, such as protein and nucleic acids, produced from those nutrients.
Collapse
Affiliation(s)
- Gerta Hoxhaj
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - James Hughes-Hallett
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Rebecca C Timson
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Erika Ilagan
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Min Yuan
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Issam Ben-Sahra
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Brendan D Manning
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
449
|
Ochocki JD, Khare S, Hess M, Ackerman D, Qiu B, Daisak JI, Worth AJ, Lin N, Lee P, Xie H, Li B, Wubbenhorst B, Maguire TG, Nathanson KL, Alwine JC, Blair IA, Nissim I, Keith B, Simon MC. Arginase 2 Suppresses Renal Carcinoma Progression via Biosynthetic Cofactor Pyridoxal Phosphate Depletion and Increased Polyamine Toxicity. Cell Metab 2018; 27:1263-1280.e6. [PMID: 29754953 PMCID: PMC5990482 DOI: 10.1016/j.cmet.2018.04.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 02/14/2018] [Accepted: 04/11/2018] [Indexed: 01/02/2023]
Abstract
Kidney cancer, one of the ten most prevalent malignancies in the world, has exhibited increased incidence over the last decade. The most common subtype is "clear cell" renal cell carcinoma (ccRCC), which features consistent metabolic abnormalities, such as highly elevated glycogen and lipid deposition. By integrating metabolomics, genomic, and transcriptomic data, we determined that enzymes in multiple metabolic pathways are universally depleted in human ccRCC tumors, which are otherwise genetically heterogeneous. Notably, the expression of key urea cycle enzymes, including arginase 2 (ARG2) and argininosuccinate synthase 1 (ASS1), is strongly repressed in ccRCC. Reduced ARG2 activity promotes ccRCC tumor growth through at least two distinct mechanisms: conserving the critical biosynthetic cofactor pyridoxal phosphate and avoiding toxic polyamine accumulation. Pharmacological approaches to restore urea cycle enzyme expression would greatly expand treatment strategies for ccRCC patients, where current therapies only benefit a subset of those afflicted with renal cancer.
Collapse
Affiliation(s)
- Joshua D Ochocki
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sanika Khare
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Markus Hess
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Ackerman
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bo Qiu
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennie I Daisak
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew J Worth
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nan Lin
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pearl Lee
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hong Xie
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bo Li
- Program in Cancer Biology, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Bradley Wubbenhorst
- Department of Medicine, Division of Translational Medicine and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tobi G Maguire
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine L Nathanson
- Department of Medicine, Division of Translational Medicine and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James C Alwine
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ian A Blair
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Itzhak Nissim
- Division of Genetics and Metabolism, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Biochemistry, and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian Keith
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
450
|
Forzani C, Turqueto Duarte G, Meyer C. The Plant Target of Rapamycin Kinase: A connecTOR between Sulfur and Growth. TRENDS IN PLANT SCIENCE 2018; 23:472-475. [PMID: 29650326 DOI: 10.1016/j.tplants.2018.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
Sulfur is an essential macronutrient for plants that is incorporated into sulfur-containing amino acids or metabolites crucial for plant growth and stress adaptation. A recent publication shows a connection between sulfur sensing, growth processes, and the conserved eukaryotic target of rapamycin (TOR) kinase signaling pathway.
Collapse
Affiliation(s)
- Céline Forzani
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Gustavo Turqueto Duarte
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Christian Meyer
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| |
Collapse
|