1
|
Martini F, Spangaro M, Sapienza J, Cavallaro R. Cerebral asymmetries in schizophrenia. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:89-99. [PMID: 40074419 DOI: 10.1016/b978-0-443-15646-5.00018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Historically, the first observations of a lower prevalence of right-handed patients among subjects with schizophrenia led to the hypothesis that brain asymmetry could play a significant role in the etiopathogenesis of the disease. Over the last decades, a growing number of findings obtained through many different techniques such as EEG, MEG, MRI, and fMRI, consistently reported reduction/loss of brain asymmetries as a core feature of schizophrenia, further suggesting such alterations to play a cardinal role in the pathogenesis of the disease. Moreover, several cognitive and psychopathologic dimensions have shown significant correlations with the reduced degree of asymmetry. In particular, the absence or even reversal of structural asymmetries has been documented in language-related brain such as the Sylvian fissure and planum temporale. These findings have been reprocessed within an evolutionary and psychopathologic framework pointing at the loss of asymmetry and the consequent language impairment as primum moves in the pathogenesis of schizophrenia. Overall, despite growing evidence demonstrating a heterogeneous and multifaced etiopathogenesis in schizophrenia, the "old concept" of brain asymmetry still offers intriguing hints and thought-provoking elements for clinicians and researchers who deal with schizophrenia.
Collapse
Affiliation(s)
- Francesca Martini
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Spangaro
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jacopo Sapienza
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, Pavia, Italy.
| | - Roberto Cavallaro
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy; School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
2
|
Dumitru ML, Johnsen E, Kroken RA, Løberg EM, Lilleskare L, Ersland L, Hugdahl K. Widespread asymmetries of amygdala nuclei predict auditory verbal hallucinations in schizophrenia. BMC Psychiatry 2024; 24:826. [PMID: 39563258 DOI: 10.1186/s12888-024-06301-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Auditory verbal hallucinations, which frequently involve negative emotions, are reliable symptoms of schizophrenia. Brain asymmetries have also been linked to the condition, but the relevance of asymmetries within the amygdala, which coordinates all emotional signals, to the content of and response to auditory verbal hallucinations has not been explored. METHODS We evaluated the performance of two asymmetry biomarkers that were recently introduced in literature: the distance index, which captures global asymmetries, and a revised version of the laterality index, which captures left-right local asymmetries. We deployed random forest regression models over values computed with the distance index and with the laterality index over amygdala nuclei volumes (lateral, basal, accessory-basal, anterior amygdaloid area, central, medial, cortical, cortico-amygdaloid area, and paralaminar) for 71 patients and 71 age-matched controls. RESULTS Both biomarkers made successful predictions for the 35 items of the revised version of the Belief About Voices Questionnaire, such that hallucination severity increased with increasing local asymmetries and with decreasing global asymmetries of the amygdala. CONCLUSIONS Our findings highlight a global reorganization of the amygdala, where left and right nuclei volumes differ pairwise but become proportionally more similar as hallucinations increase in severity. Identifying asymmetries in particular brain structures relevant to specific symptoms could help monitor the evolution and outcome of psychopathological conditions.
Collapse
Affiliation(s)
- Magda L Dumitru
- Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53 A/B, Postboks 5006, Bergen, Norway.
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.
| | - Erik Johnsen
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway
- Institute of Clinical Psychology, University of Bergen, Bergen, Norway
| | - Rune A Kroken
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway
- Institute of Clinical Psychology, University of Bergen, Bergen, Norway
| | - Else-Marie Løberg
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Institute of Clinical Psychology, University of Bergen, Bergen, Norway
| | - Lin Lilleskare
- Institute of Clinical Psychology, University of Bergen, Bergen, Norway
| | - Lars Ersland
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
| | - Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
3
|
He B, Wang Y, Li H, Huang Y. The role of integrin beta in schizophrenia: a preliminary exploration. CNS Spectr 2023; 28:561-570. [PMID: 36274632 DOI: 10.1017/s1092852922001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Integrins are transmembrane heterodimeric (αβ) receptors that transduce mechanical signals between the extracellular milieu and the cell in a bidirectional manner. Extensive research has shown that the integrin beta (β) family is widely expressed in the brain and that they control various aspects of brain development and function. Schizophrenia is a relatively common neurological disorder of unknown etiology and has been found to be closely related to neurodevelopment and neurochemicals in neuropathological studies of schizophrenia. Here, we review literature from recent years that shows that schizophrenia involves multiple signaling pathways related to neuronal migration, axon guidance, cell adhesion, and actin cytoskeleton dynamics, and that dysregulation of these processes affects the normal function of neurons and synapses. In fact, alterations in integrin β structure, expression and signaling for neural circuits, cortex, and synapses are likely to be associated with schizophrenia. We explored several aspects of the possible association between integrin β and schizophrenia in an attempt to demonstrate the role of integrin β in schizophrenia, which may help to provide new insights into the study of the pathogenesis and treatment of schizophrenia.
Collapse
Affiliation(s)
- Binshan He
- Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhan Wang
- Department of Blood Transfusion, Ya'an People's Hospital, Ya'an, China
| | - Huang Li
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yuanshuai Huang
- Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Dong B, Yue Y, Dong H, Wang Y. N-methyl-D-aspartate receptor hypofunction as a potential contributor to the progression and manifestation of many neurological disorders. Front Mol Neurosci 2023; 16:1174738. [PMID: 37396784 PMCID: PMC10308130 DOI: 10.3389/fnmol.2023.1174738] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDA) are glutamate-gated ion channels critical for synaptic transmission and plasticity. A slight variation of NMDAR expression and function can result in devastating consequences, and both hyperactivation and hypoactivation of NMDARs are detrimental to neural function. Compared to NMDAR hyperfunction, NMDAR hypofunction is widely implicated in many neurological disorders, such as intellectual disability, autism, schizophrenia, and age-related cognitive decline. Additionally, NMDAR hypofunction is associated with the progression and manifestation of these diseases. Here, we review the underlying mechanisms of NMDAR hypofunction in the progression of these neurological disorders and highlight that targeting NMDAR hypofunction is a promising therapeutic intervention in some neurological disorders.
Collapse
Affiliation(s)
- Bin Dong
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Yue
- School of Psychology, Northeast Normal University, Changchun, China
| | - Han Dong
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yuehui Wang
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Zhang S, Zhang T, He Z, Li X, Zhang L, Zhu D, Jiang X, Liu T, Han J, Guo L. Gyral peaks and patterns in human brains. Cereb Cortex 2023; 33:6708-6722. [PMID: 36646465 PMCID: PMC10422926 DOI: 10.1093/cercor/bhac537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
Cortical folding patterns are related to brain function, cognition, and behavior. Since the relationship has not been fully explained on a coarse scale, many efforts have been devoted to the identification of finer grained cortical landmarks, such as sulcal pits and gyral peaks, which were found to remain invariant across subjects and ages and the invariance may be related to gene mediated proto-map. However, gyral peaks were only investigated on macaque monkey brains, but not on human brains where the investigation is challenged due to high inter-individual variabilities. To this end, in this work, we successfully identified 96 gyral peaks both on the left and right hemispheres of human brains, respectively. These peaks are spatially consistent across individuals. Higher or sharper peaks are more consistent across subjects. Both structural and functional graph metrics of peaks are significantly different from other cortical regions, and more importantly, these nodal graph metrics are anti-correlated with the spatial consistency metrics within peaks. In addition, the distribution of peaks and various cortical anatomical, structural/functional connective features show hemispheric symmetry. These findings provide new clues to understanding the cortical landmarks, as well as their relationship with brain functions, cognition, behavior in both healthy and aberrant brains.
Collapse
Affiliation(s)
- Songyao Zhang
- School of Automation, School of Information Technology, and School of Life Science and Technology, Northwestern Polytechnical University, Xi’an 710000, China
| | - Tuo Zhang
- School of Automation, School of Information Technology, and School of Life Science and Technology, Northwestern Polytechnical University, Xi’an 710000, China
| | - Zhibin He
- School of Automation, School of Information Technology, and School of Life Science and Technology, Northwestern Polytechnical University, Xi’an 710000, China
| | - Xiao Li
- School of Automation, School of Information Technology, and School of Life Science and Technology, Northwest University, Xi’an, China
| | - Lu Zhang
- Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX, United States
| | - Dajiang Zhu
- Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX, United States
| | - Xi Jiang
- School of Automation, School of Information Technology, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA 30605, United States
| | - Junwei Han
- School of Automation, School of Information Technology, and School of Life Science and Technology, Northwestern Polytechnical University, Xi’an 710000, China
| | - Lei Guo
- School of Automation, School of Information Technology, and School of Life Science and Technology, Northwestern Polytechnical University, Xi’an 710000, China
| |
Collapse
|
6
|
Howes OD, Onwordi EC. The synaptic hypothesis of schizophrenia version III: a master mechanism. Mol Psychiatry 2023; 28:1843-1856. [PMID: 37041418 PMCID: PMC10575788 DOI: 10.1038/s41380-023-02043-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/13/2023]
Abstract
The synaptic hypothesis of schizophrenia has been highly influential. However, new approaches mean there has been a step-change in the evidence available, and some tenets of earlier versions are not supported by recent findings. Here, we review normal synaptic development and evidence from structural and functional imaging and post-mortem studies that this is abnormal in people at risk and with schizophrenia. We then consider the mechanism that could underlie synaptic changes and update the hypothesis. Genome-wide association studies have identified a number of schizophrenia risk variants converging on pathways regulating synaptic elimination, formation and plasticity, including complement factors and microglial-mediated synaptic pruning. Induced pluripotent stem cell studies have demonstrated that patient-derived neurons show pre- and post-synaptic deficits, synaptic signalling alterations, and elevated, complement-dependent elimination of synaptic structures compared to control-derived lines. Preclinical data show that environmental risk factors linked to schizophrenia, such as stress and immune activation, can lead to synapse loss. Longitudinal MRI studies in patients, including in the prodrome, show divergent trajectories in grey matter volume and cortical thickness compared to controls, and PET imaging shows in vivo evidence for lower synaptic density in patients with schizophrenia. Based on this evidence, we propose version III of the synaptic hypothesis. This is a multi-hit model, whereby genetic and/or environmental risk factors render synapses vulnerable to excessive glia-mediated elimination triggered by stress during later neurodevelopment. We propose the loss of synapses disrupts pyramidal neuron function in the cortex to contribute to negative and cognitive symptoms and disinhibits projections to mesostriatal regions to contribute to dopamine overactivity and psychosis. It accounts for the typical onset of schizophrenia in adolescence/early adulthood, its major risk factors, and symptoms, and identifies potential synaptic, microglial and immune targets for treatment.
Collapse
Affiliation(s)
- Oliver D Howes
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, W12 0NN, UK.
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
| | - Ellis Chika Onwordi
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, W12 0NN, UK.
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
- Centre for Psychiatry and Mental Health, Wolfson Institute of Population Health, Queen Mary University of London, London, E1 2AB, UK.
| |
Collapse
|
7
|
Chew QH, Prakash KNB, Koh LY, Chilla G, Yeow LY, Sim K. Neuroanatomical subtypes of schizophrenia and relationship with illness duration and deficit status. Schizophr Res 2022; 248:107-113. [PMID: 36030757 DOI: 10.1016/j.schres.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/21/2022] [Accepted: 08/15/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND The heterogeneity of schizophrenia (SCZ) regarding psychopathology, illness trajectory and their inter-relationships with underlying neural substrates remain incompletely understood. In a bid to reduce illness heterogeneity using neural substrates, our study aimed to replicate the findings of an earlier study by Chand et al. (2020). We employed brain structural measures for subtyping SCZ patients, and evaluate each subtype's relationship with clinical features such as illness duration, psychotic psychopathology, and additionally deficit status. METHODS Overall, 240 subjects (160 SCZ patients, 80 healthy controls) were recruited for this study. The participants underwent brain structural magnetic resonance imaging scans and clinical rating using the Positive and Negative Syndrome Scale. Neuroanatomical subtypes of SCZ were identified using "Heterogeneity through discriminative analysis" (HYDRA), a clustering technique which accounted for relevant covariates and the inter-group normalized percentage changes in brain volume were also calculated. RESULTS As replicated, two neuroanatomical subtypes (SG-1 and SG-2) were found amongst our patients with SCZ. The subtype SG-1 was associated with enlargements in the third and lateral ventricles, volume increase in the basal ganglia (putamen, caudate, pallidum), longer illness duration, and deficit status. The subtype SG-2 was associated with reductions of cortical and subcortical structures (hippocampus, thalamus, basal ganglia). CONCLUSIONS These replicated findings have clinical implications in the early intervention, response monitoring, and prognostication of SCZ. Future studies may adopt a multi-modal neuroimaging approach to enhance insights into the neurobiological composition of relevant subtypes.
Collapse
Affiliation(s)
- Qian Hui Chew
- Research Division, Institute of Mental Health, Singapore
| | - K N Bhanu Prakash
- Biophotonics & Bioimaging, Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research, Singapore; Clinical Data Analytics & Radiomics, Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
| | - Li Yang Koh
- Biophotonics & Bioimaging, Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research, Singapore
| | - Geetha Chilla
- Biophotonics & Bioimaging, Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research, Singapore; Clinical Data Analytics & Radiomics, Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
| | - Ling Yun Yeow
- Biophotonics & Bioimaging, Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research, Singapore; Clinical Data Analytics & Radiomics, Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
| | - Kang Sim
- West Region, Institute of Mental Health, Singapore.
| |
Collapse
|
8
|
The neurochemical pathology of schizophrenia: post-mortem studies from dopamine to parvalbumin. J Neural Transm (Vienna) 2021; 129:643-647. [PMID: 34935080 PMCID: PMC9188531 DOI: 10.1007/s00702-021-02453-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 12/25/2022]
Abstract
Research in Peter Riederer’s lab in Vienna in the late 1970’s came from a strong tradition in post-mortem neurochemical studies, at that time a relatively niche approach in neuroscience research. He was also early to recognise the value of post-mortem brain tissue in elucidating pharmacological mechanisms of neuropsychiatric treatments. I was fortunate to have Peter Riederer as a mentor in my early post-doctoral career; his generous support and the opportunities to use post-mortem brain tissue provided an invaluable grounding on which much of my future research was based. In this paper, I shall provide a brief overview of one trajectory of my research into the neurobiology of schizophrenia that started in the Riederer lab in Vienna investigating dopamine and the D2 receptor. Subsequent research to understand findings of increased dopamine resulted in the identification of reduced GABAergic innervation, culminating in the finding of a deficit in the parvalbumin-containing subtype of GABAergic neurons. Most recent work has been studying how changes in DNA methylation of the parvalbumin gene may relate to these findings in psychotic illness and its animal models.
Collapse
|
9
|
Lee D, Seo J, Jeong HC, Lee H, Lee SB. The Perspectives of Early Diagnosis of Schizophrenia Through the Detection of Epigenomics-Based Biomarkers in iPSC-Derived Neurons. Front Mol Neurosci 2021; 14:756613. [PMID: 34867186 PMCID: PMC8633873 DOI: 10.3389/fnmol.2021.756613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
The lack of early diagnostic biomarkers for schizophrenia greatly limits treatment options that deliver therapeutic agents to affected cells at a timely manner. While previous schizophrenia biomarker research has identified various biological signals that are correlated with certain diseases, their reliability and practicality as an early diagnostic tool remains unclear. In this article, we discuss the use of atypical epigenetic and/or consequent transcriptional alterations (ETAs) as biomarkers of early-stage schizophrenia. Furthermore, we review the viability of discovering and applying these biomarkers through the use of cutting-edge technologies such as human induced pluripotent stem cell (iPSC)-derived neurons, brain models, and single-cell level analyses.
Collapse
Affiliation(s)
- Davin Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Jinsoo Seo
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Hae Chan Jeong
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Hyosang Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Sung Bae Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| |
Collapse
|
10
|
Berdenis van Berlekom A, Notman N, Sneeboer MAM, Snijders GJLJ, Houtepen LC, Nispeling DM, He Y, Psychiatric Donor Program of the Netherlands Brain Bank (NBB-PSY), Dracheva S, Hol EM, Kahn RS, de Witte LD, Boks MP. DNA methylation differences in cortical grey and white matter in schizophrenia. Epigenomics 2021; 13:1157-1169. [PMID: 34323598 PMCID: PMC8386513 DOI: 10.2217/epi-2021-0077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/09/2021] [Indexed: 01/27/2023] Open
Abstract
Aim: Identify grey- and white-matter-specific DNA-methylation differences between schizophrenia (SCZ) patients and controls in postmortem brain cortical tissue. Materials & methods: Grey and white matter were separated from postmortem brain tissue of the superior temporal and medial frontal gyrus from SCZ (n = 10) and control (n = 11) cases. Genome-wide DNA-methylation analysis was performed using the Infinium EPIC Methylation Array (Illumina, CA, USA). Results: Four differentially methylated regions associated with SCZ status and tissue type (grey vs white matter) were identified within or near KLF9, SFXN1, SPRED2 and ALS2CL genes. Gene-expression analysis showed differential expression of KLF9 and SFXN1 in SCZ. Conclusion: Our data show distinct differences in DNA methylation between grey and white matter that are unique to SCZ, providing new leads to unravel the pathogenesis of SCZ.
Collapse
Affiliation(s)
- Amber Berdenis van Berlekom
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Translational Neuroscience, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nina Notman
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marjolein AM Sneeboer
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Translational Neuroscience, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Gijsje JLJ Snijders
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lotte C Houtepen
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Danny M Nispeling
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Yujie He
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Translational Neuroscience, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Stella Dracheva
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mental Illness Research, Education, & Clinical Center (VISN 2 South), James J Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Elly M Hol
- Department of Translational Neuroscience, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - René S Kahn
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mental Illness Research, Education, & Clinical Center (VISN 2 South), James J Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Lot D de Witte
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Marco P Boks
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
11
|
Mavroudis I, Petrides F, Kazis D, Chatzikonstantinou S, Karantali E, Ciobica A, Iordache AC, Dobrin R, Trus C, Njau S, Costa V, Baloyannis S. Morphological alterations of the pyramidal and stellate cells of the visual cortex in schizophrenia. Exp Ther Med 2021; 22:669. [PMID: 33986834 PMCID: PMC8111868 DOI: 10.3892/etm.2021.10101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/19/2021] [Indexed: 11/05/2022] Open
Abstract
Schizophrenia is a severe brain disorder characterized by certain types of delusion, hallucination and thought disorder. Studies have revealed impaired synaptic plasticity and reduced gamma-aminobutyric acid levels of the visual cortex in patients with schizophrenia. While previous work established a critical role for interneurons and cortical connectivity in the generation of hallucinations, the present study set out to examine the morphology of pyramidal cells and interneurons from layers 3 and 4 in the primary visual cortex from schizophrenic brains and to identify any dendritic and spinal alterations in comparison to normal control brains. The morphological and morphometric changes of the pyramidal cells and the interneurons of the visual cortices of 10 brains obtained from patients with schizophrenia, in comparison to 10 age-matched controls, were studied using the Golgi method and 3D neuronal reconstruction techniques. Analysis using the Golgi impregnation technique revealed a significant loss of distal dendritic segments, tortuous branches and varicosities and an overall restriction of the dendritic field in the brains of schizophrenic patients in both pyramidal cells and in aspiny interneurons. The present results may explain certain clinical phenomena associated with the visual cortex usually encountered in schizophrenia.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Laboratory of Neuropathology and Electron Microscopy First Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 54634, Greece.,Department of Neurology, Leeds Teaching Hospitals, Leeds LS1 3EX, UK.,Institute For Research Of Alzheimer's Disease, Other Neurodegenerative Diseases And Normal Aging, Heraklion Langada 57200, Greece
| | - Foivos Petrides
- Laboratory of Neuropathology and Electron Microscopy First Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 54634, Greece.,Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | - Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | | | - Eleni Karantali
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, Iasi 700506, Romania.,Academy of Romanian Scientists, Bucuresti 050094, Romania.,Center of Biomedical Research, Romanian Academy, Iasi 700506, Romania
| | - Alin-Constantin Iordache
- Faculty of Medicine, 'Grigore T. Popa', University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Romeo Dobrin
- Faculty of Medicine, 'Grigore T. Popa', University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Constantin Trus
- Department of Morphological and Functional Sciences, Faculty of Medicine, Dunarea de Jos University, Galati 050094, Romania
| | - Samuel Njau
- Department of Forensic Medicine and Toxicology, Aristotle University of Thessaloniki, Thessaloniki 54634, Greece
| | - Vasiliki Costa
- Laboratory of Neuropathology and Electron Microscopy First Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 54634, Greece.,Institute For Research Of Alzheimer's Disease, Other Neurodegenerative Diseases And Normal Aging, Heraklion Langada 57200, Greece
| | - Stavros Baloyannis
- Laboratory of Neuropathology and Electron Microscopy First Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 54634, Greece.,Institute For Research Of Alzheimer's Disease, Other Neurodegenerative Diseases And Normal Aging, Heraklion Langada 57200, Greece
| |
Collapse
|
12
|
Tissot C, Therriault J, Pascoal TA, Chamoun M, Lussier FZ, Savard M, Mathotaarachchi SS, L. Benedet A, Thomas EM, Parsons M, Nasreddine Z, Rosa‐Neto P, Gauthier S. Association between regional tau pathology and neuropsychiatric symptoms in aging and dementia due to Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12154. [PMID: 33816761 PMCID: PMC8012244 DOI: 10.1002/trc2.12154] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/21/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Neuropsychiatric symptoms (NPS) are frequent in aging and Alzheimer's disease (AD). Here we study the relationship between NPS and AD pathologies in vivo. METHOD Two hundred and twenty-one individuals from the TRIAD cohort (143 cognitively unimpaired, 52 mild cognitive impairment, and 26 AD) underwent [18F]MK6240-tau-positron emission tomography (PET), [18F]AZD4694-amyloid-PET, magnetic resonance imaging, and neuropsychological evaluations. Spearman correlations and voxel-based regression models evaluated the relationship between Neuropsychiatric Inventory Questionnaire (NPI-Q) scores, and tau-PET, amyloid-PET, and voxel-based morphometry. RESULTS Fifty percent of individuals presented NPS; these correlated with tau, not amyloid beta or neurodegeneration. Associations between NPI-Q score and tau-PET were stronger in the parietal association area, superior frontal, temporal, and medial occipital lobes. NPI-Q domains associated with distinct patterns of tau uptake. CONCLUSIONS NPS are predominantly related to tau in aging and dementia. Regions affected are part of the behavioral circuits, and vulnerable to early AD pathology. Domain-specific analyses showed NPS are related to the AD pathophysiological processes in a symptom-specific manner.
Collapse
Affiliation(s)
- Cécile Tissot
- McGill University Research Centre for Studies in AgingVerdunQuebecCanada
- Translational Neuroimaging Laboratory‐McGill UniversityVerdunQuebecCanada
- McGill UniversityMontrealQuebecCanada
| | - Joseph Therriault
- McGill University Research Centre for Studies in AgingVerdunQuebecCanada
- Translational Neuroimaging Laboratory‐McGill UniversityVerdunQuebecCanada
- McGill UniversityMontrealQuebecCanada
| | - Tharick A. Pascoal
- McGill University Research Centre for Studies in AgingVerdunQuebecCanada
- Translational Neuroimaging Laboratory‐McGill UniversityVerdunQuebecCanada
- McGill UniversityMontrealQuebecCanada
| | - Mira Chamoun
- McGill University Research Centre for Studies in AgingVerdunQuebecCanada
- Translational Neuroimaging Laboratory‐McGill UniversityVerdunQuebecCanada
- McGill UniversityMontrealQuebecCanada
| | - Firoza Z. Lussier
- McGill University Research Centre for Studies in AgingVerdunQuebecCanada
- Translational Neuroimaging Laboratory‐McGill UniversityVerdunQuebecCanada
- McGill UniversityMontrealQuebecCanada
| | - Melissa Savard
- McGill University Research Centre for Studies in AgingVerdunQuebecCanada
- Translational Neuroimaging Laboratory‐McGill UniversityVerdunQuebecCanada
- McGill UniversityMontrealQuebecCanada
| | - Sulantha S. Mathotaarachchi
- McGill University Research Centre for Studies in AgingVerdunQuebecCanada
- Translational Neuroimaging Laboratory‐McGill UniversityVerdunQuebecCanada
- McGill UniversityMontrealQuebecCanada
| | - Andréa L. Benedet
- McGill University Research Centre for Studies in AgingVerdunQuebecCanada
- Translational Neuroimaging Laboratory‐McGill UniversityVerdunQuebecCanada
- McGill UniversityMontrealQuebecCanada
| | - Emilie M. Thomas
- McGill University Research Centre for Studies in AgingVerdunQuebecCanada
- McGill UniversityMontrealQuebecCanada
| | - Marlee Parsons
- McGill University Research Centre for Studies in AgingVerdunQuebecCanada
- Translational Neuroimaging Laboratory‐McGill UniversityVerdunQuebecCanada
- McGill UniversityMontrealQuebecCanada
| | - Ziad Nasreddine
- MoCA Clinic and InstituteNeuro‐Rive‐SudGreenfield ParkQuebecCanada
| | - Pedro Rosa‐Neto
- McGill University Research Centre for Studies in AgingVerdunQuebecCanada
- Translational Neuroimaging Laboratory‐McGill UniversityVerdunQuebecCanada
- McGill UniversityMontrealQuebecCanada
| | - Serge Gauthier
- McGill University Research Centre for Studies in AgingVerdunQuebecCanada
- McGill UniversityMontrealQuebecCanada
- Douglas Hospital Research CentreVerdunQuebecCanada
| |
Collapse
|
13
|
Intson K, van Eede MC, Islam R, Milenkovic M, Yan Y, Salahpour A, Henkelman RM, Ramsey AJ. Progressive neuroanatomical changes caused by Grin1 loss-of-function mutation. Neurobiol Dis 2019; 132:104527. [DOI: 10.1016/j.nbd.2019.104527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/07/2019] [Accepted: 07/06/2019] [Indexed: 02/04/2023] Open
|
14
|
Talpalaru A, Bhagwat N, Devenyi GA, Lepage M, Chakravarty MM. Identifying schizophrenia subgroups using clustering and supervised learning. Schizophr Res 2019; 214:51-59. [PMID: 31455518 DOI: 10.1016/j.schres.2019.05.044] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 01/18/2023]
Abstract
Schizophrenia has a 1% incidence rate world-wide and those diagnosed present with positive (e.g. hallucinations, delusions), negative (e.g. apathy, asociality), and cognitive symptoms. However, both symptom burden and associated brain alterations are highly heterogeneous and intimately linked to prognosis. In this study, we present a method to predict individual symptom profiles by first deriving clinical subgroups and then using machine learning methods to perform subject-level classification based on magnetic resonance imaging (MRI) derived neuroanatomical measures. Symptomatic and MRI data of 167 subjects were used. Subgroups were defined using hierarchical clustering of clinical data resulting in 3 stable clusters: 1) high symptom burden, 2) predominantly positive symptom burden, and 3) mild symptom burden. Cortical thickness estimates were obtained in 78 regions of interest and were input, along with demographic data, into three machine learning models (logistic regression, support vector machine, and random forest) to predict subgroups. Random forest performance metrics for predicting the group membership of the high and mild symptom burden groups exceeded those of the baseline comparison of the entire schizophrenia population versus normal controls (AUC: 0.81 and 0.78 vs. 0.75). Additionally, an analysis of the most important features in the random forest classification demonstrated consistencies with previous findings of regional impairments and symptoms of schizophrenia.
Collapse
Affiliation(s)
- Alexandra Talpalaru
- Biological & Biomedical Engineering, McGill University, 845 Sherbrooke Street West, Montreal, Quebec H3A 0G4, Canada; Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada.
| | - Nikhil Bhagwat
- Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, 27 King's College Cir, Toronto, ON M5S 3H7, Canada
| | - Gabriel A Devenyi
- Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada; Department of Psychiatry, McGill University, 845 Sherbrooke Street West, Montreal, Quebec H3A 0G4, Canada
| | - Martin Lepage
- Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada; Department of Psychiatry, McGill University, 845 Sherbrooke Street West, Montreal, Quebec H3A 0G4, Canada
| | - M Mallar Chakravarty
- Biological & Biomedical Engineering, McGill University, 845 Sherbrooke Street West, Montreal, Quebec H3A 0G4, Canada; Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada; Department of Psychiatry, McGill University, 845 Sherbrooke Street West, Montreal, Quebec H3A 0G4, Canada.
| |
Collapse
|
15
|
Affiliation(s)
- B K Toone
- Department of Psychiatry, King's College Hospital, Denmark Hill, London
| |
Collapse
|
16
|
Mao CV, Araujo MFP, Nishimaru H, Matsumoto J, Tran AH, Hori E, Ono T, Nishijo H. Pregenual Anterior Cingulate Gyrus Involvement in Spontaneous Social Interactions in Primates-Evidence from Behavioral, Pharmacological, Neuropsychiatric, and Neurophysiological Findings. Front Neurosci 2017; 11:34. [PMID: 28203143 PMCID: PMC5285368 DOI: 10.3389/fnins.2017.00034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/17/2017] [Indexed: 11/23/2022] Open
Abstract
The anterior cingulate cortex (ACC) has been implicated in different aspects of cognition and decision making, including social cognition. Several studies suggest that this region is actually formed by sub-regions concerned with distinct cognitive functions. The ACC is usually divided in its rostro-caudal axis, with the caudal ACC playing a major role in processing own actions, and the rostral ACC being related to social cognition. Recently, it has been suggested that the ACC can also be functionally divided in its dorso-ventral axis into ACC gyrus (ACCg) and ACC sulcus (ACCs), with the ACCg having a central role in processing social information. In this context, we propose that the pregenual ACCg might be especially important for engaging in social interactions. We discuss previous findings that support this hypothesis and present evidence suggesting that the activity of pregenual ACCg neurons is modulated during spontaneous social interactions.
Collapse
Affiliation(s)
- Can Van Mao
- System Emotional Science, Graduate School of Medicine, University of Toyama Toyama, Japan
| | - Mariana F P Araujo
- System Emotional Science, Graduate School of Medicine, University of ToyamaToyama, Japan; Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont InstituteMacaiba, Brazil
| | - Hiroshi Nishimaru
- System Emotional Science, Graduate School of Medicine, University of Toyama Toyama, Japan
| | - Jumpei Matsumoto
- System Emotional Science, Graduate School of Medicine, University of Toyama Toyama, Japan
| | - Ahn Hai Tran
- System Emotional Science, Graduate School of Medicine, University of Toyama Toyama, Japan
| | - Etsuro Hori
- System Emotional Science, Graduate School of Medicine, University of Toyama Toyama, Japan
| | - Taketoshi Ono
- System Emotional Science, Graduate School of Medicine, University of Toyama Toyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine, University of Toyama Toyama, Japan
| |
Collapse
|
17
|
Maller JJ, Anderson RJ, Thomson RH, Daskalakis ZJ, Rosenfeld JV, Fitzgerald PB. Occipital bending in schizophrenia. Aust N Z J Psychiatry 2017; 51:32-41. [PMID: 27066817 DOI: 10.1177/0004867416642023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To investigate the prevalence of occipital bending (an occipital lobe crossing or twisting across the midline) in subjects with schizophrenia and matched healthy controls. METHOD Occipital bending prevalence was investigated in 37 patients with schizophrenia and 44 healthy controls. RESULTS Ratings showed that prevalence was nearly three times higher among schizophrenia patients (13/37 [35.1%]) than in control subjects (6/44 [13.6%]). Furthermore, those with schizophrenia had greater normalized gray matter volume but less white matter volume and had larger brain-to-cranial ratio. CONCLUSION The results suggest that occipital bending is more prevalent among schizophrenia patients than healthy subjects and that schizophrenia patients have different gray matter-white matter proportions. Although the cause and clinical ramifications of occipital bending are unclear, the results infer that occipital bending may be a marker of psychiatric illness.
Collapse
Affiliation(s)
- Jerome J Maller
- 1 Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Central Clinical School, Melbourne, VIC, Australia
| | - Rodney J Anderson
- 1 Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Central Clinical School, Melbourne, VIC, Australia
| | - Richard H Thomson
- 1 Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Central Clinical School, Melbourne, VIC, Australia
| | - Zafiris J Daskalakis
- 2 Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Jeffrey V Rosenfeld
- 3 The Alfred Hospital, Prahran, VIC, Australia
- 4 Monash Institute of Medical Engineering (MIME), Melbourne, VIC, Australia
- 5 F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Paul B Fitzgerald
- 1 Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Central Clinical School, Melbourne, VIC, Australia
| |
Collapse
|
18
|
Strzelecki D, Podgórski M, Kałużyńska O, Gawlik-Kotelnicka O, Stefańczyk L, Kotlicka-Antczak M, Gmitrowicz A, Grzelak P. Supplementation of Antipsychotic Treatment with the Amino Acid Sarcosine Influences Proton Magnetic Resonance Spectroscopy Parameters in Left Frontal White Matter in Patients with Schizophrenia. Nutrients 2015; 7:8767-82. [PMID: 26506383 PMCID: PMC4632447 DOI: 10.3390/nu7105427] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/03/2015] [Accepted: 09/29/2015] [Indexed: 01/04/2023] Open
Abstract
Dysfunction of the glutamatergic system, the main stimulating system in the brain, has a major role in pathogenesis of schizophrenia. The frontal white matter (WM) is partially composed of axons from glutamatergic pyramidal neurons and glia with glutamatergic receptors. The natural amino acid sarcosine, a component of a normal diet, inhibits the glycine type 1 transporter, increasing the glycine level. Thus, it modulates glutamatergic transmission through the glutamatergic ionotropic NMDA (N-methyl-d-aspartate) receptor, which requires glycine as a co-agonist. To evaluate the concentrations of brain metabolites (NAA, N-acetylaspartate; Glx, complex of glutamate, glutamine, and γ-aminobutyric acid (GABA); mI, myo-inositol; Cr, creatine; Cho, choline) in the left frontal WM, Proton Nuclear Magnetic Resonance (1H-NMR) spectroscopy was used. Twenty-five patients randomly chosen from a group of fifty with stable schizophrenia (DSM-IV-TR) and dominant negative symptoms, who were receiving antipsychotic therapy, were administered 2 g of sarcosine daily for six months. The remaining 25 patients received placebo. Assignment was double blinded. 1H-NMR spectroscopy (1.5 T) was performed twice: before and after the intervention. NAA, Glx and mI were evaluated as Cr and Cho ratios. All patients were also assessed twice with the Positive and Negative Syndrome Scale (PANSS). Results were compared between groups and in two time points in each group. The sarcosine group demonstrated a significant decrease in WM Glx/Cr and Glx/Cho ratios compared to controls after six months of therapy. In the experimental group, the final NAA/Cr ratio significantly increased and Glx/Cr ratio significantly decreased compared to baseline values. Improvement in the PANSS scores was significant only in the sarcosine group. In patients with schizophrenia, sarcosine augmentation can reverse the negative effect of glutamatergic system overstimulation, with a simultaneous beneficial increase of NAA/Cr ratio in the WM of the left frontal lobe. Our results further support the glutamatergic hypothesis of schizophrenia.
Collapse
Affiliation(s)
- Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Łódź, Central Clinical Hospital, ul. Pomorska 251, Łódź 92-213, Poland.
| | - Michał Podgórski
- Department of Radiology-Diagnostic Imaging, Medical University of Łódź, Łódź 92-213, Poland.
| | - Olga Kałużyńska
- Department of Affective and Psychotic Disorders, Medical University of Łódź, Central Clinical Hospital, ul. Pomorska 251, Łódź 92-213, Poland.
| | - Oliwia Gawlik-Kotelnicka
- Department of Affective and Psychotic Disorders, Medical University of Łódź, Central Clinical Hospital, ul. Pomorska 251, Łódź 92-213, Poland.
| | - Ludomir Stefańczyk
- Department of Radiology-Diagnostic Imaging, Medical University of Łódź, Łódź 92-213, Poland.
| | - Magdalena Kotlicka-Antczak
- Department of Affective and Psychotic Disorders, Medical University of Łódź, Central Clinical Hospital, ul. Pomorska 251, Łódź 92-213, Poland.
| | - Agnieszka Gmitrowicz
- Department of Adolescent Psychiatry, Medical University of Łódź, Łódź 92-213, Poland.
| | - Piotr Grzelak
- Department of Radiology-Diagnostic Imaging, Medical University of Łódź, Łódź 92-213, Poland.
| |
Collapse
|
19
|
Hollister JM, Kohler C. Schizophrenia: A Long-term Consequence of Hemolytic Disease of the Fetus and Newborn? INTERNATIONAL JOURNAL OF MENTAL HEALTH 2015. [DOI: 10.1080/00207411.2000.11449502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Perez SM, Lodge DJ. New approaches to the management of schizophrenia: focus on aberrant hippocampal drive of dopamine pathways. Drug Des Devel Ther 2014; 8:887-96. [PMID: 25061280 PMCID: PMC4085299 DOI: 10.2147/dddt.s42708] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Schizophrenia is a disease affecting up to 1% of the population. Current therapies are based on the efficacy of chlorpromazine, discovered over 50 years ago. These drugs block dopamine D2-like receptors and are effective at primarily treating positive symptoms in a subset of patients. Unfortunately, current therapies are far from adequate, and novel treatments require a better understanding of disease pathophysiology. Here we review the dopamine, gamma-aminobutyric acid (GABA), and glutamate hypotheses of schizophrenia and describe a pathway whereby a loss of inhibitory signaling in ventral regions of the hippocampus actually drives a dopamine hyperfunction. Moreover, we discuss novel therapeutic approaches aimed at attenuating ventral hippocampal activity in a preclinical model of schizophrenia, namely the MAM GD17 rat. Specifically, pharmacological (allosteric modulators of the α5 GABAA receptor), neurosurgical (deep brain stimulation), and cell-based (GABAergic precursor transplants) therapies are discussed. By better understanding the underlying circuit level dysfunctions in schizophrenia, novel treatments can be advanced that may provide better efficacy and a superior side effect profile to conventional antipsychotic medications.
Collapse
Affiliation(s)
- Stephanie M Perez
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, USA
| | - Daniel J Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
21
|
Williams MR, Galvin K, O'Sullivan B, MacDonald CD, Ching EWK, Turkheimer F, Howes OD, Pearce RKB, Hirsch SR, Maier M. Neuropathological changes in the substantia nigra in schizophrenia but not depression. Eur Arch Psychiatry Clin Neurosci 2014; 264:285-96. [PMID: 24374935 DOI: 10.1007/s00406-013-0479-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 12/18/2013] [Indexed: 01/02/2023]
Abstract
Schizophrenia is a chronic, disabling neuropsychiatric disorder characterised by positive, negative and cognitive symptoms. The aetiology is not known, although genetic, imaging and pathological studies have implicated both neurodevelopmental and neurodegenerative processes. The substantia nigra is a basal ganglia nucleus responsible for the production of dopamine and projection of dopaminergic neurons to the striatum. The substantia nigra is implicated in schizophrenia as dopamine has been heavily implicated in the dopamine hypothesis of schizophrenia and the prevalent psychotic symptoms and the monoamine theory of depression, and is a target for the development of new therapies. Studies into the major dopamine delivery pathways in the brain will therefore provide a strong base in improving knowledge of these psychiatric disorders. This post-mortem study examines the cytoarchitecture of dopaminergic neurons of the substantia nigra in schizophrenia (n = 12) and depression (n = 13) compared to matched controls (n = 13). Measures of nucleolar volume, nuclear length and nuclear area were taken in patients with chronic schizophrenia and major depressive disorder against matched controls. Astrocyte density was decreased in schizophrenia compared to controls (p = 0.030), with no change in oligodendrocyte density observed. Significantly increased nuclear cross-sectional area (p = 0.017) and length (p = 0.021), and increased nucleolar volume (p = 0.037) in dopaminergic neurons were observed in schizophrenia patients compared with controls, suggesting nuclear pleomorphic changes. No changes were observed in depression cases compared to control group. These changes may reflect pathological alterations in gene expression, neuronal structure and function in schizophrenia.
Collapse
Affiliation(s)
- M R Williams
- Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF, UK,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Crow TJ, Chance SA, Priddle TH, Radua J, James AC. Laterality interacts with sex across the schizophrenia/bipolarity continuum: an interpretation of meta-analyses of structural MRI. Psychiatry Res 2013; 210:1232-44. [PMID: 24011847 DOI: 10.1016/j.psychres.2013.07.043] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 06/29/2013] [Accepted: 07/31/2013] [Indexed: 12/30/2022]
Abstract
Review of the first comprehensive meta-analysis of VBM (voxel-based morphometry) studies in schizophrenia indicates asymmetrical reductions of anterior cingulate gyrus to the right, and medial temporal lobe (including the uncus) and para-hippocampal gyrus to the left. In subsequent meta-analyses of schizophrenia and bipolar disorder change in these limbic structures is systematically related to change in the insula. Deficits in insula (and para-hippocampal gyrus) to the left, and dorsal anterior cingulate gyrus to the right are greater in schizophrenic psychoses whereas deficits in anterior cingulate to the left and insula to the right are greater in bipolar illness. Thus (1) brain structures implicated in schizophrenia include those implicated in bipolar disorder, (2) the variation that separates the prototypical psychoses may be a subset of that relating to the structural asymmetry (the "torque") characteristic of the human brain, and (3) the meta-analysis of Bora et al. (2012) indicates that laterality of involvement of the insula and cingulate gyrus across the spectrum of bipolar and schizophrenic psychoses is critically dependent upon the sex ratio. Thus structural change underlying the continuum of psychosis relates to the interaction of laterality and sex.
Collapse
Affiliation(s)
- Timothy J Crow
- SANE POWIC, University Department of Psychiatry, Warneford Hospital, Oxford OX3 7JX, UK.
| | | | | | | | | |
Collapse
|
23
|
Brain weight in completed suicide and other cases of death-comparison of recent and previous studies. Int J Legal Med 2013; 128:295-301. [PMID: 24048502 DOI: 10.1007/s00414-013-0913-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/13/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND The weight of human brains is subject of numerous scientific research studies particularly in anatomy, pathology, and forensic medicine. Just a few investigations deal with a possible correlation between psychiatric disorders, especially suicidality, and brain weight. The results are contradictory. AIMS This study aims to find out if postmortem brain weight is higher in suicide victims considering the discrepancies of previous studies. METHOD In a retrospective study, the weight of brains obtained by autopsies performed in the Institute of Legal Medicine in Frankfurt, Germany, was evaluated. Data of 99 suicide cases (64 males, 35 females) were compared with those obtained from similar number cases of sudden death in a matched pair analysis. In each case, body weight, height, and body mass index were also taken into account. RESULTS No significant differences in brain weight were found in suicide victims compared to those of the control group. CONCLUSIONS The brain weight depends on various parameters such as gender, age, body height, and weight. The selection criteria for suicide cases as well as for the corresponding control population are essential in evaluating the brain weight in suicide.
Collapse
|
24
|
Brauns S, Gollub RL, Walton E, Hass J, Smolka MN, White T, Wassink TH, Calhoun VD, Ehrlich S. Genetic variation in GAD1 is associated with cortical thickness in the parahippocampal gyrus. J Psychiatr Res 2013; 47:872-9. [PMID: 23566421 PMCID: PMC4115611 DOI: 10.1016/j.jpsychires.2013.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 03/10/2013] [Accepted: 03/11/2013] [Indexed: 01/09/2023]
Abstract
Patients with schizophrenia show widespread cortical thickness reductions throughout the brain. Likewise, reduced expression of the γ-Aminobutyric acid (GABA) synthesizing enzyme glutamic acid decarboxylase (GAD1) and a single nucleotide polymorphism (SNP) rs3749034 in the corresponding gene have been associated with schizophrenia. We tested whether this SNP is associated with reduced cortical thickness, an intermediate phenotype for schizophrenia. Because of the well known interactions between the GABAergic and dopaminergic systems, we examined whether associations between GAD1 rs3749034 and cortical thickness are modulated by the catechol-O-methyltransferase (COMT) Val158Met genotype. Structural MRI and genotype data was obtained from 94 healthy subjects enrolled in the Mind Clinical Imaging Consortium study to examine the relations between GAD1 genotype and cortical thickness. Our data show a robust reduction of cortical thickness in the left parahippocampal gyrus (PHG) in G allele homozygotes of GAD1 rs3749034. When we stratified our analyses according to the COMT Val158Met genotype, cortical thickness reductions of G allele homozygotes were only found in the presence of the Val allele. Genetic risk variants of schizophrenia in the GABAergic system might interact with the dopaminergic system and impact brain structure and functioning. Our findings point to the importance of the GABAergic system in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Stefan Brauns
- Department of Child and Adolescent Psychiatry, TU Dresden, Germany,MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA,Department of Psychiatry, Charité University Medicine, Berlin, Germany
| | - Randy L. Gollub
- MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA,Harvard Medical School, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Esther Walton
- Department of Child and Adolescent Psychiatry, TU Dresden, Germany,MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Johanna Hass
- Department of Child and Adolescent Psychiatry, TU Dresden, Germany
| | - Michael N. Smolka
- Department of Psychiatry, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Tonya White
- Department of Child Psychiatry, Erasmus MC – Sophia, Rotterdam, Netherlands
| | | | - Vince D. Calhoun
- The Mind Research Network, Albuquerque, NM, USA,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA
| | - Stefan Ehrlich
- Department of Child and Adolescent Psychiatry, TU Dresden, Germany,MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA,Harvard Medical School, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA,Corresponding author. Dresden University of Technology, University Hospital Carl Gustav Carus, Department of Child and Adolescent Psychiatry, Translational Developmental Neuroscience Section, Fetscherstraβe 74, 01307 Dresden, Germany. Tel.: +49 (0)351 458 5095; fax: +49 (0)351 458 5754. (S. Ehrlich)
| |
Collapse
|
25
|
Juan LW, Liao CC, Lai WS, Chang CY, Pei JC, Wong WR, Liu CM, Hwu HG, Lee LJ. Phenotypic characterization of C57BL/6J mice carrying the Disc1 gene from the 129S6/SvEv strain. Brain Struct Funct 2013; 219:1417-31. [PMID: 23689501 DOI: 10.1007/s00429-013-0577-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 05/10/2013] [Indexed: 02/07/2023]
Abstract
Disruption of disrupted-in-schizophrenia 1 (DISC1), a candidate susceptibility gene for schizophrenia, was first identified in a large Scottish family in which many members suffered from various psychiatric disorders, including schizophrenia. To model the Scottish DISC1 truncation, we established a Disc1 mutant mouse line in which the 129S6/SvEv 25-bp deletion variant was transferred into the C57BL/6J strain by backcrossing. A battery of behavioral tasks was conducted to evaluate the basic behaviors and cognitive function of these mice. In heterozygote and homozygote Disc1 mutant (Het and Homo) mice, behavioral impairments were noted in working memory test which is thought to be mediated by the function of the medial prefrontal cortex (mPFC). The properties of mPFC neurons were characterized in both morphological and physiological aspects. The dendritic diameters were decreased in layer II/III mPFC pyramidal neurons of Het and Homo mice, whereas a significant reduction in spine density was observed in Homo mice. Neuronal excitability was declined in layer II/III mPFC pyramidal neurons of Het and Homo mice, yet increased transmitter release was identified in Homo mice. Thus, the structural and functional alterations of the mPFC in Het and Homo mice might account for their cognitive impairment. Since most of the gene knockout mice are generated from 129 substrain-derived embryonic stem cells, potential Disc1 deficiency should be considered.
Collapse
Affiliation(s)
- Liang-Wen Juan
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Ren-Ai Rd, Section 1, Taipei, 100, Taiwan, ROC
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hu M, Li J, Eyler L, Guo X, Wei Q, Tang J, Liu F, He Z, Li L, Jin H, Liu Z, Wang J, Liu F, Chen H, Zhao J. Decreased left middle temporal gyrus volume in antipsychotic drug-naive, first-episode schizophrenia patients and their healthy unaffected siblings. Schizophr Res 2013; 144:37-42. [PMID: 23360727 DOI: 10.1016/j.schres.2012.12.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 12/06/2012] [Accepted: 12/19/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND The shared neuropathological characteristics of patients with schizophrenia and their siblings might represent intermediate phenotypes that could be used to investigate genetic susceptibility to the illness. We sought to discover gray matter volume differences in patients with schizophrenia and their unaffected siblings with voxel-based morphometry (VBM). METHODS We recruited antipsychotic drug-naive, first-episode schizophrenia (FES) patients, their unaffected siblings and age-, sex- and handedness-matched healthy controls. We used VBM to investigate differences in gray matter volume among the 3 groups. RESULTS There were significant gray matter volumetric differences among the 3 groups in bilateral hippocampal and parahippocampal gyri, bilateral middle temporal gyri, and superior temporal gyri (FDR p<0.05). Patients had significant regional gray matter reduction in all regions listed above compared with healthy volunteers, and their gray matter volume in the right hippocampus and parahippocampus was also lower than the sibling group. The sibling group had significantly lower volumes compared to healthy individuals only in the left middle temporal gyrus, and volume of this region was not different between siblings and patients. CONCLUSIONS Our findings confirm and extend previous VBM analyses in schizophrenia and it indicate that schizophrenia may be characterized by an abnormal development of cerebral lateralization. Furthermore, these data argue that patients and their unaffected siblings might share decreases in the gray matter volume of the left middle temporal gyrus, and this regional reduction might be a potential endophenotype for schizophrenia.
Collapse
Affiliation(s)
- Maorong Hu
- Mental Health Institute of The Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan 410011, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pepe A, Zhao L, Koikkalainen J, Hietala J, Ruotsalainen U, Tohka J. Automatic statistical shape analysis of cerebral asymmetry in 3D T1-weighted magnetic resonance images at vertex-level: application to neuroleptic-naïve schizophrenia. Magn Reson Imaging 2013; 31:676-87. [PMID: 23337078 DOI: 10.1016/j.mri.2012.10.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/30/2012] [Accepted: 10/30/2012] [Indexed: 12/13/2022]
Abstract
The study of the structural asymmetries in the human brain can assist the early diagnosis and progression of various neuropsychiatric disorders, and give insights into the biological bases of several cognitive deficits. The high inter-subject variability in cortical morphology complicates the detection of abnormal asymmetries especially if only small samples are available. This work introduces a novel automatic method for the local (vertex-level) statistical shape analysis of gross cerebral hemispheric surface asymmetries which is robust to the individual cortical variations. After segmentation of the cerebral hemispheric volumes from three-dimensional (3D) T1-weighted magnetic resonance images (MRI) and their spatial normalization to a common space, the right hemispheric masks were reflected to match with the left ones. Cerebral hemispheric surfaces were extracted using a deformable model-based algorithm which extracted the salient morphological features while establishing the point correspondence between the surfaces. The interhemispheric asymmetry, quantified by customized measures of asymmetry, was evaluated in a few thousands of corresponding surface vertices and tested for statistical significance. The developed method was tested on scans obtained from a small sample of healthy volunteers and first-episode neuroleptic-naïve schizophrenics. A significant main effect of the disease on the local interhemispheric asymmetry was observed, both in females and males, at the frontal and temporal lobes, the latter being often linked to the cognitive, auditory, and memory deficits in schizophrenia. The findings of this study, although need further testing in larger samples, partially replicate previous studies supporting the hypothesis of schizophrenia as a neurodevelopmental disorder.
Collapse
Affiliation(s)
- Antonietta Pepe
- Department of Signal Processing, Tampere University of Technology, PO Box 553, FIN-33101 Tampere, Finland.
| | | | | | | | | | | |
Collapse
|
28
|
van der Kemp WJM, Klomp DWJ, Kahn RS, Luijten PR, Hulshoff Pol HE. A meta-analysis of the polyunsaturated fatty acid composition of erythrocyte membranes in schizophrenia. Schizophr Res 2012; 141:153-61. [PMID: 22981812 DOI: 10.1016/j.schres.2012.08.014] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 11/17/2022]
Abstract
BACKGROUND Membrane abnormalities in polyunsaturated fatty acids (PUFAs) have been reported in schizophrenia and have been associated with brain tissue loss in normal ageing. Therefore PUFA may be involved in the excessive brain tissue loss reported in schizophrenia. METHODS A systematic MEDLINE database search was conducted to identify studies that compared PUFAs in erythrocyte membranes in patients and controls. Patients were categorized by medication regime in medication naive first-episode patients, and patients receiving typical or atypical antipsychotics. SAMPLE Fourteen studies were included, comprising a total of 429 patients with schizophrenia and 444 healthy control subjects. Cohen's d effect sizes were calculated for PUFAs in erythrocyte membranes using the random-effects model. Combined Cohen's d was calculated separately for patients on different medication regime. RESULTS Medication-naive patients and patients taking typical antipsychotics showed significantly (p<0.01) decreased concentrations of arachidonic (AA), docosahexaenoic (DHA), and docosapentaenoic (DPA) acid. In addition, patients taking typical antipsychotics showed decreased linoleic (LA), dihomo-γ-linolenic acid (DGLA), eicosapentaenoic (EPA) and docosatetraenoic (DTA) acid (p<0.01). Patients taking atypical antipsychotics showed decreased DHA (p<0.01) only. CONCLUSIONS PUFA concentrations in erythrocyte membranes are decreased in schizophrenia. Of particular importance in patients are lower concentrations of DHA and AA, two fatty acids that are abundant in the brain and important precursors in the cell-signalling cascade.
Collapse
Affiliation(s)
- W J M van der Kemp
- Image Sciences Institute, Department of Radiology, University Medical Center Utrecht, The Netherlands, P.O. Box 85500, 3508 GA Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
29
|
|
30
|
Wible CG. Hippocampal temporal-parietal junction interaction in the production of psychotic symptoms: a framework for understanding the schizophrenic syndrome. Front Hum Neurosci 2012; 6:180. [PMID: 22737114 PMCID: PMC3381447 DOI: 10.3389/fnhum.2012.00180] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/01/2012] [Indexed: 11/25/2022] Open
Abstract
A framework is described for understanding the schizophrenic syndrome at the brain systems level. It is hypothesized that over-activation of dynamic gesture and social perceptual processes in the temporal-parietal occipital junction (TPJ), posterior superior temporal sulcus (PSTS) and surrounding regions produce the syndrome (including positive and negative symptoms, their prevalence, prodromal signs, and cognitive deficits). Hippocampal system hyper-activity and atrophy have been consistently found in schizophrenia. Hippocampal activity is highly correlated with activity in the TPJ and may be a source of over-excitation of the TPJ and surrounding regions. Strong evidence for this comes from in-vivo recordings in humans during psychotic episodes. Many positive symptoms of schizophrenia can be reframed as the erroneous sense of a presence or other who is observing, acting, speaking, or controlling; these qualia are similar to those evoked during abnormal activation of the TPJ. The TPJ and PSTS play a key role in the perception (and production) of dynamic social, emotional, and attentional gestures for the self and others (e.g., body/face/eye gestures, audiovisual speech and prosody, and social attentional gestures such as eye gaze). The single cell representation of dynamic gestures is multimodal (auditory, visual, tactile), matching the predominant hallucinatory categories in schizophrenia. Inherent in the single cell perceptual signal of dynamic gesture representations is a computation of intention, agency, and anticipation or expectancy (for the self and others). Stimulation of the TPJ resulting in activation of the self representation has been shown to result a feeling of a presence or multiple presences (due to heautoscopy) and also bizarre tactile experiences. Neurons in the TPJ are also tuned, or biased to detect threat related emotions. Abnormal over-activation in this system could produce the conscious hallucination of a voice (audiovisual speech), a person or a touch. Over-activation could interfere with attentional/emotional gesture perception and production (negative symptoms). It could produce the unconscious feeling of being watched, followed, or of a social situation unfolding along with accompanying abnormal perception of intent and agency (delusions). Abnormal activity in the TPJ would also be predicted to create several cognitive disturbances that are characteristic of schizophrenia, including abnormalities in attention, predictive social processing, working memory, and a bias to erroneously perceive threat.
Collapse
Affiliation(s)
- Cynthia G Wible
- Laboratory for Neuroscience, Department of Psychiatry, Harvard Medical School, Brockton MA, USA
| |
Collapse
|
31
|
Agnati LF, Barlow P, Ghidoni R, Borroto-Escuela DO, Guidolin D, Fuxe K. Possible genetic and epigenetic links between human inner speech, schizophrenia and altruism. Brain Res 2012; 1476:38-57. [PMID: 22483963 DOI: 10.1016/j.brainres.2012.02.074] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 02/29/2012] [Accepted: 02/29/2012] [Indexed: 11/19/2022]
Abstract
Unique mental abilities have been crucial for evolutionary success of Homo sapiens and for the development of his complex social organization. However, these abilities have also become a target for mental disorders which often result in a reduced fitness and in conflicts between the individual and the conventions of society. To account for this evolutionary maladaptation, we advance a new concept: that of "mis-exaptation", derived from SJ Gould and E Vrba's concept of exaptation. Mis-exaptation is a characteristic which, although it may confer positive effects in one field of activity, may reach an inappropriate degree of specialisation to have deleterious effects in that or in another field thereby leading to a decrease in fitness of the individual. This paper considers "inner speech" as an exaptation. Although inner speech is usually a positive aid to learning and reasoning, it may also favour the emergence of mental disturbances, such as the auditory hallucinations which are characteristic of schizophrenia. There is, nevertheless, a possible evolutionary value in mis-exaptational inner speech; two traits associated with the mis-exapted state would be altruistic behaviour and heightened creativity, the latter being over-expressed in relatives of schizophrenic patients. A possible solution for the evolutionary-genetic paradox posed by altruism and schizophrenia arising from mis-exaptation will be suggested in the light of a cryptic genetic repertoire. A selection of illustrative examples of each of these mental states is presented as they appear in the pages of the European literature. This article is part of a Special Issue entitled: Brain Integration.
Collapse
|
32
|
|
33
|
|
34
|
|
35
|
How does the physiology change with symptom exacerbation and remission in schizophrenia? Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00065122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
|
37
|
|
38
|
|
39
|
|
40
|
A cardinal principle for neuropsychology, with implications for schizophrenia and mania. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00065195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
|
42
|
|
43
|
|
44
|
|
45
|
|
46
|
|
47
|
|
48
|
|
49
|
|
50
|
Abstract
AbstractA model is proposed for integrating the neural and cognitive aspects of the positive symptoms of acute schizophrenia, using evidence from postmortem neuropathology and neurochemistry, clinical and preclinical studies of dopaminergic neurotransmission, anatomical connections between the limbic system and basal ganglia, attentional and other cognitive abnormalities underlying the positive symptoms of schizophrenia, specific animal models of some of these abnormalities, and previous attempts to model the cognitive functions of the septohippocampal system and the motor functions of the basal ganglia. Anatomically, the model emphasises the projections from the septohippocampal system, via the subiculum, and the amygdala to nucleus accumbens, and their interaction with the ascending dopaminergic projection to the accumbens. Psychologically, the model emphasises a failure in acute schizophrenia to integrate stored memories of past regularities of perceptual input with ongoing motor programs in the control of current perception. A number of recent experiments that offer support for the model are briefly described, including anatomical studies of limbic-striatal connections, studies in the rat of the effects of damage to these connections, and of the effects of amphetamine and neuroleptics, on the partial reinforcement extinction effect, latent inhibition and the Kamin blocking effect; and studies of the latter two phenomena in acute and chronic schizophrenics.
Collapse
|