1
|
Shi H, Zhao Y. Astaxanthin inhibits apoptosis in a cell model of tauopathy by attenuating endoplasmic reticulum stress and unfolded protein response. Eur J Pharmacol 2024; 983:176962. [PMID: 39214273 DOI: 10.1016/j.ejphar.2024.176962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/20/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The accumulation of misfolded proteins is a common pathological characteristic shared by many neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. The disruption of proteostasis triggers endoplasmic reticulum (ER) stress, during which the unfolded protein response (UPR) is initiated by the activation of protein kinase R-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1) and activating transcription factor 6 (ATF6). These three branches of UPR signals act in concert to reduce the levels of abnormal proteins and restore ER homeostasis. However, the overactivation of UPR impairs cell function and induces apoptosis, which has been implicated in neurodegeneration. Astaxanthin is a xanthophyll carotenoid which has been shown to have neuroprotective effects in both cell and animal models; however, its effects on ER stress and UPR induced by disrupted proteostasis remain unclear. In this study, the effects of astaxanthin on ER stress and cytotoxicity were investigated in N2a cells stably expressing the pro-aggregant tau repeat domain carrying FTDP-17 mutation ΔK280 (Tau4RDΔK280). The results demonstrated that astaxanthin significantly inhibited Tau4RDΔK280-induced loss of cell viability and apoptosis, attenuating Tau4RDΔK280-induced caspase-3 activation and decrease of Bcl-2. Further studies revealed that astaxanthin treatment alleviated Tau4RDΔK280-induced ER stress and suppressed the activation of PERK, IRE1 and ATF6 signaling pathways. These findings suggested that astaxanthin might inhibit Tau4RDΔK280-induced cytotoxicity by attenuating UPR and ER stress. In addition, astaxanthin treatment resulted in a great reduction in the production of intracellular reactive oxygen species and a significant decrease in calcium influx induced by Tau4RDΔK280, which also contributed to the protective effects of astaxanthin against Tau4RDΔK280-induced cytotoxicity.
Collapse
Affiliation(s)
- Huahua Shi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China; Department of Bioengineering, Harbin Institute of Technology, Weihai, 264209, China
| | - Yan Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China; Department of Bioengineering, Harbin Institute of Technology, Weihai, 264209, China.
| |
Collapse
|
2
|
Hanyu H, Koyama Y, Umekida K, Momose T, Watanabe S, Sato T. Factors and brain imaging features associated with cognition in oldest-old patients with Alzheimer-type dementia. J Neurol Sci 2024; 458:122929. [PMID: 38377704 DOI: 10.1016/j.jns.2024.122929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/20/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND The underlying pathophysiology of cognitive dysfunction in oldest-old patients with Alzheimer-type dementia (AD) has not been clarified to date. We aimed to determine the factors and brain imaging features associated with cognition in oldest-old patients with AD. METHODS We enrolled 456 consecutive outpatients with probable AD (145 men and 311 women, age range: 51-95 years). Demographic factors, such as education level, disease duration at initial visit, body mass index, comorbidities, frailty, and leisure activity, and brain imaging features, including severity of medial temporal lobe (MTL) atrophy, white matter lesions and infarcts, and frequency of posterior cerebral hypoperfusion were compared among pre-old (≤ 74 years), old (75 to 84 years), and oldest-old (≥ 85 years) subgroups. RESULTS The oldest-old subgroup showed significantly longer disease duration, lower education level, more severe frailty, less leisure activity, worse cognitive impairment, a tendency of slower progression of cognitive decline, greater MTL atrophy, more severe white matter hyperintensities and infarcts, and lower frequency of posterior hypoperfusion than the younger age subgroups. Regarding the brain imaging subtypes, there were significantly more patients with the limbic-predominant subtype and fewer patients with the hippocampal-sparing subtype in the oldest-old AD group than the pre-old AD group. CONCLUSIONS Oldest-old patients with AD show different factors and brain imaging features associated with cognition from pre-old and old patients. Our results are expected to provide useful information towards understanding the pathophysiology of oldest-old patients with AD, and for determining their clinical diagnosis and appropriate management methods.
Collapse
Affiliation(s)
- Haruo Hanyu
- Dementia Research Center, Tokyo General Hospital, Tokyo, Japan; Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan.
| | - Yumi Koyama
- Department of Rehabilitation, Tokyo General Hospital, Tokyo, Japan
| | - Kazuki Umekida
- Department of Rehabilitation, Tokyo General Hospital, Tokyo, Japan
| | | | | | - Tomohiko Sato
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
3
|
Shi H, Zhao Y. Modulation of Tau Pathology in Alzheimer's Disease by Dietary Bioactive Compounds. Int J Mol Sci 2024; 25:831. [PMID: 38255905 PMCID: PMC10815728 DOI: 10.3390/ijms25020831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Tau is a microtubule-associated protein essential for microtubule assembly and stability in neurons. The abnormal intracellular accumulation of tau aggregates is a major characteristic of brains from patients with Alzheimer's disease (AD) and other tauopathies. In AD, the presence of neurofibrillary tangles (NFTs), which is composed of hyperphosphorylated tau protein, is positively correlated with the severity of the cognitive decline. Evidence suggests that the accumulation and aggregation of tau cause synaptic dysfunction and neuronal degeneration. Thus, the prevention of abnormal tau phosphorylation and elimination of tau aggregates have been proposed as therapeutic strategies for AD. However, currently tau-targeting therapies for AD and other tauopathies are limited. A number of dietary bioactive compounds have been found to modulate the posttranslational modifications of tau, including phosphorylation, small ubiquitin-like modifier (SUMO) mediated modification (SUMOylation) and acetylation, as well as inhibit tau aggregation and/or promote tau degradation. The advantages of using these dietary components over synthetic substances in AD prevention and intervention are their safety and accessibility. This review summarizes the mechanisms leading to tau pathology in AD and highlights the effects of bioactive compounds on the hyperphosphorylation, aggregation and clearance of tau protein. The potential of using these bioactive compounds for AD prevention and intervention is also discussed.
Collapse
Affiliation(s)
- Huahua Shi
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China;
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yan Zhao
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China;
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
4
|
Alcolea D, Beeri MS, Rojas JC, Gardner RC, Lleó A. Blood Biomarkers in Neurodegenerative Diseases: Implications for the Clinical Neurologist. Neurology 2023; 101:172-180. [PMID: 36878698 PMCID: PMC10435056 DOI: 10.1212/wnl.0000000000207193] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/31/2023] [Indexed: 03/08/2023] Open
Abstract
Blood-based biomarkers offer a major advance in the clinical evaluation of neurodegenerative diseases. Currently, research studies have reported robust assays of blood markers for the detection of amyloid and tau pathologies specific to Alzheimer disease (amyloid-β peptides, and p-tau) and nonspecific blood markers of neuronal (neurofilament light, β-synuclein, and ubiquitin-C-terminal-hydrolase-L1) and glial degeneration (glial fibrillary acidic protein) that can measure key pathophysiologic processes in several neurodegenerative diseases. In the near future, these markers may be used for screening, diagnosis, or disease and treatment response monitoring. Blood-based biomarkers for neurodegenerative diseases have been rapidly implemented in research, and they have the potential to enter clinical use soon in different clinical settings. In this review, we will describe the main developments and their potential implications for the general neurologist.
Collapse
Affiliation(s)
- Daniel Alcolea
- From the Sant Pau Memory Unit (D.A., A.L.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, IIB SANT PAU, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (D.A., A.L.), CIBERNED, Madrid, Spain; Department of Psychiatry (M.S.B.), Icahn School of Medicine at Mount Sinai, New York, NY; The Joseph Sagol Neuroscience (M.S.B., R.C.G.), Center Sheba Medical Center, Tel-Hashomer, Israel; and Department of Neurology (J.C.R.), Weill Institute for Neurosciences, UCSF Memory and Aging Center, San Francisco, CA.
| | - Michal Schnaider Beeri
- From the Sant Pau Memory Unit (D.A., A.L.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, IIB SANT PAU, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (D.A., A.L.), CIBERNED, Madrid, Spain; Department of Psychiatry (M.S.B.), Icahn School of Medicine at Mount Sinai, New York, NY; The Joseph Sagol Neuroscience (M.S.B., R.C.G.), Center Sheba Medical Center, Tel-Hashomer, Israel; and Department of Neurology (J.C.R.), Weill Institute for Neurosciences, UCSF Memory and Aging Center, San Francisco, CA
| | - Julio C Rojas
- From the Sant Pau Memory Unit (D.A., A.L.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, IIB SANT PAU, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (D.A., A.L.), CIBERNED, Madrid, Spain; Department of Psychiatry (M.S.B.), Icahn School of Medicine at Mount Sinai, New York, NY; The Joseph Sagol Neuroscience (M.S.B., R.C.G.), Center Sheba Medical Center, Tel-Hashomer, Israel; and Department of Neurology (J.C.R.), Weill Institute for Neurosciences, UCSF Memory and Aging Center, San Francisco, CA
| | - Raquel C Gardner
- From the Sant Pau Memory Unit (D.A., A.L.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, IIB SANT PAU, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (D.A., A.L.), CIBERNED, Madrid, Spain; Department of Psychiatry (M.S.B.), Icahn School of Medicine at Mount Sinai, New York, NY; The Joseph Sagol Neuroscience (M.S.B., R.C.G.), Center Sheba Medical Center, Tel-Hashomer, Israel; and Department of Neurology (J.C.R.), Weill Institute for Neurosciences, UCSF Memory and Aging Center, San Francisco, CA
| | - Alberto Lleó
- From the Sant Pau Memory Unit (D.A., A.L.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, IIB SANT PAU, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (D.A., A.L.), CIBERNED, Madrid, Spain; Department of Psychiatry (M.S.B.), Icahn School of Medicine at Mount Sinai, New York, NY; The Joseph Sagol Neuroscience (M.S.B., R.C.G.), Center Sheba Medical Center, Tel-Hashomer, Israel; and Department of Neurology (J.C.R.), Weill Institute for Neurosciences, UCSF Memory and Aging Center, San Francisco, CA.
| |
Collapse
|
5
|
Shaikh A, Ahmad F, Teoh SL, Kumar J, Yahaya MF. Honey and Alzheimer's Disease-Current Understanding and Future Prospects. Antioxidants (Basel) 2023; 12:427. [PMID: 36829985 PMCID: PMC9952506 DOI: 10.3390/antiox12020427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Alzheimer's disease (AD), a leading cause of dementia, has been a global concern. AD is associated with the involvement of the central nervous system that causes the characteristic impaired memory, cognitive deficits, and behavioral abnormalities. These abnormalities caused by AD is known to be attributed by extracellular aggregates of amyloid beta plaques and intracellular neurofibrillary tangles. Additionally, genetic factors such as abnormality in the expression of APOE, APP, BACE1, PSEN-1, and PSEN-2 play a role in the disease. As the current treatment aims to treat the symptoms and to slow the disease progression, there has been a continuous search for new nutraceutical agent or medicine to help prevent and cure AD pathology. In this quest, honey has emerged as a powerful nootropic agent. Numerous studies have demonstrated that the high flavonoids and phenolic acids content in honey exerts its antioxidant, anti-inflammatory, and neuroprotective properties. This review summarizes the effect of main flavonoid compounds found in honey on the physiological functioning of the central nervous system, and the effect of honey intake on memory and cognition in various animal model. This review provides a new insight on the potential of honey to prevent AD pathology, as well as to ameliorate the damage in the developed AD.
Collapse
Affiliation(s)
- Ammara Shaikh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
6
|
The Role of the JAK/STAT Signaling Pathway in the Pathogenesis of Alzheimer's Disease: New Potential Treatment Target. Int J Mol Sci 2023; 24:ijms24010864. [PMID: 36614305 PMCID: PMC9821184 DOI: 10.3390/ijms24010864] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease is characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. However, emerging evidence suggests that neuroinflammation, mediated notably by activated neuroglial cells, neutrophils, and macrophages, also plays an important role in the pathogenesis of Alzheimer's disease. Therefore, understanding the interplay between the nervous and immune systems might be the key to the prevention or delay of Alzheimer's disease progression. One of the most important mechanisms determining gliogenic cell fate is the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway that is influenced by the overactivation of microglia and astrocytes. The JAK/STAT signaling pathway is one of the critical factors that promote neuroinflammation in neurodegenerative diseases such as Alzheimer's disease by initiating innate immunity, orchestrating adaptive immune mechanisms, and finally, constraining neuroinflammatory response. Since a chronic neuroinflammatory environment in the brain is a hallmark of Alzheimer's disease, understanding the process would allow establishing the underlying role of neuroinflammation, then estimating the prognosis of Alzheimer's disease development and finding a new potential treatment target. In this review, we highlight the recent advances in the potential role of JAK/STAT signaling in neurological diseases with a focus on discussing future research directions regarding novel therapeutic approaches and predictive biomarkers for Alzheimer's disease.
Collapse
|
7
|
Zhang X, Tong T, Chang A, Ang TFA, Tao Q, Auerbach S, Devine S, Qiu WQ, Mez J, Massaro J, Lunetta KL, Au R, Farrer LA. Midlife lipid and glucose levels are associated with Alzheimer's disease. Alzheimers Dement 2023; 19:181-193. [PMID: 35319157 PMCID: PMC10078665 DOI: 10.1002/alz.12641] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 01/31/2023]
Abstract
INTRODUCTION It is unknown whether vascular and metabolic diseases assessed in early adulthood are associated with Alzheimer's disease (AD) later in life. METHODS Association of AD with lipid fractions, glucose, blood pressure, body mass index (BMI), and smoking obtained prospectively from 4932 Framingham Heart Study (FHS) participants across nine quadrennial examinations was evaluated using Cox proportional hazard and Kaplan-Meier models. Age-, sex-, and education-adjusted models were tested for each factor measured at each exam and within three adult age groups (early = 35-50, middle = 51-60, and late = 61-70). RESULTS A 15 mg/dL increase in high density lipoprotein (HDL) cholesterol was associated with decreased AD risk during early (15.4%, P = 0.041) and middle (17.9%, P = 0.014) adulthood. A 15 mg/dL increase in glucose measured during middle adulthood was associated with 14.5% increased AD risk (P = 0.00029). These findings remained significant after adjusting for treatment. DISCUSSION Our findings suggest that careful management of cholesterol and glucose beginning in early adulthood can lower AD risk.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Department of Medicine (Biomedical Genetics)Boston University School of MedicineBostonMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Tong Tong
- Department of Medicine (Biomedical Genetics)Boston University School of MedicineBostonMassachusettsUSA
| | - Andrew Chang
- Department of Physiology & BiophysicsBoston University School of MedicineBostonMassachusettsUSA
| | - Ting Fang Alvin Ang
- Department of Anatomy & NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
- Framingham Heart StudyBoston University School of MedicineFraminghamMassachusettsUSA
| | - Qiushan Tao
- Department of Pharmacology & Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
| | - Sanford Auerbach
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
| | - Sherral Devine
- Department of Anatomy & NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
- Framingham Heart StudyBoston University School of MedicineFraminghamMassachusettsUSA
| | - Wei Qiao Qiu
- Department of Pharmacology & Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
- Department of PsychiatryBoston University School of MedicineBostonMassachusettsUSA
- Alzheimer's Disease Research CenterBoston University School of MedicineBostonMassachusettsUSA
| | - Jesse Mez
- Framingham Heart StudyBoston University School of MedicineFraminghamMassachusettsUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
- Alzheimer's Disease Research CenterBoston University School of MedicineBostonMassachusettsUSA
| | - Joseph Massaro
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
- Framingham Heart StudyBoston University School of MedicineFraminghamMassachusettsUSA
| | - Kathryn L. Lunetta
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Rhoda Au
- Department of Anatomy & NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
- Framingham Heart StudyBoston University School of MedicineFraminghamMassachusettsUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
- Alzheimer's Disease Research CenterBoston University School of MedicineBostonMassachusettsUSA
- Department of EpidemiologyBoston University School of Public HealthBostonMassachusettsUSA
| | - Lindsay A. Farrer
- Department of Medicine (Biomedical Genetics)Boston University School of MedicineBostonMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
- Framingham Heart StudyBoston University School of MedicineFraminghamMassachusettsUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
- Alzheimer's Disease Research CenterBoston University School of MedicineBostonMassachusettsUSA
- Department of EpidemiologyBoston University School of Public HealthBostonMassachusettsUSA
- Department of OphthalmologyBoston University School of MedicineBostonMassachusettsUSA
| |
Collapse
|
8
|
Tetlow AM, Jackman BM, Alhadidy MM, Perumal V, Morgan DG, Gordon MN. Influence of Host Age on Intracranial AAV9 TauP301L Induced Tauopathy. J Alzheimers Dis 2023; 93:365-378. [PMID: 36970910 PMCID: PMC10540220 DOI: 10.3233/jad-221276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Advanced age is the greatest risk factor for the development of Alzheimer's disease (AD). This implies that some aspect of the aged milieu is possibly accelerating the development of AD related pathologies. OBJECTIVE We hypothesized that intracranially injected with AAV9 tauP301L may cause a greater degree of pathology in old versus young mice. METHODS Animals were injected with viral vectors overexpressing the mutant tauP301L or control protein (green fluorescent protein, GFP) into the brains of mature, middle-aged, and old C57BL/6Nia mice. The tauopathy phenotype was monitored four months after injection using behavioral, histological, and neurochemical measures. RESULTS Phosphorylated-tau immunostaining (AT8) or Gallyas staining of aggregated tau increased with age, but other measures of tau accumulation were not significantly affected. Overall, AAV-tau injected mice had impaired radial arm water maze performance, increased microglial activation, and showed evidence of hippocampal atrophy. Aging impaired open field and rotarod performance in both AAV-tau and control mice. The efficiency of viral transduction and gene expression were the same at all animal ages. CONCLUSION We conclude that tauP301L over expression results in a tauopathy phenotype with memory impairment and accumulation of aggregated tau. However, the effects of aging on this phenotype are modest and not detected by some markers of tau accumulation, similar to prior work on this topic. Thus, although age does influence the development of tauopathy, it is likely that other factors, such as ability to compensate for tau pathology, are more responsible for the increased risk of AD with advanced age.
Collapse
Affiliation(s)
- Amber M. Tetlow
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
- School of Aging Studies, University of South Florida, Tampa, FL, USA
- Neuroscience Institute, Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Brianna M. Jackman
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Mohammed M. Alhadidy
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Varshini Perumal
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - David G. Morgan
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Marcia N. Gordon
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| |
Collapse
|
9
|
Zhang M, Ganz AB, Rohde S, Rozemuller AJM, Bank NB, Reinders MJT, Scheltens P, Hulsman M, Hoozemans JJM, Holstege H. Resilience and resistance to the accumulation of amyloid plaques and neurofibrillary tangles in centenarians: An age-continuous perspective. Alzheimers Dement 2022. [PMID: 36583547 DOI: 10.1002/alz.12899] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 12/31/2022]
Abstract
INTRODUCTION With increasing age, neuropathological substrates associated with Alzheimer's disease (AD) accumulate in brains of cognitively healthy individuals-are they resilient, or resistant to AD-associated neuropathologies? METHODS In 85 centenarian brains, we correlated NIA (amyloid) stages, Braak (neurofibrillary tangle) stages, and CERAD (neuritic plaque) scores with cognitive performance close to death as determined by Mini-Mental State Examination (MMSE) scores. We assessed centenarian brains against 2131 brains from AD patients, non-AD demented, and non-demented individuals in an age continuum ranging from 16 to 100+ years. RESULTS With age, brains from non-demented individuals reached the NIA and Braak stages observed in AD patients, while CERAD scores remained lower. In centenarians, NIA stages varied (22.4% were the highest stage 3), Braak stages rarely exceeded stage IV (5.9% were V), and CERAD scores rarely exceeded 2 (4.7% were 3); within these distributions, we observed no correlation with the MMSE (NIA: P = 0.60; Braak: P = 0.08; CERAD: P = 0.16). DISCUSSION Cognitive health can be maintained despite the accumulation of high levels of AD-related neuropathological substrates. HIGHLIGHTS Cognitively healthy elderly have AD neuropathology levels similar to AD patients. AD neuropathology loads do not correlate with cognitive performance in centenarians. Some centenarians are resilient to the highest levels of AD neuropathology.
Collapse
Affiliation(s)
- Meng Zhang
- Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Delft Bioinformatics Lab, Delft Technical University, Delft, The Netherlands
| | - Andrea B Ganz
- Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Susan Rohde
- Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands.,Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | | | - Marcel J T Reinders
- Delft Bioinformatics Lab, Delft Technical University, Delft, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Marc Hulsman
- Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Delft Bioinformatics Lab, Delft Technical University, Delft, The Netherlands.,Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jeroen J M Hoozemans
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Henne Holstege
- Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Delft Bioinformatics Lab, Delft Technical University, Delft, The Netherlands.,Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Hyperconnectivity matters in early-onset Alzheimer's disease: a resting-state EEG connectivity study. Neurophysiol Clin 2022; 52:459-471. [DOI: 10.1016/j.neucli.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022] Open
|
11
|
SantaCruz-Calvo S, Bharath L, Pugh G, SantaCruz-Calvo L, Lenin RR, Lutshumba J, Liu R, Bachstetter AD, Zhu B, Nikolajczyk BS. Adaptive immune cells shape obesity-associated type 2 diabetes mellitus and less prominent comorbidities. Nat Rev Endocrinol 2022; 18:23-42. [PMID: 34703027 PMCID: PMC11005058 DOI: 10.1038/s41574-021-00575-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are increasing in prevalence owing to decreases in physical activity levels and a shift to diets that include addictive and/or high-calorie foods. These changes are associated with the adoption of modern lifestyles and the presence of an obesogenic environment, which have resulted in alterations to metabolism, adaptive immunity and endocrine regulation. The size and quality of adipose tissue depots in obesity, including the adipose tissue immune compartment, are critical determinants of overall health. In obesity, chronic low-grade inflammation can occur in adipose tissue that can progress to systemic inflammation; this inflammation contributes to the development of insulin resistance, T2DM and other comorbidities. An improved understanding of adaptive immune cell dysregulation that occurs during obesity and its associated metabolic comorbidities, with an appreciation of sex differences, will be critical for repurposing or developing immunomodulatory therapies to treat obesity and/or T2DM-associated inflammation. This Review critically discusses how activation and metabolic reprogramming of lymphocytes, that is, T cells and B cells, triggers the onset, development and progression of obesity and T2DM. We also consider the role of immunity in under-appreciated comorbidities of obesity and/or T2DM, such as oral cavity inflammation, neuroinflammation in Alzheimer disease and gut microbiome dysbiosis. Finally, we discuss previous clinical trials of anti-inflammatory medications in T2DM and consider the path forward.
Collapse
Affiliation(s)
- Sara SantaCruz-Calvo
- Department of Pharmacology and Nutritional Sciences and the Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, USA.
| | - Leena Bharath
- Department of Nutrition and Public Health, Merrimack College, North Andover, MA, USA
| | - Gabriella Pugh
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Lucia SantaCruz-Calvo
- Department of Chemistry and Food Technology, Technical University of Madrid, Madrid, Spain
| | - Raji Rajesh Lenin
- Department of Pharmacology and Nutritional Sciences and the Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, USA
| | - Jenny Lutshumba
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Rui Liu
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | | | - Beibei Zhu
- Department of Pharmacology and Nutritional Sciences and the Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, USA
| | - Barbara S Nikolajczyk
- Department of Pharmacology and Nutritional Sciences and the Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
12
|
Dong L, Li J, Liu C, Mao C, Wang J, Lei D, Huang X, Chu S, Hou B, Feng F, Sha L, Xu Q, Gao J. Effects of ApoE genotype on clinical phenotypes in early-onset and late-onset Alzheimer's disease in China: Data from the PUMCH dementia cohort. Brain Behav 2021; 11:e2373. [PMID: 34555265 PMCID: PMC8613405 DOI: 10.1002/brb3.2373] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/05/2021] [Accepted: 09/06/2021] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION To investigate the heterogeneous effect of Apolipoprotein E (ApoE) genotype on clinical phenotypes in early-onset Alzheimer's disease (EOAD) and late-onset Alzheimer's disease (LOAD), respectively. METHODS 785 probable AD patients were enrolled from the dementia cohort of Peking Union Medical College Hospital (PUMCH), China. There were 386 EOAD and 399 LOAD cases. All individuals finished history inquiry, neurological examination, blood biochemical test, neuropsychological screening test, electroencephalography, brain CT/MRI, and ApoE genotyping. Some participants had neuropsychological domain assessment (n = 317), MRI morphometry (n = 130), CSF testing of Aβ42, p-tau, t-tau (n = 144), or DNA sequencing (n = 690). The variables were compared mainly between ɛ4 carriers and non-carriers in EOAD and LOAD, respectively. RESULTS In LOAD, ɛ4 carriers showed female predominance; worse performance in trail making test, delayed recall of auditory verbal learning test (AVLT) and rey complex figure; smaller hippocampal, parahippocampal, and entorhinal volume, as compared to ɛ4 non-carriers. In EOAD, ɛ4 carriers had lower scores in AVLT, episodic memory and modified Luria's tapping task; but less cortical atrophy in entorhinal, middle cingulate, inferior frontal, and parieto-occipital regions, in comparison to ɛ4 non-carriers. 6.2% (43/690) subjects harbored potential causative mutations in APP, PSEN1, and PSEN2. In both EOAD and LOAD, no differences were observed between ɛ4 carriers and non-carriers in CSF levels of Aβ42, p-tau, t-tau, or mutation frequency. CONCLUSIONS ApoE exerts a heterogeneous effect on clinical phenotypes in EOAD and LOAD, which might be related to the different genetic and pathological basis underlying them.
Collapse
Affiliation(s)
- Liling Dong
- Neurology Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Jie Li
- Neurology Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Caiyan Liu
- Neurology Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Chenhui Mao
- Neurology Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Jie Wang
- Neurology Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Dan Lei
- Neurology Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Xinying Huang
- Neurology Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Shanshan Chu
- Neurology Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Bo Hou
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Feng Feng
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Longze Sha
- Institute of Basic Medical Sciences, Peking Union Medical College, Dongcheng, Beijing, China
| | - Qi Xu
- Institute of Basic Medical Sciences, Peking Union Medical College, Dongcheng, Beijing, China
| | - Jing Gao
- Neurology Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| |
Collapse
|
13
|
Jiang H, Zheng Y, Ni J, Xu Y. BAY 73-6691 Alters Neuron Plasticity and Phosphorylation of Tau Through Regulation of Cyclic Guanosine Monophosphate/Protein Kinase G/Cyclic Adenosine Monophosphate Response Element-Binding Protein Pathway. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Alzheimer’s disease (AD) is one of neurodegenerative diseases characterized by cognitive and memory decline, accompanying with neurofibrillary tangles (NFTs) made of hyperphosphorylated tau protein and senile plaques (SP) accumulated by β-amyloid protein (Aβ).
BAY 73-6691, an inhibitor of phosphodiesterase-9 (PDE-9), can improve learning and memory of elderly rats. However, the effects of BAY 73-6691 on neuroapoptotic and neuroinflammatory events, as well as synaptic plasticity of differentiated PC12 cells are remain unclear. In this work, we screened
apoptotic cells induced by Aβ25-35 via flow cytometry. TNF-α, IL-1β, IL-6 secreted by PC12 cells were estimated by ELISA kits. The levels of cGMP, PKG and CREB mediated by BAY 73-6691 were assessed. Moreover, we conducted western blots analysis
to evaluate the phosphorylation of tau and synaptic related proteins. Results showed that BAY 73-6691 could reduce Aβ25-35-triggered neuroapoptosis and neuroinflammation. Phosphorylation of tau was inhibited by BAY 73-6691, whereas sildenafil citrate (SC, an inhibitor
of cGMP) partially weakened the effect of BAY 73-6691. Additionally, synaptic plasticity restored by BAY 73-6691 was also suppressed via SC. Taken together, BAY 73-6691 exhibited neuro protective effects, and altered tau phosphorylation as well as synaptic related proteins through cGMP/PKG/CREB
pathway.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P. R. China
| | - Yan Zheng
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P. R. China
| | - Jie Ni
- Department of Emergency, Affiliated Drum Tower Hospital of Nanjing University, Nanjing, 210000, China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, 210000, China
| |
Collapse
|
14
|
Ayodele T, Rogaeva E, Kurup JT, Beecham G, Reitz C. Early-Onset Alzheimer's Disease: What Is Missing in Research? Curr Neurol Neurosci Rep 2021; 21:4. [PMID: 33464407 PMCID: PMC7815616 DOI: 10.1007/s11910-020-01090-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Early-onset Alzheimer's disease (EOAD), defined as Alzheimer's disease (AD) occurring before age 65, is significantly less well studied than the late-onset form (LOAD) despite EOAD often presenting with a more aggressive disease progression. The aim of this review is to summarize the current understanding of the etiology of EOAD, their translation into clinical practice, and to suggest steps to be taken to move our understanding forward. RECENT FINDINGS EOAD cases make up 5-10% of AD cases but only 10-15% of these cases show known mutations in the APP, PSEN1, and PSEN2, which are linked to EOAD. New data suggests that these unexplained cases following a non-Mendelian pattern of inheritance is potentially caused by a mix of common and newly discovered rare variants. However, only a fraction of this genetic variation has been identified to date leaving the molecular mechanisms underlying this type of AD and their association with clinical, biomarker, and neuropathological changes unclear. While great advancements have been made in characterizing EOAD, much work is needed to disentangle the molecular mechanisms underlying this type of AD and to identify putative targets for more precise disease screening, diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Temitope Ayodele
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
- The Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada
| | - Jiji T Kurup
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Gary Beecham
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Christiane Reitz
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.
- The Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA.
- Department of Neurology, Columbia University, New York, NY, USA.
- Department of Epidemiology, Sergievsky Center, Taub Institute for Research on the Aging Brain, Columbia University, 630 W 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
15
|
Mishra N, Mohan D, Fuad S, Basavanagowda DM, Alrashid ZA, Kaur A, Rathod B, Nosher S, Heindl SE. The Association Between Hypertension and Cognitive Impairment, and the Role of Antihypertensive Medications: A Literature Review. Cureus 2020; 12:e12035. [PMID: 33457135 PMCID: PMC7797448 DOI: 10.7759/cureus.12035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Vascular dementia (VD) is one of the leading causes of dementia, and hypertension is a known risk factor for VD. Hypertension treatment guidelines have previously discussed an optimal blood pressure goal to prevent further cardiovascular complications with long-term management. The treatment of hypertension can prevent stroke, kidney failure, and perhaps prevent cognitive decline as well. We reviewed studies that demonstrated an association between hypertension and cognitive impairment (CI). The role of antihypertensive medications (AHM) in preventing CI was also investigated. This topic is worth exploring as dementia has high healthcare costs and will become prominent as the population in the United States ages. We used the medical subject heading (MeSH) search strategy on Pubmed and reviewed 22 articles. The studies showed that there might be a link between hypertension, AHM, and CI. The studies did not suggest a superiority of any specific AHM class to prevent CI. Further research on optimal hypertension treatment goals to prevent cognitive impairment and dementia is recommended.
Collapse
Affiliation(s)
- Nupur Mishra
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Devyani Mohan
- Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sehrish Fuad
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Deepak M Basavanagowda
- Psychiatry and Behavioral Sciences, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Zaid A Alrashid
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Arveen Kaur
- Psychiatry and Behavioral Sciences, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Bindu Rathod
- Psychiatry and Behavioral Sciences, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sadia Nosher
- Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Stacey E Heindl
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.,Medicine, Avalon University School of Medicine, Willemstad, CUW
| |
Collapse
|
16
|
Zlokovic BV, Gottesman RF, Bernstein KE, Seshadri S, McKee A, Snyder H, Greenberg SM, Yaffe K, Schaffer CB, Yuan C, Hughes TM, Daemen MJ, Williamson JD, González HM, Schneider J, Wellington CL, Katusic ZS, Stoeckel L, Koenig JI, Corriveau RA, Fine L, Galis ZS, Reis J, Wright JD, Chen J. Vascular contributions to cognitive impairment and dementia (VCID): A report from the 2018 National Heart, Lung, and Blood Institute and National Institute of Neurological Disorders and Stroke Workshop. Alzheimers Dement 2020; 16:1714-1733. [PMID: 33030307 DOI: 10.1002/alz.12157] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
Abstract
Vascular contributions to cognitive impairment and dementia (VCID) are characterized by the aging neurovascular unit being confronted with and failing to cope with biological insults due to systemic and cerebral vascular disease, proteinopathy including Alzheimer's biology, metabolic disease, or immune response, resulting in cognitive decline. This report summarizes the discussion and recommendations from a working group convened by the National Heart, Lung, and Blood Institute and the National Institute of Neurological Disorders and Stroke to evaluate the state of the field in VCID research, identify research priorities, and foster collaborations. As discussed in this report, advances in understanding the biological mechanisms of VCID across the wide spectrum of pathologies, chronic systemic comorbidities, and other risk factors may lead to potential prevention and new treatment strategies to decrease the burden of dementia. Better understanding of the social determinants of health that affect risks for both vascular disease and VCID could provide insight into strategies to reduce racial and ethnic disparities in VCID.
Collapse
Affiliation(s)
| | | | | | - Sudha Seshadri
- University of Texas Health Science Center, San Antonio and Boston University, San Antonio, Texas, USA
| | - Ann McKee
- VA Boston Healthcare System and Boston University, Boston, Massachusetts, USA
| | | | - Steven M Greenberg
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kristine Yaffe
- University of California, San Francisco, San Francisco, California, USA
| | | | - Chun Yuan
- University of Washington, Seattle, Washington, USA
| | - Timothy M Hughes
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Mat J Daemen
- Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | | - Luke Stoeckel
- National Institute on Aging, Bethesda, Maryland, USA
| | - James I Koenig
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Roderick A Corriveau
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Lawrence Fine
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Zorina S Galis
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Jared Reis
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | | | - Jue Chen
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Reitz C, Rogaeva E, Beecham GW. Late-onset vs nonmendelian early-onset Alzheimer disease: A distinction without a difference? NEUROLOGY-GENETICS 2020; 6:e512. [PMID: 33225065 PMCID: PMC7673282 DOI: 10.1212/nxg.0000000000000512] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/07/2020] [Indexed: 12/21/2022]
Abstract
There is mounting evidence that only a small fraction of early-onset Alzheimer disease cases (onset <65 years) are explained by known mutations. Even multiplex families with early onset often also have late-onset cases, suggesting that the commonly applied categorization of Alzheimer disease into early- and late-onset forms may not reflect distinct underlying etiology. Nevertheless, this categorization continues to govern today's research and the design of clinical trials. The aim of this review is to evaluate this categorization by providing a comprehensive, critical review of reported clinical, neuropathologic, and genomic characteristics of both onset-based subtypes and explore potential overlap between both categories. The article will lay out the need to comprehensively assess the phenotypic, neuropathologic, and molecular variability in Alzheimer disease and identify factors explaining the observed significant variation in onset age in persons with and without known mutations. The article will critically review ongoing large-scale genomic efforts in Alzheimer disease research (e.g., Alzheimer Disease Sequencing Project, Dominantly Inherited Alzheimer Network, Alzheimer Disease Neuroimaging Initiative) and their shortcomings to disentangle the delineation of unexplained nonmendelian early-onset from late-onset and mendelian forms of Alzheimer disease. In addition, it will outline specific approaches including epigenetic research through which a comprehensive characterization of this delineation can be achieved.
Collapse
Affiliation(s)
- Christiane Reitz
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain (C.R.), Gertrude H. Sergievsky Center (C.R.), Department of Neurology (C.R.), and Department of Epidemiology (C.R.), College of Physicians and Surgeons, Columbia University, New York, NY; Tanz Centre for Research in Neurodegenerative Disease (E.R.), University of Toronto, ON, Canada; and The John P. Hussman Institute for Human Genomics (G.W.B.), University of Miami, FL
| | - Ekaterina Rogaeva
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain (C.R.), Gertrude H. Sergievsky Center (C.R.), Department of Neurology (C.R.), and Department of Epidemiology (C.R.), College of Physicians and Surgeons, Columbia University, New York, NY; Tanz Centre for Research in Neurodegenerative Disease (E.R.), University of Toronto, ON, Canada; and The John P. Hussman Institute for Human Genomics (G.W.B.), University of Miami, FL
| | - Gary W Beecham
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain (C.R.), Gertrude H. Sergievsky Center (C.R.), Department of Neurology (C.R.), and Department of Epidemiology (C.R.), College of Physicians and Surgeons, Columbia University, New York, NY; Tanz Centre for Research in Neurodegenerative Disease (E.R.), University of Toronto, ON, Canada; and The John P. Hussman Institute for Human Genomics (G.W.B.), University of Miami, FL
| |
Collapse
|
18
|
Tanprasertsuk J, Johnson EJ, Johnson MA, Poon LW, Nelson PT, Davey A, Martin P, Barbey AK, Barger K, Wang XD, Scott TM. Clinico-Neuropathological Findings in the Oldest Old from the Georgia Centenarian Study. J Alzheimers Dis 2020; 70:35-49. [PMID: 31177211 DOI: 10.3233/jad-181110] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Centenarian studies are important sources for understanding of factors that contribute to longevity and healthy aging. Clinico-neuropathological finding is a key in identifying pathology and factors contributing to age-related cognitive decline and dementia in the oldest old. OBJECTIVE To characterize the cross-sectional relationship between neuropathologies and measures of premortem cognitive performance in centenarians. METHODS Data were acquired from 49 centenarians (≥98 years) from the Georgia Centenarian Study. Cognitive assessment from the time point closest to mortality was used (<1 year for all subjects) and scores for cognitive domains were established. Neuropathologies [cerebral atrophy, ventricular dilation, atherosclerosis, cerebral amyloid angiopathy (CAA), Lewy bodies, hippocampal sclerosis (HS), hippocampal TDP-43 proteinopathy, neuritic plaque (NP) and neurofibrillary tangle (NFT) counts, Braak staging, and National Institute on Aging-Reagan Institute (NIARI) criteria for the neuropathological diagnosis of Alzheimer's disease (AD)] were compared among subjects with different ratings of dementia. Linear regression was applied to evaluate the association between cognitive domain scores and neuropathologies. RESULTS Wide ranges of AD-type neuropathological changes were observed in both non-demented and demented subjects. Neocortical NFT and Braak staging were related to clinical dementia rating. Neocortical NFT and NP, Braak and NIARI staging, cerebral and ventricular atrophy, HS, CAA, and TDP-43 proteinopathy were differentially associated with poor performance in multiple cognitive domains and activities of daily living. CONCLUSION AD-type pathology was associated with severe dementia and poor cognition but was not the only variable that explained cognitive impairment, indicating the complexity and heterogeneity of pathophysiology of dementia in the oldest old.
Collapse
Affiliation(s)
- Jirayu Tanprasertsuk
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA.,Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Elizabeth J Johnson
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Mary Ann Johnson
- Department of Nutrition and Health Sciences, University of Nebraska Lincoln, Lincoln, NE, USA
| | - Leonard W Poon
- Institute of Gerontology, University of Georgia, Athens, GA, USA
| | - Peter T Nelson
- Department of Pathology, Division of Neuropathology, University of Kentucky, Lexington, KY, USA
| | - Adam Davey
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE, USA
| | - Peter Martin
- Human Development & Family Studies, Iowa State University, Ames, IA, USA
| | - Aron K Barbey
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kathryn Barger
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Xiang-Dong Wang
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Tammy M Scott
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| |
Collapse
|
19
|
Jellinger KA. Neuropathological assessment of the Alzheimer spectrum. J Neural Transm (Vienna) 2020; 127:1229-1256. [PMID: 32740684 DOI: 10.1007/s00702-020-02232-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer disease (AD), the most common form of dementia globally, classically defined a clinicopathological entity, is a heterogenous disorder with various pathobiological subtypes, currently referred to as Alzheimer continuum. Its morphological hallmarks are extracellular parenchymal β-amyloid (amyloid plaques) and intraneuronal (tau aggregates forming neurofibrillary tangles) lesions accompanied by synaptic loss and vascular amyloid deposits, that are essential for the pathological diagnosis of AD. In addition to "classical" AD, several subtypes with characteristic regional patterns of tau pathology have been described that show distinct clinical features, differences in age, sex distribution, biomarker levels, and patterns of key network destructions responsible for cognitive decline. AD is a mixed proteinopathy (amyloid and tau), frequently associated with other age-related co-pathologies, such as cerebrovascular lesions, Lewy and TDP-43 pathologies, hippocampal sclerosis, or argyrophilic grain disease. These and other co-pathologies essentially influence the clinical picture of AD and may accelerate disease progression. The purpose of this review is to provide a critical overview of AD pathology, its defining pathological substrates, and the heterogeneity among the Alzheimer spectrum entities that may provide a broader diagnostic coverage of this devastating disorder as a basis for implementing precision medicine approaches and for ultimate development of successful disease-modifying drugs for AD.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
20
|
Prawiroharjo P, Yamashita KI, Yamashita K, Togao O, Hiwatashi A, Yamasaki R, Kira JI. Disconnection of the right superior parietal lobule from the precuneus is associated with memory impairment in oldest-old Alzheimer's disease patients. Heliyon 2020; 6:e04516. [PMID: 32728647 PMCID: PMC7381702 DOI: 10.1016/j.heliyon.2020.e04516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/26/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022] Open
Abstract
There is a wide range of onset age in Alzheimer's disease (AD). Emerging evidence indicates variation of AD manifestations in oldest-old AD (OOAD); however, the pattern of cognitive dysfunctions remains unclear. We aimed to reveal cognitive performance characteristics and changes in brain functional connectivity in OOAD patients by a resting-state fMRI (rs-fMRI) study. We enrolled AD patients who had been referred to Kyushu University Hospital (KUH) or Sanno Hospital, and classified them into middle-old AD (MOAD) (65-79 years old) and OOAD (≥80 years old) according to the age of onset. Our subjects consisted of 19 OOAD, 17 MOAD, and 8 normal subjects. Cognitive performance was evaluated using Mini Mental State Examination-Japanese (MMSE-J) and Clinical Dementia Rating (CDR). rs-fMRI scanning and independent component analysis (ICA) were performed on Sanno Hospital patients and MOAD vs. OOAD patients were compared. The resulting significant regions were used as seeds for ROI-to-ROI analysis of the KUH dataset. Collectively, MMSE-J delayed recall sub-scores were significantly lower in OOAD patients compared with MOAD patients. ICA of the Sanno Hospital data indicated significant connectivity decrease in the default mode network (DMN) in the OOAD group compared with the MOAD group in the right superior parietal lobule (SPL). ROI-to-ROI analysis of the KUH dataset indicated significant disconnection in the OOAD group of the right SPL from the precuneus (p < 0.01). The functional connectivity from the right SPL to the precuneus was positively correlated with the MMSE-J delayed recall sub-score (p = 0.03) and negatively correlated with the CDR memory sub-scale (p = 0.04). These findings indicate that disconnection between the right SPL and the precuneus may contribute to worse memory capability in OOAD compared with MOAD.
Collapse
Affiliation(s)
- Pukovisa Prawiroharjo
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Neurology, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo National Central General Hospital, Jakarta, Indonesia
| | - Ken-ichiro Yamashita
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Koji Yamashita
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Osamu Togao
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Akio Hiwatashi
- Department of Molecular Imaging & Diagnosis, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jun-ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
21
|
Rosa G, Giannotti C, Martella L, Massa F, Serafini G, Pardini M, Nobili FM, Monacelli F. Brain Aging, Cardiovascular Diseases, Mixed Dementia, and Frailty in the Oldest Old: From Brain Phenotype to Clinical Expression. J Alzheimers Dis 2020; 75:1083-1103. [DOI: 10.3233/jad-191075] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gianmarco Rosa
- Department of Internal Medicine and Medical Specialties, DIMI, Section of Cardiovascular Diseases, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Chiara Giannotti
- Department of Internal Medicine and Medical Specialties, DIMI, Section of Geriatrics, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lucia Martella
- Department of Internal Medicine and Medical Specialties, DIMI, Section of Geriatrics, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health DINOGMI, Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Gianluca Serafini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health DINOGMI, Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health DINOGMI, Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Flavio Mariano Nobili
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health DINOGMI, Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties, DIMI, Section of Geriatrics, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | |
Collapse
|
22
|
Pérez-González M, Mendioroz M, Badesso S, Sucunza D, Roldan M, Espelosín M, Ursua S, Luján R, Cuadrado-Tejedor M, Garcia-Osta A. PLA2G4E, a candidate gene for resilience in Alzheimer´s disease and a new target for dementia treatment. Prog Neurobiol 2020; 191:101818. [PMID: 32380223 DOI: 10.1016/j.pneurobio.2020.101818] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/27/2020] [Accepted: 04/23/2020] [Indexed: 12/16/2022]
Abstract
Clinical studies revealed that some aged-individuals accumulate a significant number of histopathological Alzheimer´s disease (AD) lesions in their brain, yet without developing any signs of dementia. Animal models of AD represent suitable tools to identify genes that might promote cognitive resilience and hence, this study first set out to identify cognitively resilient individuals in the aged-Tg2576 mouse model. A transcriptomic analysis of these mice identified PLA2G4E as a gene that might confer resistance to dementia. Indeed, a significant decrease in PLA2G4E is evident in the brain of late-stage AD patients, whereas no such changes are observed in early stage patients with AD neuropathological lesions but no signs of dementia. We demonstrated that adeno-associated viral vector-mediated overexpression of PLA2G4E in hippocampal neurons completely restored cognitive deficits in elderly APP/PS1 mice, without affecting the amyloid or tau pathology. These PLA2G4E overexpressing APP/PS1 mice developed significantly more dendritic spines than sham-injected mice, coinciding with the cognitive improvement observed. Hence, these results support the idea that a loss of PLA2G4E might play a key role in the onset of dementia in AD, highlighting the potential of PLA2G4E overexpression as a novel therapeutic strategy to manage AD and other disorders that course with memory deficits.
Collapse
Affiliation(s)
- Marta Pérez-González
- Alzheimer´s Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain; IdiSNA (Navarra Institute for Health Research) Pamplona, Spain
| | - Maite Mendioroz
- IdiSNA (Navarra Institute for Health Research) Pamplona, Spain; Neuroepigenetics Laboratory, Navarrabiomed, Public University of Navarra (UPNA), Pamplona, Spain; Department of Neurology, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Sara Badesso
- Alzheimer´s Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain; IdiSNA (Navarra Institute for Health Research) Pamplona, Spain
| | - Diego Sucunza
- Parkinson´s Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; IdiSNA (Navarra Institute for Health Research) Pamplona, Spain
| | - Miren Roldan
- IdiSNA (Navarra Institute for Health Research) Pamplona, Spain; Neuroepigenetics Laboratory, Navarrabiomed, Public University of Navarra (UPNA), Pamplona, Spain
| | - Maria Espelosín
- Alzheimer´s Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; IdiSNA (Navarra Institute for Health Research) Pamplona, Spain
| | - Susana Ursua
- Alzheimer´s Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; IdiSNA (Navarra Institute for Health Research) Pamplona, Spain
| | - Rafael Luján
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, Albacete, Spain
| | - Mar Cuadrado-Tejedor
- Alzheimer´s Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain; IdiSNA (Navarra Institute for Health Research) Pamplona, Spain.
| | - Ana Garcia-Osta
- Alzheimer´s Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; IdiSNA (Navarra Institute for Health Research) Pamplona, Spain.
| |
Collapse
|
23
|
Bell SM, De Marco M, Barnes K, Shaw PJ, Ferraiuolo L, Blackburn DJ, Mortiboys H, Venneri A. Deficits in Mitochondrial Spare Respiratory Capacity Contribute to the Neuropsychological Changes of Alzheimer's Disease. J Pers Med 2020; 10:jpm10020032. [PMID: 32365522 PMCID: PMC7354560 DOI: 10.3390/jpm10020032] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease (AD) is diagnosed using neuropsychological testing, supported by amyloid and tau biomarkers and neuroimaging abnormalities. The cause of neuropsychological changes is not clear since they do not correlate with biomarkers. This study investigated if changes in cellular metabolism in AD correlate with neuropsychological changes. Fibroblasts were taken from 10 AD patients and 10 controls. Metabolic assessment included measuring total cellular ATP, extracellular lactate, mitochondrial membrane potential (MMP), mitochondrial respiration and glycolytic function. All participants were assessed with neuropsychological testing and brain structural MRI. AD patients had significantly lower scores in delayed and immediate recall, semantic memory, phonemic fluency and Mini Mental State Examination (MMSE). AD patients also had significantly smaller left hippocampal, left parietal, right parietal and anterior medial prefrontal cortical grey matter volumes. Fibroblast MMP, mitochondrial spare respiratory capacity (MSRC), glycolytic reserve, and extracellular lactate were found to be lower in AD patients. MSRC/MMP correlated significantly with semantic memory, immediate and delayed episodic recall. Correlations between MSRC and delayed episodic recall remained significant after controlling for age, education and brain reserve. Grey matter volumes did not correlate with MRSC/MMP. AD fibroblast metabolic assessment may represent an emergent disease biomarker of AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Heather Mortiboys
- Correspondence: (H.M.); (A.V.); Tel.: +44-(0)114-222-2259 (H.M.); +44-(0)114-271-3430 (A.V.)
| | - Annalena Venneri
- Correspondence: (H.M.); (A.V.); Tel.: +44-(0)114-222-2259 (H.M.); +44-(0)114-271-3430 (A.V.)
| |
Collapse
|
24
|
Lucca U, Tettamanti M, Tiraboschi P, Logroscino G, Landi C, Sacco L, Garrì M, Ammesso S, Biotti A, Gargantini E, Piedicorcia A, Mandelli S, Riva E, Galbussera AA, Recchia A. Incidence of dementia in the oldest-old and its relationship with age: The Monzino 80-plus population-based study. Alzheimers Dement 2020; 16:472-481. [PMID: 31786127 DOI: 10.1016/j.jalz.2019.09.083] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Relationship between age and dementia at extreme old ages is still an open question, yet population-based studies in this high-risk age segment are rare. METHODS The Monzino 80-plus is a population-based study among residents 80 years and older in the Varese province, Italy. Of 1371 eligible individuals, 1294 (94.4%), of whom 64 are centenarians, were included in the incidence study. RESULTS Since 2002, 584 new cases of all-cause dementia were identified over 15 years. The overall incidence rate was 7.9 per 100 person-years. Dementia risk rose with age (IRR: 1.06), with the cubic model providing the best fit (R2 = 0.91-0.96). Cumulative incidences of dementia unadjusted and adjusted for competing mortality risk progressively diverged with age. CONCLUSION Dementia incidence also keeps rising in nonagenarians and centenarians. Slowing down in growing risk of developing dementia with age is mainly attributable to increasing competing risk of death and resulting selective survival of individuals at lower risk of dementia.
Collapse
Affiliation(s)
- Ugo Lucca
- Laboratory of Geriatric Neuropsychiatry, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Mauro Tettamanti
- Laboratory of Geriatric Neuropsychiatry, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Pietro Tiraboschi
- Division of Neurology V and Neuropathology, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milano, Italy
| | | | - Cristina Landi
- European Foundation of Biomedical Research (FERB), Division of Neurological Rehabilitation, Cernusco s/N (Milano), Italy
| | - Leonardo Sacco
- Neurocenter of Southern Switzerland, Ospedale Civico, Lugano, Switzerland
| | - Mariateresa Garrì
- Laboratory of Geriatric Neuropsychiatry, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Sonia Ammesso
- Laboratory of Geriatric Neuropsychiatry, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Anna Biotti
- Laboratory of Geriatric Neuropsychiatry, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Elena Gargantini
- Laboratory of Geriatric Neuropsychiatry, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Alessandro Piedicorcia
- Laboratory of Geriatric Neuropsychiatry, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Sara Mandelli
- Laboratory of Geriatric Neuropsychiatry, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Emma Riva
- Laboratory of Geriatric Neuropsychiatry, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Alessia A Galbussera
- Laboratory of Geriatric Neuropsychiatry, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Angela Recchia
- Laboratory of Geriatric Neuropsychiatry, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| |
Collapse
|
25
|
The puzzle of preserved cognition in the oldest old. Neurol Sci 2019; 41:441-447. [PMID: 31713754 DOI: 10.1007/s10072-019-04111-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
Although epidemiological studies predict an exponential increase in the prevalence of dementia with age, recent studies have demonstrated that the oldest old are actually less frequently affected by dementia than the younger elderly. To explain this, I suggest a parallel between brain ageing and Alzheimer's disease (AD) and assume that theories concerning the brain's vulnerability to AD and its individual variability may also explain why some of the oldest old remain cognitively efficient. Some theories argue that AD is due to the continuing presence of the immature neurones vulnerable to amyloid beta protein (Aß) that are normally involved in brain development and then removed as a result of cell selection by the proteins associated with both brain development and AD. If a dysfunction in cell selection allows these immature neurones to survive, they degenerate early as a result of the neurotoxic action of Aß accumulation, which their mature counterparts can withstand. Consequently, age at the time of onset of AD and its clinical presentations depend on the number and location of such immature cells. I speculate that the same mechanism is responsible for the variability of normal brain ageing: the oldest old with well-preserved cognitive function are people genetically programmed for extreme ageing who have benefited from better cell selection during prenatal and neonatal life and therefore have fewer surviving neurones vulnerable to amyloid-promoted degeneration, whereas the process of early life cell selection was less successful in the oldest old who develop dementia.
Collapse
|
26
|
Suemoto CK, Leite RE, Ferretti‐Rebustini RE, Rodriguez RD, Nitrini R, Pasqualucci CA, Jacob‐Filho W, Grinberg LT. Neuropathological lesions in the very old: results from a large Brazilian autopsy study. Brain Pathol 2019; 29:771-781. [PMID: 30861605 PMCID: PMC6742578 DOI: 10.1111/bpa.12719] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/28/2019] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE To compare neuropathological correlates of cognitive impairment between very old and younger individuals from a Brazilian clinicopathological study. METHODS We assessed the frequency of neuropathological lesions and their association with cognitive impairment (Clinical Dementia Rating scale ≥0.5) in the 80 or over age group compared to younger participants, using logistic regression models adjusted for sex, race and education. RESULTS Except for infarcts and siderocalcinosis, all neuropathological lesions were more common in the 80 or over age group (n = 412) compared to 50-79 year olds (n = 677). Very old participants had more than twice the likelihood of having ≥2 neuropathological diagnoses than younger participants (OR = 2.66, 95% CI = 2.03-3.50). Neurofibrillary tangles, infarcts and hyaline arteriolosclerosis were associated with cognitive impairment in the two age groups. Siderocalcinosis was associated with cognitive impairment in the younger participants only, while Lewy body disease was associated with cognitive impairment in the very old only. In addition, we found that the association of infarcts and multiple pathologies with cognitive impairment was attenuated in very old adults (Infarcts: P for interaction = 0.04; and multiple pathologies: P = 0.05). However, the predictive value for the aggregate model with all neuropathological lesions showed similar discrimination in both age groups [Area under Receiver Operating Characteristic curve (AUROC) = 0.778 in younger participants and AUROC = 0.765 in the very old]. CONCLUSION AND RELEVANCE Despite a higher frequency of neuropathological findings in the very old group, as found in studies with high-income populations, we found attenuation of the effect of infarcts rather than neurofibrillary tangles and plaques as reported previously.
Collapse
Affiliation(s)
- Claudia K. Suemoto
- Division of GeriatricsUniversity of Sao Paulo Medical SchoolSao PauloBrazil
| | - Renata E.P. Leite
- Division of GeriatricsUniversity of Sao Paulo Medical SchoolSao PauloBrazil
| | | | | | - Ricardo Nitrini
- Department of NeurologyUniversity of Sao Paulo Medical SchoolSao PauloBrazil
| | | | - Wilson Jacob‐Filho
- Division of GeriatricsUniversity of Sao Paulo Medical SchoolSao PauloBrazil
| | - Lea T. Grinberg
- Department of PathologyUniversity of Sao Paulo Medical SchoolSao PauloBrazil
- Department of Neurology, Memory and Aging CenterUniversity of California San FranciscoSan FranciscoCA
| |
Collapse
|
27
|
Zhao Y, Tudorascu DL, Lopez OL, Cohen AD, Mathis CA, Aizenstein HJ, Price JC, Kuller LH, Kamboh MI, DeKosky ST, Klunk WE, Snitz BE. Amyloid β Deposition and Suspected Non-Alzheimer Pathophysiology and Cognitive Decline Patterns for 12 Years in Oldest Old Participants Without Dementia. JAMA Neurol 2019; 75:88-96. [PMID: 29114732 DOI: 10.1001/jamaneurol.2017.3029] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Importance The prevalence of pathologic conditions of the brain associated with Alzheimer disease increases strongly with age. Little is known about the distribution and clinical significance of preclinical biomarker staging in the oldest old, when most individuals without dementia are likely to have positive biomarkers. Objective To compare the patterns of long-term cognitive decline in multiple domains by preclinical biomarker status in the oldest old without dementia. Design, Setting, and Participants A longitudinal observational study with a mean (SD) of 12.2 (2.2) years (range 7.2-15.1 years) of follow-up was conducted in an academic medical center from August 24, 2000, to January 14, 2016, including and extending observations from the Ginkgo Evaluation of Memory study. A total of 197 adults who had completed the Ginkgo Evaluation of Memory study, were free of dementia, and were able to undergo magnetic resonance imaging were eligible for a neuroimaging study in 2009. Of these patients, 175 were included in the present analyses; 140 (80%) were cognitively normal and 35 (20%) had mild cognitive impairment. Main Outcomes and Measures Biomarker groups included amyloid β negative (Aβ-)/neurodegeneration negative (ND-), amyloid β positive (Aβ+)/ND-, Aβ-/neurodegeneration positive (ND+), and Aβ+/ND+ based on Pittsburgh Compound B retention and hippocampal volume in 2009. Participants completed baseline neuropsychological testing from 2000 to 2002 and annual testing from 2004 to 2016. Domains included memory, executive function, language, visual-spatial reasoning, and attention and psychomotor speed. Slopes of decline were evaluated with linear mixed models adjusted for age, sex, and years of education. Results Of the 175 participants (71 women and 104 men), at imaging, mean (SD) age was 86.0 (2.9) years (range, 82-95 years). A total of 42 participants (24.0%) were Aβ-/ND-, 32 (18.3%) were Aβ+/ND-, 35 (20.0%) were Aβ-/ND+, and 66 (37.7%) were Aβ+/ND+. On all cognitive measures, the Aβ+/ND+ group showed the steepest decline. Compared with the Aβ-/ND- group, the amyloid deposition alone (Aβ+/ND-) group showed faster decline on tests of verbal and visual memory (-0.3513; 95% CI, -0.5269 to -0.1756), executive function (0.0158; 95% CI, 0.0013-0.0303), and language (-0.1934; 95% CI, -0.3520 to -0.0348). The Aβ-/ND+ group showed faster visual memory decline than the Aβ-/ND- reference group (-0.3007; 95% CI, -0.4736 to -0.1279). Conclusions and Relevance In the oldest old without dementia, presence of either or both Aβ and hippocampal atrophy is typical (>75%). Isolated hippocampal volume atrophy is associated only with greater decline in memory. However, isolated Aβ is associated with decline in memory plus language and executive functions. These findings suggest different underlying pathophysiologic processes in the Aβ+/ND- and Aβ-/ND+ groups.
Collapse
Affiliation(s)
- Yujing Zhao
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dana L Tudorascu
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ann D Cohen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Chester A Mathis
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Howard J Aizenstein
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Julie C Price
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania.,now with the Department of Radiology, Massachusetts General Hospital, Boston
| | - Lewis H Kuller
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - M Ilyas Kamboh
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - William E Klunk
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Beth E Snitz
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
28
|
Farfel JM, Yu L, Boyle PA, Leurgans S, Shah RC, Schneider JA, Bennett DA. Alzheimer's disease frequency peaks in the tenth decade and is lower afterwards. Acta Neuropathol Commun 2019; 7:104. [PMID: 31269985 PMCID: PMC6609405 DOI: 10.1186/s40478-019-0752-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 01/26/2023] Open
Abstract
Age is the most robust risk factor for Alzheimer's dementia, however there is little data on the relation of age to Alzheimer's disease (AD) and other common neuropathologies that contribute to Alzheimer's dementia. We use data from two community-based, clinical-pathologic cohorts to examine the association of age with AD and other common pathologies. Participants were 1420 autopsied individuals from the Religious Orders Study or Rush Memory and Aging Project who underwent annual clinical evaluations for diagnosis of Alzheimer's dementia, mild cognitive impairment (MCI), and level of cognition. The neuropathologic traits of interest were pathologic AD according to modified NIA-Reagan criteria, three quantitative measures of AD pathology (global AD pathology score, β-amyloid load and PHFtau tangle density), macro- and micro-scopic infarcts, neocortical Lewy bodies, TDP-43 and hippocampal sclerosis. Semiparametric generalized additive models examined the nonlinear relationship between age and the clinical and pathological outcomes. The probability of Alzheimer's dementia at death increased with age such that for every additional year of age, the log odds of Alzheimer's dementia was 0.067 higher, corresponding to an odds ratio of 1.070 (p < 0.001). Results were similar for cognitive impairment and level of cognition. By contrast, a nonlinear relationship of age with multiple indices of AD pathology was observed (all ps < 0.05), such that pathologic AD reached a peak around 95 years of age and leveled off afterwards; the quantitative measures of AD pathology were significantly lower at ages above 95. The association of age with other neuropathologies was quite distinct from that of AD in that most increased with advancing age. AD pathology appears to peak around 95 years of age while other common pathologies continue to increase with age.
Collapse
Affiliation(s)
- Jose M Farfel
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W. Harrison, Suite 1000, Chicago, IL, 60612, USA.
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA.
- Department of Geriatrics, University of Sao Paulo Medical School, Sao Paulo, Brazil.
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W. Harrison, Suite 1000, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Patricia A Boyle
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W. Harrison, Suite 1000, Chicago, IL, 60612, USA
- Department of Behavioral Sciences, Rush Medical College, Chicago, IL, USA
| | - Sue Leurgans
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W. Harrison, Suite 1000, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Raj C Shah
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W. Harrison, Suite 1000, Chicago, IL, 60612, USA
- Department of Family Medicine, Rush Medical College, Chicago, IL, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W. Harrison, Suite 1000, Chicago, IL, 60612, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W. Harrison, Suite 1000, Chicago, IL, 60612, USA
- Department of Geriatrics, University of Sao Paulo Medical School, Sao Paulo, Brazil
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
29
|
Eggink E, Moll van Charante EP, van Gool WA, Richard E. A Population Perspective on Prevention of Dementia. J Clin Med 2019; 8:E834. [PMID: 31212802 PMCID: PMC6617301 DOI: 10.3390/jcm8060834] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/06/2019] [Accepted: 06/09/2019] [Indexed: 01/21/2023] Open
Abstract
The global number of people living with dementia is expected to increase to 130 million in 2050. Based on extensive evidence from observational studies, it is estimated that about 30% of dementia cases may be attributable to potentially modifiable risk factors. This suggests that interventions targeting these factors could perhaps delay or prevent the onset of dementia. Since the vast majority of people with dementia live in low- and middle-income countries, such interventions should preferably be easy and affordable to implement across a wide range of health care systems. However, to date, results from dementia prevention trials do not provide convincing evidence that treatment of these risk factors reduces the risk of dementia. The current paper aims to give an overview of available evidence for the potential for dementia prevention. In particular, we discuss methodological issues that might complicate the development of effective prevention interventions and explore the opportunities and challenges for future dementia prevention research. Currently, several ongoing and planned trials are testing the effect of multi-domain interventions on dementia risk in high-risk populations. It is desirable that future dementia strategies also target the wider population, through interventions on the individual, community, and population level, in order to constrain the growing prevalence of dementia worldwide.
Collapse
Affiliation(s)
- Esmé Eggink
- Department of General Practice, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| | - Eric P Moll van Charante
- Department of General Practice, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| | - Willem A van Gool
- Department of Neurology, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| | - Edo Richard
- Department of Neurology, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
- Department of Neurology, Donders Institute for Brain, Behaviour and Cognition, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
30
|
Katsel P, Haroutunian V. Is Alzheimer disease a failure of mobilizing immune defense? Lessons from cognitively fit oldest-old. DIALOGUES IN CLINICAL NEUROSCIENCE 2019; 21:7-19. [PMID: 31607776 PMCID: PMC6780355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Multifaceted evidence supports the hypothesis that inflammatory-immune mechanisms contribute to Alzheimer disease (AD) neuropathology and genetic association of several immune specific genes (TREM2, CR1, and CD33) suggests that maladaptive immune responses may be pivotal drivers of AD pathogenesis. We reviewed microglia-related data from postmortem AD studies and examined supporting evidence from AD animal models to answer the following questions: i) What is the temporal sequence of immune activation in AD progression and what is its impact on cognition? ii) Are there discordant, "primed", microglia responses in AD vs successful cognitive aging? iii) Does central nervous system (CNS) repair in aging depend on recruitment of the elements of cellular adaptive immune response such as effector T cells, and can the recruitment of systemic immune cells ameliorate AD neuropathology? iv) How effective are the immune-system-based therapeutic approaches currently employed for the treatment of AD?
Collapse
Affiliation(s)
- Pavel Katsel
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vahram Haroutunian
- Department of Neuroscience, The Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA
| |
Collapse
|
31
|
Crimins JL, Puri R, Calakos KC, Yuk F, Janssen WGM, Hara Y, Rapp PR, Morrison JH. Synaptic distributions of pS214-tau in rhesus monkey prefrontal cortex are associated with spine density, but not with cognitive decline. J Comp Neurol 2019; 527:856-873. [PMID: 30408169 PMCID: PMC6333519 DOI: 10.1002/cne.24576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 12/31/2022]
Abstract
Female rhesus monkeys and women are subject to age- and menopause-related deficits in working memory, an executive function mediated by the dorsolateral prefrontal cortex (dlPFC). Long-term cyclic administration of 17β-estradiol improves working memory, and restores highly plastic axospinous synapses within layer III dlPFC of aged ovariectomized monkeys. In this study, we tested the hypothesis that synaptic distributions of tau protein phosphorylated at serine 214 (pS214-tau) are altered with age or estradiol treatment, and couple to working memory performance. First, ovariectormized young and aged monkeys received vehicle or estradiol treatment, and were tested on the delayed response (DR) test of working memory. Serial section electron microscopic immunocytochemistry was then performed to quantitatively assess the subcellular synaptic distributions of pS214-tau. Overall, the majority of synapses contained pS214-tau immunogold particles, which were predominantly localized to the cytoplasm of axon terminals. pS214-tau was also abundant within synaptic and cytoplasmic domains of dendritic spines. The density of pS214-tau immunogold within the active zone, cytoplasmic, and plasmalemmal domains of axon terminals, and subjacent to the postsynaptic density within the subsynaptic domains of dendritic spines, were each reduced with age. None of the variables examined were directly linked to cognitive status, but a high density of pS214-tau immunogold particles within presynaptic cytoplasmic and plasmalemmal domains, and within postsynaptic subsynaptic and plasmalemmal domains, accompanied high synapse density. Together, these data support a possible physiological, rather than pathological, role for pS214-tau in the modulation of synaptic morphology in monkey dlPFC.
Collapse
Affiliation(s)
- Johanna L. Crimins
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Rishi Puri
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Katina C. Calakos
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Frank Yuk
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - William G. M. Janssen
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Yuko Hara
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Peter R. Rapp
- National Institute on Aging, Laboratory of Behavioral Neuroscience, Baltimore, MD 21224
| | - John H. Morrison
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- California National Primate Research Center, Davis, CA 95616
- Department of Neurology, School of Medicine, University of California, Davis, CA 95616
| |
Collapse
|
32
|
Katsel P, Haroutunian V. Is Alzheimer disease a failure of mobilizing immune defense? Lessons from cognitively fit oldest-old. DIALOGUES IN CLINICAL NEUROSCIENCE 2019. [PMID: 31607776 PMCID: PMC6780355 DOI: 10.31887/dcns.2019.21.1/vharoutunian] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Multifaceted evidence supports the hypothesis that inflammatory-immune mechanisms contribute to Alzheimer disease (AD) neuropathology and genetic association of several immune specific genes (TREM2, CR1, and CD33) suggests that maladaptive immune responses may be pivotal drivers of AD pathogenesis. We reviewed microglia-related data from postmortem AD studies and examined supporting evidence from AD animal models to answer the following questions: i) What is the temporal sequence of immune activation in AD progression and what is its impact on cognition? ii) Are there discordant, “primed”, microglia responses in AD vs successful cognitive aging? iii) Does central nervous system (CNS) repair in aging depend on recruitment of the elements of cellular adaptive immune response such as effector T cells, and can the recruitment of systemic immune cells ameliorate AD neuropathology? iv) How effective are the immune-system-based therapeutic approaches currently employed for the treatment of AD?
Collapse
Affiliation(s)
- Pavel Katsel
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vahram Haroutunian
- Department of Neuroscience, The Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA
| |
Collapse
|
33
|
Williamson JD, Pajewski NM, Auchus AP, Bryan RN, Chelune G, Cheung AK, Cleveland ML, Coker LH, Crowe MG, Cushman WC, Cutler JA, Davatzikos C, Desiderio L, Erus G, Fine LJ, Gaussoin SA, Harris D, Hsieh MK, Johnson KC, Kimmel PL, Tamura MK, Launer LJ, Lerner AJ, Lewis CE, Martindale-Adams J, Moy CS, Nasrallah IM, Nichols LO, Oparil S, Ogrocki PK, Rahman M, Rapp SR, Reboussin DM, Rocco MV, Sachs BC, Sink KM, Still CH, Supiano MA, Snyder JK, Wadley VG, Walker J, Weiner DE, Whelton PK, Wilson VM, Woolard N, Wright JT, Wright CB. Effect of Intensive vs Standard Blood Pressure Control on Probable Dementia: A Randomized Clinical Trial. JAMA 2019; 321:553-561. [PMID: 30688979 PMCID: PMC6439590 DOI: 10.1001/jama.2018.21442] [Citation(s) in RCA: 746] [Impact Index Per Article: 149.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
IMPORTANCE There are currently no proven treatments to reduce the risk of mild cognitive impairment and dementia. OBJECTIVE To evaluate the effect of intensive blood pressure control on risk of dementia. DESIGN, SETTING, AND PARTICIPANTS Randomized clinical trial conducted at 102 sites in the United States and Puerto Rico among adults aged 50 years or older with hypertension but without diabetes or history of stroke. Randomization began on November 8, 2010. The trial was stopped early for benefit on its primary outcome (a composite of cardiovascular events) and all-cause mortality on August 20, 2015. The final date for follow-up of cognitive outcomes was July 22, 2018. INTERVENTIONS Participants were randomized to a systolic blood pressure goal of either less than 120 mm Hg (intensive treatment group; n = 4678) or less than 140 mm Hg (standard treatment group; n = 4683). MAIN OUTCOMES AND MEASURES The primary cognitive outcome was occurrence of adjudicated probable dementia. Secondary cognitive outcomes included adjudicated mild cognitive impairment and a composite outcome of mild cognitive impairment or probable dementia. RESULTS Among 9361 randomized participants (mean age, 67.9 years; 3332 women [35.6%]), 8563 (91.5%) completed at least 1 follow-up cognitive assessment. The median intervention period was 3.34 years. During a total median follow-up of 5.11 years, adjudicated probable dementia occurred in 149 participants in the intensive treatment group vs 176 in the standard treatment group (7.2 vs 8.6 cases per 1000 person-years; hazard ratio [HR], 0.83; 95% CI, 0.67-1.04). Intensive BP control significantly reduced the risk of mild cognitive impairment (14.6 vs 18.3 cases per 1000 person-years; HR, 0.81; 95% CI, 0.69-0.95) and the combined rate of mild cognitive impairment or probable dementia (20.2 vs 24.1 cases per 1000 person-years; HR, 0.85; 95% CI, 0.74-0.97). CONCLUSIONS AND RELEVANCE Among ambulatory adults with hypertension, treating to a systolic blood pressure goal of less than 120 mm Hg compared with a goal of less than 140 mm Hg did not result in a significant reduction in the risk of probable dementia. Because of early study termination and fewer than expected cases of dementia, the study may have been underpowered for this end point. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01206062.
Collapse
Affiliation(s)
| | - Jeff D Williamson
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Nicholas M Pajewski
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Alexander P Auchus
- Department of Neurology, University of Mississippi Medical Center, Jackson
| | - R Nick Bryan
- Department of Radiology, University of Pennsylvania, Philadelphia
| | - Gordon Chelune
- Department of Neurology, University of Utah School of Medicine, Salt Lake City
| | - Alfred K Cheung
- Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City
| | - Maryjo L Cleveland
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Laura H Coker
- Department of Social Sciences and Health Policy, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Michael G Crowe
- Department of Psychology, University of Alabama at Birmingham
| | - William C Cushman
- Preventive Medicine Section, Veterans Affairs Medical Center, Memphis, Tennessee
| | - Jeffrey A Cutler
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | | | - Lisa Desiderio
- Department of Radiology, University of Pennsylvania, Philadelphia
| | - Guray Erus
- Department of Radiology, University of Pennsylvania, Philadelphia
| | - Larry J Fine
- Clinical Applications and Prevention Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Sarah A Gaussoin
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Darrin Harris
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Meng-Kang Hsieh
- Department of Radiology, University of Pennsylvania, Philadelphia
| | - Karen C Johnson
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis
| | - Paul L Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Disorders, Bethesda, Maryland
| | | | - Lenore J Launer
- Neuroepidemiology Section, Intramural Research Program, National Institute on Aging, Bethesda, Maryland
| | - Alan J Lerner
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Cora E Lewis
- Department of Epidemiology, University of Alabama at Birmingham
| | | | - Claudia S Moy
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Ilya M Nasrallah
- Department of Radiology, University of Pennsylvania, Philadelphia
| | - Linda O Nichols
- Preventive Medicine Section, Veterans Affairs Medical Center, Memphis, Tennessee
| | - Suzanne Oparil
- Department of Medicine, University of Alabama at Birmingham
| | - Paula K Ogrocki
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Mahboob Rahman
- Department of Medicine, Louis Stokes Cleveland Veterans Affairs Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Stephen R Rapp
- Department of Psychiatry and Behavioral Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - David M Reboussin
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Michael V Rocco
- Section of Nephrology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Bonnie C Sachs
- Department of Neurology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Kaycee M Sink
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Carolyn H Still
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, Ohio
| | - Mark A Supiano
- Division of Geriatrics, University of Utah School of Medicine, Salt Lake City
| | - Joni K Snyder
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | | | - Jennifer Walker
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Daniel E Weiner
- Division of Nephrology, Tufts Medical Center, Boston, Massachusetts
| | - Paul K Whelton
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Valerie M Wilson
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Nancy Woolard
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jackson T Wright
- Division of Nephrology and Hypertension, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Clinton B Wright
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| |
Collapse
|
34
|
Reed MJ, Damodarasamy M, Pathan JL, Chan CK, Spiekerman C, Wight TN, Banks WA, Day AJ, Vernon RB, Keene CD. Increased Hyaluronan and TSG-6 in Association with Neuropathologic Changes of Alzheimer's Disease. J Alzheimers Dis 2019; 67:91-102. [PMID: 30507579 PMCID: PMC6398602 DOI: 10.3233/jad-180797] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Little is known about the extracellular matrix (ECM) during progression of AD pathology. Brain ECM is abundant in hyaluronan (HA), a non-sulfated glycosaminoglycan synthesized by HA synthases (HAS) 1-3 in a high molecular weight (MW) form that is degraded into lower MW fragments. We hypothesized that pathologic severity of AD is associated with increases in HA and HA-associated ECM molecules. To test this hypothesis, we assessed HA accumulation and size; HA synthases (HAS) 1-3; and the HA-stabilizing hyaladherin, TSG-6 in parietal cortex samples from autopsied research subjects with not AD (CERAD = 0, Braak = 0- II, n = 12-21), intermediate AD (CERAD = 2, Braak = III-IV, n = 13-18), and high AD (CERAD = 3, Braak = V-VI, n = 32-40) neuropathologic change. By histochemistry, HA was associated with deposits of amyloid and tau, and was also found diffusely in brain parenchyma, with overall HA quantity (measured by ELSA) significantly greater in brains with high AD neuropathology. Mean HA MW was similar among the samples. HAS2 and TSG-6 mRNA expression, and TSG-6 protein levels were significantly increased in high AD and both molecules were present in vasculature, NeuN-positive neurons, and Iba1-positive microglia. These results did not change when accounting for gender, advanced age (≥ 90 years versus <90 years), or the clinical diagnosis of dementia. Collectively, our results indicate a positive correlation between HA accumulation and AD neuropathology, and suggest a possible role for HA synthesis and metabolism in AD progression.
Collapse
Affiliation(s)
- MJ Reed
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA
| | - M Damodarasamy
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA
| | - JL Pathan
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA
| | - CK Chan
- Matrix Biology Program, Benaroya Research Institute, Virginia Mason, Seattle, WA, USA
| | - C Spiekerman
- Center for Biomedical Statistics, Institute for Translational Health Sciences, University of Washington, Seattle, WA, USA
| | - TN Wight
- Matrix Biology Program, Benaroya Research Institute, Virginia Mason, Seattle, WA, USA
| | - WA Banks
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA
- VA Puget Sound Health Care System, Geriatric Research Education and Clinical Center, Seattle, WA, USA
| | - AJ Day
- Wellcome Trust Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - RB Vernon
- Matrix Biology Program, Benaroya Research Institute, Virginia Mason, Seattle, WA, USA
| | - CD Keene
- Department of Pathology, Division of Neuropathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
35
|
Liu-Ambrose T, Barha C, Falck RS. Active body, healthy brain: Exercise for healthy cognitive aging. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 147:95-120. [PMID: 31607364 DOI: 10.1016/bs.irn.2019.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The world's population is aging and promoting healthy cognitive aging is a public health priority and challenge. Physical activity is a modifiable lifestyle factor that has been identified as positively impacting the cognitive health of older adults with and without cognitive impairment. This chapter current evidence from epidemiological and intervention studies (i.e., randomized controlled trials) on the role of physical activity and exercise in promoting cognitive health in older adults both with and without cognitive impairment. Biological sex as a potential moderator of exercise efficacy is also discussed. We conclude with future directions for this rapidly expanding line of research.
Collapse
Affiliation(s)
- Teresa Liu-Ambrose
- Department of Physical Therapy, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| | - Cindy Barha
- Department of Physical Therapy, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Ryan S Falck
- Department of Physical Therapy, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
36
|
Effects of Ficus umbellata (Moraceae) Aqueous Extract and 7-Methoxycoumarin on Scopolamine-Induced Spatial Memory Impairment in Ovariectomized Wistar Rats. Behav Neurol 2018; 2018:5751864. [PMID: 30363978 PMCID: PMC6186347 DOI: 10.1155/2018/5751864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 07/10/2018] [Indexed: 11/29/2022] Open
Abstract
The present work was undertaken to evaluate the ability of F. umbellata aqueous extract and its major component 7-methoxycoumarin (MC) to improve scopolamine-induced spatial memory impairment in ovariectomized Wistar rats. For this to be done, 10 sham-operated and 30 postmenopausal-like rats were randomly distributed in eight groups (n = 5) and treated with distilled water (2 mL/250 g), estradiol valerate (1 mg/kg BW), piracetam (1.5 mg/kg BW), F. umbellata aqueous extract (50 and 200 mg/kg BW), or MC (1 mg/kg BW) for 21 consecutive days. Before and after the memory impairment with scopolamine (2 mg/kg BW), animals underwent behavioral evaluations on Y- and radial mazes. As results, age and ovariectomy did not induce significant changes in the reference memory errors. While age decreased working memory errors, ovariectomy increased it. The MC as well as F. umbellata extract significantly increased (p < 0.01) the percentage of spontaneous alternation and decreased (p < 0.001) working and spatial reference memory errors and anxiety parameters (rearing and grooming) in ovariectomized rats. MC significantly reduced (p < 0.05) the MDA level, but resulted in an increase in GSH level in brain homogenates. These results suggest that MC is endowed with neuroprotective effects and could account for the neuroprotective effects of F. umbellata in rats.
Collapse
|
37
|
Ganz AB, Beker N, Hulsman M, Sikkes S, Netherlands Brain Bank, Scheltens P, Smit AB, Rozemuller AJM, Hoozemans JJM, Holstege H. Neuropathology and cognitive performance in self-reported cognitively healthy centenarians. Acta Neuropathol Commun 2018; 6:64. [PMID: 30037350 PMCID: PMC6055341 DOI: 10.1186/s40478-018-0558-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 11/23/2022] Open
Abstract
With aging, the incidence of neuropathological hallmarks of neurodegenerative diseases increases in the brains of cognitively healthy individuals. It is currently unclear to what extent these hallmarks associate with symptoms of disease at extreme ages. Forty centenarians from the 100-plus Study cohort donated their brain. Centenarians self-reported to be cognitively healthy at baseline, which was confirmed by a proxy. Objective ante-mortem measurements of cognitive performance were associated with the prevalence, distribution and quantity of age- and AD-related neuropathological hallmarks. Despite self-reported cognitive health, objective neuropsychological testing suggested varying levels of ante-mortem cognitive functioning. Post-mortem, we found that neuropathological hallmarks related to age and neurodegenerative diseases, such as Aβ and Tau pathology, as well as atherosclerosis, were abundantly present in most or all centenarians, whereas Lewy body and pTDP-43 pathology were scarce. We observed that increased pathology loads correlated across pathology subtypes, and an overall trend of higher pathology loads to associate with a lower cognitive test performance. This trend was carried especially by the presence of neurofibrillary tangles (NFTs) and granulovacuolar degeneration (GVD) and to a lesser extent by Aβ-associated pathologies. Cerebral Amyloid Angiopathy (CAA) specifically associated with lower executive functioning in the centenarians. In conclusion, we find that while the centenarians in this cohort escaped or delayed cognitive impairment until extreme ages, their brains reveal varying levels of disease-associated neuropathological hallmarks, some of which associate with cognitive performance.
Collapse
Affiliation(s)
- Andrea B Ganz
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam Neuroscience, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
- Alzheimer Centre, Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, Postbus 7057, 1007 MB, Amsterdam, The Netherlands
| | - Nina Beker
- Alzheimer Centre, Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, Postbus 7057, 1007 MB, Amsterdam, The Netherlands
| | - Marc Hulsman
- Department of Clinical Genetics, Amsterdam Neuroscience, VU University Medical Center, de Boelelaan, 1118 1081 HV, Amsterdam, The Netherlands
| | - Sietske Sikkes
- Alzheimer Centre, Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, Postbus 7057, 1007 MB, Amsterdam, The Netherlands
| | - Netherlands Brain Bank
- Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Centre, Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, Postbus 7057, 1007 MB, Amsterdam, The Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam Neuroscience, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Jeroen J M Hoozemans
- Department of Pathology, Amsterdam Neuroscience, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Henne Holstege
- Alzheimer Centre, Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, Postbus 7057, 1007 MB, Amsterdam, The Netherlands.
- Department of Clinical Genetics, Amsterdam Neuroscience, VU University Medical Center, de Boelelaan, 1118 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
38
|
Lim EY, Yang DW, Kim JS, Cho AH. Safety and Efficacy of Anti-dementia Agents in the Extremely Elderly Patients with Dementia. J Korean Med Sci 2018; 33:e133. [PMID: 29736156 PMCID: PMC5934516 DOI: 10.3346/jkms.2018.33.e133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/27/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND There are debates on representation and generalizability of previous randomized controlled trials about anti-dementia agents in the oldest old population. In this context, we aimed to investigate the efficacy and safety of anti-dementia agents in the very elderly patients with dementia. METHODS We conducted a retrospective study of patients with dementia 1) who were 85 years or older, 2) got started anti-dementia agents, and 3) went through follow-up evaluation about one year thereafter. As a control, patients with dementia who were less than 85 years old with similar inclusion criteria were randomly selected during the same period. The adverse drug effects and discontinuation rates were investigated with self-reported complaint after starting or increasing anti-dementia drugs. For efficacy outcome, we also analyzed the change in neuropsychological results during follow-up period. RESULTS A total of 77 dementia patients who were at least 85 years were enrolled. As a control group, 78 patients with dementia who were younger than 85 was analyzed. The adverse drug effects were observed in 26 (33.3%) patients in the younger old and in 26 (33.8%) in the oldest old (P = 0.095). Twenty-one patients (26.9%) in the younger old group and 13 patients (16.9%) in the oldest old group discontinued their medication (P = 0.131). There were no differences between the two groups about changes of Mini-Mental State Examination and Instrumental Activity of Daily Living scores over time. CONCLUSION The use of anti-dementia agents in the oldest old dementia patients may be safe and effective as the younger old dementia patients.
Collapse
Affiliation(s)
- Eun-Ye Lim
- Department of Neurology, The Catholic University of Korea, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dong-Won Yang
- Department of Neurology, The Catholic University of Korea, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung-Seok Kim
- Department of Neurology, The Catholic University of Korea, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - A-Hyun Cho
- Department of Neurology, The Catholic University of Korea, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
39
|
Garwood CJ, Ratcliffe LE, Simpson JE, Heath PR, Ince PG, Wharton SB. Review: Astrocytes in Alzheimer's disease and other age-associated dementias: a supporting player with a central role. Neuropathol Appl Neurobiol 2018; 43:281-298. [PMID: 27442752 DOI: 10.1111/nan.12338] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/15/2016] [Accepted: 07/21/2016] [Indexed: 12/12/2022]
Abstract
Astrocytes have essential roles in the central nervous system and are also implicated in the pathogenesis of neurodegenerative disease. Forming non-overlapping domains, astrocytes are highly complex cells. Immunohistochemistry to a variety of proteins can be used to study astrocytes in tissue, labelling different cellular components and sub-populations, including glial fibrillary acidic protein, ALDH1L1, CD44, NDRG2 and amino acid transporters, but none of these labels the entire astrocyte population. Increasing heterogeneity is recognized in the astrocyte population, a complexity that is relevant both to their normal function and pathogenic roles. They are involved in neuronal support, as active components of the tripartite synapse and in cell interactions within the neurovascular unit (NVU), where they are essential for blood-brain barrier maintenance and neurovascular coupling. Astrocytes change with age, and their responses may modulate the cellular effects of neurodegenerative pathologies, which alone do not explain all of the variance in statistical models of neurodegenerative dementias. Astrocytes respond to both the neurofibrillary tangles and plaques of Alzheimer's disease, to hyperphosphorylated tau and Aβ, eliciting an effect which may be neuroprotective or deleterious. Not only astrocyte hypertrophy, in the form of gliosis, occurs, but also astrocyte injury and atrophy. Loss of normal astrocyte functions may contribute to reduced support for neurones and dysfunction of the NVU. Understanding how astrocytes contribute to dementia requires an understanding of the underlying heterogeneity of astrocyte populations, and the complexity of their responses to pathology. Enhancing the supportive and neuroprotective components of the astrocyte response has potential translational applications in therapeutic approaches to dementia.
Collapse
Affiliation(s)
- C J Garwood
- Sheffield Institute for Translational Neuroscience, Sheffield, UK
| | - L E Ratcliffe
- Sheffield Institute for Translational Neuroscience, Sheffield, UK
| | - J E Simpson
- Sheffield Institute for Translational Neuroscience, Sheffield, UK
| | - P R Heath
- Sheffield Institute for Translational Neuroscience, Sheffield, UK
| | - P G Ince
- Sheffield Institute for Translational Neuroscience, Sheffield, UK
| | - S B Wharton
- Sheffield Institute for Translational Neuroscience, Sheffield, UK
| |
Collapse
|
40
|
Paolacci L, Giannandrea D, Mecocci P, Parnetti L. Biomarkers for Early Diagnosis of Alzheimer's Disease in the Oldest Old: Yes or No? J Alzheimers Dis 2018; 58:323-335. [PMID: 28436390 DOI: 10.3233/jad-161127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In recent years, many efforts have been spent to identify sensitive biomarkers able to improve the accuracy of Alzheimer's disease (AD) diagnosis. Two different workgroups (NIA-AA and IWG) included cerebrospinal fluid (CSF) and neuroimaging findings in their sets of criteria in order to improve diagnostic accuracy as well as early diagnosis. The number of subjects with cognitive impairment increases with aging but the oldest old (≥85 years of age), the fastest growing age group, is still the most unknown from a biological point of view. For this reason, the aim of our narrative mini-review is to evaluate the pertinence of the new criteria for AD diagnosis in the oldest old. Moreover, since different subgroups of oldest old have been described in scientific literature (escapers, delayers, survivors), we want to outline the clinical profile of the oldest old who could really benefit from the use of biomarkers for early diagnosis. Reviewing the literature on biomarkers included in the diagnostic criteria, we did not find a high degree of evidence for their use in the oldest old, although CSF biomarkers seem to be still the most useful for excluding AD diagnosis in the "fit" subgroup of oldest old subjects, due to the high negative predictive value maintained in this age group.
Collapse
Affiliation(s)
- Lucia Paolacci
- Department of Medicine, Section of Gerontologyand Geriatrics, University of Perugia, Perugia, Italy
| | - David Giannandrea
- Department of Medicine, Section of Neurology, Center for Memory Disturbances-Lab of Clinical Neurochemistry, University of Perugia, Perugia, Italy.,Neurology Unit, Presidio Ospedaliero Alto Chiascio, USL 1 Umbria, Italy
| | - Patrizia Mecocci
- Department of Medicine, Section of Gerontologyand Geriatrics, University of Perugia, Perugia, Italy
| | - Lucilla Parnetti
- Department of Medicine, Section of Neurology, Center for Memory Disturbances-Lab of Clinical Neurochemistry, University of Perugia, Perugia, Italy
| |
Collapse
|
41
|
Jansen WJ, Wilson RS, Visser PJ, Nag S, Schneider JA, James BD, Leurgans SE, Capuano AW, Bennett DA, Boyle PA. Age and the association of dementia-related pathology with trajectories of cognitive decline. Neurobiol Aging 2018; 61:138-145. [PMID: 29078129 PMCID: PMC5721665 DOI: 10.1016/j.neurobiolaging.2017.08.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 08/23/2017] [Accepted: 08/26/2017] [Indexed: 01/06/2023]
Abstract
The association of dementia-related pathologies with cognition is hypothesized to decrease as age advances. We examined this in 413 persons without cognitive impairment at baseline who completed annual cognitive evaluations during a mean of 10.4 years. After death, neuropathologic examinations quantified beta amyloid plaque load, neurofibrillary tangles, and transactive response DNA-binding protein 43 pathology, and identified Lewy bodies, hippocampal sclerosis, and gross and microscopic cerebral infarcts. We tested whether age at death modified associations of these neuropathologies with the nonlinear trajectory of cognitive decline using mixed-effects change point models. The rate of global cognitive decline was gradual at first and then increased approximately 10-fold in the last 3 years of life. After adjustment for all other pathologic indices, tangle density, gross infarcts, Lewy bodies, and transactive response DNA-binding protein 43 were associated with global cognitive decline. However, the deleterious association of dementia-related pathologies with cognitive decline did not systematically vary by age. This suggests that the neuropathologic mechanisms underlying late-life cognitive decline do not substantially differ across the spectrum of age.
Collapse
Affiliation(s)
- Willemijn J Jansen
- Department of Psychiatry and Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Robert S Wilson
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Neurology, VUmc Alzheimer Center, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, the Netherlands
| | - Sukriti Nag
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Bryan D James
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Sue E Leurgans
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Ana W Capuano
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Patricia A Boyle
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
42
|
Miller JA, Guillozet-Bongaarts A, Gibbons LE, Postupna N, Renz A, Beller AE, Sunkin SM, Ng L, Rose SE, Smith KA, Szafer A, Barber C, Bertagnolli D, Bickley K, Brouner K, Caldejon S, Chapin M, Chua ML, Coleman NM, Cudaback E, Cuhaciyan C, Dalley RA, Dee N, Desta T, Dolbeare TA, Dotson NI, Fisher M, Gaudreault N, Gee G, Gilbert TL, Goldy J, Griffin F, Habel C, Haradon Z, Hejazinia N, Hellstern LL, Horvath S, Howard K, Howard R, Johal J, Jorstad NL, Josephsen SR, Kuan CL, Lai F, Lee E, Lee F, Lemon T, Li X, Marshall DA, Melchor J, Mukherjee S, Nyhus J, Pendergraft J, Potekhina L, Rha EY, Rice S, Rosen D, Sapru A, Schantz A, Shen E, Sherfield E, Shi S, Sodt AJ, Thatra N, Tieu M, Wilson AM, Montine TJ, Larson EB, Bernard A, Crane PK, Ellenbogen RG, Keene CD, Lein E. Neuropathological and transcriptomic characteristics of the aged brain. eLife 2017; 6. [PMID: 29120328 PMCID: PMC5679757 DOI: 10.7554/elife.31126] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/22/2017] [Indexed: 12/11/2022] Open
Abstract
As more people live longer, age-related neurodegenerative diseases are an increasingly important societal health issue. Treatments targeting specific pathologies such as amyloid beta in Alzheimer’s disease (AD) have not led to effective treatments, and there is increasing evidence of a disconnect between traditional pathology and cognitive abilities with advancing age, indicative of individual variation in resilience to pathology. Here, we generated a comprehensive neuropathological, molecular, and transcriptomic characterization of hippocampus and two regions cortex in 107 aged donors (median = 90) from the Adult Changes in Thought (ACT) study as a freely-available resource (http://aging.brain-map.org/). We confirm established associations between AD pathology and dementia, albeit with increased, presumably aging-related variability, and identify sets of co-expressed genes correlated with pathological tau and inflammation markers. Finally, we demonstrate a relationship between dementia and RNA quality, and find common gene signatures, highlighting the importance of properly controlling for RNA quality when studying dementia.
Collapse
Affiliation(s)
| | | | - Laura E Gibbons
- Department of Medicine, University of Washington, Seattle, United States
| | - Nadia Postupna
- Department of Pathology, University of Washington, Seattle, United States
| | - Anne Renz
- Kaiser Permanente Washington Health Research Institute, Seattle, United States
| | - Allison E Beller
- Department of Pathology, University of Washington, Seattle, United States
| | - Susan M Sunkin
- Allen Institute for Brain Science, Seattle, United States
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, United States
| | - Shannon E Rose
- Department of Pathology, University of Washington, Seattle, United States
| | | | - Aaron Szafer
- Allen Institute for Brain Science, Seattle, United States
| | - Chris Barber
- Allen Institute for Brain Science, Seattle, United States
| | | | | | - Krissy Brouner
- Allen Institute for Brain Science, Seattle, United States
| | | | - Mike Chapin
- Allen Institute for Brain Science, Seattle, United States
| | - Mindy L Chua
- Department of Pathology, University of Washington, Seattle, United States
| | - Natalie M Coleman
- Department of Pathology, University of Washington, Seattle, United States
| | - Eiron Cudaback
- Department of Pathology, University of Washington, Seattle, United States
| | | | | | - Nick Dee
- Allen Institute for Brain Science, Seattle, United States
| | - Tsega Desta
- Allen Institute for Brain Science, Seattle, United States
| | - Tim A Dolbeare
- Allen Institute for Brain Science, Seattle, United States
| | | | - Michael Fisher
- Allen Institute for Brain Science, Seattle, United States
| | | | - Garrett Gee
- Allen Institute for Brain Science, Seattle, United States
| | | | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, United States
| | - Fiona Griffin
- Allen Institute for Brain Science, Seattle, United States
| | - Caroline Habel
- Allen Institute for Brain Science, Seattle, United States
| | - Zeb Haradon
- Allen Institute for Brain Science, Seattle, United States
| | - Nika Hejazinia
- Allen Institute for Brain Science, Seattle, United States
| | - Leanne L Hellstern
- Department of Pathology, University of Washington, Seattle, United States
| | - Steve Horvath
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Kim Howard
- Department of Pathology, University of Washington, Seattle, United States
| | - Robert Howard
- Allen Institute for Brain Science, Seattle, United States
| | - Justin Johal
- Allen Institute for Brain Science, Seattle, United States
| | - Nikolas L Jorstad
- Department of Pathology, University of Washington, Seattle, United States
| | - Samuel R Josephsen
- Department of Pathology, University of Washington, Seattle, United States
| | | | - Florence Lai
- Allen Institute for Brain Science, Seattle, United States
| | - Eric Lee
- Allen Institute for Brain Science, Seattle, United States
| | - Felix Lee
- Allen Institute for Brain Science, Seattle, United States
| | - Tracy Lemon
- Allen Institute for Brain Science, Seattle, United States
| | - Xianwu Li
- Department of Pathology, University of Washington, Seattle, United States
| | - Desiree A Marshall
- Department of Pathology, University of Washington, Seattle, United States
| | - Jose Melchor
- Allen Institute for Brain Science, Seattle, United States
| | | | - Julie Nyhus
- Allen Institute for Brain Science, Seattle, United States
| | | | | | - Elizabeth Y Rha
- Department of Pathology, University of Washington, Seattle, United States
| | - Samantha Rice
- Department of Pathology, University of Washington, Seattle, United States
| | - David Rosen
- Allen Institute for Brain Science, Seattle, United States
| | - Abharika Sapru
- Department of Pathology, University of Washington, Seattle, United States
| | - Aimee Schantz
- Department of Pathology, University of Washington, Seattle, United States
| | - Elaine Shen
- Allen Institute for Brain Science, Seattle, United States
| | - Emily Sherfield
- Department of Pathology, University of Washington, Seattle, United States
| | - Shu Shi
- Allen Institute for Brain Science, Seattle, United States
| | - Andy J Sodt
- Allen Institute for Brain Science, Seattle, United States
| | | | - Michael Tieu
- Allen Institute for Brain Science, Seattle, United States
| | - Angela M Wilson
- Department of Pathology, University of Washington, Seattle, United States
| | - Thomas J Montine
- Department of Pathology, University of Washington, Seattle, United States
| | - Eric B Larson
- Kaiser Permanente Washington Health Research Institute, Seattle, United States
| | - Amy Bernard
- Allen Institute for Brain Science, Seattle, United States
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, United States
| | - Richard G Ellenbogen
- Department of Neurological Surgery, University of Washington, Seattle, United States
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, United States
| | - Ed Lein
- Allen Institute for Brain Science, Seattle, United States
| |
Collapse
|
43
|
Sutherland GT, Lim J, Srikanth V, Bruce DG. Epidemiological Approaches to Understanding the Link Between Type 2 Diabetes and Dementia. J Alzheimers Dis 2017; 59:393-403. [DOI: 10.3233/jad-161194] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Greg T. Sutherland
- Discipline of Pathology, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Julia Lim
- Discipline of Pathology, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Velandai Srikanth
- Medicine, Peninsula Clinical School, Central Clinical School, Frankston Hospital, Peninsula Health, Melbourne, VIC, Australia
| | - David G. Bruce
- School of Medicine & Pharmacology, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
44
|
Subclinical white matter lesions and medial temporal lobe atrophy are associated with EEG slowing in a memory clinic cohort. Clin Neurophysiol 2017; 128:1575-1582. [PMID: 28709123 DOI: 10.1016/j.clinph.2017.05.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 04/30/2017] [Accepted: 05/29/2017] [Indexed: 01/16/2023]
Abstract
OBJECTIVE The aim of the study was to describe the relationship between electroencephalographic (EEG) findings obtained by standardized visual analysis, subclinical white matter lesions (WML) and brain atrophy in a large memory clinic population. METHODS Patients with Alzheimer's disease (AD, n=58), mild cognitive impairment (MCI, n=141), subjective cognitive impairment (SCI, n=194) had clinical, MRI based WML severity and regional atrophy assessments, and routine resting EEG recording. Background activity (BA) and episodic and continuous abnormalities were assessed visually in EEG. RESULTS WML (p=0.006) and atrophy in medial temporal regions (MTA) (p=<0.001) were associated with slower BA in all diagnoses. WML were associated in SCI with total episodic EEG abnormalities (p=0.03). CONCLUSIONS EEG is associated with subclinical WML burden and cortical brain atrophy in a memory clinic population. SIGNIFICANCE Even the standard visually assessed EEG can complement a memory clinic diagnostic workup.
Collapse
|
45
|
Roostaei T, Nazeri A, Felsky D, De Jager PL, Schneider JA, Pollock BG, Bennett DA, Voineskos AN. Genome-wide interaction study of brain beta-amyloid burden and cognitive impairment in Alzheimer's disease. Mol Psychiatry 2017; 22:287-295. [PMID: 27021820 PMCID: PMC5042808 DOI: 10.1038/mp.2016.35] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 12/18/2022]
Abstract
The lack of strong association between brain beta-amyloid deposition and cognitive impairment has been a challenge for the Alzheimer's disease (AD) field. Although beta-amyloid is necessary for the pathologic diagnosis of AD, it is not sufficient to make the pathologic diagnosis or cause dementia. We sought to identify the genetic modifiers of the relation between cortical beta-amyloid burden (measured using [18F]Florbetapir-PET) and cognitive dysfunction (measured using ADAS-cog) by conducting a genome-wide interaction study on baseline data from participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI) phases GO/2 (n=678). Near genome-wide significant interaction effect was observed for rs73069071 within the IAPP (amylin) and SLCO1A2 genes (P=6.2 × 10-8). Congruent results were found using data from participants followed up from ADNI-1 (Pone-tailed=0.028, n=165). Meta-analysis across ADNI-GO/2 and ADNI-1 revealed a genome-wide significant interaction effect (P=1.1 × 10-8). Our results were further supported by similar interaction effects on temporal lobe cortical thickness (whole-brain voxelwise analysis: familywise error corrected P=0.013) and longitudinal changes in ADAS-cog score and left middle temporal thickness and amygdalar volume (Pone-tailed=0.026, 0.019 and 0.003, respectively). Using postmortem beta-amyloid immunohistochemistry data from 243 AD participants in the Religious Orders Study and Memory and Aging Project, we also observed similar rs73069071-by-beta-amyloid deposition interaction effect on global cognitive function (Pone-tailed=0.005). Our findings provide insight into the complexity of the relationship between beta-amyloid burden and AD-related cognitive impairment. Although functional studies are required to elucidate the role of rs73069071 in AD pathophysiology, our results support the recently growing evidence on the role of amylin in AD.
Collapse
Affiliation(s)
- T Roostaei
- Kimel Family Translational Imaging-Genetics Laboratory, Research Imaging Centre, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - A Nazeri
- Kimel Family Translational Imaging-Genetics Laboratory, Research Imaging Centre, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - D Felsky
- Kimel Family Translational Imaging-Genetics Laboratory, Research Imaging Centre, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - P L De Jager
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - J A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - B G Pollock
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Geriatric Psychiatry Division, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - D A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - A N Voineskos
- Kimel Family Translational Imaging-Genetics Laboratory, Research Imaging Centre, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Underserved Populations Program, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | |
Collapse
|
46
|
Wruck W, Schröter F, Adjaye J. Meta-Analysis of Transcriptome Data Related to Hippocampus Biopsies and iPSC-Derived Neuronal Cells from Alzheimer's Disease Patients Reveals an Association with FOXA1 and FOXA2 Gene Regulatory Networks. J Alzheimers Dis 2016; 50:1065-82. [PMID: 26890743 DOI: 10.3233/jad-150733] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although the incidence of Alzheimer's disease (AD) is continuously increasing in the aging population worldwide, effective therapies are not available. The interplay between causative genetic and environmental factors is partially understood. Meta-analyses have been performed on aspects such as polymorphisms, cytokines, and cognitive training. Here, we propose a meta-analysis approach based on hierarchical clustering analysis of a reliable training set of hippocampus biopsies, which is condensed to a gene expression signature. This gene expression signature was applied to various test sets of brain biopsies and iPSC-derived neuronal cell models to demonstrate its ability to distinguish AD samples from control. Thus, our identified AD-gene signature may form the basis for determination of biomarkers that are urgently needed to overcome current diagnostic shortfalls. Intriguingly, the well-described AD-related genes APP and APOE are not within the signature because their gene expression profiles show a lower correlation to the disease phenotype than genes from the signature. This is in line with the differing characteristics of the disease as early-/late-onset or with/without genetic predisposition. To investigate the gene signature's systemic role(s), signaling pathways, gene ontologies, and transcription factors were analyzed which revealed over-representation of response to stress, regulation of cellular metabolic processes, and reactive oxygen species. Additionally, our results clearly point to an important role of FOXA1 and FOXA2 gene regulatory networks in the etiology of AD. This finding is in corroboration with the recently reported major role of the dopaminergic system in the development of AD and its regulation by FOXA1 and FOXA2.
Collapse
|
47
|
Abstract
Two new sets of criteria for Alzheimer’s disease (AD) are now in play, including one set released in 2014, and a proposal for a “new lexicon” for how to describe the disease spectrum. A 2012 Canadian consensus conference said that to then, none of the new criteria or terminology would change primary care practice; that is still likely to be so. For dementia consultants, however, the new criteria pose challenges and offer opportunities. In general, the new criteria see an expanded role for bio-markers. Even so, the evidence base for this remains incomplete. Our understanding of the neuropathological criteria for dementia changed as the evidence base included more community cases. This is likely to inform the experience with biomarkers. At present, each of the criteria specifies an exclusive research role. Still, wider uptake is likely, especially in the United States. Geriatricians should be aware of the fundamental change in the terminology now being employed: AD diagnosis no longer obliges a diagnosis of dementia. Until more data emerge—something to which geriatricians can contribute—there is reason to be cautious in the adoption of the new criteria, as they are likely to be least applicable to older adults.
Collapse
Affiliation(s)
- Pierre Molin
- Department of Medicine, Divisions of Geriatric Medicine and of Neurology, Dalhousie University, Halifax, NS;; Département de médecine, Division de gériatrie, Université Laval, Québec, QC, Canada
| | - Kenneth Rockwood
- Department of Medicine, Divisions of Geriatric Medicine and of Neurology, Dalhousie University, Halifax, NS
| |
Collapse
|
48
|
Abstract
Deux nouvelles séries de critères pour le diagnostic de la maladie d’Alzheimer sont maintenant en vigueur, incluant une série publiée en 2014. Un « nouveau lexique » conceptualisant la maladie a également été proposé. En 2012, la Conférence consensuelle canadienne affirmait que, pour l’instant, ni les nouveaux critères ni la nouvelle terminologie ne modifiaient la pratique en première ligne. Néanmoins, pour les consultants spécialisés en démence, l’avènement de ces critères ouvre la porte à de nombreux défis et occasions. En général, les nouveaux critères accordent une place grandissante aux biomarqueurs. Toutefois, les évidences qui sous-tendent leur utilisation demeurent incomplètes. L’étude de sujets provenant de la communauté ayant raffiné notre compréhension des critères neuropathologiques des démences, il est probable que notre expérience avec les biomarqueurs en bénéficierait également. Pour l’instant, ces critères sont réservés à la recherche. Cependant, leur adoption à plus large échelle est pressentie, particulièrement aux États-Unis. Les gériatres canadiens doivent être conscients de la terminologie maintenant utilisée et du changement fondamental qui en découle : un diagnostic de maladie d’Alzheimer ne requiert plus un diagnostic de démence. Dans l’attente de nouvelles données – auxquelles les gériatres peuvent contribuer – il y a lieu de faire preuve de prudence dans l’adoption des nouveaux critères, car ils sont susceptibles de moins bien s’appliquer aux personnes âgées.
Collapse
Affiliation(s)
- Pierre Molin
- Department of Medicine, Divisions of Geriatric Medicine and of Neurology, Dalhousie University, Halifax, NS;; Département de médecine, Division de gériatrie, Université Laval, Québec, QC
| | - Kenneth Rockwood
- Department of Medicine, Divisions of Geriatric Medicine and of Neurology, Dalhousie University, Halifax, NS
| |
Collapse
|
49
|
Wharton SB, Minett T, Drew D, Forster G, Matthews F, Brayne C, Ince PG. Epidemiological pathology of Tau in the ageing brain: application of staging for neuropil threads (BrainNet Europe protocol) to the MRC cognitive function and ageing brain study. Acta Neuropathol Commun 2016; 4:11. [PMID: 26857919 PMCID: PMC4746919 DOI: 10.1186/s40478-016-0275-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 02/04/2023] Open
Abstract
Introduction Deposition of abnormally phosphorylated tau (phospho-tau) occurs in Alzheimer’sdisease but also with brain ageing. The Braak staging scheme focused on neurofibrillary tangles, butabundant p-tau is also present in neuropil threads, and a recent scheme has been proposed by theBrainNet Europe consortium for staging tau pathology based on neuropil threads. We determined therelationship of threads to tangles, and the value of staging for threads in an unselected population-representative ageing brain cohort. We also determined the prevalence of astroglial tau pathologies, and their relationship to neuronal tau. Phospho-tau pathology was determined by immunohistochemistry (AT8 antibody) in the MRC-CFAS neuropathology cohort. Neuropil threads were staged using the BrainNet Europe protocol for tau pathology, and compared with Braak tangle stages. Astroglial tau pathology was assessed in neo-cortical, mesial temporal and subcortical areas. Results Cases conformed well to the hierarchical neuropil threads staging of the BrainNet Europe protocol and correlated strongly with Braak staging (r=0.84, p < 0.001). Based on the areas under the receiver operator curves (AUC), incorporating either threads or tangle staging significantly improved dementia case identification to a similar degree over age alone (Braak stage X2(1)=10.1, p=0.002; BNE stage X2(1)=9.7, p=0.002). Thorn-shaped astrocytes, present in 40 % of cases, were most common in mesial temporal lobe, then brainstem, and were associated with subpial tau-positive neurites (mesial temporal: X2(1)=61.3, p < 0.001; brainstem: X2(1)=47.9, p < 0.001). Adding thorn astrocytes did not improve dementia prediction (AUC: X2(1)=0.77, p=0.381), but there was a weak relationship between numbers of areas involved and staging for threads or tangles (r=0.17, p=0.023). Neuropil threads develop hierarchically in parallel with neurofibrillary tangles. Conclusions The BrainNet Europe staging protocol is straightforward to apply, and offers similar predictive value for dementia to Braak tangle staging. Astroglial tauopathy, particularly thorn shaped astrocyte formation, does not relate to dementia status, but the association with phospho-tau neurites may suggest a pathogenic relationship to neuronal tau pathology.
Collapse
|
50
|
Mufson EJ, Malek-Ahmadi M, Perez SE, Chen K. Braak staging, plaque pathology, and APOE status in elderly persons without cognitive impairment. Neurobiol Aging 2015; 37:147-153. [PMID: 26686670 DOI: 10.1016/j.neurobiolaging.2015.10.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 12/21/2022]
Abstract
Clinico-pathological studies reveal that some elderly people with no cognitive impairment have high burdens of neurofibrillary tangles (NFTs), a pathology associated with Alzheimer's disease. We examined a total of 123 elderly participants without dementia and free of other neurological disorders or pathologies who at autopsy were classified as Braak NFT stages of I-V. We found that women were significantly more likely to have a high Braak score. Significant associations were found between high Braak scores and entorhinal cortex amyloid load, combined hippocampal and entorhinal cortex amyloid loads with perceptual speed in the low Braak group after adjusting for age, gender and apolipoprotein E ε4 status. Elderly with preserved cognitive function show a wide range of Braak scores and plaque pathology similar to that seen in prodromal and frank Alzheimer's disease at death. These data suggest that some older people with extensive NFT and plaque pathology demonstrate brain resilience or reserve leading to preserved cognitive function.
Collapse
Affiliation(s)
- Elliott J Mufson
- Alzheimer's Disease Research Laboratory, Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA.
| | | | - Sylvia E Perez
- Alzheimer's Disease Research Laboratory, Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| |
Collapse
|