1
|
Gatta M, Dovizio M, Milillo C, Ruggieri AG, Sallese M, Antonucci I, Trofimov A, Khavinson V, Trofimova S, Bruno A, Ballerini P. The Antioxidant Tetrapeptide Epitalon Enhances Delayed Wound Healing in an in Vitro Model of Diabetic Retinopathy. Stem Cell Rev Rep 2025:10.1007/s12015-025-10911-x. [PMID: 40493162 DOI: 10.1007/s12015-025-10911-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2025] [Indexed: 06/12/2025]
Abstract
Diabetic retinopathy (DR) is the most common complication of diabetes mellitus and a leading cause of vision loss. Short peptides, such as di-, tri-, and tetrapeptides, have various beneficial activities, including antioxidant, antimicrobial, and anti-inflammatory effects. This study aims to test the hypothesis that the antioxidant effect of the synthetic tetrapeptide AEDG (Ala-Glu-Asp-Gly, Epitalon) improves the delayed healing process associated with hyperglycemia in DR, using a high glucose (HG)-injured human retinal pigment epithelial cell line (ARPE-19). We found that HG exposure delayed wound healing in ARPE-19 cells and increased intracellular levels of reactive oxygen species (ROS), while decreasing antioxidant gene expression. HG also induced epithelial-mesenchymal transition (EMT) and upregulated fibrosis-related genes, suggesting that HG-induced EMT contributes to subretinal fibrosis, the end-stage of eye diseases, including proliferative DR. The antioxidant Epitalon restored impaired wound healing in HG-injured ARPE-19 cells by inhibiting hyperglycemia-induced EMT and fibrosis. These findings support using the antioxidant agent Epitalon as a promising therapeutic strategy for DR to improve retinal wound healing compromised by hyperglycemia. More mechanistic investigations are needed to confirm Epitalon's benefits and safety. Developing ophthalmic forms of Epitalon may enhance its delivery directly to the retina, potentially improving its therapeutic efficacy.
Collapse
Affiliation(s)
- Marco Gatta
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Melania Dovizio
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Cristina Milillo
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Anna Giulia Ruggieri
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Michele Sallese
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Ivana Antonucci
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Aleksandr Trofimov
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Cell Biology and Pathology, Saint Petersburg Institute of Bioregulation and Gerontology, Saint Petersburg, Russia
| | - Vladimir Khavinson
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, Saint Petersburg, Russia
| | - Svetlana Trofimova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, Saint Petersburg, Russia
| | - Annalisa Bruno
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Patrizia Ballerini
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
2
|
Ventre L, Valastro A, Mus E, Maradei F, Pintore G, De Salvo G. Segmental Scleral Buckle: A Novel Strategy for Addressing Early Recurrent Inferior Retinal Detachment in Silicone Oil-Filled Eyes. Life (Basel) 2025; 15:475. [PMID: 40141819 PMCID: PMC11943520 DOI: 10.3390/life15030475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/08/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Recurrence of retinal detachment (RD) following pars plana vitrectomy (PPV) with silicone oil tamponade is a surgical challenge. This study proposes a novel approach utilizing segmental scleral buckle to manage early recurrences, especially in inferior quadrants. A retrospective case series of four patients with early recurrent inferior RD post-PPV with silicone oil tamponade was conducted. The segmental scleral buckle technique, with or without subretinal fluid drainage, was employed. Clinical and surgical data were collected, including visual outcomes and complications. No intraoperative or postoperative complications were observed during the 6-month follow-up period. Visual acuity remained stable, and retinal reattachment was achieved in 100% of cases after silicone oil removal. Segmental scleral buckle emerges as a promising technique for managing early recurrent inferior RD in silicone oil-filled eyes. The technique demonstrates favorable outcomes, including retinal reattachment and visual acuity stability, without significant complications. Further studies are warranted to validate its efficacy and establish standardized protocols.
Collapse
Affiliation(s)
- Luca Ventre
- Ophthalmology Department, Beauregard Hospital, Azienda USL della Valle d’Aosta, Via L. Vaccari 5, 11100 Aosta, Italy
| | - Antonio Valastro
- Ophthalmology Department, Beauregard Hospital, Azienda USL della Valle d’Aosta, Via L. Vaccari 5, 11100 Aosta, Italy
| | - Erik Mus
- Ophthalmology Department, Beauregard Hospital, Azienda USL della Valle d’Aosta, Via L. Vaccari 5, 11100 Aosta, Italy
| | - Fabio Maradei
- Ophthalmology Department, Beauregard Hospital, Azienda USL della Valle d’Aosta, Via L. Vaccari 5, 11100 Aosta, Italy
| | - Giulia Pintore
- Ophthalmology Department, Beauregard Hospital, Azienda USL della Valle d’Aosta, Via L. Vaccari 5, 11100 Aosta, Italy
| | - Gabriella De Salvo
- Southampton Eye Unit, University Hospital Southampton Foundation Trust, Southampton SO16 6YD, UK
- University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
3
|
Ferro Desideri L, Artemiev D, Zandi S, Zinkernagel MS, Anguita R. Proliferative vitreoretinopathy: an update on the current and emerging treatment options. Graefes Arch Clin Exp Ophthalmol 2024; 262:679-687. [PMID: 37843566 PMCID: PMC10907475 DOI: 10.1007/s00417-023-06264-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/07/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Proliferative vitreoretinopathy (PVR) remains the main cause of failure in retinal detachment (RD) surgery and a demanding challenge for vitreoretinal surgeons. Despite the large improvements in surgical techniques and a better understanding of PVR pathogenesis in the last years, satisfactory anatomical and visual outcomes have not been provided yet. For this reason, several different adjunctive pharmacological agents have been investigated in combination with surgery. In this review, we analyze the current and emerging adjunctive treatment options for the management of PVR and we discuss their possible clinical application and beneficial role in this subgroup of patients.
Collapse
Affiliation(s)
- Lorenzo Ferro Desideri
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Murtenstrasse 24, CH-3008, Bern, Switzerland.
- Bern Photographic Reading Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Dmitri Artemiev
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Murtenstrasse 24, CH-3008, Bern, Switzerland
| | - Souska Zandi
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Murtenstrasse 24, CH-3008, Bern, Switzerland
- Bern Photographic Reading Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Martin S Zinkernagel
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Murtenstrasse 24, CH-3008, Bern, Switzerland
- Bern Photographic Reading Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Rodrigo Anguita
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Murtenstrasse 24, CH-3008, Bern, Switzerland
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
4
|
Yin Y, Liu S, Liu H, Wu W. Nintedanib inhibits normal human vitreous-induced epithelial-mesenchymal transition in human retinal pigment epithelial cells. Biomed Pharmacother 2023; 166:115403. [PMID: 37659204 DOI: 10.1016/j.biopha.2023.115403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
PURPOSE In this study, we aim to investigate the potential of nintedanib as a therapeutic approach to proliferative vitreoretinopathy (PVR), which is the leading cause of failure in retinal detachment repair. PVR is characterized by the epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells, and understanding the effects of nintedanib on EMT in the normal human vitreous (HV)-induced RPE cells is crucial. METHODS Our research focuses on assessing the impact of nintedanib on HV-induced EMT in human retinal pigment epithelial (ARPE-19) cells in vitro. We employed various techniques, including quantitative real-time PCR (qPCR), western blot analysis, and immunofluorescence staining, to evaluate the mRNA and protein expression of EMT biomarkers in HV-induced ARPE-19 cells. Additionally, we measured the proliferation of RPE cells using cell counting, CCK-8, and Ki-67 assays. Migration was assessed through wound healing and transwell migration assays, while contraction was determined using a collagen gel contraction assay. Morphological changes were examined using phase-contrast microscopy. RESULTS Our results demonstrate that nintedanib selectively attenuates the upregulation of mesenchymal markers in HV-induced ARPE-19 cells, at both the mRNA and protein levels. Furthermore, nintedanib effectively suppresses the HV-induced proliferation, migration, and contraction of ARPE-19 cells, while maintaining the cells' basal activity. These findings strongly suggest that nintedanib exhibits protective effects against EMT in ARPE-19 cells and could be a promising therapeutic option for PVR. CONCLUSIONS By elucidating the anti-EMT effects of nintedanib in HV-induced RPE cells, our study highlights the potential of this oral triple tyrosine kinase inhibitor in the treatment of PVR. These findings contribute to the growing body of research aimed at developing novel strategies to prevent and manage PVR, ultimately improving the success rates of retinal detachment repair.
Collapse
Affiliation(s)
- Yiwei Yin
- Department of Ophthalmology, Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China; Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, China
| | - Shikun Liu
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, China
| | - Hanhan Liu
- Department of Ophthalmology, Third Xiangya Hospital, Central South University, Changsha, China.
| | - Wenyi Wu
- Department of Ophthalmology, Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| |
Collapse
|
5
|
Duan Y, Wu W, Cui J, Matsubara JA, Kazlauskas A, Ma G, Li X, Lei H. Ligand-independent activation of platelet-derived growth factor receptor β promotes vitreous-induced contraction of retinal pigment epithelial cells. BMC Ophthalmol 2023; 23:344. [PMID: 37537538 PMCID: PMC10401781 DOI: 10.1186/s12886-023-03089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 07/17/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Epiretinal membranes in patients with proliferative vitreoretinopathy (PVR) consist of extracellular matrix and a number of cell types including retinal pigment epithelial (RPE) cells and fibroblasts, whose contraction causes retinal detachment. In RPE cells depletion of platelet-derived growth factor (PDGF) receptor (PDGFR)β suppresses vitreous-induced Akt activation, whereas in fibroblasts Akt activation through indirect activation of PDGFRα by growth factors outside the PDGF family (non-PDGFs) plays an essential role in experimental PVR. Whether non-PDGFs in the vitreous, however, were also able to activate PDGFRβ in RPE cells remained elusive. METHODS The CRISPR/Cas9 technology was utilized to edit a genomic PDGFRB locus in RPE cells derived from an epiretinal membrane (RPEM) from a patient with PVR, and a retroviral vector was used to express a truncated PDGFRβ short of a PDGF-binding domain in the RPEM cells lacking PDGFRβ. Western blot was employed to analyze expression of PDGFRβ and α-smooth muscle actin, and signaling events (p-PDGFRβ and p-Akt). Cellular assays (proliferation, migration and contraction) were also applied in this study. RESULTS Expression of a truncated PDGFRβ lacking a PDGF-binding domain in the RPEM cells whose PDGFRB gene has been silent using the CRISPR/Cas9 technology restores vitreous-induced Akt activation as well as cell proliferation, epithelial-mesenchymal transition, migration and contraction. In addition, we show that scavenging reactive oxygen species (ROS) with N-acetyl-cysteine and inhibiting Src family kinases (SFKs) with their specific inhibitor SU6656 blunt the vitreous-induced activation of the truncated PDGFRβ and Akt as well as the cellular events related to the PVR pathogenesis. These discoveries suggest that in RPE cells PDGFRβ can be activated indirectly by non-PDGFs in the vitreous via an intracellular pathway of ROS/SFKs to facilitate the development of PVR, thereby providing novel opportunities for PVR therapeutics. CONCLUSION The data shown here will improve our understanding of the mechanism by which PDGFRβ can be activated by non-PDGFs in the vitreous via an intracellular route of ROS/SFKs and provide a conceptual foundation for preventing PVR by inhibiting PDGFRβ transactivation (ligand-independent activation).
Collapse
Affiliation(s)
- Yajian Duan
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenyi Wu
- Department of Ophthalmology, Hunan Key Laboratory of Ophthalmology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South, Changsha, China
| | - Jing Cui
- Department of Ophthalmology and Visual Sciences, The University of British Columbia, Vancouver, Canada
| | - Joanne Aiko Matsubara
- Department of Ophthalmology and Visual Sciences, The University of British Columbia, Vancouver, Canada
| | - Andrius Kazlauskas
- Department of Ophthalmology, University of Illinois at Chicago, Chicago, USA
| | - Gaoen Ma
- Department of Ophthalmology, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| | - Hetian Lei
- Department of Ophthalmology, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, China.
| |
Collapse
|
6
|
Tsui JC, Brucker AJ, Kim BJ, Kolomeyer AM. COMBINED RHEGMATOGENOUS RETINAL AND CHOROIDAL DETACHMENT: A Systematic Review. Retina 2023; 43:1226-1239. [PMID: 36893435 DOI: 10.1097/iae.0000000000003770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
PURPOSE To review the literature on eyes with concurrent rhegmatogenous retinal and choroidal detachment (RRD-CD). METHODS Several databases were searched for "rhegmatogenous retinal detachment" and "choroidal detachment" through October 2022. All English language primary literature was reviewed. RESULTS Studies demonstrated that eyes with RRD-CD were very uncommon and had diminished baseline visual acuity (VA) and intraocular pressure (IOP) compared with eyes with RRD only. Although no randomized trials have been performed, pars plana vitrectomy with or without scleral buckle (SB) have reported higher surgical success rates than SB alone. Reattachment rates were affected by age, IOP, adjuvant steroids, and grade of proliferative vitreoretinopathy. CONCLUSION Low IOP and poor initial VA are salient features of eyes with RRD-CD. Steroids can be useful adjuvants administered safely using several routes including periocular and intravitreal injection. PPV ± SB may result in best surgical outcomes.
Collapse
Affiliation(s)
- Jonathan C Tsui
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | |
Collapse
|
7
|
Blasiak J, Chojnacki J, Szczepanska J, Fila M, Chojnacki C, Kaarniranta K, Pawlowska E. Epigallocatechin-3-Gallate, an Active Green Tea Component to Support Anti-VEGFA Therapy in Wet Age-Related Macular Degeneration. Nutrients 2023; 15:3358. [PMID: 37571296 PMCID: PMC10421466 DOI: 10.3390/nu15153358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Age-related macular degeneration (AMD) is a largely incurable disease and an emerging problem in aging societies. It occurs in two forms, dry and wet (exudative, neovascular), which may cause legal blindness and sight loss. Currently, there is not any effective treatment for dry AMD. Meanwhile, repeated intravitreal injections with antibodies effective against vascular endothelial growth factor A (VEGFA) slow down wet AMD progression but are not free from complications. (-)-Epigallocatechin-3-gallate (EGCG) is an active compound of green tea, which exerts many beneficial effects in the retinal pigment epithelium and the neural retina. It has been reported to downregulate the VEGFA gene by suppressing its activators. The inhibition of mitogen-activated protein kinases 1 and 3 (MAPK1 and MAPK3) may lie behind the antiangiogenic action of EGCG mediated by VEGFA. EGCG exerts protective effects against UV-induced damage to retinal cells and improves dysfunctional autophagy. EGCG may also interact with the mechanistic target rapamycin (MTOR) and unc-51-like autophagy activating kinase (ULK1) to modulate the interplay between autophagy and apoptosis. Several other studies report beneficial effects of EGCG on the retina that may be related to wet AMD. Therefore, controlled clinical trials are needed to verify whether diet supplementation with EGCG or green tea consumption may improve the results of anti-VEGFA therapy in wet AMD.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (J.C.); (C.C.)
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217 Lodz, Poland; (J.S.); (E.P.)
| | - Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (J.C.); (C.C.)
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, 70210 Kuopio, Finland;
- Department of Ophthalmology, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217 Lodz, Poland; (J.S.); (E.P.)
| |
Collapse
|
8
|
Daley R, Maddipatla V, Ghosh S, Chowdhury O, Hose S, Zigler JS, Sinha D, Liu H. Aberrant Akt2 signaling in the RPE may contribute to retinal fibrosis process in diabetic retinopathy. Cell Death Discov 2023; 9:243. [PMID: 37443129 DOI: 10.1038/s41420-023-01545-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/12/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Diabetic Retinopathy (DR) is a complication of diabetes that causes blindness in adults. Retinal fibrosis is closely associated with developing proliferative diabetic retinopathy (PDR). Clinical studies have shown that fibrotic membranes exhibit uncontrolled growth in PDR and contribute to retinal detachment from RPE cells, ultimately leading to vision loss. While anti-VEGF agents and invasive laser treatments are the primary treatments for PDR, retinal fibrosis has received minimal attention as a potential target for therapeutic intervention. Therefore, to investigate the potential role of Akt2 in the diabetes-induced retinal fibrosis process, we generated RPE-specific Akt2 conditional knockout (cKO) mice and induced diabetes in these mice and Akt2fl/fl control mice by intraperitoneal injection of streptozotocin. After an 8-month duration of diabetes (10 months of age), the mice were euthanized and expression of tight junction proteins, epithelial-mesenchymal transition (EMT), and fibrosis markers were examined in the RPE. Diabetes induction in the floxed control mice decreased levels of the RPE tight junction protein ZO-1 and adherens junction proteins occludin and E-cadherin; these decreases were rescued in Akt2 cKO diabetic mice. Loss of Akt2 also inhibited diabetes-induced elevation of RNA and protein levels of the EMT markers Snail/Slug and Twist1 in the RPE as compared to Akt2fl/fl diabetic mice. We also found that in Akt2 cKO mice diabetes-induced increase of fibrosis markers, including collagen IV, Connective tissue growth factor (CTGF), fibronectin, and alpha-SMA was attenuated. Furthermore, we observed that high glucose-induced alterations in EMT and fibrosis markers in wild-type (WT) RPE explants were rescued in the presence of PI3K and ERK inhibitors, indicating diabetes-induced retinal fibrosis may be mediated via the PI3K/Akt2/ERK signaling, which could provide a novel target for DR therapy.
Collapse
Affiliation(s)
- Rachel Daley
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vishnu Maddipatla
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sayan Ghosh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Olivia Chowdhury
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stacey Hose
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J Samuel Zigler
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Haitao Liu
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Bernabei F, Marcireau I, Frongia F, Azan F, Vagge A, Peiretti E, Guerrier G, Rothschild PR. Risk Factors of Cystoid Macular Edema After Pars Plana Vitrectomy for Pseudophakic Retinal Detachment. Ophthalmol Ther 2023; 12:1737-1745. [PMID: 37029838 PMCID: PMC10164198 DOI: 10.1007/s40123-023-00705-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/21/2023] [Indexed: 04/09/2023] Open
Abstract
INTRODUCTION This study aimed to investigate the prevalence of cystoid macular edema after pars plana vitrectomy for the treatment of pseudophakic rhegmatogenous retinal detachment and identify possible related risk factors. METHODS A retrospective monocentric study was conducted within a cohort of pseudophakic patients undergoing vitrectomy for rhegmatogenous retinal detachment between January 2019 and December 2022. Demographic data, initial and intraoperative characteristics of rhegmatogenous retinal detachment, and postoperative data were analyzed. Cystoid macular edema was defined on optical coherence tomography exclusively. RESULTS A total of 164 eyes of 164 patients were included for analysis. The mean age of the patients at surgery was 65.7 ± 12.0 years. The mean best-corrected visual acuity was 2.1 ± 1.0 logMAR preoperatively and 1.0 ± 0.7 logMAR postoperatively. The mean follow-up was 13.4 ± 7.7 months. The prevalence of cystoid macular edema was 17.1% [9.8-26.4]. In multivariate analysis, severe proliferative vitreoretinopathy (relative risk 3.6 [1.3-9.7]) and laser retinopexy (relative risk 8.4 [1.1-64.7]) were independently and significantly associated with cystoid macular edema. CONCLUSION The prevalence of cystoid macular edema in pseudophakic rhegmatogenous retinal detachment after pars plana vitrectomy was 17.1%. Severe proliferative vitreoretinopathy stage and the use of endolaser retinopexy were independent risk factors for development of cystoid macular edema.
Collapse
Affiliation(s)
- Federico Bernabei
- Department of Ophthalmology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France.
- Service d'ophtalmologie, 8 Rue Mechain, 75014, Paris, France.
| | - Ianis Marcireau
- Department of Ophthalmology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Francesca Frongia
- Department of Ophthalmology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
- Eye Clinic, Department of Surgical Sciences, University of Cagliari, 09124, Cagliari, Italy
| | - Frederic Azan
- Department of Ophthalmology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Aldo Vagge
- IRCCS Ospedale Policlinico San Martino, University Eye Clinic of Genoa, Genoa, Italy
- Dipartimento di Neuroscienze, riabilitazione, oftalmologia, genetica e scienze materno-infantili (DINOGMI), Università di Genova, Genoa, Italy
| | - Enrico Peiretti
- Eye Clinic, Department of Surgical Sciences, University of Cagliari, 09124, Cagliari, Italy
| | - Gilles Guerrier
- Anaesthetic and Intensive Care Department, Hôpital Cochin, Paris Descartes University, 75014, Paris, France
- Université Paris Cité, Centre de Recherche des Cordeliers, INSERM, UMR_1138, 75006, Paris, France
| | - Pierre-Raphaël Rothschild
- Department of Ophthalmology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
- Université Paris Cité, Centre de Recherche des Cordeliers, INSERM, UMR_1138, 75006, Paris, France
| |
Collapse
|
10
|
Ong SS, Ahmed I, Gonzales A, Aguwa UT, Beatson B, Dai X, Pham AT, Shah YS, Zhou A, Arsiwala LT, Wang J, Handa JT. Management of uncomplicated rhegmatogenous retinal detachments: a comparison of practice patterns and clinical outcomes in a real-world setting. Eye (Lond) 2023; 37:684-691. [PMID: 35338355 PMCID: PMC9998441 DOI: 10.1038/s41433-022-02028-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/22/2022] [Accepted: 03/11/2022] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE To investigate practice patterns and clinical outcomes in the repair of uncomplicated rhegmatogenous retinal detachments (RRD) in a real-world setting over a 10-year period. METHODS We compared preferences for scleral buckling (SB), pars plana vitrectomy (PPV), PPV/SB, or pneumatic retinopexy (PR) over time, and examined the 1-year single surgery anatomic success (SSAS) and best-corrected visual acuity (BCVA) at a tertiary academic institution from 2008-2018. RESULTS Eight hundred eight eyes had RRD repair between 2008-2011 (n = 240), 2012-2014 (n = 271), and 2015-2017 (n = 297). Compared to 2008-2011, PPV was preferred over SB in 2012-2014 (OR: 2.93; 95% CI: 1.86-4.63) and 2015-2017 (OR: 5.94; 95% CI: 3.76-9.38), and over PPV/SB in 2012-2014 (OR: 2.74; 95% CI: 1.65-4.56) and 2015-2017 (OR: 3.16; 95% CI: 31.96-5.12). PR was uncommonly utilized (<10%). Younger surgeons (graduating 2010-2017) favored PPV over SB when compared to older surgeons [graduating 1984-2000 (OR: 1.77; 95% CI: 1.18-2.65) and 2001-2009 (OR 1.73; 95% CI: 1.14-2.65)], but similarly selected PPV vs. PPV/SB as their older counterparts (p > 0.05). Compared to PPV, SSAS was higher with SB (OR: 1.53; 95% CI: 1.03-2.26) and PPV/SB (OR: 2.55; 95% CI: 1.56-4.17). One-year BCVA was markedly improved compared to baseline only for eyes that achieved SSAS (p < 0.001). CONCLUSIONS Over the past 10 years, PPV has become the favored approach to repair uncomplicated RRD and this appears to be driven by younger surgeons' preferences. Given the superior long-term SSAS in SB and PPV/SB as compared to PPV, SB and PPV/SB should be more frequently considered when determining the appropriate repair strategy for uncomplicated RRD.
Collapse
Affiliation(s)
- Sally S Ong
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Ishrat Ahmed
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Anthony Gonzales
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ugochi T Aguwa
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Bradley Beatson
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Xi Dai
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Alex T Pham
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Yesha S Shah
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ashley Zhou
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Lubaina T Arsiwala
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jiangxia Wang
- Johns Hopkins Biostatistics Center, Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - James T Handa
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
11
|
Han H, Yang Y, Han Z, Wang L, Dong L, Qi H, Liu B, Tian J, Vanhaesebroeck B, Kazlauskas A, Zhang G, Zhang S, Lei H. NFκB-Mediated Expression of Phosphoinositide 3-Kinase δ Is Critical for Mesenchymal Transition in Retinal Pigment Epithelial Cells. Cells 2023; 12:207. [PMID: 36672142 PMCID: PMC9857235 DOI: 10.3390/cells12020207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Epithelial mesenchymal transition (EMT) plays a vital role in a variety of human diseases including proliferative vitreoretinopathy (PVR), in which retinal pigment epithelial (RPE) cells play a key part. Transcriptomic analysis showed that the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway was up-regulated in human RPE cells upon treatment with transforming growth factor (TGF)-β2, a multifunctional cytokine associated with clinical PVR. Stimulation of human RPE cells with TGF-β2 induced expression of p110δ (the catalytic subunit of PI3Kδ) and activation of NFκB/p65. CRISPR-Cas9-mediated depletion of p110δ or NFκB/p65 suppressed TGF-β2-induced fibronectin expression and activation of Akt as well as migration of these cells. Intriguingly, abrogating expression of NFκB/p65 also blocked TGF-β2-induced expression of p110δ, and luciferase reporter assay indicated that TGF-β2 induced NFκB/p65 binding to the promoter of the PIK3CD that encodes p110δ. These data reveal that NFκB/p65-mediated expression of PI3Kδ is essential in human RPE cells for TGF-β2-induced EMT, uncovering hindrance of TGF-β2-induced expression of p110δ as a novel approach to inhibit PVR.
Collapse
Affiliation(s)
- Haote Han
- Institute of Basic Medicine and Cancer, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 100864, China
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA 02114, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Yanhui Yang
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, The School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750101, China
| | - Zhuo Han
- Institute of Basic Medicine and Cancer, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 100864, China
| | - Luping Wang
- Institute of Basic Medicine and Cancer, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 100864, China
| | - Lijun Dong
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, China
| | - Hui Qi
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, China
| | - Bing Liu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA 02114, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510180, China
| | - Jingkui Tian
- Institute of Basic Medicine and Cancer, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 100864, China
| | | | - Andrius Kazlauskas
- Department of Ophthalmology and Visual Sciences, Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Guoming Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, China
| | - Shaochong Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, China
| | - Hetian Lei
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, China
| |
Collapse
|
12
|
Francone A, Charles M. Extensive internal limiting membrane peeling for proliferative vitreoretinopathy. Int Ophthalmol 2023; 43:147-153. [PMID: 35792974 DOI: 10.1007/s10792-022-02397-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/14/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE The aim of this study was to describe the anatomical outcomes of Brilliant Blue G (BBG)-assisted extensive internal limiting membrane peeling for proliferative vitreoretinopathy (PVR) under three-dimensional (3D) visualization. METHODS This study constitutes a retrospective case series conducted in a private retina practice, of 14 consecutive patients (14 eyes) with rhegmatogenous retinal detachment complicated by PVR who underwent pars plana vitrectomy between January 2019 and January 2020. The internal limiting membrane (ILM) was selectively stained with BBG, and perspectives were enhanced with a 3D visualization system. We peeled off the ILM beyond the vascular arcades up to the periphery. The main outcome was anatomical success, defined as persistent retinal reattachment after removal of the silicone oil tamponade. RESULTS Anatomic success was achieved with a single surgery in 11 of 14 (78.6%) eyes, and eventual success was achieved in all eyes. The mean patient follow-up time was 12.3 months (range, 7-16 months). The mean preoperative best-corrected visual acuity (BCVA) was 2.93 ± 0.79 logMAR which improved to 1.75 + 0.91 at the last follow-up. CONCLUSION Extensive ILM peeling allowed the creation of a cleavage plane underlying the PVR membranes that facilitated its complete removal, thereby achieving anatomically reattached retina and reducing the risk of recurrence of retinal detachment. The long-term effects of this technique need further research.
Collapse
Affiliation(s)
- Anibal Francone
- Retina Division, Centro Oftalmológico Dr Charles S.A., Riobamba 841, C1116ABA, Buenos Aires, Argentina.
| | - Martín Charles
- Retina Division, Centro Oftalmológico Dr Charles S.A., Riobamba 841, C1116ABA, Buenos Aires, Argentina
| |
Collapse
|
13
|
Dos Santos FM, Ciordia S, Mesquita J, de Sousa JPC, Paradela A, Tomaz CT, Passarinha LAP. Vitreous humor proteome: unraveling the molecular mechanisms underlying proliferative and neovascular vitreoretinal diseases. Cell Mol Life Sci 2022; 80:22. [PMID: 36585968 PMCID: PMC11072707 DOI: 10.1007/s00018-022-04670-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/09/2022] [Accepted: 12/12/2022] [Indexed: 01/01/2023]
Abstract
Proliferative diabetic retinopathy (PDR), proliferative vitreoretinopathy (PVR), and neovascular age-related macular degeneration (nAMD) are among the leading causes of blindness. Due to the multifactorial nature of these vitreoretinal diseases, omics approaches are essential for a deeper understanding of the pathophysiologic processes underlying the evolution to a proliferative or neovascular etiology, in which patients suffer from an abrupt loss of vision. For many years, it was thought that the function of the vitreous was merely structural, supporting and protecting the surrounding ocular tissues. Proteomics studies proved that vitreous is more complex and biologically active than initially thought, and its changes reflect the physiological and pathological state of the eye. The vitreous is the scenario of a complex interplay between inflammation, fibrosis, oxidative stress, neurodegeneration, and extracellular matrix remodeling. Vitreous proteome not only reflects the pathological events that occur in the retina, but the changes in the vitreous itself play a central role in the onset and progression of vitreoretinal diseases. Therefore, this review offers an overview of the studies on the vitreous proteome that could help to elucidate some of the pathological mechanisms underlying proliferative and/or neovascular vitreoretinal diseases and to find new potential pharmaceutical targets.
Collapse
Affiliation(s)
- Fátima Milhano Dos Santos
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal.
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Unidad de Proteomica, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain.
| | - Sergio Ciordia
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Unidad de Proteomica, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Joana Mesquita
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal
| | - João Paulo Castro de Sousa
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal
- Department of Ophthalmology, Centro Hospitalar de Leiria, 2410-197, Leiria, Portugal
| | - Alberto Paradela
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Unidad de Proteomica, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Cândida Teixeira Tomaz
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal
- C4-UBI, Cloud Computing Competence Centre, University of Beira Interior, 6200-501, Covilhã, Portugal
- Chemistry Department, Faculty of Sciences, Universidade da Beira Interior, 6201-001, Covilhã, Portugal
| | - Luís António Paulino Passarinha
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal.
- Associate Laboratory i4HB, Faculdade de Ciências e Tecnologia, Institute for Health and Bioeconomy, Universidade NOVA, 2819-516, Caparica, Portugal.
- UCIBIO-Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
- Pharmaco-Toxicology Laboratory, UBIMedical, Universidade da Beira Interior, 6200-000, Covilhã, Portugal.
| |
Collapse
|
14
|
Wang V, Heffer A, Roztocil E, Feldon SE, Libby RT, Woeller CF, Kuriyan AE. TNF-α and NF-κB signaling play a critical role in cigarette smoke-induced epithelial-mesenchymal transition of retinal pigment epithelial cells in proliferative vitreoretinopathy. PLoS One 2022; 17:e0271950. [PMID: 36048826 PMCID: PMC9436090 DOI: 10.1371/journal.pone.0271950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
Proliferative vitreoretinopathy (PVR) is characterized by the growth and contraction of cellular membranes within the vitreous cavity and on both surfaces of the retina, resulting in recurrent retinal detachments and poor visual outcomes. Proinflammatory cytokines like tumor necrosis factor alpha (TNFα) have been associated with PVR and the epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells. Cigarette smoke is the only known modifiable risk factor for PVR, but the mechanisms are unclear. The purpose of this study was to examine the impact of cigarette smoke on the proinflammatory TNFα/NF-κB/Snail pathway in RPE cells to better understand the mechanisms through which cigarette smoke increases the risk of PVR. Human ARPE-19 cells were exposed to cigarette smoke extract (CSE), for 4 to 24-hours and TNFα, Snail, IL-6, IL-8, and α-SMA levels were analyzed by qPCR and/or Western blot. The severity of PVR formation was assessed in a murine model of PVR after intravitreal injection of ARPE-19 cells pre-treated with CSE or not. Fundus imaging, OCT imaging, and histologic analysis 4 weeks after injection were used to examine PVR severity. ARPE-19 cells exposed to CSE expressed higher levels of TNFα, SNAIL, IL6 and IL8 mRNA as well as SNAIL, Vimentin and α-SMA protein. Inhibition of TNFα and NF-κB pathways blocked the effect of CSE. In vivo, intravitreal injection of ARPE-19 cells treated with CSE resulted in more severe PVR compared to mice injected with untreated RPE cells. These studies suggest that the TNFα pathway is involved in the mechanism whereby cigarette smoke increases PVR. Further investigation into the role of TNFα/NF-κB/Snail in driving PVR and pharmacological targeting of these pathways in disease are warranted.
Collapse
Affiliation(s)
- Victor Wang
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Alison Heffer
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Elisa Roztocil
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Steven E. Feldon
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, United States of America
- Center for Visual Sciences, University of Rochester, Rochester, NY, United States of America
| | - Richard T. Libby
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Collynn F. Woeller
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States of America
| | - Ajay E. Kuriyan
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, United States of America
- Center for Visual Sciences, University of Rochester, Rochester, NY, United States of America
- Retina Service/Mid Atlantic Retina, Wills Eye Hospital, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America
| |
Collapse
|
15
|
Nair GKG, Pollalis D, Wren JD, Georgescu C, Sjoelund V, Lee SY. Proteomic Insight into the Role of Exosomes in Proliferative Vitreoretinopathy Development. J Clin Med 2022; 11:2716. [PMID: 35628842 PMCID: PMC9143131 DOI: 10.3390/jcm11102716] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 12/13/2022] Open
Abstract
Purpose: To characterize vitreous humor (VH) exosomes and to explore their role in the development of proliferative vitreoretinopathy (PVR) using mass spectrometry-based proteome profiling. Methods: Exosomes were isolated from undiluted VH from patients with retinal detachment (RD) with various stages of PVR (n = 9), macular hole (MH; n = 5), or epiretinal membrane (ERM; n = 5) using differential ultracentrifugation. The exosomal size, morphology, and exosome markers were analyzed using a nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and an exosome detection antibody array. The tryptic fragment sequencing of exosome-contained proteins was performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and a Thermo Lumos Fusion Tribrid Orbitrap mass spectrometer. The pathway analysis of the MS data was performed. Results: The number of exosome particles were significantly increased only in the RD with severe PVR group compared with the control groups and the RD without PVR or with mild PVR groups. Of 724 exosome proteins identified, 382 were differentially expressed (DE) and 176 were uniquely present in PVR. Both DE proteins and exosome proteins that were only present in PVR were enriched in proteins associated with previously known key pathways related to PVR development, including reactive retinal gliosis, pathologic cellular proliferation, inflammation, growth of connective tissues, and epithelial mesenchymal transition (EMT). The SPP1, CLU, VCAN, COL2A1, and SEMA7A that are significantly upregulated in PVR were related to the tissue remodeling. Conclusions: Exosomes may play a key role in mediating tissue remodeling along with a complex set of pathways involved in PVR development.
Collapse
Affiliation(s)
- Gopa Kumar Gopinadhan Nair
- Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Dimitrios Pollalis
- USC Roski Eye Institute, USC Ginsburg Institute for Biomedical Therapeutics and Department of Ophthalmology, Keck School of Medicine, University of Southern California, 1450 San Pablo, Los Angeles, CA 90033, USA;
| | - Jonathan D. Wren
- Genes & Human Diseases Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (J.D.W.); (C.G.)
| | - Constantin Georgescu
- Genes & Human Diseases Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (J.D.W.); (C.G.)
| | - Virginie Sjoelund
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Sun Young Lee
- Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- USC Roski Eye Institute, USC Ginsburg Institute for Biomedical Therapeutics and Department of Ophthalmology, Keck School of Medicine, University of Southern California, 1450 San Pablo, Los Angeles, CA 90033, USA;
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
16
|
Shahlaee A, Woeller CF, Philp NJ, Kuriyan AE. Translational and clinical advancements in management of proliferative vitreoretinopathy. Curr Opin Ophthalmol 2022; 33:219-227. [PMID: 35220328 DOI: 10.1097/icu.0000000000000840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Despite advancement in the surgical instrumentation and techniques, proliferative vitreoretinopathy (PVR) remains the most common cause for failure of rhegmatogenous retinal detachment (RRD) repair. This review discusses ongoing translational and clinical advancements in PVR. RECENT FINDINGS PVR represents an exaggerated and protracted scarring process that can occur after RRD. The primary cell types involved are retinal pigment epithelium, glial, and inflammatory cells. They interact with growth factors and cytokines derived from the breakdown of the blood-retinal barrier that trigger a cascade of cellular processes, such as epithelial-mesenchymal transition, cell migration, chemotaxis, proliferation, elaboration of basement membrane and collagen and cellular contraction, leading to overt retinal pathology. Although there are currently no medical therapies proven to be effective against PVR in humans, increased understanding of the risks factors and pathophysiology have helped guide investigations for molecular targets of PVR. The leading therapeutic candidates are drugs that mitigate growth factors, inflammation, and proliferation are the leading therapeutic candidates. SUMMARY Although multiple molecular targets have been investigated to prevent and treat PVR, none have yet demonstrated substantial evidence of clinical benefit in humans though some show promise. Advancements in our understanding of the pathophysiology of PVR may help develop a multipronged approach for this condition.
Collapse
Affiliation(s)
- Abtin Shahlaee
- Mid Atlantic Retina, Retina Service of Wills Eye Hospital
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Collynn F Woeller
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Nancy J Philp
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ajay E Kuriyan
- Mid Atlantic Retina, Retina Service of Wills Eye Hospital
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Retinal Detachment in Eyes with Boston Type 1 Keratoprosthesis: Surgical Techniques and Mid-Term Outcomes. Retina 2021; 42:957-966. [PMID: 34954778 DOI: 10.1097/iae.0000000000003389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To evaluate the mid-term outcomes of pars plana vitrectomy (PPV) performed for retinal detachment (RD) repair after Boston type 1 keratoprosthesis (KPro) implantation. METHODS Retrospective chart review of KPro implanted at the Stein Eye Institute presenting with RD and treated by PPV. Functional success was defined as a postoperative visual acuity (VA) maintained within 2 Snellen lines of the CDVA measured before the development of the RD (baseline) and anatomical success as an attached retina after the PPV. Kaplan-Meyer survival analyses were performed. RESULTS Among the 224 KPro performed, 28 (15.2%) RD were identified, of which 21 (9.4%) were included. The mean follow-up was 42.5 ± 27.3 months. Vitreoretinal proliferation was present in 18/21 (85.7%) eyes. Surgical techniques were adapted to the complex anterior segment anatomy of KPro eyes. Anatomical success was achieved in 18/21 (85.7%) eyes. Functional success occurred in 17/21 (81.0%) eyes, and 5/21 (23.8%) eyes reached 20/400 or better VA at final follow-up. The KPro was retained in 11/21 (52.4%) eyes. The retention rate decreased from 94.7% at 1 year to 53.5% at 5 years. The most frequent complications were retroprosthetic membrane (47.6%) and corneal melt (23.8%). CONCLUSION Modified PPV techniques resulted in relatively good mid-term anatomic, functional, and retention rate outcomes, given the severity of RD at presentation, and the numerous preoperative comorbidities of KPro eyes.
Collapse
|
18
|
Rousou C, Schuurmans CCL, Urtti A, Mastrobattista E, Storm G, Moonen C, Kaarniranta K, Deckers R. Ultrasound and Microbubbles for the Treatment of Ocular Diseases: From Preclinical Research towards Clinical Application. Pharmaceutics 2021; 13:pharmaceutics13111782. [PMID: 34834196 PMCID: PMC8624665 DOI: 10.3390/pharmaceutics13111782] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/26/2022] Open
Abstract
The unique anatomy of the eye and the presence of various biological barriers make efficacious ocular drug delivery challenging, particularly in the treatment of posterior eye diseases. This review focuses on the combination of ultrasound and microbubbles (USMB) as a minimally invasive method to improve the efficacy and targeting of ocular drug delivery. An extensive overview is given of the in vitro and in vivo studies investigating the mechanical effects of ultrasound-driven microbubbles aiming to: (i) temporarily disrupt the blood–retina barrier in order to enhance the delivery of systemically administered drugs into the eye, (ii) induce intracellular uptake of anticancer drugs and macromolecules and (iii) achieve targeted delivery of genes, for the treatment of ocular malignancies and degenerative diseases. Finally, the safety and tolerability aspects of USMB, essential for the translation of USMB to the clinic, are discussed.
Collapse
Affiliation(s)
- Charis Rousou
- Departments of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands; (C.C.L.S.); (E.M.); (G.S.)
- Division of Imaging and Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (C.M.); (R.D.)
- Correspondence:
| | - Carl C. L. Schuurmans
- Departments of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands; (C.C.L.S.); (E.M.); (G.S.)
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands
| | - Arto Urtti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland;
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
- Institute of Chemistry, St. Petersburg State University, Universitetskii Pr. 26, Petrodvorets, 198504 St. Petersburg, Russia
| | - Enrico Mastrobattista
- Departments of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands; (C.C.L.S.); (E.M.); (G.S.)
| | - Gert Storm
- Departments of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands; (C.C.L.S.); (E.M.); (G.S.)
- Department of Biomaterials Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Chrit Moonen
- Division of Imaging and Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (C.M.); (R.D.)
| | - Kai Kaarniranta
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, 70029 Kuopio, Finland;
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Roel Deckers
- Division of Imaging and Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (C.M.); (R.D.)
| |
Collapse
|
19
|
Mertz JL, Sripathi SR, Yang X, Chen L, Esumi N, Zhang H, Zack DJ. Proteomic and phosphoproteomic analyses identify liver-related signaling in retinal pigment epithelial cells during EMT. Cell Rep 2021; 37:109866. [PMID: 34686321 DOI: 10.1016/j.celrep.2021.109866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/03/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) of the retinal pigment epithelium (RPE) is associated with several blinding retinal diseases. Using proteomics and phosphoproteomics studies of human induced pluripotent stem cell-derived RPE monolayers with induced EMT, we capture kinase/phosphatase signaling cascades 1 h and 12 h after induction to better understand the pathways mediating RPE EMT. Induction by co-treatment with transforming growth factor β and tumor necrosis factor alpha (TGNF) or enzymatic dissociation perturbs signaling in many of the same pathways, with striking similarity in the respective phosphoproteomes at 1 h. Liver hyperplasia and hepatocyte growth factor (HGF)-MET signaling exhibit the highest overall enrichment. We also observe that HGF and epidermal growth factor signaling, two cooperative pathways inhibited by EMT induction, regulate the RPE transcriptional profile.
Collapse
Affiliation(s)
- Joseph L Mertz
- Department of Ophthalmology, Stem Cell Ocular Regenerative Medicine Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Srinivasa R Sripathi
- Department of Ophthalmology, Stem Cell Ocular Regenerative Medicine Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xue Yang
- Department of Ophthalmology, Stem Cell Ocular Regenerative Medicine Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lijun Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Noriko Esumi
- Department of Ophthalmology, Stem Cell Ocular Regenerative Medicine Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Donald J Zack
- Department of Ophthalmology, Stem Cell Ocular Regenerative Medicine Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Molecular Biology and Genetics, Department of Genetic Medicine, Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
20
|
Doyle F, Keegan D. Anatomical and functional outcomes in combined rhegmatogenous retinal and choroidal detachment pre-treated with systemic corticosteroid: a case series. Ir J Med Sci 2021; 191:1937-1940. [PMID: 34487277 DOI: 10.1007/s11845-021-02750-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/15/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Combined rhegmatogenous retinal and choroidal detachment (CRRCD) is a rare phenomenon. It is important that CRRCD is recognised preoperatively so that corticosteroids may be administered as this may make repair surgery easier to do. AIMS We here report on the anatomical and visual outcomes of 3 patients treated for CRRCD. METHODS Retrospective review of 3 eyes of 3 patients with CRRCD which underwent scleral buckle, vitrectomy, and silicone oil insertion. Data including visual acuity, intraocular pressure, ocular inflammatory status, the presence of subretinal fluid, the presence of retinal breaks, the presence of proliferative vitreoretinopathy, demographic information, medical and ophthalmic history, administration of perioperative corticosteroids, surgical techniques, and complications was collected. RESULTS Patients were aged 60, 66, and 62 years old at the time of surgery. There was a minimum follow-up time of 20 months. Initial visual acuity was 4/60. Initial intraocular pressure was 3 mmHg, 7 mmHg, and 7 mmHg. All eyes had deep, inflamed anterior chambers at the time of presentation. All eyes underwent 20-gauge vitrectomy, scleral buckle, and silicone oil insertion. All patients received a perioperative course of oral corticosteroids. Final visual acuity was 6/12, 6/7.5, and 6/18. CONCLUSION These 3 patients had good anatomical and functional results following surgery for CRRCD. All patients had visual acuity of 6/18 or better at last review.
Collapse
Affiliation(s)
- Fergus Doyle
- Department of Ophthalmology, Mater Retina Research Group, Dublin, Ireland.
| | - David Keegan
- Department of Ophthalmology, Mater Retina Research Group, Dublin, Ireland
| |
Collapse
|
21
|
Wang Y, Chang T, Wu T, Ye W, Wang Y, Dou G, Du H, Hui Y, Guo C. Connective tissue growth factor promotes retinal pigment epithelium mesenchymal transition via the PI3K/AKT signaling pathway. Mol Med Rep 2021; 23:389. [PMID: 33760200 PMCID: PMC8008218 DOI: 10.3892/mmr.2021.12028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/29/2020] [Indexed: 01/17/2023] Open
Abstract
Proliferative vitreoretinopathy (PVR) is a disease leading to the formation of contractile preretinal membranes (PRMs) and is one of the leading causes of blindness. Connective tissue growth factor (CTGF) has been identified as a possible key determinant of progressive tissue fibrosis and excessive scarring. Therefore, the present study investigated the role and mechanism of action of CTGF in PVR. Immunohistochemical staining was performed to detect the expression of CTGF, fibronectin and collagen type III in PRMs from patients with PVR. The effects and mechanisms of recombinant human CTGF and its upstream regulator, TGF‑β1, on epithelial‑mesenchymal transition (EMT) and the synthesis of extracellular matrix (ECM) by retinal pigment epithelium (RPE) cells were investigated using reverse transcription‑quantitative PCR, western blotting and a [3H]proline incorporation assay. The data indicated that CTGF, fibronectin and collagen type III were highly expressed in PRMs. In vitro, CTGF significantly decreased the expression of the epithelial markers ZO‑1 and E‑cadherin and increased that of the mesenchymal markers fibronectin, N‑cadherin and α‑smooth muscle actin in a concentration‑dependent manner. Furthermore, the expression of the ECM protein collagen type III was upregulated by CTGF. However, the trends in expression for the above‑mentioned markers were reversed after knocking down CTGF. The incorporation of [3H]proline into RPE cells was also increased by CTGF. In addition, 8‑Bromoadenosine cAMP inhibited CTGF‑stimulated collagen synthesis and transient transfection of RPE cells with a CTGF antisense oligonucleotide inhibited TGF‑β1‑induced collagen synthesis. The phosphorylation of PI3K and AKT in RPE cells was promoted by CTGF and TGF‑β1 and the latter promoted the expression of CTGF. The results of the present study indicated that CTGF may promote EMT and ECM synthesis in PVR via the PI3K/AKT signaling pathway and suggested that targeting CTGF signaling may have a therapeutic or preventative effect on PVR.
Collapse
Affiliation(s)
- Yafen Wang
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Tianfang Chang
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Tong Wu
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wei Ye
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yusheng Wang
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Guorui Dou
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hongjun Du
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yannian Hui
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Changmei Guo
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
22
|
Abstract
While innovations in the surgical management of retinal detachment (RD) with proliferative vitreoretinopathy (PVR) have significantly improved anatomic and visual outcomes over the years, recurrent RD due to PVR remains the major limitation to success. There are currently no medical therapies proven to be effective against PVR in humans. Increased understanding of the pathophysiology and risk factors for PVR have helped guide investigations for molecular targets. Drugs that counteract inflammation, proliferation, and growth factors are the leading candidates for treatment of PVR. This review discusses the ongoing search for pharmacologic therapies, with an emphasis on the results of recent clinical investigations.
Collapse
Affiliation(s)
- Frances Wu
- Retina Service, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Dean Eliott
- Retina Service, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
23
|
PREDICTIVE FACTORS FOR PROLIFERATIVE VITREORETINOPATHY FORMATION AFTER UNCOMPLICATED PRIMARY RETINAL DETACHMENT REPAIR. Retina 2020; 39:1488-1495. [PMID: 29787465 DOI: 10.1097/iae.0000000000002184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
PURPOSE To determine predictive factors of proliferative vitreoretinopathy (PVR) formation after uncomplicated primary retinal detachment repair. METHODS Retrospective, single-center, case-control study of 74 consecutive patients with (37 eyes) and without (37 eyes) PVR formation after undergoing uncomplicated primary surgery for retinal detachment repair. Logistic regression was used to assess factors associated with PVR formation. RESULTS Retinal detachment involving the macula was 4.2 times (adjusted odds ratio; 95% confidence interval, 1.4-12.9; P = 0.0119) more likely to have PVR formation compared with those without. Patients who were current or former smokers were 3.6 times (adjusted odds ratio; 95% confidence interval, 1.1-11.7; P = 0.0352) more likely to have PVR formation compared with nonsmokers. Compared with 25-gauge (g) vitrectomy, larger gauge vitrectomy (20 g or 23 g) was 3.6 times (adjusted odds ratio; 95% confidence interval, 1.2-11.3; P = 0.0276) more likely to have PVR formation. Duration of retinal detachment symptoms, high myopia, lens status, lattice degeneration, location of retinal break, number of retinal breaks, and surgical technique (e.g., scleral buckle with or without vitrectomy versus vitrectomy alone) were not found to be predictive of PVR formation. CONCLUSION Cigarette smoking and macular involvement are significant risk factors predictive of PVR formation after uncomplicated primary retinal detachment repair.
Collapse
|
24
|
Girsang W, Sari DCR, Srigutomo W, Gondhowiardjo TD, Sasongko MB. Concept and application of relaxing radial retinectomy for retinal detachment with advanced proliferative vitreo-retinopathy. Int J Retina Vitreous 2020; 6:46. [PMID: 33014425 PMCID: PMC7528480 DOI: 10.1186/s40942-020-00251-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/15/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose To revisit the concept of retinectomy and the theory of mechanical forces on the retina occurring in rhegmatogenous retinal detachment (RRD) and to describe the potential application of radial retinectomy in RRD with advanced proliferative vitreoretinopathy (PVR). Methods A literature search was performed to identify all English language articles reporting the use of retinectomy for the management of RRD with PVR. We reviewed the theoretical background of mechanical forces occurring in RRD. Results Detachment of the retina from the retinal pigment epithelium (RPE)/choroid is influenced by disequilibrium of several physical forces: tangential forces on the epiretinal membrane \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left( {T_{1} } \right)$$\end{document}T1 and radial traction on the retina \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_{R}$$\end{document}FR exceeding the retinal adhesion force to the RPE \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left( {T_{1} \;\text{ + }F_{R} \;\text{ > }\;F_{A} } \right)\,\,$$\end{document}T1+FR>FA. PVR may exaggerate the amounts of tangential and radial forces (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left( {T_{1} } \right)$$\end{document}T1 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_{R}$$\end{document}FR) that pull the retina off. Relaxing radial retinectomy, by the nature of its cutting pattern, may theoretically decrease the amounts of both forces, therefore restoring the equilibrium between tensile and adhesive forces on the retinal surface \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left( {T_{1} \;\text{ + }F_{R} \;\text{ = }\;F_{A} } \right)\,\,$$\end{document}T1+FR=FA. Conclusion Relaxing radial retinectomy may potentially be applied in RRD with advanced PVR but has rarely been reported to date. Future studies are needed to evaluate its outcomes and long-term complications.
Collapse
Affiliation(s)
- Waldensius Girsang
- Jakarta Eye Center Eye Hospitals and Clinics, Jakarta, Indonesia.,Department of Ophthalmology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada - Sardjito Eye Center, Dr. Sardjito General Hospital, Jalan Farmako Sekip Utara, Yogyakarta, Indonesia
| | - Dwi C R Sari
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Wahyu Srigutomo
- Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung, Indonesia
| | - Tjahjono D Gondhowiardjo
- Jakarta Eye Center Eye Hospitals and Clinics, Jakarta, Indonesia.,Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia/Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | - Muhammad B Sasongko
- Department of Ophthalmology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada - Sardjito Eye Center, Dr. Sardjito General Hospital, Jalan Farmako Sekip Utara, Yogyakarta, Indonesia
| |
Collapse
|
25
|
Lee SY, Surbeck JW, Drake M, Saunders A, Jin HD, Shah VA, Rajala RV. Increased Glial Fibrillary Acid Protein and Vimentin in Vitreous Fluid as a Biomarker for Proliferative Vitreoretinopathy. Invest Ophthalmol Vis Sci 2020; 61:22. [PMID: 32413125 PMCID: PMC7405623 DOI: 10.1167/iovs.61.5.22] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Glial fibrillary acid protein (GFAP) and vimentin are type III intermediate filament proteins, ubiquitously expressed in retinal glial cells. Under retinal stress, both GFAP and vimentin are well-known sensitive markers for retinal gliosis. However, little is known about whether these proteins are released into the vitreous body in response to retinal gliosis or are related to the severity of retinal gliosis seen in proliferative vitreoretinopathy (PVR). Methods Vitreous fluids were collected from 44 patients who underwent pars plana vitrectomy for macular hole (Group 1; n = 8), epiretinal membrane (Group 2; n = 8), or retinal detachment (RD) with various degrees of PVR (Group 3; n = 28). The severity of PVR was determined by cumulative scores using PVR classification. GFAP, vimentin, and total protein levels from the vitreous samples were measured. Results Both GFAP and vimentin levels were significantly elevated in vitreous fluid from Group 3 (RD) compared with Groups 1 and 2 (P < 0.01). GFAP levels (ng/mL) were 12.4 ± 9.8, 17.5 ± 17.7, and 572.0 ± 11659.7, and vimentin levels (ng/mL) were 40.8 ± 61.9, 88.6 ± 86.8, and 3952.8 ± 8179.5 in Groups 1, 2, and 3, respectively. Total protein levels were not significantly different among the three groups. Elevated GFAP and vimentin levels in Group 3 were positively correlated with the areas of RD (P < 0.01, r = 0.53 in GFAP and P < 0.05, r = 0.46 in vimentin) and PVR scores (P < 0.05, r = 0.46 in GFAP and P < 0.00001, r = 0.76 in vimentin). Conclusions Our data suggest that human vitreous GFAP and vimentin are protein biomarkers for PVR, and reactive gliosis may play a part in PVR formation.
Collapse
Affiliation(s)
- Sun Young Lee
- Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - John W Surbeck
- University of Oklahoma College of Medicine, Oklahoma City, Oklahoma, United States
| | - Michael Drake
- Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Apryl Saunders
- University of Oklahoma College of Medicine, Oklahoma City, Oklahoma, United States
| | - Haoxing D Jin
- Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Vinay A Shah
- Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Raju V Rajala
- Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
26
|
Deaner JD, Aderman CM, Bonafede L, Regillo CD. PPV, Retinectomy, and Silicone Oil Without Scleral Buckle for Recurrent RRD From Proliferative Vitreoretinopathy. Ophthalmic Surg Lasers Imaging Retina 2020; 50:e278-e287. [PMID: 31755979 DOI: 10.3928/23258160-20191031-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/22/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND OBJECTIVE To analyze the anatomic success rate of pars plana vitrectomy (PPV), retinectomy, and silicone oil (SO) tamponade without scleral buckle (SB) for repair of recurrent rhegmatogenous retinal detachment (RRD) associated with proliferative vitreoretinopathy (PVR). PATIENTS AND METHODS Retrospective, consecutive, single-surgeon case series of 28 eyes of 28 patients with PVR-associated RRD repaired with PPV, retinectomy, and SO tamponade without SB. RESULTS The single-procedure anatomic success rate was 85.2% at 3 months and 82.1% at 12 months. Final reattachment rate was 100.0%. There were no preoperative factors that predicted single procedure anatomic success. Mean logarithm of the minimal angle of resolution visual acuity (VA) was improved at 3 months (1.61 to 1.51, P = .732) and at 12 months (1.61 to 1.41; P = .271). VA outcome was related to preoperative macula and lens status. CONCLUSION The single-procedure anatomic success rate of PPV, retinectomy, and SO tamponade without SB for PVR-related recurrent RRD is comparable to prior reports of similar surgery incorporating SB. [Ophthalmic Surg Lasers Imaging Retina. 2019;50:e278-e287.].
Collapse
|
27
|
Lyu Y, Xu W, Zhang J, Li M, Xiang Q, Li Y, Tan T, Ou Q, Zhang J, Tian H, Xu JY, Jin C, Gao F, Wang J, Li W, Rong A, Lu L, Xu GT. Protein Kinase A Inhibitor H89 Attenuates Experimental Proliferative Vitreoretinopathy. Invest Ophthalmol Vis Sci 2020; 61:1. [PMID: 32031573 PMCID: PMC7325625 DOI: 10.1167/iovs.61.2.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 11/11/2019] [Indexed: 01/09/2023] Open
Abstract
PURPOSE This study aimed to explore the role of the protein kinase A (PKA) pathway in proliferative vitreoretinopathy (PVR) and the effect of the PKA inhibitor H89 on experimental PVR. METHODS Epiretinal membranes (ERMs) were acquired from PVR patients and analyzed by frozen-section immunofluorescence. An in vivo model was developed by intravitreal injecting rat eyes with ARPE-19 cells and platelet-rich plasma, and changes in eye structures and vision function were observed. An in vitro epithelial-mesenchymal transition (EMT) cell model was established by stimulating ARPE-19 cells with transforming growth factor (TGF)-β. Alterations in EMT-related genes and cell function were detected. Mechanistically, PKA activation and activity were explored to assess the relationship between TGF-β1 stimulation and the PKA pathway. The effect of H89 on the TGF-β-Smad2/3 pathway was detected. RNA sequencing was used to analyze gene expression profile changes after H89 treatment. RESULTS PKA was activated in human PVR membranes. In vivo, H89 treatment protected against structural changes in the retina and prevented decreases in electroretinogram b-wave amplitudes. In vitro, H89 treatment inhibited EMT-related gene alterations and partially reversed the functions of the cells. TGF-β-induced PKA activation was blocked by H89 pretreatment. H89 did not affect the phosphorylation or nuclear translocation of regulatory Smad2/3 but increased the expression of inhibitory Smad6. CONCLUSIONS PKA pathway activation is involved in PVR pathogenesis, and the PKA inhibitor H89 can effectively inhibit PVR, both in vivo and in vitro. Furthermore, the protective effect of H89 is related to an increase in inhibitory Smad6.
Collapse
Affiliation(s)
- Yali Lyu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Wei Xu
- Department of Ophthalmology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jieping Zhang
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Mengwen Li
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Qingyi Xiang
- Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Yao Li
- Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Tianhao Tan
- Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Qingjian Ou
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China
| | - Haibin Tian
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Jing-Ying Xu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Caixia Jin
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Furong Gao
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Juan Wang
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Weiye Li
- Department of Ophthalmology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Ao Rong
- Department of Ophthalmology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lixia Lu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Guo-Tong Xu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
- Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| |
Collapse
|
28
|
Baek J, Park HY, Lee JH, Choi M, Lee JH, Ha M, Lee MY. Elevated M2 Macrophage Markers in Epiretinal Membranes With Ectopic Inner Foveal Layers. Invest Ophthalmol Vis Sci 2020; 61:19. [PMID: 32053728 PMCID: PMC7326506 DOI: 10.1167/iovs.61.2.19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To analyze the differences in the vitreous cytokine profiles in epiretinal membrane eyes with and without an ectopic inner foveal layer (EIFL). Methods Sixty eyes with epiretinal membrane (32 eyes without EIFL and 28 eyes with EIFL) were included. The vitreous samples were collected during surgery for epiretinal membrane. The cytokine levels of the vitreous were measured using a multiplex bead analysis. Results The mean logMAR visual acuity was worse (0.42 vs. 0.37; P = 0.331) and the central foveal thickness was higher in the EIFL group (496.9 µm vs. 434.2 µm; P = 0.007) than they were in the group without EIFL. The mean EIFL thickness was 164.1 ± 67.7 µm in the EIFL group. On multiplex analysis of the vitreous cytokines, the levels of CD163 (21529 pg/dL vs. 10877 pg/dL; P = 0.002) and macrophage colony-stimulating factor (206 pg/dL vs. 159 pg/dL, P = 0.004) were significantly higher in the EIFL group than they were in the group without EIFL. Conclusions Eyes with EIFL had increased vitreous levels of M2 macrophage markers. The activation of glial cell proliferation by M2 macrophages may contribute to EIFL formation.
Collapse
|
29
|
Xin T, Han H, Wu W, Huang X, Cui J, Matsubara JA, Song J, Wang F, Colyer M, Lei H. Idelalisib inhibits vitreous-induced Akt activation and proliferation of retinal pigment epithelial cells from epiretinal membranes. Exp Eye Res 2019; 190:107884. [PMID: 31786159 DOI: 10.1016/j.exer.2019.107884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/19/2019] [Accepted: 11/19/2019] [Indexed: 01/01/2023]
Abstract
Proliferative vitreoretinopathy (PVR) is a blinding fibrotic eye disease that develops in 8-10% of patients who undergo primary retinal detachment-reparative surgery and in 40-60% of patients with open-globe injury. At present, there is no pharmacological treatment for this devastating disease. Vitreal growth factors activate their respective receptors of cells in the vitreous, trigger their downstream signaling transduction (e.g. phosphoinositide 3 kinases (PI3Ks)/Akt), and drive cellular responses intrinsic to the pathogenesis of PVR. PI3Ks play a central role in experimental PVR. However, which isoform(s) are involved in PVR pathogenesis remain unknown. Herein, we show that p110δ, a catalytic subunit of receptor-regulated PI3K isoform δ, is highly expressed in epiretinal membranes from patients with PVR, and that idelalisib, a specific inhibitor of PI3Kδ, effectively inhibits vitreous-induced Akt activation, proliferation, migration and contraction of retinal pigment epithelial cells derived from an epiretinal membrane of a PVR patient. Small molecules of kinase inhibitors have shown great promise as a class of therapeutics for a variety of human diseases. The data herein suggest that idelalisib is a promising PVR prophylactic.
Collapse
Affiliation(s)
- Tianyi Xin
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, USA; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Haote Han
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, USA; College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Wenyi Wu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, USA; Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | - Xionggao Huang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, USA; Department of Ophthalmology, Hainan Medical University, Haikou, Hainan Province, PR China
| | - Jing Cui
- The University of British Columbia, Canada
| | | | - Jingyuan Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Fang Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Marcus Colyer
- Department of Surgery, Walter Reed-Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Hetian Lei
- Shenzhen Eye Hospital, Shenzhen, Guangdong Province, PR China; Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, USA.
| |
Collapse
|
30
|
Hu Y, Xie A, Cheng Q. Upregulated CD200 in pre-retinal proliferative fibrovascular membranes of proliferative diabetic retinopathy patients and its correlation with vascular endothelial growth factor. Inflamm Res 2019; 68:1071-1079. [PMID: 31612255 DOI: 10.1007/s00011-019-01290-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/06/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE AND DESIGN The objective was to determine the expression of CD200 in the pre-retinal proliferative fibrovascular membranes (PFVM) of patients with proliferative diabetic retinopathy (PDR) and to clarify its correlation with vascular endothelial growth factor (VEGF) and corresponding receptors. METHODS PFVM samples were collected by vitrectomy from 14 patients with PDR, and 11 non-diabetic patients who accepted vitrectomy for idiopathic epiretinal membranes removal. The expression of CD200, VEGF,VEGF-R1 and VEGF-R2 was measured via qPCR and immunofluorescent staining. RESULTS The mRNA level of CD200 was significantly higher in PDR patients than that in control patients. Meanwhile, CD200 and CD31 were found co-located and statistically associated in PFVM of PDR patients. The mRNA levels of VEGF, VEGF-R1 and VEGF-R2 were also significantly higher in PDR patients. Moreover, statistical association was found between CD200 and VEGF, VEGF-R1 in mRNA levels. But there was no significant correlationship between CD200 and VEGF-R2. CONCLUSIONS These results suggest a significantly increased expression of CD200 in PFVM of patients with PDR and present a crucial association between CD200 and VEGF-involved pathway. It represents a potential therapy that interfering with CD200 may inhibit the VEFG expression and neovascular formation in PDR patients.
Collapse
Affiliation(s)
- Yaguang Hu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, China
| | - Anming Xie
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, China
| | - Qiaochu Cheng
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
31
|
Schiff L, Boles NC, Fernandes M, Nachmani B, Gentile R, Blenkinsop TA. P38 inhibition reverses TGFβ1 and TNFα-induced contraction in a model of proliferative vitreoretinopathy. Commun Biol 2019; 2:162. [PMID: 31069271 PMCID: PMC6499805 DOI: 10.1038/s42003-019-0406-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 03/21/2019] [Indexed: 12/20/2022] Open
Abstract
Proliferative vitreoretinopathy (PVR) is a metaplasia in the vitreous of the eye manifested by the transformation of retinal pigment epithelial (RPE) cells and the development of contracting epiretinal membranes (ERM), which lead to retinal detachment and vision loss. While TGFβ1 and TNFα have been associated with PVR, here we show that these cytokines act synergistically to induce an aggressive contraction phenotype on adult human (ah)RPE. Connected RPE detach upon contraction and form motile membranes that recruit more cells. TGFβ1 and TNFα (TNT)-induced contracting membranes uniquely express muscle and extracellular rearrangement genes. Whole transcriptome RNA sequencing of patient-dissected PVR membranes showed activation of the p38-MAPK signaling pathway. Inhibition of p38 during TNT treatment blocks ahRPE transformation and membrane contraction. Furthermore, TNT-induced membrane contractility can be reversed by p38 inhibition after induction. Therefore, targeting the p38-MAPK pathway may have therapeutic benefits for patients with PVR even after the onset of contracting ERMs.
Collapse
Affiliation(s)
- Lauren Schiff
- Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Black Family Stem Cell Institute, New York, NY 10029 USA
| | | | - Marie Fernandes
- Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Bar Nachmani
- Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Black Family Stem Cell Institute, New York, NY 10029 USA
| | - Ronald Gentile
- Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Timothy A. Blenkinsop
- Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Black Family Stem Cell Institute, New York, NY 10029 USA
| |
Collapse
|
32
|
Wang M, Li Q, Dong H. Proteomic evidence that ABCA4 is vital for traumatic proliferative vitreoretinopathy formation and development. Exp Eye Res 2019; 181:232-239. [DOI: 10.1016/j.exer.2019.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 01/12/2019] [Accepted: 02/05/2019] [Indexed: 01/22/2023]
|
33
|
Abstract
Proliferative vitreoretinopathy (PVR) is the most common cause for failure of rhegmatogenous retinal detachment repair and is characterized by the growth and contraction of cellular membranes within the vitreous cavity and on both sides of the retinal surface as well as intraretinal fibrosis. Currently, PVR is thought to be an abnormal wound healing response that is primarily driven by inflammatory, retinal, and RPE cells. At this time, surgery is the only management option for PVR as there is no proven pharmacologic agent for the treatment or prevention of PVR. Laboratory research to better understand PVR pathophysiology and clinical trials of various agents to prevent PVR formation are ongoing.
Collapse
Affiliation(s)
- Sana Idrees
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Jayanth Sridhar
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | - Ajay E. Kuriyan
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
34
|
Zhang H, Shang Q, An J, Wang C, Ma J. Crocetin inhibits PDGF-BB-induced proliferation and migration of retinal pigment epithelial cells. Eur J Pharmacol 2018; 842:329-337. [PMID: 30395849 DOI: 10.1016/j.ejphar.2018.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 01/07/2023]
Abstract
In proliferative vitreoretinopathy (PVR), the proliferation and migration of retinal pigment epithelial (RPE) cells are important to pathogenesis. Platelet-derived growth factor (PDGF) is an important factor in the underlying mechanism. Several studies have shown that PDGF induced the proliferation and migration effects on RPE cells in PVR. Crocetin-anantioxidant carotenoid that is abundant in saffron-has been shown to suppress the migration and proliferation of many cell types, but studies of the effects on RPE cell migration and proliferation are incomplete. Therefore, we investigated the inhibitory effect of crocetin on the proliferation and migration of ARPE-19 cells induced by PDGF-BB, an isoform of PDGF. The proliferation of cells was assessed by Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) assays. The apoptosis of cells was assessed by flow cytometric analysis. The migration of RPE cells was detected by a Transwell migration assay and an in vitro scratch assay. The levels of main regulatory proteins for apoptosis and the PDGF-BB-induced signaling pathway were determined by western blot analysis. The proliferation and migration of ARPE-19 cells treated with crocetin (100-400 μM) and PDGF-BB (20 ng/ml) were significantly inhibited in a concentration- and time-dependent manner. Crocetin exhibited potent inducing effects on the apoptosis of PDGF-BB-induced ARPE-19 cells via the modulation of Bcl-2 family regulators in a concentration-dependent manner. The inhibitory effects of crocetin on PDGF-BB-induced platelet-derived growth factor receptor β (PDGFRβ) and the underlying pathways of PI3K/Akt and ERK, p38, JNK activation were identified. The results showed that crocetin is an effective inhibitor of PDGF-BB-induced proliferation and migration of ARPE-19 cell through the downregulation of regulatory signaling pathways.
Collapse
Affiliation(s)
- He Zhang
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Qingli Shang
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Jianbin An
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Caixia Wang
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Jingxue Ma
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China.
| |
Collapse
|
35
|
Hou H, Nudleman E, Weinreb R. Animal Models of Proliferative Vitreoretinopathy and Their Use in Pharmaceutical Investigations. Ophthalmic Res 2018; 60:195-204. [DOI: 10.1159/000488492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/14/2018] [Indexed: 12/16/2022]
|
36
|
Xu K, Chin EK, Parke DW, Almeida DR. Epiretinal membrane and cystoid macular edema as predictive factors of recurrent proliferative vitreoretinopathy. Clin Ophthalmol 2017; 11:1819-1824. [PMID: 29066859 PMCID: PMC5644552 DOI: 10.2147/opth.s146681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Proliferative vitreoretinopathy (PVR) is the most common cause of recurrent retinal detachment (RD). We sought to determine the predictive factors of recurrent PVR formation and the need for additional vitreoretinal surgical intervention after uncomplicated primary RD repair. METHODS This is a retrospective single-center case-control study of consecutive patients with PVR formation after uncomplicated RD repair. Logistic regression was used to assess factors associated with recurrent PVR formation. RESULTS Thirty-seven eyes (37 patients) who had recurrent RD secondary to PVR formation were included. Among those, 27 eyes needed one additional surgery, whereas the remainder 10 eyes required two or more additional surgeries. In the univariate analysis, patients who had cystoid macular edema (CME) after the second surgery were 8.33 times (crude odds ratio [COR], 95% confidence interval [CI]: 1.23-56.67, p=0.0302) more likely to have recurrent PVR formation compared to those who did not have CME after the second surgery. Similarly, those who had epiretinal membrane (ERM) after the second surgery were 8.00 times (COR, 95% CI: 1.43-44.92, p=0.0182) more likely to have recurrent PVR formation compared to those who did not have ERM after the second surgery. In the multivariate analysis, patients who had ERM after the second surgery were 8.20 times (adjusted odds ratio [AOR], 95% CI: 1.08-62.40, p=0.0422) more likely to develop recurrent PVR compared to those who did not have ERM after the second surgery, when adjusted for age, sex, and CME after the second surgery. CONCLUSION ERM and CME are potential predictive factors for recurrent PVR formation after uncomplicated primary RD repair. Early recognition and treatment of ERM and CME may be critical to prevent subsequent PVR formation and improve visual outcomes.
Collapse
Affiliation(s)
- Kunyong Xu
- Department of Ophthalmology, Weill Cornell Medicine, Cornell University, New York, NY
| | - Eric K Chin
- Retina Consultants of Southern California, Redlands, CA
| | | | | |
Collapse
|
37
|
Qin D, Zhang L, Jin X, Zhao Z, Jiang Y, Meng Z. Effect of Endothelin-1 on proliferation, migration and fibrogenic gene expression in human RPE cells. Peptides 2017. [PMID: 28634054 DOI: 10.1016/j.peptides.2017.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The pathology of the fibrotic proliferative vitreoretinopathy (PVR) membrane represents an excessive wound healing response characterised by cells' proliferation, migration and secretion of extracellular matrix molecules (ECMs). Retinal pigment epithelial (RPE) cells are a major cellular component of the fibrotic membrane. Endothelin-1 (ET-1) has been reported to be involved in the development of PVR in vivo research. However, little is known about the role of ET-1 in RPE cells in vitro. In the present study, we investigated the role of ET-1 in the proliferation, migration and secretion of ECMs (such as type I collagen and fibronectin) in RPE cells in vitro. Our results illustrated that ET-1 promoted the proliferation, migration and secretion of ECMs through the protein kinase B (Akt) and extracellular signal-regulated kinase (Erk) signaling pathways in RPE cells in vitro. These findings strongly suggested that ET-1 may play a vital role in the development of PVR.
Collapse
Affiliation(s)
- Dong Qin
- Henan Eye Institute, Henan provincial Eye Hospital, People's Hospital of Henan Province, Zhengzhou, China
| | - Li Zhang
- Henan Eye Institute, Henan provincial Eye Hospital, People's Hospital of Henan Province, Zhengzhou, China
| | - Xuemin Jin
- Henan Eye Institute, Henan provincial Eye Hospital, People's Hospital of Henan Province, Zhengzhou, China
| | - Zhaoxia Zhao
- Henan Eye Institute, Henan provincial Eye Hospital, People's Hospital of Henan Province, Zhengzhou, China
| | - Yanrong Jiang
- Department of Ophthalmology, People's Hospital, Peking University, Beijing, China.
| | - Zijun Meng
- Henan Eye Institute, Henan provincial Eye Hospital, People's Hospital of Henan Province, Zhengzhou, China.
| |
Collapse
|
38
|
ASSOCIATION STUDY BETWEEN POLYMORPHISMS OF THE p53 AND LYMPHOTOXIN ALPHA (LTA) GENES AND THE RISK OF PROLIFERATIVE VITREORETINOPATHY/RETINAL DETACHMENT IN A MEXICAN POPULATION. Retina 2017; 38:187-191. [PMID: 28106707 DOI: 10.1097/iae.0000000000001508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE To report the results of an association study between single-nucleotide polymorphisms of the p53 and LTA genes and the risk of proliferative vitreoretinopathy (PVR)/retinal detachment (RD) in a Mexican cohort. METHODS A total of 380 unrelated subjects were studied, including 98 patients with primary rhegmatogenous RD without PVR, 82 patients with PVR after RD surgery, and 200 healthy, ethnically matched subjects. Genotyping of single-nucleotide polymorphisms rs1042522 (p53 gene) and rs2229094 (LTA gene) was performed by direct nucleotide sequencing. Allele frequencies, genotype frequencies, and Hardy-Weinberg equilibrium were assessed with HaploView software. RESULTS No significant differences in the allelic distributions of the previously identified risk C allele for LTA rs2229094 were observed between RD subjects and controls (odds ratio [95% confidence interval] = 0.8 [0.5-1.2]; P = 0.3). Conversely, the C allele for rs1042522 in p53 was positively associated with an increased risk for RD (odds ratio [95% confidence interval] = 1.4 [1.01-1.9]; P = 0.04). No significant differences were observed when the subgroup of 82 RD + PVR subjects was compared with the subgroup of 98 patients with RD. CONCLUSION The C allele for rs1042522 in p53 was genetically associated with a higher risk for RD but not for PVR in this cohort. This is the first association study attempting replication of PVR-associated risk alleles in a nonwhite population.
Collapse
|
39
|
Che D, Zhou T, Lan Y, Xie J, Gong H, Li C, Feng J, Hong H, Qi W, Ma C, Wu Q, Yang X, Gao G. High glucose-induced epithelial-mesenchymal transition contributes to the upregulation of fibrogenic factors in retinal pigment epithelial cells. Int J Mol Med 2016; 38:1815-1822. [DOI: 10.3892/ijmm.2016.2768] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/29/2016] [Indexed: 11/06/2022] Open
|
40
|
Du ZD, Hu LT, Zhao GQ, Wang Q, Xu Q, Jiang N, Lin J. Protein tyrosine phosphatase 1B regulates migration of ARPE-19 cells through EGFR/ERK signaling pathway. Int J Ophthalmol 2015; 8:891-7. [PMID: 26558197 DOI: 10.3980/j.issn.2222-3959.2015.05.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 03/03/2015] [Indexed: 11/02/2022] Open
Abstract
AIM To evaluate whether protein tyrosine phosphatase 1B (PTP1B) contributed to initiate human retinal pigment epithelium cells (A)-19 migration and investigate the signaling pathways involved in this process. METHODS ARPE-19 cells were cultured and treated with the siRNA-PTP1B. Expression of PTP1B was confirmed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). AG1478 [a selective inhibitor of epidermal growth factor receptor (EGFR)] and PD98059 (a specific inhibitor of the activation of mitogen-activated protein kinase) were used to help to determine the PTP1B signaling mechanism. Western blot analysis verified expression of EGFR and extracellular signal-regulated kinase (ERK) in ARPE-19 cells. The effect of siRNA-PTP1B on cell differentiation was confirmed by immunostaining for α-smooth muscle actin (α-SMA) and qRT-PCR. Cell migration ability was analyzed by transwell chamber assay. RESULTS The mRNA levels of PTP1B were reduced by siRNA-PTP1B as determined by qRT-PCR assay. SiRNA-PTP1B activated EGFR and ERK phosphorylation. α-SMA staining and qRT-PCR assay demonstrated that siRNA-PTP1B induced retinal pigment epithelium (RPE) cells to differentiate toward better contractility and motility. Transwell chamber assay proved that PTP1B inhibition improved migration activity of RPE cells. Treatment with AG1478 and PD98059 abolished siRNA-PTP1B-induced activation of EGFR and ERK, α-SMA expression and cell migration. CONCLUSION PTP1B inhibition promoted myofibroblast differentiation and migration of ARPE-19 cells, and EGFR/ERK signaling pathway played important role in migration process.
Collapse
Affiliation(s)
- Zhao-Dong Du
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Li-Ting Hu
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Gui-Qiu Zhao
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Qian Wang
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Qiang Xu
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Nan Jiang
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| |
Collapse
|
41
|
Pastor JC, Rojas J, Pastor-Idoate S, Di Lauro S, Gonzalez-Buendia L, Delgado-Tirado S. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical consequences. Prog Retin Eye Res 2015. [PMID: 26209346 DOI: 10.1016/j.preteyeres.2015.07.005] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During the last four decades, proliferative vitreoretinopathy (PVR) has defied the efforts of many researchers to prevent its occurrence or development. Thus, PVR is still the major complication following retinal detachment (RD) surgery and a bottle-neck for advances in cell therapy that require intraocular surgery. In this review we tried to combine basic and clinical knowledge, as an example of translational research, providing new and practical information for clinicians. PVR was defined as the proliferation of cells after RD. This idea was used for classifying PVR and also for designing experimental models used for testing many drugs, none of which were successful in humans. We summarize current information regarding the pathogenic events that follow any RD because this information may be the key for understanding and treating the earliest stages of PVR. A major focus is made on the intraretinal changes derived mainly from retinal glial cell reactivity. These responses can lead to intraretinal PVR, an entity that has not been clearly recognized. Inflammation is one of the major components of PVR, and we describe new genetic biomarkers that have the potential to predict its development. New treatment approaches are analyzed, especially those directed towards neuroprotection, which can also be useful for preventing visual loss after any RD. We also summarize the results of different surgical techniques and clinical information that is oriented toward the identification of high risk patients. Finally, we provide some recommendations for future classification of PVR and for designing comparable protocols for testing new drugs or techniques.
Collapse
Affiliation(s)
- J Carlos Pastor
- Retina Group, IOBA (Eye Institute), University of Valladolid, Valladolid, Spain; Department of Ophthalmology, Hospital Clinico Universitario de Valladolid, Valladolid, Spain.
| | - Jimena Rojas
- Retina Group, IOBA (Eye Institute), University of Valladolid, Valladolid, Spain; Department of Ophthalmology, Hospital Universitario Austral, Universidad Austral, Buenos Aires, Argentina
| | - Salvador Pastor-Idoate
- Retina Group, IOBA (Eye Institute), University of Valladolid, Valladolid, Spain; Manchester Royal Eye Hospital, Manchester Vision Regeneration (MVR) Lab at NIHR/Wellcome Trust, Manchester, United Kingdom
| | - Salvatore Di Lauro
- Retina Group, IOBA (Eye Institute), University of Valladolid, Valladolid, Spain; Department of Ophthalmology, Hospital Clinico Universitario de Valladolid, Valladolid, Spain
| | - Lucia Gonzalez-Buendia
- Retina Group, IOBA (Eye Institute), University of Valladolid, Valladolid, Spain; Department of Ophthalmology, Hospital Clinico Universitario de Valladolid, Valladolid, Spain
| | - Santiago Delgado-Tirado
- Retina Group, IOBA (Eye Institute), University of Valladolid, Valladolid, Spain; Department of Ophthalmology, Hospital Clinico Universitario de Valladolid, Valladolid, Spain
| |
Collapse
|
42
|
Boiko EV, Pozniak AL, Suetov AA, Mal'tsev DS, Nuralova IV. [Role of Chlamydia trachomatis intraocular infection in the development of proliferative vitreoretinopathy (experimental study)]. Vestn Oftalmol 2015; 131:50-57. [PMID: 25872387 DOI: 10.17116/oftalma2015131150-56] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To study the influence of C. trachomatis infection on proliferative vitreoretinopathy (PVR) stimulation and development in an experimental model. MATERIAL AND METHODS Intravitreal C. trachomatis injection was performed in 17 rabbits (right eyes) out of which 8 developed minimal chlamydial damage (1 was further subjected to histopathological examination with pathogen detection in ocular structures and other 7 were included in the study group). The control group consisted of 7 rabbits with no laboratory evidence of chlamydial infection. PVR was induced by 4 peripheral retinal punctures with a 19 G needle. Follow-up methods included ophthalmoscopy, ultrasonography, and PVR grading according to the Fastenberg classification. Histopathological examination, supplemented with pathogen detection by direct immunofluorescence in the study group, was performed at weeks 7 and 20. RESULTS PVR rate and severity were higher in the study group as compared with the controls (5 out of 7 rabbits, grade 2-4 vs. 2 out of 7 rabbits, grade 0-1, p<0.01). In the study group, histopathological examination performed before and after the induction of PVR revealed a pronounced lymphocyte and macrophage infiltration, characteristic of infectious inflammation. Similarly, extra- and intracellular chlamydial inclusions could be found in the retina and/or zones of proliferation throughout the whole study period. Inflammation signs (including those of proliferation) were reliably less significant in the controls. CONCLUSION C. trachomatis infection of the posterior segment contributes to PVR development due to associated chronic inflammation.
Collapse
Affiliation(s)
- E V Boiko
- S.M. Kirov Military Medical Academy, Ministry of Defense of the Russian Federation, 6 Akademika Lebedeva St., Saint-Petersburg, Russian Federation, 194044
| | - A L Pozniak
- Research Institute of Childhood Infections, Federal Medico-Biological Agency of Russia, 9 Professora Popova St., Saint-Petersburg, Russian Federation, 197022
| | - A A Suetov
- S.M. Kirov Military Medical Academy, Ministry of Defense of the Russian Federation, 6 Akademika Lebedeva St., Saint-Petersburg, Russian Federation, 194044
| | - D S Mal'tsev
- S.M. Kirov Military Medical Academy, Ministry of Defense of the Russian Federation, 6 Akademika Lebedeva St., Saint-Petersburg, Russian Federation, 194044
| | - I V Nuralova
- S.M. Kirov Military Medical Academy, Ministry of Defense of the Russian Federation, 6 Akademika Lebedeva St., Saint-Petersburg, Russian Federation, 194044
| |
Collapse
|
43
|
Aqueous and alcoholic extracts of Triphala and their active compounds chebulagic acid and chebulinic acid prevented epithelial to mesenchymal transition in retinal pigment epithelial cells, by inhibiting SMAD-3 phosphorylation. PLoS One 2015; 10:e0120512. [PMID: 25793924 PMCID: PMC4368423 DOI: 10.1371/journal.pone.0120512] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 02/06/2015] [Indexed: 11/24/2022] Open
Abstract
Epithelial to Mesenchymal Transition (EMT) of the retinal pigment epithelium is involved in the pathogenesis of proliferative vitreoretinopathy (PVR) that often leads to retinal detachment. In this study, Triphala, an ayurvedic formulation and two of its active ingredients, namely chebulagic acid and chebulinic acid were evaluated for anti-EMT properties based on in vitro experiments in human retinal pigment epithelial cell line (ARPE-19) under TGFβ1 induced conditions. ARPE-19 cells were treated with TGFβ1 alone or co-treated with various concentrations of aqueous extract (AqE) (30 - 300 μg/ml); alcoholic extract (AlE) (50 - 500 μg/ml) of triphala and the active principles chebulagic acid (CA) and chebulinic acid (CI) (CA,CI: 50 - 200 μM). The expression of EMT markers namely MMP-2, αSMA, vimentin and the tight junction protein ZO-1 were evaluated by qPCR, western blot and immunofluorescence. The functional implications of EMT, namely migration and proliferation of cells were assessed by proliferation assay, scratch assay and transwell migration assay. AqE, AlE, CA and CI reduced the expression and activity of MMP-2 at an ED50 value of 100 μg/ml, 50 μg/ml, 100 μM and 100 μM, respectively. At these concentrations, a significant down-regulation of the expression of αSMA, vimentin and up-regulation of the expression of ZO-1 altered by TGFβ1 were observed. These concentrations also inhibited proliferation and migration of ARPE-19 cells induced by TGFβ1. EMT was found to be induced in ARPE-19 cells, through SMAD-3 phosphorylation and it was inhibited by AqE, AlE, CA and CI. Further studies in experimental animals are required to attribute therapeutic potential of these extracts and their active compounds, as an adjuvant therapy in the disease management of PVR.
Collapse
|
44
|
|
45
|
Qin D, Zhang GM, Xu X, Wang LY. The PI3K/Akt signaling pathway mediates the high glucose-induced expression of extracellular matrix molecules in human retinal pigment epithelial cells. J Diabetes Res 2015; 2015:920280. [PMID: 25695094 PMCID: PMC4324947 DOI: 10.1155/2015/920280] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 01/12/2015] [Indexed: 01/27/2023] Open
Abstract
Prolonged hyperglycemia is an important risk factor of the pathogenesis of diabetic retinopathy (DR). Extracellular matrix molecules, such as fibronectin, collagen IV, and laminin, are associated with fibrotic membranes. In this study, we investigated the expression of fibronectin, collagen IV, and laminin in RPE cells under high glucose conditions. Furthermore, we also detected the phosphorylation of protein kinase B (Akt) under high glucose conditions in RPE cells. Our results showed that high glucose upregulated fibronectin, collagen IV, and laminin expression, and activated Akt in RPE cells. We also found that pretreatment with LY294002 (an inhibitor of phosphatidylinositol 3-kinase) abolished high glucose-induced expression of fibronectin, collagen IV, and laminin in RPE cells. Thus, high glucose induced the expression of fibronectin, collagen IV, and laminin through PI3K/Akt signaling pathway in RPE cells, and the PI3K/Akt signaling pathway may contribute to the formation of fibrotic membrane during the development of DR.
Collapse
Affiliation(s)
- Dong Qin
- Henan Eye Institute, Henan Provincial Eye Hospital, Zhengzhou, Henan 450003, China
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital and Jinan University, Shenzhen 518040, China
- Department of Ophthalmology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - Guo-ming Zhang
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital and Jinan University, Shenzhen 518040, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - Li-ya Wang
- Henan Eye Institute, Henan Provincial Eye Hospital, Zhengzhou, Henan 450003, China
- *Li-ya Wang:
| |
Collapse
|
46
|
PARS PLANA VITRECTOMY AND SCLERAL BUCKLE VERSUS PARS PLANA VITRECTOMY ALONE FOR PATIENTS WITH RHEGMATOGENOUS RETINAL DETACHMENT AT HIGH RISK FOR PROLIFERATIVE VITREORETINOPATHY. Retina 2014; 34:1945-51. [DOI: 10.1097/iae.0000000000000216] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Pennock S, Haddock LJ, Mukai S, Kazlauskas A. Vascular endothelial growth factor acts primarily via platelet-derived growth factor receptor α to promote proliferative vitreoretinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:3052-68. [PMID: 25261788 DOI: 10.1016/j.ajpath.2014.07.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/09/2014] [Accepted: 07/24/2014] [Indexed: 01/22/2023]
Abstract
Proliferative vitreoretinopathy (PVR) is a nonneovascular blinding disease and the leading cause for failure in surgical repair of rhegmatogenous retinal detachments. Once formed, PVR is difficult to treat. Hence, there is an acute interest in developing approaches to prevent PVR. Of the many growth factors and cytokines that accumulate in vitreous as PVR develops, neutralizing vascular endothelial growth factor (VEGF) A has recently been found to prevent PVR in at least one animal model. The goal of this study was to test if Food and Drug Administration-approved agents could protect the eye from PVR in multiple animal models and to further investigate the underlying mechanisms. Neutralizing VEGF with aflibercept (VEGF Trap-Eye) safely and effectively protected rabbits from PVR in multiple models of disease. Furthermore, aflibercept reduced the bioactivity of both experimental and clinical PVR vitreous. Finally, although VEGF could promote some PVR-associated cellular responses via VEGF receptors expressed on the retinal pigment epithelial cells that drive this disease, VEGF's major contribution to vitreal bioactivity occurred via platelet-derived growth factor receptor α. Thus, VEGF promotes PVR by a noncanonical ability to engage platelet-derived growth factor receptor α. These findings indicate that VEGF contributes to nonangiogenic diseases and that anti-VEGF-based therapies may be effective on a wider spectrum of diseases than previously appreciated.
Collapse
Affiliation(s)
- Steven Pennock
- The Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Luis J Haddock
- The Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Shizuo Mukai
- The Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Andrius Kazlauskas
- The Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
48
|
Tosi GM, Marigliani D, Romeo N, Toti P. Disease pathways in proliferative vitreoretinopathy: an ongoing challenge. J Cell Physiol 2014; 229:1577-83. [PMID: 24604697 DOI: 10.1002/jcp.24606] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 01/16/2014] [Indexed: 11/08/2022]
Abstract
Despite remarkable advances in vitreoretinal surgery, proliferative vitreoretinopathy (PVR) remains a common cause of severe visual loss or blindness. One of the critical reasons for PVR-induced blindness is tractional retinal detachment due to the formation of contractile preretinal fibrous membranes. This membrane formation is characterized by the proliferation and migration of cells and the excessive synthesis and deposition of extracellular matrix proteins. Herein we present the disease pathways of PVR, reviewing the role of both systemic and intraocular cells as well as molecular mediators. A chronological sequence of events leading to PVR is also hypothesized. Better understanding of the pathogenesis of PVR is needed in order to improve disease management. Efforts should be oriented towards greater cooperation between basic researchers and clinicians, aimed at matching the different clinical scenarios with the biological markers of the disease.
Collapse
Affiliation(s)
- Gian Marco Tosi
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | | | | | | |
Collapse
|
49
|
Su CC, Chan CM, Chen HM, Wu CC, Hsiao CY, Lee PL, Lin VCH, Hung CF. Lutein inhibits the migration of retinal pigment epithelial cells via cytosolic and mitochondrial Akt pathways (lutein inhibits RPE cells migration). Int J Mol Sci 2014; 15:13755-67. [PMID: 25110866 PMCID: PMC4159823 DOI: 10.3390/ijms150813755] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 07/16/2014] [Accepted: 07/25/2014] [Indexed: 11/17/2022] Open
Abstract
During the course of proliferative vitreoretinopathy (PVR), the retinal pigment epithelium (RPE) cells will de-differentiate, proliferate, and migrate onto the surfaces of the sensory retina. Several studies have shown that platelet-derived growth factor (PDGF) can induce migration of RPE cells via an Akt-related pathway. In this study, the effect of lutein on PDGF-BB-induced RPE cells migration was examined using transwell migration assays and Western blot analyses. We found that both phosphorylation of Akt and mitochondrial translocation of Akt in RPE cells induced by PDGF-BB stimulation were suppressed by lutein. Furthermore, the increased migration observed in RPE cells with overexpressed mitochondrial Akt could also be suppressed by lutein. Our results demonstrate that lutein can inhibit PDGF-BB induced RPE cells migration through the inhibition of both cytoplasmic and mitochondrial Akt activation.
Collapse
Affiliation(s)
- Ching-Chieh Su
- Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University,New Taipei City 24205, Taiwan.
| | - Chi-Ming Chan
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Han-Min Chen
- Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University,New Taipei City 24205, Taiwan.
| | - Chia-Chun Wu
- Department of Life Sciences, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Chien-Yu Hsiao
- Department of Nutrition and Health Science, Chang Guang University of Science and Technology,Taoyuan 33303, Taiwan.
| | - Pei-Lan Lee
- Slone Epidemiology Center, Boston University, Boston, Massachusetts, United States of America,Boston, MA 02215, USA.
| | - Victor Chia-Hsiang Lin
- Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University,New Taipei City 24205, Taiwan.
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| |
Collapse
|
50
|
Rouberol F, Chiquet C. [Proliferative vitreoretinopathy: pathophysiology and clinical diagnosis]. J Fr Ophtalmol 2014; 37:557-65. [PMID: 24997864 DOI: 10.1016/j.jfo.2014.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 12/24/2022]
Abstract
Proliferative vitreoretinopathy (PVR) remains one of the most common causes of failed retinal detachment (RD) surgery. Many histological and clinical studies have highlighted the chain of events leading to PVR: cellular migration into the vitreous cavity, cellular differentiation, myofibroblast proliferation and activation, synthesis of extracellular matrix proteins, then contraction of preretinal tissues. The development of PVR can be explained schematically by cellular exposure to growth factors and cytokines (particularly retinal pigment epithelial cells and glial cells), in the context of break-down of the blood-retinal barrier (inflammation, choroidal detachment, iatrogenic effect of cryotherapy and surgery) and of cellular contact with the vitreous. Although the pathophysiology of PVR is now better understood, its severity remains an issue. A systematic search for preoperative PVR risk factors allows the most suitable therapeutic option to be chosen.
Collapse
Affiliation(s)
- F Rouberol
- Centre d'ophtalmologie Kléber, 50, cours Franklin-Roosevelt, 69006 Lyon, France
| | - C Chiquet
- Clinique universitaire d'ophtalmologie, université J.-Fourier, CHU de Grenoble, CS 2017, 38043 Grenoble cedex 09, France.
| |
Collapse
|