1
|
Bentivenga GM, Baiardi S, Mastrangelo A, Ruggeri E, Mammana A, Ticca A, Rossi M, Capellari S, Parchi P. Clinical, neuropathological, and molecular characteristics of rapidly progressive dementia with Lewy bodies: a distinct clinicopathological entity? Alzheimers Res Ther 2024; 16:201. [PMID: 39256877 PMCID: PMC11384710 DOI: 10.1186/s13195-024-01565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND The term rapidly progressive dementia (RPD) with Lewy bodies (rpDLB) is used for DLB patients who develop a rapidly progressive neurological syndrome and have reduced survival. Here, we characterise the clinical, neuropathological, and molecular characteristics of a large rpDLB neuropathological series. METHODS We included all RPD patients with a disease duration < 4 years submitted to our prion disease referral centre between 2003 and 2022 who showed Lewy body pathology (LBP) in limbic or neocortical stages as primary neuropathological diagnosis, had no systemic condition justifying the rapid deterioration and were previously neurologically unimpaired. Clinical features were retrieved and compared with Creutzfeldt-Jakob disease (CJD) and rapidly progressive Alzheimer's disease (rpAD) cohorts. Neuropathological and genetic (whole exome sequencing, APOE genotyping, and C9orf72 repeat expansion analysis) characteristics of rpDLB patients were systematically investigated. We scored semi-quantitatively the LBP load and performed a α-synuclein (αSyn) RT-QuIC seeding amplification assay (SAA) on cerebrospinal fluid (CSF) and tenfold serially diluted brain homogenates from different brain areas in rpDLB patients and typical long-lasting Lewy body disease (LBD) with dementia patients as control group. RESULTS RpDLB patients were older (p = 0.047) and presented more cognitive fluctuations (p = 0.005), visual hallucinations (p = 0.020), neuropsychiatric symptoms (p = 0.006) and seizures (p = 0.032), and fewer cerebellar (p < 0.001) and visual (p = 0.004) signs than CJD ones. Delirium onset was more common than in both CJD (p < 0.001) and rpAD (p = 0.008). Atypical LBD signs (pyramidal, myoclonus, akinetic mutism) were common. All tested patients were positive by CSF αSyn SAA. Concomitant pathologies were common, with only four cases showing relatively "pure" LBP. LBP load and αSyn seeding activity measured through αSyn RT-QuIC SAA were not significantly different between rpDLB patients and typical LBD. We found a likely pathogenic variant in GBA in one patient. CONCLUSIONS Our results indicate that: 1) rpDLB exhibits a distinct clinical signature (2) CSF αSyn SAA is a reliable diagnostic test; 3) rpDLB is a heterogeneous neuropathological entity that can be underlain by both widespread pure LBP, or multiple copathologies 4) rpDLB is likely not sustained by distinct αSyn conformational strains; 5) genetic defects may, at least occasionally, contribute to the poor prognosis in these patients.
Collapse
Affiliation(s)
| | - Simone Baiardi
- Department of Biomedical and Neuromotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Programma Neuropatologia delle Malattie Neurodegenerative, Ospedale Bellaria, Via Altura 1/8, Bologna, 40139, Italy
| | - Andrea Mastrangelo
- Department of Biomedical and Neuromotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
| | - Edoardo Ruggeri
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Programma Neuropatologia delle Malattie Neurodegenerative, Ospedale Bellaria, Via Altura 1/8, Bologna, 40139, Italy
| | - Angela Mammana
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Programma Neuropatologia delle Malattie Neurodegenerative, Ospedale Bellaria, Via Altura 1/8, Bologna, 40139, Italy
| | - Alice Ticca
- Department of Biomedical and Neuromotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
| | - Marcello Rossi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Programma Neuropatologia delle Malattie Neurodegenerative, Ospedale Bellaria, Via Altura 1/8, Bologna, 40139, Italy
| | - Sabina Capellari
- Department of Biomedical and Neuromotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Programma Neuropatologia delle Malattie Neurodegenerative, Ospedale Bellaria, Via Altura 1/8, Bologna, 40139, Italy
| | - Piero Parchi
- Department of Biomedical and Neuromotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy.
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Programma Neuropatologia delle Malattie Neurodegenerative, Ospedale Bellaria, Via Altura 1/8, Bologna, 40139, Italy.
| |
Collapse
|
2
|
Arar S, Haque MA, Bhatt N, Zhao Y, Kayed R. Effect of Natural Osmolytes on Recombinant Tau Monomer: Propensity of Oligomerization and Aggregation. ACS Chem Neurosci 2024; 15:1366-1377. [PMID: 38503425 PMCID: PMC10995947 DOI: 10.1021/acschemneuro.3c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
The pathological misfolding and aggregation of the microtubule associated protein tau (MAPT), a full length Tau2N4R with 441aa, is considered the principal disease relevant constituent in tauopathies including Alzheimer's disease (AD) with an imbalanced ratio in 3R/4R isoforms. The exact cellular fluid composition, properties, and changes that coincide with tau misfolding, seed formation, and propagation events remain obscure. The proteostasis network, along with the associated osmolytes, is responsible for maintaining the presence of tau in its native structure or dealing with misfolding. In this study, for the first time, the roles of natural brain osmolytes are being investigated for their potential effects on regulating the conformational stability of the tau monomer (tauM) and its propensity to aggregate or disaggregate. Herein, the effects of physiological osmolytes myo-inositol, taurine, trimethyl amine oxide (TMAO), betaine, sorbitol, glycerophosphocholine (GPC), and citrulline on tau's aggregation state were investigated. The overall results indicate the ability of sorbitol and GPC to maintain the monomeric form and prevent aggregation of tau, whereas myo-inositol, taurine, TMAO, betaine, and citrulline promote tau aggregation to different degrees, as revealed by protein morphology in atomic force microscopy images. Biochemical and biophysical methods also revealed that tau proteins adopt different conformations under the influence of these osmolytes. TauM in the presence of all osmolytes expressed no toxicity when tested by a lactate dehydrogenase assay. Investigating the conformational stability of tau in the presence of osmolytes may provide a better understanding of the complex nature of tau aggregation in AD and the protective and/or chaotropic nature of osmolytes.
Collapse
Affiliation(s)
- Sharif Arar
- Mitchell
Center for Neurodegenerative Diseases, University
of Texas Medical Branch, Galveston, Texas 77555, United States
- Departments
of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Department
of Chemistry, School of Science, The University
of Jordan, Amman 11942, Jordan
| | - Md Anzarul Haque
- Mitchell
Center for Neurodegenerative Diseases, University
of Texas Medical Branch, Galveston, Texas 77555, United States
- Departments
of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Nemil Bhatt
- Mitchell
Center for Neurodegenerative Diseases, University
of Texas Medical Branch, Galveston, Texas 77555, United States
- Departments
of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Yingxin Zhao
- Department
of Internal Medicine, University of Texas
Medical Branch, Galveston, Texas 77555, United States
- Institute
for Translational Sciences, University of
Texas Medical Branch, Galveston, Texas 77555, United States
| | - Rakez Kayed
- Mitchell
Center for Neurodegenerative Diseases, University
of Texas Medical Branch, Galveston, Texas 77555, United States
- Departments
of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
3
|
Sinha JK, Trisal A, Ghosh S, Gupta S, Singh KK, Han SS, Mahapatra M, Abomughaid MM, Abomughayedh AM, Almutary AG, Iqbal D, Bhaskar R, Mishra PC, Jha SK, Jha NK, Singh AK. Psychedelics for alzheimer's disease-related dementia: Unveiling therapeutic possibilities and pathways. Ageing Res Rev 2024; 96:102211. [PMID: 38307424 DOI: 10.1016/j.arr.2024.102211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
Psychedelics have traditionally been used for spiritual and recreational purposes, but recent developments in psychotherapy have highlighted their potential as therapeutic agents. These compounds, which act as potent 5-hydroxytryptamine (5HT) agonists, have been recognized for their ability to enhance neural plasticity through the activation of the serotoninergic and glutamatergic systems. However, the implications of these findings for the treatment of neurodegenerative disorders, particularly dementia, have not been fully explored. In recent years, studies have revealed the modulatory and beneficial effects of psychedelics in the context of dementia, specifically Alzheimer's disease (AD)-related dementia, which lacks a definitive cure. Psychedelics such as N,N-dimethyltryptamine (DMT), lysergic acid diethylamide (LSD), and Psilocybin have shown potential in mitigating the effects of this debilitating disease. These compounds not only target neurotransmitter imbalances but also act at the molecular level to modulate signalling pathways in AD, including the brain-derived neurotrophic factor signalling pathway and the subsequent activation of mammalian target of rapamycin and other autophagy regulators. Therefore, the controlled and dose-dependent administration of psychedelics represents a novel therapeutic intervention worth exploring and considering for the development of drugs for the treatment of AD-related dementia. In this article, we critically examined the literature that sheds light on the therapeutic possibilities and pathways of psychedelics for AD-related dementia. While this emerging field of research holds great promise, further studies are necessary to elucidate the long-term safety, efficacy, and optimal treatment protocols. Ultimately, the integration of psychedelics into the current treatment paradigm may provide a transformative approach for addressing the unmet needs of individuals living with AD-related dementia and their caregivers.
Collapse
Affiliation(s)
| | - Anchal Trisal
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology (SCIT), Rajiv Gandhi InfoTech Park, Hinjawadi, Pune, Maharashtra 411057, India
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, the Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, the Republic of Korea
| | | | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ali M Abomughayedh
- Pharmacy Department, Aseer Central Hospital, Ministry of Health, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, the Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, the Republic of Korea.
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
4
|
Wang P, Lynn A, Miskimen K, Song YE, Wisniewski T, Cohen M, Appleby BS, Safar JG, Haines JL. Genome-wide association studies identify novel loci in rapidly progressive Alzheimer's disease. Alzheimers Dement 2024; 20:2034-2046. [PMID: 38184787 PMCID: PMC10984493 DOI: 10.1002/alz.13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/08/2024]
Abstract
INTRODUCTION Recent data suggest that distinct prion-like amyloid beta and tau strains are associated with rapidly progressive Alzheimer's disease (rpAD). The role of genetic factors in rpAD is largely unknown. METHODS Previously known AD risk loci were examined in rpAD cases. Genome-wide association studies (GWAS) were performed to identify variants that influence rpAD. RESULTS We identified 115 pathology-confirmed rpAD cases and 193 clinical rpAD cases, 80% and 69% were of non-Hispanic European ancestry. Compared to the clinical cohort, pathology-confirmed rpAD had higher frequencies of apolipoprotein E (APOE) ε4 and rare missense variants in AD risk genes. A novel genome-wide significant locus (P < 5×10-8 ) was observed for clinical rpAD on chromosome 21 (rs2832546); 102 loci showed suggestive associations with pathology-confirmed rpAD (P < 1×10-5 ). DISCUSSION rpAD constitutes an extreme subtype of AD with distinct features. GWAS found previously known and novel loci associated with rpAD. Highlights Rapidly progressive Alzheimer's disease (rpAD) was defined with different criteria. Whole genome sequencing identified rare missense variants in rpAD. Novel variants were identified for clinical rpAD on chromosome 21.
Collapse
Affiliation(s)
- Ping Wang
- Department of Population and Quantitative Health SciencesSchool of Medicine, Case Western Reserve UniversityClevelandOhioUSA
| | - Audrey Lynn
- Department of Population and Quantitative Health SciencesSchool of Medicine, Case Western Reserve UniversityClevelandOhioUSA
- Cleveland Institute for Computational BiologyClevelandOhioUSA
| | - Kristy Miskimen
- Department of Population and Quantitative Health SciencesSchool of Medicine, Case Western Reserve UniversityClevelandOhioUSA
| | - Yeunjoo E. Song
- Department of Population and Quantitative Health SciencesSchool of Medicine, Case Western Reserve UniversityClevelandOhioUSA
| | - Thomas Wisniewski
- Departments of NeurologyPathology and PsychiatryCenter for Cognitive Neurology, NYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Mark Cohen
- Department of PathologyCase Western Reserve UniversityClevelandOhioUSA
- National Prion Disease Pathology Surveillance CenterCase Western Reserve UniversityClevelandOhioUSA
| | - Brian S. Appleby
- Department of PathologyCase Western Reserve UniversityClevelandOhioUSA
- National Prion Disease Pathology Surveillance CenterCase Western Reserve UniversityClevelandOhioUSA
- Department of NeurologyCase Western Reserve UniversityClevelandOhioUSA
- Department of PsychiatryCase Western Reserve UniversityClevelandOhioUSA
| | - Jiri G. Safar
- Department of PathologyCase Western Reserve UniversityClevelandOhioUSA
- Department of NeurologyCase Western Reserve UniversityClevelandOhioUSA
- Department of NeurosciencesCase Western Reserve UniversityClevelandOhioUSA
| | - Jonathan L. Haines
- Department of Population and Quantitative Health SciencesSchool of Medicine, Case Western Reserve UniversityClevelandOhioUSA
- Cleveland Institute for Computational BiologyClevelandOhioUSA
| |
Collapse
|
5
|
Rinauro DJ, Chiti F, Vendruscolo M, Limbocker R. Misfolded protein oligomers: mechanisms of formation, cytotoxic effects, and pharmacological approaches against protein misfolding diseases. Mol Neurodegener 2024; 19:20. [PMID: 38378578 PMCID: PMC10877934 DOI: 10.1186/s13024-023-00651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/17/2023] [Indexed: 02/22/2024] Open
Abstract
The conversion of native peptides and proteins into amyloid aggregates is a hallmark of over 50 human disorders, including Alzheimer's and Parkinson's diseases. Increasing evidence implicates misfolded protein oligomers produced during the amyloid formation process as the primary cytotoxic agents in many of these devastating conditions. In this review, we analyze the processes by which oligomers are formed, their structures, physicochemical properties, population dynamics, and the mechanisms of their cytotoxicity. We then focus on drug discovery strategies that target the formation of oligomers and their ability to disrupt cell physiology and trigger degenerative processes.
Collapse
Affiliation(s)
- Dillon J Rinauro
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, 10996, USA.
| |
Collapse
|
6
|
Kuchenbecker LA, Tipton PW, Martens Y, Brier MR, Satyadev N, Dunham SR, Lazar EB, Dacquel MV, Henson RL, Bu G, Geschwind MD, Morris JC, Schindler SE, Herries E, Graff-Radford NR, Day GS. Diagnostic Utility of Cerebrospinal Fluid Biomarkers in Patients with Rapidly Progressive Dementia. Ann Neurol 2024; 95:299-313. [PMID: 37897306 PMCID: PMC10842089 DOI: 10.1002/ana.26822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/13/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
OBJECTIVE This study was undertaken to apply established and emerging cerebrospinal fluid (CSF) biomarkers to improve diagnostic accuracy in patients with rapidly progressive dementia (RPD). Overlap in clinical presentation and results of diagnostic tests confounds etiologic diagnosis in patients with RPD. Objective measures are needed to improve diagnostic accuracy and to recognize patients with potentially treatment-responsive causes of RPD. METHODS Biomarkers of Alzheimer disease neuropathology (amyloid-β 42/40 ratio, phosphorylated tau [p-tau181, p-tau231]), neuroaxonal/neuronal injury (neurofilament light chain [NfL], visinin-like protein-1 [VILIP-1], total tau), neuroinflammation (chitinase-3-like protein [YKL-40], soluble triggering receptor expressed on myeloid cells 2 [sTREM2], glial fibrillary acidic protein [GFAP], monocyte chemoattractant protein-1 [MCP-1]), and synaptic dysfunction (synaptosomal-associated protein 25kDa, neurogranin) were measured in CSF obtained at presentation from 78 prospectively accrued patients with RPD due to neurodegenerative, vascular, and autoimmune/inflammatory diseases; 35 age- and sex-matched patients with typically progressive neurodegenerative disease; and 72 cognitively normal controls. Biomarker levels were compared across etiologic diagnoses, by potential treatment responsiveness, and between patients with typical and rapidly progressive presentations of neurodegenerative disease. RESULTS Alzheimer disease biomarkers were associated with neurodegenerative causes of RPD. High NfL, sTREM2, and YKL-40 and low VILIP-1 identified patients with autoimmune/inflammatory diseases. MCP-1 levels were highest in patients with vascular causes of RPD. A multivariate model including GFAP, MCP-1, p-tau181, and sTREM2 identified the 44 patients with treatment-responsive causes of RPD with 89% accuracy. Minimal differences were observed between typical and rapidly progressive presentations of neurodegenerative disease. INTERPRETATION Selected CSF biomarkers at presentation were associated with etiologic diagnoses and treatment responsiveness in patients with heterogeneous causes of RPD. The ability of cross-sectional biomarkers to inform upon mechanisms that drive rapidly progressive neurodegenerative disease is less clear. ANN NEUROL 2024;95:299-313.
Collapse
Affiliation(s)
| | - Philip W Tipton
- Mayo Clinic Florida, Department of Neurology; Jacksonville, FL 32224, USA
| | - Yuka Martens
- Mayo Clinic Florida, Department of Neuroscience; Jacksonville, FL 32224, USA
| | - Matthew R Brier
- Washington University School of Medicine, Department of Neurology, Saint Louis, MO 63110, USA
| | - Nihal Satyadev
- Mayo Clinic Florida, Department of Neurology; Jacksonville, FL 32224, USA
| | - S Richard Dunham
- Washington University School of Medicine, Department of Neurology, Saint Louis, MO 63110, USA
| | - Evelyn B Lazar
- Mayo Clinic Florida, Department of Neurology; Jacksonville, FL 32224, USA
- Hackensack Meridian JFK University Medical Center, Edison, NJ 08820, USA
| | - Maxwell V Dacquel
- Mayo Clinic Florida, Department of Neuroscience; Jacksonville, FL 32224, USA
| | - Rachel L Henson
- Washington University School of Medicine, Department of Neurology, Saint Louis, MO 63110, USA
| | - Guojun Bu
- Mayo Clinic Florida, Department of Neuroscience; Jacksonville, FL 32224, USA
| | - Michael D Geschwind
- University of California San Francisco, Department of Neurology, San Francisco, CA 94143, USA
| | - John C Morris
- Washington University School of Medicine, Department of Neurology, Saint Louis, MO 63110, USA
| | - Suzanne E Schindler
- Washington University School of Medicine, Department of Neurology, Saint Louis, MO 63110, USA
| | - Elizabeth Herries
- Washington University School of Medicine, Department of Neurology, Saint Louis, MO 63110, USA
| | | | - Gregory S Day
- Mayo Clinic Florida, Department of Neurology; Jacksonville, FL 32224, USA
| |
Collapse
|
7
|
Satyadev N, Tipton PW, Martens Y, Dunham SR, Geschwind MD, Morris JC, Brier MR, Graff-Radford NR, Day GS. Improving Early Recognition of Treatment-Responsive Causes of Rapidly Progressive Dementia: The STAM 3 P Score. Ann Neurol 2024; 95:237-248. [PMID: 37782554 PMCID: PMC10841446 DOI: 10.1002/ana.26812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
OBJECTIVE To improve the timely recognition of patients with treatment-responsive causes of rapidly progressive dementia (RPD). METHODS A total of 226 adult patients with suspected RPD were enrolled in a prospective observational study and followed for up to 2 years. Diseases associated with RPD were characterized as potentially treatment-responsive or non-responsive, referencing clinical literature. Disease progression was measured using Clinical Dementia Rating® Sum-of-Box scores. Clinical and paraclinical features associated with treatment responsiveness were assessed using multivariable logistic regression. Findings informed the development of a clinical criterion optimized to recognize patients with potentially treatment-responsive causes of RPD early in the diagnostic evaluation. RESULTS A total of 155 patients met defined RPD criteria, of whom 86 patients (55.5%) had potentially treatment-responsive causes. The median (range) age-at-symptom onset in patients with RPD was 68.9 years (range 22.0-90.7 years), with a similar number of men and women. Seizures, tumor (disease-associated), magnetic resonance imaging suggestive of autoimmune encephalitis, mania, movement abnormalities, and pleocytosis (≥10 cells/mm3 ) in cerebrospinal fluid at presentation were independently associated with treatment-responsive causes of RPD after controlling for age and sex. Those features at presentation, as well as age-at-symptom onset <50 years (ie, STAM3 P), captured 82 of 86 (95.3%) cases of treatment-responsive RPD. The presence of ≥3 STAM3 P features had a positive predictive value of 100%. INTERPRETATION Selected features at presentation reliably identified patients with potentially treatment-responsive causes of RPD. Adaptation of the STAM3 P screening score in clinical practice may minimize diagnostic delays and missed opportunities for treatment in patients with suspected RPD. ANN NEUROL 2024;95:237-248.
Collapse
Affiliation(s)
- Nihal Satyadev
- Mayo Clinic Florida, Department of Neurology; Jacksonville, FL
- Georgia Institute of Technology, Atlanta, GA
| | - Philip W Tipton
- Mayo Clinic Florida, Department of Neurology; Jacksonville, FL
| | - Yuka Martens
- Mayo Clinic Florida, Department of Neuroscience; Jacksonville, FL
| | - S Richard Dunham
- Washington University School of Medicine, Department of Neurology, Saint Louis, MO
| | - Michael D Geschwind
- University of California San Francisco, Department of Neurology, Memory and Aging Center, San Francisco, CA
| | - John C Morris
- Washington University School of Medicine, Department of Neurology, Saint Louis, MO
| | - Matthew R Brier
- Washington University School of Medicine, Department of Neurology, Saint Louis, MO
| | | | - Gregory S Day
- Mayo Clinic Florida, Department of Neurology; Jacksonville, FL
| |
Collapse
|
8
|
Shi Q, Liu WS, Liu F, Zeng YX, Chen SF, Chen KL, Yu JT, Huang YY. The Etiology of Rapidly Progressive Dementia: A 3-Year Retrospective Study in a Tertiary Hospital in China. J Alzheimers Dis 2024; 100:77-85. [PMID: 38848185 DOI: 10.3233/jad-240079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Background Rapidly progressive dementia (RPD), characterized by a rapid cognitive decline leading to dementia, comprises a diverse range of disorders. Despite advancements in diagnosis and treatment, research on RPD primarily focuses on Western populations. Objective This study aims to explore the etiology and demographics of RPD in Chinese patients. Methods We retrospectively analyzed 323 RPD inpatients at Huashan Hospital from May 2019 to March 2023. Data on sociodemographic factors, epidemiology, clinical presentation, and etiology were collected and analyzed. Results The median onset age of RPD patients was 60.7 years. Two-thirds received a diagnosis within 6 months of symptom onset. Memory impairment was the most common initial symptom, followed by behavioral changes. Neurodegenerative diseases accounted for 47.4% of cases, with central nervous system inflammatory diseases at 30.96%. Autoimmune encephalitis was the leading cause (16.7%), followed by Alzheimer's disease (16.1%), neurosyphilis (11.8%), and Creutzfeldt-Jakob disease (9.0%). Alzheimer's disease, Creutzfeldt-Jakob disease, and frontotemporal dementia were the primary neurodegenerative causes, while autoimmune encephalitis, neurosyphilis, and vascular cognitive impairment were the main non-neurodegenerative causes. Conclusions The etiology of RPD in Chinese patients is complex, with neurodegenerative and non-neurodegenerative diseases equally prevalent. Recognizing treatable conditions like autoimmune encephalitis and neurosyphilis requires careful consideration and differentiation.
Collapse
Affiliation(s)
- Qin Shi
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, China
| | - Wei-Shi Liu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fang Liu
- Shandong Xiehe University, Jinan, Shandong, China
| | - Yi-Xuan Zeng
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Shu-Fen Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ke-Liang Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Yuan Huang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Jabarkhil AA, Rasib AR, Asady A, Farzam F. Misdiagnosis of rarest subtype of sporadic Creutzfeldt Jakob Disease: a case report. BMC Neurol 2023; 23:274. [PMID: 37464286 DOI: 10.1186/s12883-023-03318-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Creutzfeldt-Jakob disease (CJD), is a deadly degenerative condition of the central nervous system marked by rapidly progressive dementia. Magnetic resonance imaging (MRI) abnormalities in the cerebral cortex, basal ganglia, thalamus, and cerebellum could indicate severe acute diseases caused by a variety of factors. Although their MRI patterns may resemble those of CJD, clinical history, additional MRI findings, and laboratory testing are all necessary to provide a reliable difference. Here, we report a misdiagnosed case of probable VV1 subtype of sporadic CJD (sCJD) in which follow-up MRI supported the diagnosis. CASE PRESENTATION A 41-year-old male patient attended the Neuropsychiatry Department with rapidly progressive dementia, akinetic mutism, and difficulty walking and speaking. His problem began with forgetfulness, disorganized behavior, and disorganized speech 7 months earlier which progressed rapidly and was accompanied by aphasia, apraxia, agnosia, and akinetic mutism in the last 2 months. On neurologic examination, hypertonia, hyperreflexia, frontal ataxia, bradykinesia, gait apraxia, and aphasia were noted. Based on clinical features and rapid symptoms progression the likely diagnosis of CJD was suspected. MRI and electroencephalography (EEG) were advised. MRI revealed features of diffuse cortical injury of both cerebral hemispheres also involving bilateral corpus striatum with evidence of cerebral volume loss. EEG showed lateralized periodic theta slow waves on the right side. According to the CDC's diagnostic criteria for CJD, the diagnosis of probable sCJD was established. Supportive care and symptomatic treatment are provided for the patient. After a 1-month follow up the patient's condition deteriorated significantly. The time-lapse from the first reported symptom to death was about 13 months. CONCLUSION The need of addressing CJD in patients presenting with rapidly progressive dementia is highlighted in this case report. In the early stages of the disease, interpretation of MRI results might cause diagnostic difficulties; therefore, follow-up MRI is critical in obtaining the correct diagnosis.
Collapse
Affiliation(s)
- Aemal Aziz Jabarkhil
- Department of Neuropsychiatry, Kabul University of Medical Sciences, Kabul, 1001, Afghanistan
| | - Aziz Rahman Rasib
- Department of Neuropsychiatry, Kabul University of Medical Sciences, Kabul, 1001, Afghanistan.
| | - Abdullah Asady
- Department of Microbiology, Kabul University of Medical Sciences, Kabul, 1001, Afghanistan
| | - Farhad Farzam
- Department of Medical Imaging and Radiation Sciences, Kabul University of Medical Sciences, Kabul, 1001, Afghanistan
| |
Collapse
|
10
|
Coughlin DG, Irwin DJ. Fluid and Biopsy Based Biomarkers in Parkinson's Disease. Neurotherapeutics 2023; 20:932-954. [PMID: 37138160 PMCID: PMC10457253 DOI: 10.1007/s13311-023-01379-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Several advances in fluid and tissue-based biomarkers for use in Parkinson's disease (PD) and other synucleinopathies have been made in the last several years. While work continues on species of alpha-synuclein (aSyn) and other proteins which can be measured from spinal fluid and plasma samples, immunohistochemistry and immunofluorescence from peripheral tissue biopsies and alpha-synuclein seeding amplification assays (aSyn-SAA: including real-time quaking induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA)) now offer a crucial advancement in their ability to identify aSyn species in PD patients in a categorical fashion (i.e., of aSyn + vs aSyn -); to augment clinical diagnosis however, aSyn-specific assays that have quantitative relevance to pathological burden remain an unmet need. Alzheimer's disease (AD) co-pathology is commonly found postmortem in PD, especially in those who develop dementia, and dementia with Lewy bodies (DLB). Biofluid biomarkers for tau and amyloid beta species can detect AD co-pathology in PD and DLB, which does have relevance for prognosis, but further work is needed to understand the interplay of aSyn tau, amyloid beta, and other pathological changes to generate comprehensive biomarker profiles for patients in a manner translatable to clinical trial design and individualized therapies.
Collapse
Affiliation(s)
- David G Coughlin
- Department of Neurosciences, University of California San Diego, 9444 Medical Center Drive, ECOB 03-021, MCC 0886, La Jolla, CA, 92037, USA.
| | - David J Irwin
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
11
|
Herden JM, Hermann P, Schmidt I, Dittmar K, Canaslan S, Weglage L, Nuhn S, Volpers C, Schlung A, Goebel S, Kück F, Villar-Piqué A, Schmidt C, Wedekind D, Zerr I. Comparative evaluation of clinical and cerebrospinal fluid biomarker characteristics in rapidly and non-rapidly progressive Alzheimer's disease. Alzheimers Res Ther 2023; 15:106. [PMID: 37291640 DOI: 10.1186/s13195-023-01249-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/25/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Rapidly progressive forms of Alzheimer's disease (rpAD) are increasingly recognized and may have a prevalence of up to 30% of patients among all patients with Alzheimer's disease (AD). However, insights about risk factors, underlying pathophysiological processes, and clinical characteristics of rpAD remain controversial. This study aimed to gain a comprehensive picture of rpAD and new insights into the clinical manifestation to enable a better interpretation of disease courses in clinical practice as well as in future clinical studies. METHODS Patients (n = 228) from a prospective observational study on AD were selected and categorized into rpAD (n = 67) and non-rpAD (n = 161) disease groups. Patients were recruited through the German Creutzfeldt-Jakob disease surveillance center and the memory outpatient clinic of the Göttingen University Medical Center, representing diverse phenotypes of the AD population. Biomarkers and clinical presentation were assessed using standardized protocols. A drop of ≥ MMSE 6 points within 12 months defined rapid progressors. RESULTS Lower CSF Amyloid beta 1-42 concentrations (p = 0.048), lower Amyloid beta 42/40 ratio (p = 0.038), and higher Tau/Amyloid-beta 1-42 ratio, as well as pTau/Amyloid-beta 1-42 ratio (each p = 0.004) were associated with rpAD. Analyzes in a subset of the cohort (rpAD: n = 12; non-rpAD: n = 31) showed higher CSF NfL levels in rpAD (p = 0.024). Clinically, rpAD showed earlier impairment of functional abilities (p < 0.001) and higher scores on the Unified Parkinson's Disease Rating Scale III (p < 0.001), indicating pronounced extrapyramidal motor symptoms. Furthermore, cognitive profiles (adjusted for overall cognitive performance) indicated marked deficits in semantic (p = 0.008) and phonematic (0.023) verbal fluency tests as well as word list learning (p = 0.007) in rpAD compared to non-rpAD. The distribution of APOE genotypes did not differ significantly between groups. CONCLUSIONS Our results suggest that rpAD is associated with distinct cognitive profiles, earlier occurrence of non-cognitive symptoms, extrapyramidal motoric disturbance, and lower Amyloid-beta 1-42 concentrations in the CSF. The findings may help to characterize a distinct phenotype of rpAD and estimate prognosis based on clinical characteristics and biomarker results. However, an important future goal should be a unified definition for rpAD to enable targeted study designs and better comparability of the results.
Collapse
Affiliation(s)
- Janne Marieke Herden
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany
| | - Peter Hermann
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany.
| | - Isabel Schmidt
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany
| | - Kathrin Dittmar
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany
| | - Sezgi Canaslan
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany
| | - Luise Weglage
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany
| | - Sabine Nuhn
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany
| | - Corinna Volpers
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany
| | - Astrid Schlung
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany
| | - Stefan Goebel
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Fabian Kück
- Department of Medical Statistics, University Medical Center Göttingen, Humboldtallee 32, Göttingen, 37073, Germany
| | - Anna Villar-Piqué
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany
| | - Christian Schmidt
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany
- Neurologische Gemeinschaftspraxis Am Groner Tor, Göttingen, Germany
| | - Dirk Wedekind
- Department of Psychiatry and Psychotherapy, University Medical Center, Von-Siebold-Straße 5, Göttingen, 37075, Germany
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
12
|
Liu X, Sun Y, Zhang X, Liu P, Zhang K, Yu L, Su Y, Yuan Y, Ke Q, Peng G. Prevalence and outcomes of rapidly progressive dementia: a retrospective cohort study in a neurologic unit in China. BMC Geriatr 2023; 23:142. [PMID: 36918794 PMCID: PMC10012734 DOI: 10.1186/s12877-023-03841-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Rapidly progressive dementia (RPD) is a syndrome originating from various diseases. Recent advances have allowed a better understanding of its categories and spectrum; however, it remains challenging to make an accurate differential diagnosis and prognosis prediction. METHODS This study was a retrospective evaluation of all participants admitted to the neurology department of a single center in China from January 2015 to December 2019. The screened patients met the RPD criteria and their characteristics were collected to explore a diagnostic pattern of RPD. In addition, outcomes of RPD were evaluated with the Glasgow Outcome Scale (GOS), activities of daily living scale (ADL), and simplified Mini-Mental State Examination (MMSE), and different prognostic analysis methods were performed to determine the prognostic factors of RPD. RESULTS A total of 149 RPD patients among 15,731 inpatients were identified with an average MMSE value of 13.0 ± 4.6 at baseline. Etiological epidemiology revealed infectious, neurodegenerative and toxic/metabolic diseases as the three largest groups, accounting for 26.2%, 20.8% and 16.8% of all cases, respectively. In particular, prevalence rates of Creutzfeldt-Jakob disease (13.4%), Alzheimer's disease (11.4%), carbon monoxide poisoning (8.1%), neurosyphilis (5.4%) and dementia with Lewy bodies (5.4%) were highest in this series. A recommended diagnostic framework for RPD etiology was thus established. Follow-up evaluations showed a negative correlation between age and GOS scores (r=-0.421, P < 0.001), as well as age and simplified MMSE scores (rs =- 0.393, P < 0.001), and a positive correlation between age and ADL scores (rs =0.503, P < 0.001), and significantly different GOS, ADL and simplified MMSE scores across various etiologies (P = 0.003; F = 9.463, P < 0.001; F = 6.117, P < 0.001). CONCLUSION Infectious, neurodegenerative and toxic-metabolic entities were the most common RPD categories, and establishing a practical approach to RPD etiology would allow better disease management.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road No.79, 310009, Hangzhou, China.
| | - Yan Sun
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road No.79, 310009, Hangzhou, China
| | - Xuyan Zhang
- Department of Neurology, Haining People's hospital, Jiaxing, China
| | - Ping Liu
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road No.79, 310009, Hangzhou, China
| | - Kan Zhang
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road No.79, 310009, Hangzhou, China
| | - Lihua Yu
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road No.79, 310009, Hangzhou, China
| | - Yujie Su
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road No.79, 310009, Hangzhou, China
| | - Yuan Yuan
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road No.79, 310009, Hangzhou, China
| | - Qing Ke
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road No.79, 310009, Hangzhou, China
| | - Guoping Peng
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road No.79, 310009, Hangzhou, China.
| |
Collapse
|
13
|
Hisata Y, Yamashita S, Tago M, Yoshimura M, Nakashima T, Nishi TM, Oda Y, Honda H, Yamashita SI. Heidenhain Variant of Sporadic Creutzfeldt-Jakob Disease with a Variety of Visual Symptoms: A Case Report with Autopsy Study. AMERICAN JOURNAL OF CASE REPORTS 2023; 24:e938654. [PMID: 36905109 PMCID: PMC10015505 DOI: 10.12659/ajcr.938654] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
BACKGROUND Sporadic Creutzfeldt-Jakob disease (sCJD) is a fatal disease caused by the change of prion protein (PrP). Affected patients present with rapidly progressive cognitive dysfunction, myoclonus, or akinetic mutism. Diagnosing the Heidenhain variant of sCJD, which initially causes various visual symptoms, can be particularly difficult. CASE REPORT A 72-year-old woman presented with a 2- to 3-month history of photophobia, blurring vision in both eyes. Seven days previously, she showed visual impairment of 20/2000 in both eyes. Left homonymous hemianopia and restricted downward movement of the left eye were observed with an intact pupillary light reflex and normal fundoscopy. On admission, her visual acuity was light perception. Cranial magnetic resonance imaging revealed no abnormality, and electroencephalography showed no periodic synchronous discharges. Cerebrospinal fluid examination on the sixth hospital day revealed tau and 14-3-3 protein with a positive result of real-time quaking-induced conversion. She thereafter developed myoclonus and akinetic mutism and died. Autopsy revealed thinning and spongiform change of the cerebral cortex of the right occipital lobe. Immunostaining showed synaptic-type deposits of abnormal PrP and hypertrophic astrocytes. Consequently, she was diagnosed with the Heidenhain variant of sCJD with both methionine/methionine type 1 and type 2 cortical form based on the western blot of cerebral tissue and PrP gene codon 129 polymorphism. CONCLUSIONS When a patient presents with various progressive visual symptoms, even without typical findings of electroencephalography or cranial magnetic resonance imaging, it is essential to suspect the Heidenhain variant of sCJD and perform appropriate cerebrospinal fluid tests.
Collapse
Affiliation(s)
- Yoshio Hisata
- Department of General Medicine, Saga University Hospital, Saga, Japan.,Department of Internal Medicine, Nagahama City Kohoku Hospital, Nagahama, Shiga, Japan
| | - Shun Yamashita
- Department of General Medicine, Saga University Hospital, Saga, Japan
| | - Masaki Tago
- Department of General Medicine, Saga University Hospital, Saga, Japan
| | - Motoi Yoshimura
- Department of Neuropathology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Tomoyo M Nishi
- Department of General Medicine, Saga University Hospital, Saga, Japan
| | - Yoshimasa Oda
- Department of General Medicine, Yuai-Kai Foundation & Oda Hospital, Kashima, Saga, Japan
| | - Hiroyuki Honda
- Department of Neuropathology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
14
|
Moura J, Oliveira V, Sardoeira A, Pinto M, Gelpi E, Taipa R, Santos E. Rapidly Progressive Corticobasal Degeneration Mimicking Brainstem Encephalitis. Mov Disord Clin Pract 2023; 10:300-306. [PMID: 36825044 PMCID: PMC9941924 DOI: 10.1002/mdc3.13633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Accepted: 10/29/2022] [Indexed: 12/07/2022] Open
Abstract
Background Corticobasal degeneration (CBD) may have a rapidly progressive (RP) clinical course, mimicking other neurological conditions. Objectives To describe a neuropathologically proven case of RP-CBD in a patient initially diagnosed with immune-mediated brainstem encephalitis. Methods Retrospective data collection from electronic records and authorized video material. Results A 51-year-old man presented with bilateral ptosis, diplopia, and dysphagia. The diagnostic workup was negative for myasthenic syndromes. He progressively developed cognitive dysfunction with frontal release signs and asymmetric parkinsonism. Cerebrospinal fluid evaluation revealed 4 leukocytes/uL, 0.32 g/L proteins, 0.85 g/L glucose, and absent oligoclonal bands. Weakly positive anti-PNMA2 (Ma2/Ta) antibodies were present, and magnetic resonance imaging showed a T2 hyperintensity involving the midbrain and pons. Based on these features, the diagnosis of immune-mediated brainstem encephalitis was considered. The patient did not improve after several cycles of methylprednisolone, intravenous immunoglobulin, and plasma exchange. At 1 year after onset, he developed horizontal and vertical gaze limitation and worsening of the parkinsonism and cognitive dysfunction. By age 53, he was severely disabled, requiring percutaneous gastrostomy for feeding. Anti-IgLON5 was negative. He fulfilled the clinical criteria for probable progressive supranuclear palsy. He died from pneumonia at age 54. The neuropathological examination revealed a 4-repeat tauopathy with features of CBD with extensive involvement of the brainstem. Conclusions RP-CBD may resemble brainstem encephalitis. The severity of brainstem and upper spinal cord pathology in the postmortem examination correlated with the clinical and imaging features.
Collapse
Affiliation(s)
- João Moura
- Department of NeurologyCentro Hospitalar Universitário do PortoPortoPortugal
| | - Vanessa Oliveira
- Department of NeurologyCentro Hospitalar Universitário do PortoPortoPortugal
| | - Ana Sardoeira
- Department of NeurologyCentro Hospitalar Universitário do PortoPortoPortugal
| | - Miguel Pinto
- Portuguese Brain Bank, Neuropathology Unit, Department of NeurosciencesCentro Hospitalar Universitário do PortoPortoPortugal
| | - Ellen Gelpi
- Division of Neuropathology and Neurochemistry, Department of NeurologyMedical University of ViennaViennaAustria
| | - Ricardo Taipa
- Portuguese Brain Bank, Neuropathology Unit, Department of NeurosciencesCentro Hospitalar Universitário do PortoPortoPortugal
- UMIB–Unit for Multidisciplinary Research in Biomedicine, ICBAS–School of Medicine and Biomedical SciencesUniversity of PortoPortoPortugal
- ITR–Laboratory for Integrative and Translational Research in Population HealthPortoPortugal
| | - Ernestina Santos
- Department of NeurologyCentro Hospitalar Universitário do PortoPortoPortugal
- UMIB–Unit for Multidisciplinary Research in Biomedicine, ICBAS–School of Medicine and Biomedical SciencesUniversity of PortoPortoPortugal
- ITR–Laboratory for Integrative and Translational Research in Population HealthPortoPortugal
| |
Collapse
|
15
|
Zeng R, Wang J, Jiang R, Yang J, Zheng C, Wu H, Zhuo Z, Yang Q, Li J, Leung FW, Sha W, Chen H. Investigating Causality and Shared Genetic Architecture between Neurodegenerative Disorders and Inflammatory Bowel Disease. Aging Dis 2022:AD.2022.12209. [PMID: 37163440 PMCID: PMC10389839 DOI: 10.14336/ad.2022.12209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/09/2022] [Indexed: 05/12/2023] Open
Abstract
Published observational studies have revealed the connection between neurodegenerative disorders and inflammatory bowel disease (IBD), whereas the causal association remains largely unclear. Our study aims to assess the causality and identify the shared genetic architecture between neurodegenerative disorders and IBD. Two-sample Mendelian randomization analyses were performed to assess the causality between IBD and neurodegenerative disorders (amyotrophic lateral sclerosis [ALS], Alzheimer's disease [AD], Parkinson's disease [PD], and multiple sclerosis [MS]). Shared genetic loci, functional interpretation, and transcriptomic profiles were further investigated in ALS and IBD. We identified that genetic predisposition to IBD was suggestively associated with lower odds of ALS (odds ratio [OR] 0.96, 95% confidence interval [CI] 0.94 to 0.99). In contrast, IBD was not genetically associated with an increased risk of AD, PD, or MS (and vice versa). Two shared genetic loci (rs6571361 and rs7154847) were derived, and SCFD1, G2E3, and HEATR5A were further identified as novel risk genes with enriched functions related to membrane trafficking. G2E3 was differentially expressed and significantly correlated with SCFD1 in patients with ALS or IBD. Our study reveals the suggestively protective role of IBD on ALS, and does not support the causality of AD, PD, or MS on IBD (and vice versa). Our findings indicate possible shared genetic architecture and pathways between ALS and IBD. These results provide insights into the pathogenesis and therapeutics of IBD and neurodegenerative disorders.
Collapse
Affiliation(s)
- Ruijie Zeng
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Jinghua Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Rui Jiang
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Jie Yang
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Chunwen Zheng
- Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Huihuan Wu
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Qi Yang
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Jingwei Li
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Felix W Leung
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Sepulveda Ambulatory Care Center, Veterans Affairs Greater Los Angeles Healthcare System, North Hills, California, USA
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
16
|
Khandia R, Saeed M, Alharbi AM, Ashraf GM, Greig NH, Kamal MA. Codon Usage Bias Correlates With Gene Length in Neurodegeneration Associated Genes. Front Neurosci 2022; 16:895607. [PMID: 35860292 PMCID: PMC9289476 DOI: 10.3389/fnins.2022.895607] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Codon usage analysis is a crucial part of molecular characterization and is used to determine the factors affecting the evolution of a gene. The length of a gene is an important parameter that affects the characteristics of the gene, such as codon usage, compositional parameters, and sometimes, its functions. In the present study, we investigated the association of various parameters related to codon usage with the length of genes. Gene expression is affected by nucleotide disproportion. In sixty genes related to neurodegenerative disorders, the G nucleotide was the most abundant and the T nucleotide was the least. The nucleotide T exhibited a significant association with the length of the gene at both the overall compositional level and the first and second codon positions. Codon usage bias (CUB) of these genes was affected by pyrimidine and keto skews. Gene length was found to be significantly correlated with codon bias in neurodegeneration associated genes. In gene segments with lengths below 1,200 bp and above 2,400 bp, CUB was positively associated with length. Relative synonymous CUB, which is another measure of CUB, showed that codons TTA, GTT, GTC, TCA, GGT, and GGA exhibited a positive association with length, whereas codons GTA, AGC, CGT, CGA, and GGG showed a negative association. GC-ending codons were preferred over AT-ending codons. Overall analysis indicated that the association between CUB and length varies depending on the segment size; however, CUB of 1,200–2,000 bp gene segments appeared not affected by gene length. In synopsis, analysis suggests that length of the genes correlates with various imperative molecular signatures including A/T nucleotide disproportion and codon choices. In the present study we additionally evaluated various molecular features and their correlation with different indices of codon usage, like the Codon Adaptation Index (CAI) and Relative Dynonymous Codon Usage (RSCU) of codons. We also considered the impact of gene fragment size on different molecular features in genes related to neurodegeneration. This analysis will aid our understanding of and in potentially modulating gene expression in cases of defective gene functioning in clinical settings.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
- *Correspondence: Rekha Khandia, ;
| | - Mohd. Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Ahmed M. Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Ghulam Md. Ashraf
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nigel H. Greig
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD, United States
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| |
Collapse
|
17
|
Hermann P, Zerr I. Rapidly progressive dementias - aetiologies, diagnosis and management. Nat Rev Neurol 2022; 18:363-376. [PMID: 35508635 PMCID: PMC9067549 DOI: 10.1038/s41582-022-00659-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 12/15/2022]
Abstract
Rapidly progressive dementias (RPDs) are a group of heterogeneous disorders that include immune-mediated, infectious and metabolic encephalopathies, as well as prion diseases and atypically rapid presentations of more common neurodegenerative diseases. Some of these conditions are treatable, and some must be diagnosed promptly because of their potential infectivity. Prion disease is considered to be the prototypical RPD, but over the past two decades, epidemiological reports and the identification of various encephalitis-mediating antibodies have led to a growing recognition of other encephalopathies as potential causes of rapid cognitive decline. Knowledge of RPD aetiologies, syndromes and diagnostic work-up protocols will help clinicians to establish an early, accurate diagnosis, thereby reducing morbidity and mortality, especially in immune-mediated and other potentially reversible dementias. In this Review, we define the syndrome of RPD and shed light on its different aetiologies and on secondary factors that might contribute to rapid cognitive decline. We describe an extended diagnostic procedure in the context of important differential diagnoses, discuss the utility of biomarkers and summarize potential treatment options. In addition, we discuss treatment options such as high-dose steroid therapy in the context of therapy and diagnosis in clinically ambiguous cases. The term ‘rapidly progressive dementia’ (RPD) describes a cognitive disorder with fast progression, leading to dementia within a relatively short time. This Review discusses the wide range of RPD aetiologies, as well as the diagnostic approach and treatment options. Definitions of rapidly progressive dementia (RPD) vary according to the aetiological background and relate to the speed of cognitive decline, time from first symptom to dementia syndrome and/or overall survival. RPD can occur in rapidly progressive neurodegenerative diseases, such as prion diseases, or in primarily slowly progressive diseases as a consequence of intrinsic factors or concomitant pathologies. Besides neurodegenerative diseases, inflammatory (immune-mediated and infectious), vascular, metabolic and neoplastic CNS diseases are important and frequent causes of RPD. To identify treatable causes of RPD, the technical diagnostic work-up must include MRI and analyses of blood and cerebrospinal fluid, and further diagnostics might be indicated in unclear cases. Therapeutic options for many non-neurodegenerative causes of RPD are already available; disease-modifying therapies for neurodegenerative RPDs are an important focus of current research and could become a treatment option in the near future.
Collapse
Affiliation(s)
- Peter Hermann
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Göttingen, Germany
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Göttingen, Germany. .,German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
| |
Collapse
|
18
|
Couto B, Martinez-Valbuena I, Lee S, Alfradique-Dunham I, Perrin RJ, Perlmutter JS, Cruchaga C, Kim A, Visanji N, Sato C, Rogaeva E, Lang AE, Kovacs GG. Protracted Course-Progressive Supranuclear Palsy (PC-PSP). Eur J Neurol 2022; 29:2220-2231. [PMID: 35384155 DOI: 10.1111/ene.15346] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/02/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Progressive Supranuclear Palsy (PSP) encompasses a broader range of disease courses than previously appreciated. The most frequent clinical presentations of PSP are Richardson's Syndrome (RS) and PSP with a predominant Parkinsonism phenotype (PSP-P). Time to reach gait dependence and cognitive impairment have been proposed as prognostic disease milestones. Genetic polymorphisms in TRIM11 and SLC2A13 genes have been associated with longer disease duration (DD). METHODS Retrospective chart review, genetic single nucleotide polymorphism (SNP) analyses (in 3 cases), and neuropathology. RESULTS We identified four cases with long (>10-15 years) or very long (>15 years) DD. Stage 1 PSP tau pathology was present in 2 cases (one PSP-P and one undifferentiated phenotype), whereas pallido-nigro-Luysian atrophy (PSP-RS) and stage 4/6 (PSP-P) PSP pathology was found in the other 2 cases. Three cases were homozygous for the rs564309-C allele in the TRIM11 gene and the H1 MAPT haplotype. Two were heterozygous for rs2242367 (G/A) in SLC2A13, while the third was homozygous for the G-allele. CONCLUSIONS We propose a protracted course subtype of PSP (PC-PSP) based on clinical or neuropathological criteria in 2 cases with anatomically restricted PSP pathology, and very long DD and slower clinical progression in 2 cases. The presence of the rs564309-C allele may influence the protracted disease course. Crystallizing the concept of PC-PSP is important to further understand the pathobiology of tauopathies in line with current hypotheses of protein misfolding, seeding activity and propagation.
Collapse
Affiliation(s)
- Blas Couto
- Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
| | - Ivan Martinez-Valbuena
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada
| | | | - Richard J Perrin
- Pathology and Immunology, Washington University in St. Louis, Neurology, MO, 63110, USA
| | - Joel S Perlmutter
- Neurology, Radiology, Neuroscience, Physical Therapy and Occupational Therapy, Washington University in St Louis, St Louis, MO, 63110, USA
| | - Carlos Cruchaga
- Psychiatry, Washington University in St. Louis, MO, 63110, USA
| | - Ain Kim
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada
| | - Naomi Visanji
- Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
| | - Gabor G Kovacs
- Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto Ontario, Canada.,Laboratory Medicine Program & Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Basilakos A, Fridriksson J. Types of motor speech impairments associated with neurologic diseases. HANDBOOK OF CLINICAL NEUROLOGY 2022; 185:71-79. [PMID: 35078611 DOI: 10.1016/b978-0-12-823384-9.00004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Speech disturbances are common consequences of acquired brain injury or neurodegenerative impairment. Although sudden difficulties with speech may signal acute pathologic conditions such as cerebrovascular accidents, determining the etiology of insidious disruptions in communication can be less straightforward. The identification of motor speech impairment, independent of difficulties with language, can be useful for diagnosis since there are subtle, albeit distinct, patterns of speech production impairments associated with different neurologic conditions. Furthermore, the identification of impairments specific to speech production can help elucidate the suspected pathologic mechanisms or even the neuroanatomic structures compromised. During a routine clinical evaluation, early warning signs of motor speech impairment may go undetected if a clinician is unaccustomed to examining motor speech or is unaware of its manifestations. Accordingly, this chapter provides clinicians with a concise yet thorough guide for the practical assessment and differential diagnosis of motor speech disorders (MSDs)-apraxia of speech and dysarthrias. This chapter is divided into neurologic conditions associated with disorders of speech planning/programming, execution, and articulatory control. The underlying mechanisms associated with these impairments are presented both from a clinical perspective as well as through a scientific discussion of recent research in the field on MSDs.
Collapse
Affiliation(s)
- Alexandra Basilakos
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, United States
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, United States.
| |
Collapse
|
20
|
Tipton PW, Day GS, Graff-Radford N. A Neurologist's Practical Approach to Cognitive Impairment. Semin Neurol 2021; 41:686-698. [PMID: 34826872 DOI: 10.1055/s-0041-1726354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The global prevalence of dementia is expected to triple by the year 2050. This impending health care crisis has led to new heights of public awareness and general concern regarding cognitive impairment. Subsequently, clinicians are seeing more and more people presenting with cognitive concerns. It is important that clinicians meet these concerns with a strategy promoting accurate diagnoses. We have diagramed and described a practical approach to cognitive impairment. Through an algorithmic approach, we determine the presence and severity of cognitive impairment, systematically evaluate domains of function, and use this information to determine the next steps in evaluation. We also discuss how to proceed when cognitive impairment is associated with motor abnormalities or rapid progression.
Collapse
Affiliation(s)
| | - Gregory S Day
- Department of Neurology, Mayo Clinic, Jacksonville, Florida
| | | |
Collapse
|
21
|
Zhao Q, Sun L, Hu B, Lin W. Nonconvulsive status epilepticus manifesting as rapidly progressive dementia and infarction in the splenium of the corpus callosum: A case report. Medicine (Baltimore) 2021; 100:e25263. [PMID: 33847624 PMCID: PMC8051981 DOI: 10.1097/md.0000000000025263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/04/2021] [Indexed: 01/04/2023] Open
Abstract
RATIONALE Nonconvulsive status epilepticus (NCSE) is a heterogeneous disease with multiple subtypes. NCSE poses great diagnostic and therapeutic challenges due to the lack of typical symptoms. Here, we report a case of NCSE manifesting as rapidly progressive dementia (RPD) and infarction in the splenium of the corpus callosum. Additionally, the relevant literature was reviewed. PATIENT CONCERNS A 63-year-old man presented with RPD. Electroencephalogram (EEG) revealed NCSE, and brain magnetic resonance imaging (MRI) showed an isolated infarction in the splenium of the corpus callosum. Mini-mental state examination showed moderate cognitive impairment (14/30 points). DIAGNOSIS A diagnosis of NCSE with RPD and infarction in the splenium of the corpus callosum was made. INTERVENTIONS The patient was treated with intravenous diazepam (10 mg), oral levetiracetam (1.0g twice daily), oral sodium valproate (0.2g twice daily), and intramuscular phenobarbital sodium (0.2g once daily). OUTCOMES After the treatment, the symptoms were improved. The patient could answer questions. Repeated EEG showed that the background a rhythm was slightly overdeveloped, and no clinical or electrical seizures were observed. After discharge, the patient was treated with oral levetiracetam (1.0g twice daily) and oral sodium valproate (0.2g twice daily) for 6 months. At the last follow-up, the patient had clear consciousness, sensitive response, and fluent answering ability. Repeated mini-mental state examination showed that his cognitive function was significantly improved (28/30 points); nevertheless, the lesion in the splenium of corpus callosum remained unchanged on MRI. LESSONS NCSE manifesting as RPD and infarction in the splenium of the corpus callosum is extremely rare. Epileptic events and focal infarction are usually overlooked in patients with dementia, and the diagnostic value of MRI and EEG should be highlighted.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Neurology, Neuroscience Center
| | - Lichao Sun
- Department of Emergency, The First Hospital of Jilin University
| | - Boqi Hu
- Department of Radiology, China-Japan Friendship Hospital of Jilin University, Changchun, Jilin, China
| | - Weihong Lin
- Department of Neurology, Neuroscience Center
| |
Collapse
|
22
|
Autoimmune glial fibrillary acidic protein astrocytopathy: case report of a treatable cause of rapidly progressive dementia. J Neurol 2021; 268:2256-2258. [PMID: 33635389 DOI: 10.1007/s00415-021-10484-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 10/22/2022]
|
23
|
Shafiq M, Zafar S, Younas N, Noor A, Puig B, Altmeppen HC, Schmitz M, Matschke J, Ferrer I, Glatzel M, Zerr I. Prion protein oligomers cause neuronal cytoskeletal damage in rapidly progressive Alzheimer's disease. Mol Neurodegener 2021; 16:11. [PMID: 33618749 PMCID: PMC7898440 DOI: 10.1186/s13024-021-00422-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 01/02/2021] [Indexed: 12/27/2022] Open
Abstract
Background High-density oligomers of the prion protein (HDPs) have previously been identified in brain tissues of patients with rapidly progressive Alzheimer’s disease (rpAD). The current investigation aims at identifying interacting partners of HDPs in the rpAD brains to unravel the pathological involvement of HDPs in the rapid progression. Methods HDPs from the frontal cortex tissues of rpAD brains were isolated using sucrose density gradient centrifugation. Proteins interacting with HDPs were identified by co-immunoprecipitation coupled with mass spectrometry. Further verifications were carried out using proteomic tools, immunoblotting, and confocal laser scanning microscopy. Results We identified rpAD-specific HDP-interactors, including the growth arrest specific 2-like 2 protein (G2L2). Intriguingly, rpAD-specific disturbances were found in the localization of G2L2 and its associated proteins i.e., the end binding protein 1, α-tubulin, and β-actin. Discussion The results show the involvement of HDPs in the destabilization of the neuronal actin/tubulin infrastructure. We consider this disturbance to be a contributing factor for the rapid progression in rpAD. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-021-00422-x.
Collapse
Affiliation(s)
- Mohsin Shafiq
- Department of Neurology, University Medicine Goettingen and German Center for Neurodegenerative Diseases (DZNE), 37075, Goettingen, Germany.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany
| | - Saima Zafar
- Department of Neurology, University Medicine Goettingen and German Center for Neurodegenerative Diseases (DZNE), 37075, Goettingen, Germany. .,Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| | - Neelam Younas
- Department of Neurology, University Medicine Goettingen and German Center for Neurodegenerative Diseases (DZNE), 37075, Goettingen, Germany
| | - Aneeqa Noor
- Department of Neurology, University Medicine Goettingen and German Center for Neurodegenerative Diseases (DZNE), 37075, Goettingen, Germany
| | - Berta Puig
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany.,Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Hermann Clemens Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medicine Goettingen and German Center for Neurodegenerative Diseases (DZNE), 37075, Goettingen, Germany
| | - Jakob Matschke
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany
| | - Isidre Ferrer
- Institut de Neuropatologica, Servei Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, Carrer Feixa LLarga sn, 08907, Hospitalet de LLobregat, CIBERNED, Barcelona, Spain
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany
| | - Inga Zerr
- Department of Neurology, University Medicine Goettingen and German Center for Neurodegenerative Diseases (DZNE), 37075, Goettingen, Germany
| |
Collapse
|
24
|
Islam Y, Ehtezazi P, Cashmore A, Marinsalda E, Leach AG, Coxon CR, Fatokun AA, Sexton DW, Khan I, Zouganelis G, Downing J, Pluchino S, Sivakumaran M, Teixido M, Ehtezazi T. The Inclusion of a Matrix Metalloproteinase-9 Responsive Sequence in Self-assembled Peptide-based Brain-Targeting Nanoparticles Improves the Efficiency of Nanoparticles Crossing the Blood-Brain Barrier at Elevated MMP-9 Levels. J Pharm Sci 2020; 110:1349-1364. [PMID: 33333144 DOI: 10.1016/j.xphs.2020.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 11/18/2022]
Abstract
This study investigated whether the inclusion of a matrix metalloproteinase-9 (MMP-9) responsive sequence in self-assembled peptide-based brain-targeting nanoparticles (NPs) would enhance the blood-brain barrier (BBB) penetration when MMP-9 levels are elevated both in the brain and blood circulation. Brain-targeting peptides were conjugated at the N-terminus to MMP-9-responsive peptides, and these were conjugated at the N-terminus to lipid moiety (cholesteryl chloroformate or palmitic acid). Two constructs did not have MMP-9-responsive peptides. NPs were characterised for size, charge, critical micelle concentration, toxicity, blood compatibility, neural cell uptake, release profiles, and in vitro BBB permeability simulating normal or elevated MMP-9 levels. The inclusion of MMP-9-sensitive sequences did not improve the release of a model drug in the presence of active MMP-9 from NPs compared to distilled water. 19F NMR studies suggested the burial of MMP-9-sensitive sequences inside the NPs making them inaccessible to MMP-9. Only cholesterol-GGGCKAPETALC (responsive to MMP-9) NPs showed <5% haemolysis, <1 pg/mL release of IL-1β at 500 μg/mL from THP1 cells, with 70.75 ± 5.78% of NPs crossing the BBB at 24 h in presence of active MMP-9. In conclusion, brain-targeting NPs showed higher transport across the BBB model when MMP-9 levels were elevated and the brain-targeting ligand was responsive to MMP-9.
Collapse
Affiliation(s)
- Yamir Islam
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Parinaz Ehtezazi
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Andrew Cashmore
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Elena Marinsalda
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Andrew G Leach
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Christopher R Coxon
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Amos A Fatokun
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Darren W Sexton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Iftikhar Khan
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Georgios Zouganelis
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - James Downing
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Stefano Pluchino
- Department of Clinical Neurosciences, Clifford Allbutt Building - Cambridge Biosciences Campus and NIHR Biomedical Research Centre, University of Cambridge, Hills Road, CB2 0HA Cambridge, UK
| | - Muttuswamy Sivakumaran
- Department of Haematology, Peterborough City Hospital, Edith Cavell Campus, Bretton Gate Peterborough, PE3 9GZ, Peterborough, UK
| | - Meritxell Teixido
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, Barcelona 08028, Spain
| | - Touraj Ehtezazi
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK.
| |
Collapse
|
25
|
Cerebrospinal Fluid Mitochondrial DNA in Rapid and Slow Progressive Forms of Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21176298. [PMID: 32878083 PMCID: PMC7503553 DOI: 10.3390/ijms21176298] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s type dementia (AD) exhibits clinical heterogeneity, as well as differences in disease progression, as a subset of patients with a clinical diagnosis of AD progresses more rapidly (rpAD) than the typical AD of slow progression (spAD). Previous findings indicate that low cerebrospinal fluid (CSF) content of cell-free mitochondrial DNA (cf-mtDNA) precedes clinical signs of AD. We have now investigated the relationship between cf-mtDNA and other biomarkers of AD to determine whether a particular biomarker profile underlies the different rates of AD progression. We measured the content of cf-mtDNA, beta-amyloid peptide 1–42 (Aβ), total tau protein (t-tau) and phosphorylated tau (p-tau) in the CSF from a cohort of 95 subjects consisting of 49 controls with a neurologic disorder without dementia, 30 patients with a clinical diagnosis of spAD and 16 patients with rpAD. We found that 37% of controls met at least one AD biomarker criteria, while 53% and 44% of subjects with spAD and rpAD, respectively, did not fulfill the two core AD biomarker criteria: high t-tau and low Aβ in CSF. In the whole cohort, patients with spAD, but not with rpAD, showed a statistically significant 44% decrease of cf-mtDNA in CSF compared to control. When the cohort included only subjects selected by Aβ and t-tau biomarker criteria, the spAD group showed a larger decrease of cf-mtDNA (69%), whereas in the rpAD group cf-mtDNA levels remained unaltered. In the whole cohort, the CSF levels of cf-mtDNA correlated positively with Aβ and negatively with p-tau. Moreover, the ratio between cf-mtDNA and p-tau increased the sensitivity and specificity of spAD diagnosis up to 93% and 94%, respectively, in the biomarker-selected cohort. These results show that the content of cf-mtDNA in CSF correlates with the earliest pathological markers of the disease, Aβ and p-tau, but not with the marker of neuronal damage t-tau. Moreover, these findings confirm that low CSF content of cf-mtDNA is a biomarker for the early detection of AD and support the hypothesis that low cf-mtDNA, together with low Aβ and high p-tau, constitute a distinctive CSF biomarker profile that differentiates spAD from other neurological disorders.
Collapse
|
26
|
Dervishi M, Lambert T, Markosyan Karapetyan M, Warra N, Iskenderian Z. A Rare Case of Creutzfeldt-Jakob Disease in an 80-Year-Old Male. Cureus 2020; 12:e10038. [PMID: 32864281 PMCID: PMC7450880 DOI: 10.7759/cureus.10038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Creutzfeldt-Jakob disease (CJD) is a rare, rapid and fatal human prion disease that causes neurodegeneration. Rapidly progressive dementia, quick involuntary muscle jerking and specific radiographic and laboratory findings are characteristic of the disease. CJD should not be ruled even if the clinical presentation is outside the common age range. Herein we present a case of an 80-year-old man with probable diagnosis of CJD. The absolute diagnosis of CJD can only be confirmed post-mortem with a brain biopsy.
Collapse
|
27
|
Islam Y, Leach AG, Smith J, Pluchino S, Coxonl CR, Sivakumaran M, Downing J, Fatokun AA, Teixidò M, Ehtezazi T. Peptide based drug delivery systems to the brain. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/ab9008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Ling H, Gelpi E, Davey K, Jaunmuktane Z, Mok KY, Jabbari E, Simone R, R'Bibo L, Brandner S, Ellis MJ, Attems J, Mann D, Halliday GM, Al-Sarraj S, Hedreen J, Ironside JW, Kovacs GG, Kovari E, Love S, Vonsattel JPG, Allinson KSJ, Hansen D, Bradshaw T, Setó-Salvia N, Wray S, de Silva R, Morris HR, Warner TT, Hardy J, Holton JL, Revesz T. Fulminant corticobasal degeneration: a distinct variant with predominant neuronal tau aggregates. Acta Neuropathol 2020; 139:717-734. [PMID: 31950334 PMCID: PMC7096362 DOI: 10.1007/s00401-019-02119-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 02/01/2023]
Abstract
Corticobasal degeneration typically progresses gradually over 5–7 years from onset till death. Fulminant corticobasal degeneration cases with a rapidly progressive course were rarely reported (RP-CBD). This study aimed to investigate their neuropathological characteristics. Of the 124 autopsy-confirmed corticobasal degeneration cases collected from 14 centres, we identified 6 RP-CBD cases (4.8%) who died of advanced disease within 3 years of onset. These RP-CBD cases had different clinical phenotypes including rapid global cognitive decline (N = 2), corticobasal syndrome (N = 2) and Richardson’s syndrome (N = 2). We also studied four corticobasal degeneration cases with an average disease duration of 3 years or less, who died of another unrelated illness (Intermediate-CBD). Finally, we selected 12 age-matched corticobasal degeneration cases out of a cohort of 110, who had a typical gradually progressive course and reached advanced clinical stage (End-stage-CBD). Quantitative analysis showed high overall tau burden (p = 0.2) and severe nigral cell loss (p = 0.47) in both the RP-CBD and End-stage-CBD groups consistent with advanced pathological changes, while the Intermediate-CBD group (mean disease duration = 3 years) had milder changes than End-stage-CBD (p < 0.05). These findings indicated that RP-CBD cases had already developed advanced pathological changes as those observed in End-stage-CBD cases (mean disease duration = 6.7 years), but within a significantly shorter duration (2.5 years; p < 0.001). Subgroup analysis was performed to investigate the cellular patterns of tau aggregates in the anterior frontal cortex and caudate by comparing neuronal-to-astrocytic plaque ratios between six RP-CBD cases, four Intermediate-CBD and 12 age-matched End-stage-CBD. Neuronal-to-astrocytic plaque ratios of Intermediate-CBD and End-stage-CBD, but not RP-CBD, positively correlated with disease duration in both the anterior frontal cortex and caudate (p = 0.02). In contrast to the predominance of astrocytic plaques we previously reported in preclinical asymptomatic corticobasal degeneration cases, neuronal tau aggregates predominated in RP-CBD exceeding those in Intermediate-CBD (anterior frontal cortex: p < 0.001, caudate: p = 0.001) and End-stage-CBD (anterior frontal cortex: p = 0.03, caudate: p = 0.01) as demonstrated by its higher neuronal-to-astrocytic plaque ratios in both anterior frontal cortex and caudate. We did not identify any difference in age at onset, any pathogenic tau mutation or concomitant pathologies that could have contributed to the rapid progression of these RP-CBD cases. Mild TDP-43 pathology was observed in three RP-CBD cases. All RP-CBD cases were men. The MAPT H2 haplotype, known to be protective, was identified in one RP-CBD case (17%) and 8 of the matched End-stage-CBD cases (67%). We conclude that RP-CBD is a distinct aggressive variant of corticobasal degeneration with characteristic neuropathological substrates resulting in a fulminant disease process as evident both clinically and pathologically. Biological factors such as genetic modifiers likely play a pivotal role in the RP-CBD variant and should be the subject of future research.
Collapse
Affiliation(s)
- Helen Ling
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK.
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - Ellen Gelpi
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS, Barcelona, Spain
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Karen Davey
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
| | - Zane Jaunmuktane
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London Hospital Trust, Queen Square, London, UK
| | - Kin Y Mok
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- Division of Life Science, Institute for Advanced Study, Hong Kong University of Science and Technology, Hong Kong Special Administrative Region, Hong Kong, China
| | - Edwin Jabbari
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Roberto Simone
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Lea R'Bibo
- UK Dementia Research Institute, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sebastian Brandner
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London Hospital Trust, Queen Square, London, UK
| | - Matthew J Ellis
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Johannes Attems
- Newcastle Brain Tissue Resource, Institute of Neuroscience, Newcastle University, Newcastle, UK
| | - David Mann
- Manchester Brain Bank, University of Manchester, Manchester, UK
| | - Glenda M Halliday
- Sydney Brain Bank, Neuroscience Research Australia (NeuRA), Sydney, Australia
- Brain and Mind Centre and Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - S Al-Sarraj
- The London Neurodegeneration Brain Bank, The Institute of Psychiatry Psychology and Neurosciences (IOPPN), Kings College London, London, UK
| | - J Hedreen
- The Harvard Brain Tissue Resource Centre, McLean Hospital, Belmont, USA
| | - James W Ironside
- National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Gabor G Kovacs
- University of Toronto, University Health Network, and Tanz Centre for Research in Neurodegenerative Disease, Toronto, Canada
| | - E Kovari
- Department of Psychiatry, HUG Belle-Idée, University of Geneva School of Medicine, Geneva, Switzerland
| | - S Love
- South West Dementia Brain Bank, University of Bristol, Bristol, UK
| | - Jean Paul G Vonsattel
- Taub Institute for Research on AD and the Aging Brain, Columbia University Medical Center, New York, USA
| | | | - Daniela Hansen
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Teisha Bradshaw
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Núria Setó-Salvia
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Selina Wray
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Rohan de Silva
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Huw R Morris
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Thomas T Warner
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - John Hardy
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Janice L Holton
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Tamas Revesz
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK.
- Reta Lila Weston Institute for Neurological Studies, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW This article describes the clinical features that suggest a reversible cause of dementia. RECENT FINDINGS Substantial variability exists in the presenting features and clinical course of patients with common neurodegenerative causes of dementia, but the response to available therapies and eventual outcomes are often poor. This realization has influenced the evaluation of patients with dementia, with diagnostic approaches emphasizing routine screening for a short list of potentially modifiable disorders that may exacerbate dementia symptoms or severity but rarely influence long-term outcomes. Although a standard approach to the assessment of dementia is appropriate in the vast majority of cases, neurologists involved in the assessment of patients with dementia must recognize those rare patients with reversible causes of dementia, coordinate additional investigations when required, and ensure expedited access to treatments that may reverse decline and optimize long-term outcomes. SUMMARY The potential to improve the outcome of patients with reversible dementias exemplifies the need to recognize these patients in clinical practice. Dedicated efforts to screen for symptoms and signs associated with reversible causes of dementia may improve management and outcomes of these rare patients when encountered in busy clinical practices.
Collapse
|
30
|
Kharel H, Adhikari P, Pokhrel NB, Kharel Z, Nepal G. The first reported case of Creutzfeldt-Jakob disease from Nepal. Clin Case Rep 2020; 8:198-202. [PMID: 31998516 PMCID: PMC6982523 DOI: 10.1002/ccr3.2609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/10/2019] [Accepted: 11/21/2019] [Indexed: 12/27/2022] Open
Abstract
Creutzfeldt-Jakob disease (CJD) can also be diagnosed in a resource-limited setting through good clinical analysis. The diagnosis of CJD should be considered in patients with rapidly evolving neurological signs associated with cognitive disturbances even in countries with limited available sophisticated tools and where CJD was never reported before.
Collapse
Affiliation(s)
- Himal Kharel
- Tribhuvan University Institute of MedicineKathmanduNepal
| | | | | | - Zeni Kharel
- Department of Internal MedicineRochester General HospitalRochesterNYUSA
| | - Gaurav Nepal
- Tribhuvan University Institute of MedicineKathmanduNepal
| |
Collapse
|
31
|
Abstract
BACKGROUND Published approaches to the evaluation and management of patients with rapidly progressive dementia (RPD) have been largely informed by experience at academic hospitals and national centers specializing in the diagnosis of Creutzfeldt-Jakob disease. Whether these approaches can be applied to patients assessed within lower-acuity outpatient settings is unknown. METHODS A total of 96 patients with suspected RPD were assessed within the Washington University School of Medicine (Saint Louis, MO) outpatient memory clinic from February 2006 to February 2016. Consensus etiologic diagnoses were established following independent review of clinical data by 2 dementia specialists. RESULTS In total, 67/90 (70%) patients manifested with faster-than-expected cognitive decline leading to dementia within 2 years of symptom onset. Female sex (42/67, 63%), median patient age (68.3 y; range, 45.4 to 89.6), and years of education (12 y; range, 6 to 14) were consistent with clinic demographics. Atypical presentations of common neurodegenerative dementing illnesses accounted for 90% (60/67) of RPD cases. Older age predicted a higher odds of amnestic Alzheimer disease dementia (OR, 2.1 per decade; 95% CI, 1.1-3.8; P=0.02). Parkinsonism (OR, 6.9; 95% CI, 1.6-30.5; P=0.01) or cortical visual dysfunction (OR, 10.8; 95% CI, 1.7-69.4; P=0.01) predicted higher odds of another neurodegenerative cause of RPD, including sporadic Creutzfeldt-Jakob disease. CONCLUSIONS AND RELEVANCE The clinical environment influences the prevalence of RPD causes. The clinical evaluation should be adapted to promote detection of common causes of RPD, specific to the practice setting.
Collapse
|
32
|
Pillai JA, Appleby BS, Safar J, Leverenz JB. Rapidly Progressive Alzheimer's Disease in Two Distinct Autopsy Cohorts. J Alzheimers Dis 2019; 64:973-980. [PMID: 29966195 DOI: 10.3233/jad-180155] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND A rapidly progressive phenotype of Alzheimer's disease (AD) has been described in some prion disease cohorts. Limited information regarding rapidly progressive AD (rpAD) is available from longitudinal national cohorts. OBJECTIVE To compare the clinical characteristics of rpAD in two different national cohorts. METHODS A retrospective analysis was performed on AD subjects with available neuropathology in the National Alzheimer's Coordinating Center (NACC) database and among neuropathologically characterized AD cases from the National Prion Disease Pathology Surveillance Center (NPDPSC) that were evaluated for suspected prion disease. In the NACC cohort, rpAD was delineated by the lower 10th percentile of follow up duration from pre-dementia to death duration among subjects meeting pathological diagnosis of AD. RESULTS rpAD from the NPDPSC had a shorter mean symptom duration than the NACC identified rpAD cases (11.6 months versus 62.4 months) and were also younger at the time of their death (60.0 versus 81.8 years). NACC identified rpAD subjects, beginning from a predementia stage, had slower rate of MMSE change per year than NPDPSC cases (2.5 versus 6.0 points). CONCLUSIONS rpAD constitute an important subset of AD subjects in whom a rapid course of symptomatic clinical decline is noted, as confirmed in both national cohorts. rpAD was best characterized by survival time (≤3 years), as there were clear differences between the rpAD cohorts in terms of symptom duration, age at death, and MMSE change per year, likely due to the strong selection biases. rpAD could shed light on the biology of rate of progression in AD.
Collapse
|
33
|
Lai HY, Saavedra-Pena G, Sodini CG, Sze V, Heldt T. Measuring Saccade Latency Using Smartphone Cameras. IEEE J Biomed Health Inform 2019; 24:885-897. [PMID: 31056528 DOI: 10.1109/jbhi.2019.2913846] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Accurate quantification of neurodegenerative disease progression is an ongoing challenge that complicates efforts to understand and treat these conditions. Clinical studies have shown that eye movement features may serve as objective biomarkers to support diagnosis and tracking of disease progression. Here, we demonstrate that saccade latency-an eye movement measure of reaction time-can be measured robustly outside of the clinical environment with a smartphone camera. METHODS To enable tracking of saccade latency in large cohorts of patients and control subjects, we combined a deep convolutional neural network for gaze estimation with a model-based approach for saccade onset determination that provides automated signal-quality quantification and artifact rejection. RESULTS Simultaneous recordings with a smartphone and a high-speed camera resulted in negligible differences in saccade latency distributions. Furthermore, we demonstrated that the constraint of chinrest support can be removed when recording healthy subjects. Repeat smartphone-based measurements of saccade latency in 11 self-reported healthy subjects resulted in an intraclass correlation coefficient of 0.76, showing our approach has good to excellent test-retest reliability. Additionally, we conducted more than 19 000 saccade latency measurements in 29 self-reported healthy subjects and observed significant intra- and inter-subject variability, which highlights the importance of individualized tracking. Lastly, we showed that with around 65 measurements we can estimate mean saccade latency to within less-than-10-ms precision, which takes within 4 min with our setup. CONCLUSION AND SIGNIFICANCE By enabling repeat measurements of saccade latency and its distribution in individual subjects, our framework opens the possibility of quantifying patient state on a finer timescale in a broader population than previously possible.
Collapse
|
34
|
Neuropathological and genetic characteristics of a post-mortem series of cases with dementia with Lewy bodies clinically suspected of Creutzfeldt-Jakob's disease. Parkinsonism Relat Disord 2019; 63:162-168. [PMID: 30777654 DOI: 10.1016/j.parkreldis.2019.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/03/2019] [Accepted: 02/12/2019] [Indexed: 01/23/2023]
Abstract
INTRODUCTION The disease course of dementia with Lewy bodies (DLB) can be rapidly progressive, clinically resembling Creutzfeldt-Jakob's disease (CJD). To better understand factors contributing to this rapidly progressive disease course, we describe load and distribution of neuropathology, and the presence of possible disease-associated genetic defects in a post-mortem series of DLB cases clinically suspected of CJD. METHODS We included pathologically confirmed DLB cases with a disease duration of 3.5 years or less from the Dutch Surveillance Center for Prion Diseases, collected between 1998 and 2014. Lewy body disease (LBD) and Alzheimer's disease (AD)-related pathology were staged and semi-quantitatively scored in selected brain regions. Whole exome sequencing analysis of known disease-associated genes, copy number analysis, APOE ε genotyping and C9orf72 repeat expansion analysis were performed to identify defects in genes with a well-established involvement in Parkinson's disease or AD. RESULTS Diffuse LBD was present in nine cases, transitional LBD in six cases and brainstem-predominant LBD in one case. Neocortical alpha-synuclein load was significantly higher in cases with intermediate-to-high than in cases with low-to-none AD-related pathology (p = 0.007). We found two GBA variants (p.D140H and p.E326K) in one patient and two heterozygous rare variants of unknown significance in SORL1 in two patients. CONCLUSION A high load of neocortical alpha-synuclein pathology was present in most, but not all DLB cases. Additional burden from presence of concomitant pathologies, synergistic effects and specific genetic defects in the known disease-associated genes may have contributed to the rapid disease progression.
Collapse
|
35
|
Abstract
INTRODUCTION Rapidly progressive dementia is a syndrome caused by numerous disease entities. Accurate diagnosis is crucial as substantial proportion of these diseases is highly treatable. Others might implicate specific hygienic problems. Still, differential diagnosis remains challenging because of a huge overlap of clinical presentations. Areas covered: The paper reviews PubMed-listed research articles with a focus on diagnosis and treatment of diseases showing rapid cognitive decline such as inflammatory diseases, rapidly progressive neurodegenerative diseases, toxic-metabolic encephalopathies and prion diseases. The literature was interpreted in the light of experience in clinically differentiating rapid progressing dementia in the framework of Creutzfeldt-Jakob-Disease (CJD) surveillance activities. An overview of relevant differential diagnoses and diagnostic pitfalls as well as therapeutic protocols is presented. Expert commentary: Over the last years, more and more neurologic disorders causing cognitive symptoms, in particular various types of immune-mediated diseases have been discovered. To identify treatable conditions and to enhance knowledge of differential diagnosis and epidemiology, we suggest an extended diagnostic work up in cases with rapidly progressing dementia. Besides standard methods, this should include the search for neoplasia as well as atypical encephalitis. High-dose steroid therapy should be considered in certain clinical situations even when no evidence for inflammation is present.
Collapse
Affiliation(s)
- Inga Zerr
- a Clinical Dementia Center and National TSE Reference Center, Department of Neurology , Goettingen University Medical Center , Goettingen , Germany
| | - Peter Hermann
- a Clinical Dementia Center and National TSE Reference Center, Department of Neurology , Goettingen University Medical Center , Goettingen , Germany
| |
Collapse
|
36
|
Rapidly Progressive Dementia: Prevalence and Causes in a Neurologic Unit of a Tertiary Hospital in Brazil. Alzheimer Dis Assoc Disord 2018; 31:239-243. [PMID: 27849640 DOI: 10.1097/wad.0000000000000170] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Rapidly progressive dementia (RPD) is usually associated with Creutzfeldt-Jakob disease, a fatal condition. Current advances in the understanding of immune-mediated diseases allow the diagnosis of previously unrecognized treatable RPDs. OBJECTIVE OF THE STUDY The objective of the study was to describe the prevalence and causes of RPD in a neurology service, identifying potentially reversible causes. METHODS We carried out a cross-sectional evaluation of all patients admitted to the neurology unit of a tertiary hospital in Brazil between March 2012 and February 2015. We included patients who had progressed to moderate or severe dementia within a few months or up to 2 years at the time of hospitalization, and used multivariable logistic regression analysis to identify factors associated with a favorable outcome. RESULTS We identified 61 RPD (3.7%) cases among 1648 inpatients. Mean RPD patients' age was 48 years, and median time to progression was 6.4 months. Immune-mediated diseases represented the most commonly observed disease group in this series (45.9% of cases). Creutzfeldt-Jakob disease (11.5%) and nonprion neurodegenerative diseases (8.2%) were less common in this series. Outcome was favorable in 36/61 (59.0%) RPD cases and in 28/31 (89.3%) of immune-mediated cases. Favorable outcome was associated with shorter time from symptom onset to diagnosis and abnormal cerebrospinal fluid findings. CONCLUSIONS Immune-mediated diseases were the most common cause of RPD in this series. Timely evaluation and diagnosis along with institution of appropriate therapy are required in RPD, especially in view of potentially reversible causes.
Collapse
|
37
|
Rizzo G, Arcuti S, Copetti M, Alessandria M, Savica R, Fontana A, Liguori R, Logroscino G. Accuracy of clinical diagnosis of dementia with Lewy bodies: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2018; 89:358-366. [PMID: 29030419 DOI: 10.1136/jnnp-2017-316844] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/12/2017] [Accepted: 09/28/2017] [Indexed: 11/03/2022]
Abstract
BACKGROUND The diagnosis of dementia with Lewy bodies (DLB) is based on diagnostic clinical criteria, which were updated over the years. OBJECTIVE To evaluate, through a systematic review, accuracy of the diagnostic criteria, testing a possible improvement over time. METHODS We searched on MEDLINE and SCOPUS databases for studies reporting diagnostic parameters regarding the clinical diagnosis of DLB until October 2016. We performed meta-analysis, using a Bayesian approach, on those using pathological examination as gold standard, subclassified based on the different diagnostic criteria used. RESULTS We selected 22 studies on 1585 patients. Pooled sensitivity, specificity and accuracy were 60.2%, 93.8%, 79.7%, respectively, for criteria antecedents to McKeith 1996. For McKeith 1996-possible, pooled sensitivity, specificity and accuracy were 65.6%, 80.6%, 77.9% in early stages and 72.3%, 64.3%, 66% in late stages, respectively. For McKeith 1996-probable, pooled sensitivity, specificity and accuracy were 19.4%, 95.1%, 77.7% in early stages and 48.6%, 88%, 79.2% in late stages, respectively. McKeith criteria 2005 were evaluated only in late stages: pooled sensitivity, specificity and accuracy were 91.3%, 66.7% and 81.6%, respectively, for possible diagnosis (only one study) and 88.3%, 80.8%, 90.7% for probable diagnosis, decreasing to 85.6%, 77.1% and 81.7% if only considering clinical settings focused on dementia diagnosis and care. CONCLUSIONS AND RELEVANCE Diagnostic criteria have become more sensitive and less specific over time, without substantial change in the accuracy. Based on current data, about 20% of DLB diagnosis are incorrect. Future studies are needed to evaluate if the recently released revised consensus criteria will improve the diagnostic accuracy of DLB.
Collapse
Affiliation(s)
- Giovanni Rizzo
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, Unit of Neurology, University of Bologna, Bologna, Italy
| | - Simona Arcuti
- Department of Clinical Research in Neurology, University of Bari, Tricase, Italy.,Unit of Biostatistics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Massimiliano Copetti
- Unit of Biostatistics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Maria Alessandria
- Department of Clinical Research in Neurology, University of Bari, Tricase, Italy
| | - Rodolfo Savica
- Department of Neurology and Health Science Research, Mayo Clinic, Rochester, Minnesota
| | - Andrea Fontana
- Unit of Biostatistics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Rocco Liguori
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bellaria Hospital, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, Unit of Neurology, University of Bologna, Bologna, Italy
| | - Giancarlo Logroscino
- Department of Clinical Research in Neurology, University of Bari, Tricase, Italy.,Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari, Bari, Italy
| |
Collapse
|
38
|
Geschwind MD, Murray K. Differential diagnosis with other rapid progressive dementias in human prion diseases. HANDBOOK OF CLINICAL NEUROLOGY 2018; 153:371-397. [PMID: 29887146 DOI: 10.1016/b978-0-444-63945-5.00020-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Prion diseases are unique in medicine as in humans they occur in sporadic, genetic, and acquired forms. The most common human prion disease is sporadic Creutzfeldt-Jakob disease (CJD), which commonly presents as a rapidly progressive dementia (RPD) with behavioral, cerebellar, extrapyramidal, and some pyramidal features, with the median survival from symptom onset to death of just a few months. Because human prion diseases, as well as other RPDs, are relatively rare, they can be difficult to diagnose, as most clinicians have seen few, if any, cases. Not only can prion diseases mimic many other conditions that present as RPD, but some of those conditions can present similarly to prion disease. In this article, the authors discuss the different etiologic categories of conditions that often present as RPD and also present RPDs that had been misdiagnosed clinically as CJD. Etiologic categories of conditions are presented in order of the mnemonic used for remembering the various categories of RPDs: VITAMINS-D, for vascular, infectious, toxic-metabolic, autoimmune, mitochondrial/metastases, iatrogenic, neurodegenerative, system/seizures/sarcoid, and demyelinating. When relevant, clinical, imaging, or other features of an RPD that overlap with those of CJD are presented.
Collapse
Affiliation(s)
- Michael D Geschwind
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, United States.
| | - Katy Murray
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
39
|
Ward H, Molesworth A, Holmes S, Sinka K. Public health: surveillance, infection prevention, and control. HANDBOOK OF CLINICAL NEUROLOGY 2018; 153:473-484. [PMID: 29887154 DOI: 10.1016/b978-0-444-63945-5.00027-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Human prion diseases, though relatively rare, remain an ongoing public health problem. They are fatal diseases, with unconventional host responses and no early diagnostic tests or robust treatments. Public health measures were put in place to protect the food chain in the United Kingdom from the late 1980s, with similar measures following elsewhere. However, human prion diseases are transmissible through other routes, including through blood transfusion and surgery. As a result, the public health threat remains for all forms of human prion diseases and makes continued surveillance and infection prevention and control imperative.
Collapse
Affiliation(s)
- Hester Ward
- NHS National Services Scotland, Edinburgh, United Kingdom; Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom.
| | - Anna Molesworth
- National CJD Research and Surveillance Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Sulisti Holmes
- NHS National Services Scotland, Edinburgh, United Kingdom
| | - Katy Sinka
- Centre for Infectious Disease Surveillance and Control, National Infection Service, Public Health England, London, United Kingdom
| |
Collapse
|
40
|
Miguelez-Rodriguez A, Santos-Juanes J, Vicente-Etxenausia I, Perez de Heredia-Goñi K, Garcia B, Quiros LM, Lorente-Gea L, Guerra-Merino I, Aguirre JJ, Fernandez-Vega I. Brains with sporadic Creutzfeldt-Jakob disease and copathology showed a prolonged end-stage of disease. J Clin Pathol 2017; 71:446-450. [PMID: 29097599 DOI: 10.1136/jclinpath-2017-204794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 01/28/2023]
Abstract
AIMS To investigate the expression of major proteins related to primary neurodegenerative diseases and their prognostic significance in brains with Creutzfeldt-Jakob disease (CJD). MATERIALS AND METHODS Thirty consecutive cases of confirmed CJD during the period 2010-2015 at Basque Brain bank were retrospectively reviewed. Moreover, major neurodegenerative-associated proteins (phosphorylated Tau, 4R tau, 3R tau, alpha-synuclein, TDP43, amyloid beta) were tested. Clinical data were reviewed. Cases were divided according to the presence or absence of copathology. Survival curves were also determined. RESULTS Copathology was significantly associated with survival in brains with CJD (4.2±1.2 vs 9.2±1.9; P=0.019) and in brains with MM1/MV1 CJD (2.1±1.0 vs 6.7±2.8; P=0.012). Besides, the presence of more than one major neurodegenerative-associated protein was significantly associated with survival (4.2±1.2 vs 10.7±2.6; P=0.017). Thus, univariate analyses further pointed out variables significantly associated with better survival: copathology in CJD (HR=0.430; P=0.033); more than one neurodegenerative-associated protein in CJD (HR=0.369; P=0.036) and copathology in MM1/MV1 CJD (HR=0.525; P=0.032). CONCLUSION The existence of copathology significantly prolongs survival in patients with rapidly progressive dementia due to CJD. The study of major neurodegenerative-associated proteins in brains with CJD could allow us to further understand the molecular mechanisms behind prion diseases.
Collapse
Affiliation(s)
| | - Jorge Santos-Juanes
- Department of Pathology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Ikerne Vicente-Etxenausia
- Biobanco Vasco para la Investigación (O+eHun), Brain Bank, Hospital Universitario Araba, Vitoria-Gasteiz, Spain
| | - Katty Perez de Heredia-Goñi
- Biobanco Vasco para la Investigación (O+eHun), Brain Bank, Hospital Universitario Araba, Vitoria-Gasteiz, Spain
| | - Beatriz Garcia
- Scientific Department, Instituto Universitario Fernández-Vega, Oviedo, Spain
| | - Luis M Quiros
- Scientific Department, Instituto Universitario Fernández-Vega, Oviedo, Spain.,Department of Functional Biology, University of Oviedo, Oviedo, Spain
| | - Laura Lorente-Gea
- Department of Pathology, Hospital Universitario de Araba-Txagorritxu, Vitoria-Gasteiz, Spain
| | - Isabel Guerra-Merino
- Faculty of Medicine, University of Basque Country, Vitoria, Spain.,Biobanco Vasco para la Investigación (O+eHun), Brain Bank, Hospital Universitario Araba, Vitoria-Gasteiz, Spain.,Department of Pathology, Hospital Universitario de Araba-Txagorritxu, Vitoria-Gasteiz, Spain
| | - Jose J Aguirre
- Department of Pathology, Hospital Universitario de Araba-Txagorritxu, Vitoria-Gasteiz, Spain
| | - Ivan Fernandez-Vega
- Department of Pathology, Hospital Universitario Central de Asturias, Oviedo, Spain.,Biobanco Vasco para la Investigación (O+eHun), Brain Bank, Hospital Universitario Araba, Vitoria-Gasteiz, Spain.,Scientific Department, Instituto Universitario Fernández-Vega, Oviedo, Spain.,Department of Pathology, Hospital Universitario de Araba-Txagorritxu, Vitoria-Gasteiz, Spain
| |
Collapse
|
41
|
Zhang Y, Gao T, Tao QQ. Spectrum of noncerebrovascular rapidly progressive cognitive deterioration: a 2-year retrospective study. Clin Interv Aging 2017; 12:1655-1659. [PMID: 29062227 PMCID: PMC5640397 DOI: 10.2147/cia.s144821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose The number of cognitive deterioration patients has been steadily increasing as the population ages in China. Patients with cognitive deterioration demonstrated diverse patterns, often making the diagnosis difficult, especially in rapidly progressive cognitive deterioration (RPCD) patients. The purpose of this study was to exhibit the disease spectrum and frequency of noncerebrovascular RPCD in patients from a medical college hospital of southeastern China. Materials and methods We performed a 2-year retrospective cohort study including 310 RPCD patients who had been admitted to the Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, from January 1, 2015 to December 31, 2016. RPCD patients’ information on epidemiologic data and clinical aspects were collected. All the data were analyzed using SPSS. Results Of a total of 310 patients hospitalized for RPCD diagnosis, mean age of onset was 55.92±18.89 years. The most common cause of RPCD was viral encephalitis, accounting for 21.9% (68) of the cases, followed by Alzheimer’s disease and autoimmune encephalitis, accounting for 14.5% (45) and 9.0% (28) of the cases, respectively. Creutzfeldt–Jakob disease accounted for 7.1% (22) of the cases. Patients in the secondary RPCD group tended to be younger than those in the primary RPCD group and experienced a more rapid progression course. Conclusion Our study suggests that the most common causes of RPCD are secondary neurological diseases and most of them are potentially reversible under appropriate treatment of the underlying disease. The spectrum and frequency of RPCD in our cohort is comparable with a previous study performed in the European population.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Gao
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qing-Qing Tao
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
42
|
A Case of Scrub Typhus Related Encephalopathy Presenting as Rapidly Progressive Dementia. Dement Neurocogn Disord 2017; 16:83-86. [PMID: 30906376 PMCID: PMC6427984 DOI: 10.12779/dnd.2017.16.3.83] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 11/27/2022] Open
Abstract
Background An infection known to be a major cause of mild encephalitis/encephalopathy with a reversible splenial lesion (MERS). Rapidly progressive dementia is a neurological condition in which dementia progresses in a short period of time. Case Report We report on a 78-year-old woman presenting with a rapid decline in cognitive function resulting from a scrub typhus infection. Diffusion weighted images showed a signal intensity at the splenium, and subcortical white matter of both hemispheres suggesting MERS. On the neuropsychological test, the patient showed frontal executive dysfunction. Conclusions This case suggests that diagnosticians should consider the possibility that a MERS patient with a rapidly cognitive decline could have a scrub typhus infection because early diagnosis of scrub typhus is very important in this aspect of the treatment.
Collapse
|
43
|
Savica R, Grossardt BR, Bower JH, Ahlskog JE, Boeve BF, Graff-Radford J, Rocca WA, Mielke MM. Survival and Causes of Death Among People With Clinically Diagnosed Synucleinopathies With Parkinsonism: A Population-Based Study. JAMA Neurol 2017; 74:839-846. [PMID: 28505261 DOI: 10.1001/jamaneurol.2017.0603] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Importance To our knowledge, a comprehensive study of the survival and causes of death of persons with synucleinopathies compared with the general population has not been conducted. Understanding the long-term outcomes of these conditions may inform patients and caregivers of the expected disease duration and may help with care planning. Objective To compare survival rates and causes of death among patients with incident, clinically diagnosed synucleinopathies and age- and sex-matched referent participants. Design, Setting, and Participants This population-based study used the Rochester Epidemiology Project medical records-linkage system to identify all residents in Olmsted County, Minnesota, who received a diagnostic code of parkinsonism from 1991 through 2010. A movement-disorders specialist reviewed the medical records of each individual to confirm the presence of parkinsonism and determine the type of synucleinopathy. For each confirmed patient, an age- and sex-matched Olmsted County resident without parkinsonism was also identified. Main Outcomes and Measures We determined the age- and sex-adjusted risk of death for each type of synucleinopathy, the median time from diagnosis to death, and the causes of death. Results Of the 461 patients with synucleinopathies, 279 (60.5%) were men, and of the 452 referent participants, 272 (60.2%) were men. From 1991 through 2010, 461 individuals received a diagnosis of a synucleinopathy (309 [67%] of Parkinson disease, 81 [17.6%] of dementia with Lewy bodies, 55 [11.9%] of Parkinson disease dementia, and 16 [3.5%] of multiple system atrophy with parkinsonism). During follow-up, 68.6% (n = 316) of the patients with synucleinopathies and 48.7% (n = 220) of the referent participants died. Patients with any synucleinopathy died a median of 2 years earlier than referent participants. Patients with multiple system atrophy with parkinsonism (hazard ratio, 10.51; 95% CI, 2.92-37.82) had the highest risk of death compared with referent participants, followed by those with dementia with Lewy bodies (hazard ratio, 3.94; 95% CI, 2.61-5.94), Parkinson disease with dementia (hazard ratio, 3.86; 95% CI, 2.36-6.30), and Parkinson disease (hazard ratio, 1.75; 95% CI, 1.39-2.21). Neurodegenerative disease was the most frequent cause of death listed on the death certificate for patients, and cardiovascular disease was the most frequent cause of death among referent participants. Conclusions and Relevance Individuals with multiple system atrophy with parkinsonism, dementia with Lewy bodies, and Parkinson disease dementia have increased mortality compared with the general population. The mortality among persons with Parkinson disease is only moderately increased compared with the general population.
Collapse
Affiliation(s)
- Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, Minnesota2Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Brandon R Grossardt
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - James H Bower
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - J Eric Ahlskog
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Walter A Rocca
- Department of Neurology, Mayo Clinic, Rochester, Minnesota2Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Michelle M Mielke
- Department of Neurology, Mayo Clinic, Rochester, Minnesota2Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
44
|
Prion-specific and surrogate CSF biomarkers in Creutzfeldt-Jakob disease: diagnostic accuracy in relation to molecular subtypes and analysis of neuropathological correlates of p-tau and Aβ42 levels. Acta Neuropathol 2017; 133:559-578. [PMID: 28205010 PMCID: PMC5348556 DOI: 10.1007/s00401-017-1683-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/26/2017] [Accepted: 01/29/2017] [Indexed: 01/28/2023]
Abstract
The differential diagnosis of Creutzfeldt-Jakob disease (CJD) from other, sometimes treatable, neurological disorders is challenging, owing to the wide phenotypic heterogeneity of the disease. Real-time quaking-induced prion conversion (RT-QuIC) is a novel ultrasensitive in vitro assay, which, at variance with surrogate neurodegenerative biomarker assays, specifically targets the pathological prion protein (PrPSc). In the studies conducted to date in CJD, cerebrospinal fluid (CSF) RT-QuIC showed good diagnostic sensitivity (82–96%) and virtually full specificity. In the present study, we investigated the diagnostic value of both prion RT-QuIC and surrogate protein markers in a large patient population with suspected CJD and then evaluated the influence on CSF findings of the CJD type, and the associated amyloid-β (Aβ) and tau neuropathology. RT-QuIC showed an overall diagnostic sensitivity of 82.1% and a specificity of 99.4%. However, sensitivity was lower in CJD types linked to abnormal prion protein (PrPSc) type 2 (VV2, MV2K and MM2C) than in typical CJD (MM1). Among surrogate proteins markers (14-3-3, total (t)-tau, and t-tau/phosphorylated (p)-tau ratio) t-tau performed best in terms of both specificity and sensitivity for all sCJD types. Sporadic CJD VV2 and MV2K types demonstrated higher CSF levels of p-tau when compared to other sCJD types and this positively correlated with the amount of tiny tau deposits in brain areas showing spongiform change. CJD patients showed moderately reduced median Aβ42 CSF levels, with 38% of cases having significantly decreased protein levels in the absence of Aβ brain deposits. Our results: (1) support the use of both RT-QuIC and t-tau assays as first line laboratory investigations for the clinical diagnosis of CJD; (2) demonstrate a secondary tauopathy in CJD subtypes VV2 and MV2K, correlating with increased p-tau levels in the CSF and (3) provide novel insight into the issue of the accuracy of CSF p-tau and Aβ42 as markers of brain tauopathy and β-amyloidosis.
Collapse
|
45
|
Garcia-Esparcia P, López-González I, Grau-Rivera O, García-Garrido MF, Konetti A, Llorens F, Zafar S, Carmona M, Del Rio JA, Zerr I, Gelpi E, Ferrer I. Dementia with Lewy Bodies: Molecular Pathology in the Frontal Cortex in Typical and Rapidly Progressive Forms. Front Neurol 2017; 8:89. [PMID: 28348546 PMCID: PMC5346561 DOI: 10.3389/fneur.2017.00089] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/24/2017] [Indexed: 11/29/2022] Open
Abstract
Objectives The goal of this study was to assess mitochondrial function, energy, and purine metabolism, protein synthesis machinery from the nucleolus to the ribosome, inflammation, and expression of newly identified ectopic olfactory receptors (ORs) and taste receptors (TASRs) in the frontal cortex of typical cases of dementia with Lewy bodies (DLB) and cases with rapid clinical course (rpDLB: 2 years or less) compared with middle-aged non-affected individuals, in order to learn about the biochemical abnormalities underlying Lewy body pathology. Methods Real-time quantitative PCR, mitochondrial enzymatic assays, and analysis of β-amyloid, tau, and synuclein species were used. Results The main alterations in DLB and rpDLB, which are more marked in the rapidly progressive forms, include (i) deregulated expression of several mRNAs and proteins of mitochondrial subunits, and reduced activity of complexes I, II, III, and IV of the mitochondrial respiratory chain; (ii) reduced expression of selected molecules involved in energy metabolism and increased expression of enzymes involved in purine metabolism; (iii) abnormal expression of nucleolar proteins, rRNA18S, genes encoding ribosomal proteins, and initiation factors of the transcription at the ribosome; (iv) discrete inflammation; and (v) marked deregulation of brain ORs and TASRs, respectively. Severe mitochondrial dysfunction involving activity of four complexes, minimal inflammatory responses, and dramatic altered expression of ORs and TASRs discriminate DLB from Alzheimer’s disease. Altered solubility and aggregation of α-synuclein, increased β-amyloid bound to membranes, and absence of soluble tau oligomers are common in DLB and rpDLB. Low levels of soluble β-amyloid are found in DLB. However, increased soluble β-amyloid 1–40 and β-amyloid 1–42, and increased TNFα mRNA and protein expression, distinguish rpDLB. Conclusion Molecular alterations in frontal cortex in DLB involve key biochemical pathways such as mitochondria and energy metabolism, protein synthesis, purine metabolism, among others and are accompanied by discrete innate inflammatory response.
Collapse
Affiliation(s)
- Paula Garcia-Esparcia
- Institute of Neuropathology, Service of Pathologic Anatomy, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain; CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Madrid, Spain
| | - Irene López-González
- Institute of Neuropathology, Service of Pathologic Anatomy, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain; CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Madrid, Spain
| | - Oriol Grau-Rivera
- Neurological Tissue Bank of the Biobanc-Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) , Barcelona , Spain
| | - María Francisca García-Garrido
- Institute of Neuropathology, Service of Pathologic Anatomy, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat , Barcelona , Spain
| | - Anusha Konetti
- Institute of Neuropathology, Service of Pathologic Anatomy, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat , Barcelona , Spain
| | - Franc Llorens
- Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University, German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| | - Saima Zafar
- Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University, German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| | - Margarita Carmona
- Institute of Neuropathology, Service of Pathologic Anatomy, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain; CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Madrid, Spain
| | - José Antonio Del Rio
- CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Madrid, Spain; Molecular and Cellular Neurobiotechnology, Department of Cell Biology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University, German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| | - Ellen Gelpi
- Neurological Tissue Bank of the Biobanc-Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) , Barcelona , Spain
| | - Isidro Ferrer
- Institute of Neuropathology, Service of Pathologic Anatomy, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain; CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Madrid, Spain; Department of Pathology and Experimental Therapeutics, L'Hospitalet de Llobregat, University of Barcelona, Barcelona, Spain
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW This article presents a practical and informative approach to the evaluation of a patient with a rapidly progressive dementia (RPD). RECENT FINDINGS Prion diseases are the prototypical causes of RPD, but reversible causes of RPD might mimic prion disease and should always be considered in a differential diagnosis. Aside from prion diseases, the most common causes of RPD are atypical presentations of other neurodegenerative disorders, curable disorders including autoimmune encephalopathies, as well as some infections, and neoplasms. Numerous recent case reports suggest dural arterial venous fistulas sometimes cause RPDs. SUMMARY RPDs, in which patients typically develop dementia over weeks to months, require an alternative differential than the slowly progressive dementias that occur over a few years. Because of their rapid decline, patients with RPDs necessitate urgent evaluation and often require an extensive workup, typically with multiple tests being sent or performed concurrently. Jakob-Creutzfeldt disease, perhaps the prototypical RPD, is often the first diagnosis many neurologists consider when treating a patient with rapid cognitive decline. Many conditions other than prion disease, however, including numerous reversible or curable conditions, can present as an RPD. This chapter discusses some of the major etiologies for RPDs and offers an algorithm for diagnosis.
Collapse
|
47
|
González DA, Soble JR. Corticobasal syndrome due to sporadic Creutzfeldt–Jakob disease: a review and neuropsychological case report. Clin Neuropsychol 2016; 31:676-689. [DOI: 10.1080/13854046.2016.1259434] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- David Andrés González
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Psychology Service, South Texas Veterans Health Care System, San Antonio, TX
| | - Jason R. Soble
- Psychology Service, South Texas Veterans Health Care System, San Antonio, TX
| |
Collapse
|
48
|
López-Sidro Ibáñez R, López Rivero C, García Sánchez T, de Cruz Benayas M, Aguirre Rodríguez J. Demencia rápidamente progresiva en un varón de 81 años. Semergen 2016; 42:412-4. [DOI: 10.1016/j.semerg.2015.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 10/23/2022]
|
49
|
Malignant progression in parietal-dominant atrophy subtype of Alzheimer's disease occurs independent of onset age. Neurobiol Aging 2016; 47:149-156. [PMID: 27592283 DOI: 10.1016/j.neurobiolaging.2016.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 07/26/2016] [Accepted: 08/03/2016] [Indexed: 11/22/2022]
Abstract
Recently, we reported that earlier stages of Alzheimer's disease (AD) can be categorized into 3 following anatomical subtypes using a hierarchical cluster analysis of cortical thickness across the entire brain: medial temporal-dominant (MT), parietal-dominant (P), and diffuse atrophy (D). The goal of this study was to investigate the rates of cognitive decline in these anatomical subtypes. Of the patients included in the prior study, 100 AD patients (MT, n = 36; P, n = 20; D, n = 44) who underwent follow-up neuropsychological assessments over a 3-year period were included. A linear mixed model analysis was performed to compare the longitudinal changes in neuropsychological test scores. The P subtype exhibited the most rapid cognitive decline in attention, language, visuospatial, memory, and frontal executive function, whereas MT and D subtypes did not differ in their longitudinal decline. When repeating the analyses with early-onset AD, which is known to progress faster than late-onset AD, only the P subtype showed such rapid progression. The P subtype appears to be a unique subtype of AD characterized by an aggressive rate of progression.
Collapse
|
50
|
Gonzalez-Riano C, Garcia A, Barbas C. Metabolomics studies in brain tissue: A review. J Pharm Biomed Anal 2016; 130:141-168. [PMID: 27451335 DOI: 10.1016/j.jpba.2016.07.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 12/11/2022]
Abstract
Brain is still an organ with a composition to be discovered but beyond that, mental disorders and especially all diseases that curse with dementia are devastating for the patient, the family and the society. Metabolomics can offer an alternative tool for unveiling new insights in the discovery of new treatments and biomarkers of mental disorders. Until now, most of metabolomic studies have been based on biofluids: serum/plasma or urine, because brain tissue accessibility is limited to animal models or post mortem studies, but even so it is crucial for understanding the pathological processes. Metabolomics studies of brain tissue imply several challenges due to sample extraction, along with brain heterogeneity, sample storage, and sample treatment for a wide coverage of metabolites with a wide range of concentrations of many lipophilic and some polar compounds. In this review, the current analytical practices for target and non-targeted metabolomics are described and discussed with emphasis on critical aspects: sample treatment (quenching, homogenization, filtration, centrifugation and extraction), analytical methods, as well as findings considering the used strategies. Besides that, the altered analytes in the different brain regions have been associated with their corresponding pathways to obtain a global overview of their dysregulation, trying to establish the link between altered biological pathways and pathophysiological conditions.
Collapse
Affiliation(s)
- Carolina Gonzalez-Riano
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Monteprincipe, Boadilla del Monte 28668, Madrid, Spain
| | - Antonia Garcia
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Monteprincipe, Boadilla del Monte 28668, Madrid, Spain.
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Monteprincipe, Boadilla del Monte 28668, Madrid, Spain
| |
Collapse
|