1
|
Jacobs GR, Coleman MJ, Lewandowski KE, Pasternak O, Cetin-Karayumak S, Mesholam-Gately RI, Wojcik J, Kennedy L, Knyazhanskaya E, Reid B, Swago S, Lyons MG, Rizzoni E, John O, Carrington H, Kim N, Kotler E, Veale S, Haidar A, Prunier N, Haaf M, Levitt JJ, Seitz-Holland J, Rathi Y, Kubicki M, Keshavan MS, Holt DJ, Seidman LJ, Öngür D, Breier A, Bouix S, Shenton ME. An Introduction to the Human Connectome Project for Early Psychosis. Schizophr Bull 2024:sbae123. [PMID: 39036958 DOI: 10.1093/schbul/sbae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
BACKGROUND The time following a recent onset of psychosis is a critical period during which intervention may be maximally effective. Studying individuals in this period also offers an opportunity to investigate putative brain biomarkers of illness prior to the long-term effects of chronicity and medication. The Human Connectome Project for Early Psychosis (HCP-EP) was funded by the National Institutes of Mental Health (NIMH) as an extension of the original Human Connectome Project's approach to understanding the human brain and its structural and functional connections. DESIGN The HCP-EP data were collected at 3 sites in Massachusetts (Beth Israel Deaconess Medical Center, McLean Hospital, and Massachusetts General Hospital), and one site in Indiana (Indiana University). Brigham and Women's Hospital served as the data coordination center and as an imaging site. RESULTS The HCP-EP dataset includes high-quality clinical, cognitive, functional, neuroimaging, and blood specimen data acquired from 303 individuals between the ages of 16-35 years old with affective psychosis (n = 75), non-affective psychosis (n = 148), and healthy controls (n = 80). Participants with early psychosis were within 5 years of illness onset (mean duration = 1.9 years, standard deviation = 1.4 years). All data and novel or modified analytic tools developed as part of the study are publicly available to the research community through the NIMH Data Archive (NDA) or GitHub (https://github.com/pnlbwh). CONCLUSIONS This paper provides an overview of the specific HCP-EP procedures, assessments, and protocols, as well as a brief characterization of the study participants to make it easier for researchers to use this rich dataset. Although we focus here on discussing and comparing affective and non-affective psychosis groups, the HCP-EP dataset also provides sufficient information for investigators to group participants differently.
Collapse
Affiliation(s)
- Grace R Jacobs
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael J Coleman
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Ofer Pasternak
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Suheyla Cetin-Karayumak
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Raquelle I Mesholam-Gately
- Massachusetts Mental Health Center Public Psychiatry Division, Department of Psychiatry, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Joanne Wojcik
- Massachusetts Mental Health Center Public Psychiatry Division, Department of Psychiatry, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Leda Kennedy
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Evdokiya Knyazhanskaya
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin Reid
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sophia Swago
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Monica G Lyons
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elizabeth Rizzoni
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Omar John
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Holly Carrington
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicholas Kim
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elana Kotler
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Simone Veale
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anastasia Haidar
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicholas Prunier
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Moritz Haaf
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - James J Levitt
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, VA Boston Healthcare System, Brockton Division, Brockton, MA, United States
| | - Johanna Seitz-Holland
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yogesh Rathi
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marek Kubicki
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Matcheri S Keshavan
- Massachusetts Mental Health Center Public Psychiatry Division, Department of Psychiatry, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Daphne J Holt
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Larry J Seidman
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts Mental Health Center Public Psychiatry Division, Department of Psychiatry, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Dost Öngür
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Alan Breier
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sylvain Bouix
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Software Engineering and Information Technology, École de Technologie Supérieure, Université du Québec, Montréal, QC, Canada
| | - Martha E Shenton
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Salisbury DF, Wulf BM, Seebold D, Coffman BA, Curtis MT, Karim HT. Predicted Brain Age in First-Episode Psychosis: Association with Inexpressivity. Brain Sci 2024; 14:532. [PMID: 38928532 PMCID: PMC11201938 DOI: 10.3390/brainsci14060532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Accelerated brain aging is a possible mechanism of pathology in schizophrenia. Advances in MRI-based brain development algorithms allow for the calculation of predicted brain age (PBA) for individuals. Here, we assessed PBA in 70 first-episode schizophrenia-spectrum individuals (FESz) and 76 matched healthy neurotypical comparison individuals (HC) to determine if FESz showed advanced aging proximal to psychosis onset and whether PBA was associated with neurocognitive, social functioning, or symptom severity measures. PBA was calculated with BrainAgeR (v2.1) from T1-weighted MR scans. There were no differences in the PBAs between groups. After controlling for actual age, a "younger" PBA was associated with higher vocabulary scores among all individuals, while an "older" PBA was associated with more severe negative symptom "Inexpressivity" component scores among FESz. Female participants in both groups had an elevated PBA relative to male participants. These results suggest that a relatively younger brain age is associated with a better semantic memory performance. There is no evidence for accelerated aging in FESz with a late adolescent/early adult onset. Despite a normative PBA, FESz with a greater residual PBA showed impairments in a cluster of negative symptoms, which may indicate some underlying age-related pathology proximal to psychosis onset. Although a period of accelerated aging cannot be ruled out with disease course, it does not occur at the time of the first episode.
Collapse
Affiliation(s)
- Dean F. Salisbury
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Brian M. Wulf
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Dylan Seebold
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Brian A. Coffman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mark T. Curtis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Helmet T. Karim
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
3
|
López-Caballero F, Curtis M, Coffman BA, Salisbury DF. Is source-resolved magnetoencephalographic mismatch negativity a viable biomarker for early psychosis? Eur J Neurosci 2024; 59:1889-1906. [PMID: 37537883 PMCID: PMC10837325 DOI: 10.1111/ejn.16107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/04/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Mismatch negativity (MMN) is an auditory event-related response reflecting the pre-attentive detection of novel stimuli and is a biomarker of cortical dysfunction in schizophrenia (SZ). MMN to pitch (pMMN) and to duration (dMMN) deviant stimuli are impaired in chronic SZ, but it is less clear if MMN is reduced in first-episode SZ, with inconsistent findings in scalp-level EEG studies. Here, we investigated the neural generators of pMMN and dMMN with MEG recordings in 26 first-episode schizophrenia spectrum (FEsz) and 26 matched healthy controls (C). We projected MEG inverse solutions into precise functionally meaningful auditory cortex areas. MEG-derived MMN sources were in bilateral primary auditory cortex (A1) and belt areas. In A1, pMMN FEsz reduction showed a trend towards statistical significance (F(1,50) = 3.31; p = .07), and dMMN was reduced in FEsz (F(1,50) = 4.11; p = .04). Hypothesis-driven comparisons at each hemisphere revealed dMMN reduction in FEsz occurred in the left (t(56) = 2.23; p = .03; d = .61) but not right (t(56) = 1.02; p = .31; d = .28) hemisphere, with a moderate effect size. The added precision of MEG source solution with high-resolution MRI and parcellation of A1 may be requisite to detect the emerging pathophysiology and indicates a critical role for left hemisphere pathology at psychosis onset. However, the moderate effect size in left A1, albeit larger than reported in scalp MMN meta-analyses, casts doubt on the clinical utility of MMN for differential diagnosis, as a majority of patients will overlap with the healthy individual's distribution.
Collapse
Affiliation(s)
- Fran López-Caballero
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mark Curtis
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Brian A Coffman
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dean F Salisbury
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Slováková A, Kúdelka J, Škoch A, Jakob L, Fialová M, Fürstová P, Bakštein E, Bankovská Motlová L, Knytl P, Španiel F. Time is the enemy: Negative symptoms are related to even slight differences in the duration of untreated psychosis. Compr Psychiatry 2024; 130:152450. [PMID: 38241816 DOI: 10.1016/j.comppsych.2024.152450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/26/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Negative symptoms (NS) represent a detrimental symptomatic domain in schizophrenia affecting social and occupational outcomes. AIMS We aimed to identify factors from the baseline visit (V1) - with a mean illness duration of 0.47 years (SD = 0.45) - that predict the magnitude of NS at the follow-up visit (V3), occurring 4.4 years later (mean +/- 0.45). METHOD Using longitudinal data from 77 first-episode schizophrenia spectrum patients, we analysed eight predictors of NS severity at V3: (1) the age at disease onset, (2) age at V1, (3) sex, (4) diagnosis, (5) NS severity at V1, (6) the dose of antipsychotic medication at V3, (7) hospitalisation days before V1 and; (8) the duration of untreated psychosis /DUP/). Secondly, using a multiple linear regression model, we studied the longitudinal relationship between such identified predictors and NS severity at V3 using a multiple linear regression model. RESULTS DUP (Pearson's r = 0.37, p = 0.001) and NS severity at V1 (Pearson's r = 0.49, p < 0.001) survived correction for multiple comparisons. The logarithmic-like relationship between DUP and NS was responsible for the initial stunning incremental contribution of DUP to the severity of NS. For DUP < 6 months, with the sharpest DUP/NS correlation, prolonging DUP by five days resulted in a measurable one-point increase in the 6-item negative symptoms PANSS domain assessed 4.9 (+/- 0.6) years after the illness onset. Prolongation of DUP to 14.7 days doubled this NS gain, whereas 39 days longer DUP tripled NS increase. CONCLUSION The results suggest the petrification of NS during the early stages of the schizophrenia spectrum and a crucial dependence of this symptom domain on DUP. These findings are clinically significant and highlight the need for primary preventive actions.
Collapse
Affiliation(s)
- Andrea Slováková
- National Institute of Mental Health, Klecany, Czech Republic; 3rd Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Jan Kúdelka
- National Institute of Mental Health, Klecany, Czech Republic
| | - Antonín Škoch
- National Institute of Mental Health, Klecany, Czech Republic; Institute for Clinical and Experimental Medicine, Department of Diagnostic and Interventional Radiology, Prague, Czech Republic.
| | - Lea Jakob
- National Institute of Mental Health, Klecany, Czech Republic.
| | - Markéta Fialová
- National Institute of Mental Health, Klecany, Czech Republic; 3rd Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Petra Fürstová
- National Institute of Mental Health, Klecany, Czech Republic.
| | - Eduard Bakštein
- National Institute of Mental Health, Klecany, Czech Republic.
| | | | - Pavel Knytl
- National Institute of Mental Health, Klecany, Czech Republic.
| | - Filip Španiel
- National Institute of Mental Health, Klecany, Czech Republic; 3rd Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
5
|
Saccaro LF, Mallet C, Wullschleger A, Sabé M. Psychiatric manifestations in moyamoya disease: more than a puff of smoke? a systematic review and a case-reports meta-analysis. Front Psychiatry 2024; 15:1371763. [PMID: 38585478 PMCID: PMC10995700 DOI: 10.3389/fpsyt.2024.1371763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Moyamoya disease (MMD) is a life-threatening condition characterized by stenosis of intracranial arteries. Despite the frequency and the impact of psychiatric symptoms on the long-term prognosis and quality of life of MMD patients, no systematic review on this topic exists. Methods This systematic review and meta-analysis included 41 studies (29 being case reports), from PubMed, Scopus, Embase until 27/3/2023, on MMD patients exhibiting psychiatric symptoms. Results Despite a fair average quality of the articles, quantitative synthesis through logistic regression was possible only for case reports, due to heterogeneity between the other studies. Psychosis, the most frequent psychiatric symptom reported in case reports, was more frequent in MMD patients with left hemisphere involvement. Neurological symptoms occurrence increased the odds of MMD diagnosis preceding psychiatric symptoms. Psychiatric symptoms are highly prevalent in MMD patients and are relatively often the only presenting symptoms. Discussion We discuss the diagnostic, therapeutic, and prognostic implications of recognizing and characterizing specific psychiatric symptoms in MMD, outlining preliminary guidelines for targeted pharmacological and psychotherapeutic interventions. Lastly, we outline future research and clinical perspectives, striving to enhance the oft-overlooked psychiatric care for MMD patients and to ameliorate their long-term outcome. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023406303.
Collapse
Affiliation(s)
- Luigi F. Saccaro
- Psychiatry Department, Geneva University Hospital, Geneva, Switzerland
- Psychiatry Department, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Clément Mallet
- Psychiatry Department, Geneva University Hospital, Geneva, Switzerland
| | - Alexandre Wullschleger
- Psychiatry Department, Geneva University Hospital, Geneva, Switzerland
- Psychiatry Department, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Michel Sabé
- Psychiatry Department, Geneva University Hospital, Geneva, Switzerland
- Psychiatry Department, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Salisbury DF, Seebold D, Longenecker JM, Coffman BA, Yeh FC. White matter tracts differentially associated with auditory hallucinations in first-episode psychosis: A correlational tractography diffusion spectrum imaging study. Schizophr Res 2024; 265:4-13. [PMID: 37321880 PMCID: PMC10719419 DOI: 10.1016/j.schres.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/17/2023]
Abstract
Auditory hallucinations (AH) are a debilitating symptom in psychosis, impacting cognition and real world functioning. Recent thought conceptualizes AH as a consequence of long-range brain communication dysfunction, or circuitopathy, within the auditory sensory/perceptual, language, and cognitive control systems. Recently we showed in first-episode psychosis (FEP) that, despite overall intact white matter integrity in the cortical-cortical and cortical-subcortical language tracts and the callosal tracts connecting auditory cortices, the severity of AH correlated inversely with white matter integrity. However, that hypothesis-driven isolation of specific tracts likely missed important white matter concomitants of AH. In this report, we used a whole-brain data-driven dimensional approach using correlational tractography to associate AH severity with white matter integrity in a sample of 175 individuals. Diffusion Spectrum Imaging (DSI) was used to image diffusion distribution. Quantitative Anisotropy (QA) in three tracts was greater with increased AH severity (FDR < 0.001) and QA in three tracts was lower with increased AH severity (FDR < 0.01). White matter tracts showing associations between QA and AH were generally associated with frontal-parietal-temporal connectivity (tracts with known relevance for cognitive control and the language system), in the cingulum bundle, and in prefrontal inter-hemispheric connectivity. The results of this whole brain data-driven analysis suggest that subtle white matter alterations connecting frontal, parietal, and temporal lobes in the service of sensory-perceptual, language/semantic, and cognitive control processes impact the expression of auditory hallucination in FEP. Disentangling the distributed neural circuits involved in AH should help to develop novel interventions, such as non-invasive brain stimulation.
Collapse
Affiliation(s)
- Dean F Salisbury
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Dylan Seebold
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Julia M Longenecker
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; VISN 4 Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Brian A Coffman
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fang-Chen Yeh
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Molnár H, Marosi C, Becske M, Békési E, Farkas K, Stefanics G, Czigler I, Csukly G. A comparison of visual and acoustic mismatch negativity as potential biomarkers in schizophrenia. Sci Rep 2024; 14:992. [PMID: 38200103 PMCID: PMC10782025 DOI: 10.1038/s41598-023-49983-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Mismatch negativity (MMN) is an event-related potential (ERP) component generated when an unexpected deviant stimulus occurs in a pattern of standard stimuli. Several studies showed that the MMN response to both auditory and visual stimuli is attenuated in schizophrenia. While previous studies investigated auditory and visual MMN in different cohorts, here we examined the potential clinical utility of MMN responses to auditory and visual stimuli within the same group of patients. Altogether 39 patients with schizophrenia and 39 healthy controls matched in age, gender, and education were enrolled. We recorded EEG using 64 channels in eight experimental blocks where we presented auditory and visual stimulus sequences. Mismatch responses were obtained by subtracting responses to standard from the physically identical deviant stimuli. We found a significant MMN response to the acoustic stimuli in the control group, whereas no significant mismatch response was observed in the patient group. The group difference was significant for the acoustic stimuli. The 12 vane windmill pattern evoked a significant MMN response in the early time window in the control group but not in the patient group. The 6 vane windmill pattern evoked MMN only in the patient group. However, we found no significant difference between the groups. Furthermore, we found no correlation between the clinical variables and the MMN amplitudes. Our results suggest that predictive processes underlying mismatch generation in patients with schizophrenia may be more affected in the acoustic compared to the visual domain. Acoustic MMN tends to be a more promising biomarker in schizophrenia.
Collapse
Affiliation(s)
- Hajnalka Molnár
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Csilla Marosi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Melinda Becske
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Emese Békési
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Kinga Farkas
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Gábor Stefanics
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - István Czigler
- Institute of Cognitive Neuroscience and Psychology, RCNS, HU-RES, Budapest, Hungary
| | - Gábor Csukly
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
8
|
Jornkokgoud K, Baggio T, Faysal M, Bakiaj R, Wongupparaj P, Job R, Grecucci A. Predicting narcissistic personality traits from brain and psychological features: A supervised machine learning approach. Soc Neurosci 2023; 18:257-270. [PMID: 37497589 DOI: 10.1080/17470919.2023.2242094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 06/28/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
Narcissism is a multifaceted construct often linked to pathological conditions whose neural correlates are still poorly understood. Previous studies have reported inconsistent findings related to the neural underpinnings of narcissism, probably due to methodological limitations such as the low number of participants or the use of mass univariate methods. The present study aimed to overcome the previous methodological limitations and to build a predictive model of narcissistic traits based on neural and psychological features. In this respect, two machine learning-based methods (Kernel Ridge Regression and Support Vector Regression) were used to predict narcissistic traits from brain structural organization and from other relevant normal and abnormal personality features. Results showed that a circuit including the lateral and middle frontal gyri, the angular gyrus, Rolandic operculum, and Heschl's gyrus successfully predicted narcissistic personality traits (p < 0.003). Moreover, narcissistic traits were predicted by normal (openness, agreeableness, conscientiousness) and abnormal (borderline, antisocial, insecure, addicted, negativistic, machiavellianism) personality traits. This study is the first to predict narcissistic personality traits via a supervised machine learning approach. As such, these results may expand the possibility of deriving personality traits from neural and psychological features.
Collapse
Affiliation(s)
- Khanitin Jornkokgoud
- Cognitive Science and Innovation Research Unit (CSIRU), College of Research Methodology and Cognitive Science (RMCS), Burapha University, Chonburi, Thailand
| | - Teresa Baggio
- Department of Psychology and Cognitive Sciences (DiPSCo), University of Trento, Rovereto, Italy
| | - Md Faysal
- Department of Psychology and Cognitive Sciences (DiPSCo), University of Trento, Rovereto, Italy
| | - Richard Bakiaj
- Department of Psychology and Cognitive Sciences (DiPSCo), University of Trento, Rovereto, Italy
| | - Peera Wongupparaj
- Cognitive Science and Innovation Research Unit (CSIRU), College of Research Methodology and Cognitive Science (RMCS), Burapha University, Chonburi, Thailand
| | - Remo Job
- Department of Psychology and Cognitive Sciences (DiPSCo), University of Trento, Rovereto, Italy
- Centre for Medical Sciences (CISMed), University of Trento, Trento, Italy
| | - Alessandro Grecucci
- Department of Psychology and Cognitive Sciences (DiPSCo), University of Trento, Rovereto, Italy
- Centre for Medical Sciences (CISMed), University of Trento, Trento, Italy
| |
Collapse
|
9
|
Sauer A, Grent-'t-Jong T, Zeev-Wolf M, Singer W, Goldstein A, Uhlhaas PJ. Spectral and phase-coherence correlates of impaired auditory mismatch negativity (MMN) in schizophrenia: A MEG study. Schizophr Res 2023; 261:60-71. [PMID: 37708723 DOI: 10.1016/j.schres.2023.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/21/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Reduced auditory mismatch negativity (MMN) is robustly impaired in schizophrenia. However, mechanisms underlying dysfunctional MMN generation remain incompletely understood. This study aimed to examine the role of evoked spectral power and phase-coherence towards deviance detection and its impairments in schizophrenia. METHODS Magnetoencephalography data was collected in 16 male schizophrenia patients and 16 male control participants during an auditory MMN paradigm. Analyses of event-related fields (ERF), spectral power and inter-trial phase-coherence (ITPC) focused on Heschl's gyrus, superior temporal gyrus, inferior/medial frontal gyrus and thalamus. RESULTS MMNm ERF amplitudes were reduced in patients in temporal, frontal and subcortical regions, accompanied by decreased theta-band responses, as well as by a diminished gamma-band response in auditory cortex. At theta/alpha frequencies, ITPC to deviant tones was reduced in patients in frontal cortex and thalamus. Patients were also characterized by aberrant responses to standard tones as indexed by reduced theta-/alpha-band power and ITPC in temporal and frontal regions. Moreover, stimulus-specific adaptation was decreased at theta/alpha frequencies in left temporal regions, which correlated with reduced MMNm spectral power and ERF amplitude. Finally, phase-reset of alpha-oscillations after deviant tones in left thalamus was impaired, which correlated with impaired MMNm generation in auditory cortex. Importantly, both non-rhythmic and rhythmic components of spectral activity contributed to the MMNm response. CONCLUSIONS Our data indicate that deficits in theta-/alpha- and gamma-band activity in cortical and subcortical regions as well as impaired spectral responses to standard sounds could constitute potential mechanisms for dysfunctional MMN generation in schizophrenia, providing a novel perspective towards MMN deficits in the disorder.
Collapse
Affiliation(s)
- Andreas Sauer
- Max Planck Institute for Brain Research, Max-von-Laue-Straße 4, 60438 Frankfurt am Main, Germany; Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstr. 46, 60528 Frankfurt am Main, Germany
| | - Tineke Grent-'t-Jong
- Department of Child and Adolescent Psychiatry, Charité-Universitätsmedizin Berlin, Augustenburgerplatz 1, 13353 Berlin, Germany; Institute of Neuroscience and Psychology, University of Glasgow, 58 Hillhead Street, G12 8QB Glasgow, Scotland, United Kingdom of Great Britain and Northern Ireland
| | - Maor Zeev-Wolf
- Department of Education and Zlotowski Center for Neuroscience, Ben Gurion University of the Negev, Beer Sheva 84105, Israel; Gonda Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Wolf Singer
- Max Planck Institute for Brain Research, Max-von-Laue-Straße 4, 60438 Frankfurt am Main, Germany; Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstr. 46, 60528 Frankfurt am Main, Germany; Frankfurt Institute for Advanced Studies (FIAS), Ruth-Moufang-Straße 1, 60438 Frankfurt am Main, Germany
| | - Abraham Goldstein
- Gonda Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Peter J Uhlhaas
- Department of Child and Adolescent Psychiatry, Charité-Universitätsmedizin Berlin, Augustenburgerplatz 1, 13353 Berlin, Germany; Institute of Neuroscience and Psychology, University of Glasgow, 58 Hillhead Street, G12 8QB Glasgow, Scotland, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
10
|
Todd J, Salisbury D, Michie PT. Why mismatch negativity continues to hold potential in probing altered brain function in schizophrenia. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2023; 2:e144. [PMID: 38867817 PMCID: PMC11114358 DOI: 10.1002/pcn5.144] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 06/14/2024]
Abstract
The brain potential known as mismatch negativity (MMN) is one of the most studied indices of altered brain function in schizophrenia. This review looks at what has been learned about MMN in schizophrenia over the last three decades and why the level of interest and activity in this field of research remains strong. A diligent consideration of available evidence suggests that MMN can serve as a biomarker in schizophrenia, but perhaps not the kind of biomarker that early research supposed. This review concludes that MMN measurement is likely to be most useful as a monitoring and response biomarker enabling tracking of an underlying pathology and efficacy of interventions, respectively. The role of, and challenges presented by, pre-clinical models is discussed as well as the merits of different methodologies that can be brought to bear in pursuing a deeper understanding of pathophysiology that might explain smaller MMN in schizophrenia.
Collapse
Affiliation(s)
- Juanita Todd
- School of Psychological SciencesUniversity of NewcastleNewcastleNew South WalesAustralia
| | - Dean Salisbury
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Patricia T. Michie
- School of Psychological SciencesUniversity of NewcastleNewcastleNew South WalesAustralia
| |
Collapse
|
11
|
Hattori R, Irie K, Mori T, Tsurumi K, Murai T, Inadomi H. Sensory processing, autonomic nervous function, and social participation in people with mental illnesses. Hong Kong J Occup Ther 2023; 36:39-47. [PMID: 37332298 PMCID: PMC10273795 DOI: 10.1177/15691861231177355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/07/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction This study investigated the relationship between sensory processing, respiratory sinus arrhythmia, and social participation in people with psychiatric disorders. Method This study recruited 30 participants, primarily women, from a psychiatric university hospital with a mental health diagnosis listed in the Diagnostic and Statistical Manual of Mental Disorders Fifth Edition (mean age: 37.7 ± 16.0 years). Sensory processing, autonomic nervous function, and social participation were measured using the Adolescent/Adult Sensory Profile®, respiratory sinus arrhythmia, and World Health Organization Disability Assessment Schedule, respectively. Through mediation analysis, a model wherein sensory processing mediated the relationship between respiratory sinus arrhythmia and social participation was developed. Results Social participation was moderately to highly correlated with Adolescent/Adult Sensory Profile® quadrants (excluding sensory seeking) and respiratory sinus arrhythmia. Furthermore, the mediation analysis revealed that sensory avoiding mediated the relationship between respiratory sinus arrhythmia and social participation, consequently counteracting the direct relationship. Conclusion A mediation model was constructed, which indicated that individuals with psychiatric disorders and low parasympathetic nervous system activity expressed higher sensory processing quadrant of sensory avoiding. Ultimately, this was associated with reduced social participation.
Collapse
Affiliation(s)
- Ritsuko Hattori
- Department of Day Care Units, Hospital of Kyoto University, Kyoto, Japan
| | - Keisuke Irie
- Department of Advanced Occupational Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Taisuke Mori
- Department of Day Care Units, Hospital of Kyoto University, Kyoto, Japan
| | - Kosuke Tsurumi
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Inadomi
- Department of Advanced Occupational Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
12
|
Fivel L, Mondino M, Brunelin J, Haesebaert F. Basic auditory processing and its relationship with symptoms in patients with schizophrenia: A systematic review. Psychiatry Res 2023; 323:115144. [PMID: 36940586 DOI: 10.1016/j.psychres.2023.115144] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/09/2023] [Accepted: 03/01/2023] [Indexed: 03/23/2023]
Abstract
Processing of basic auditory features, one of the earliest stages of auditory perception, has been the focus of considerable investigations in schizophrenia. Although numerous studies have shown abnormalities in pitch perception in schizophrenia, other basic auditory features such as intensity, duration, and sound localization have been less explored. Additionally, the relationship between basic auditory features and symptom severity shows inconsistent results, preventing concrete conclusions. Our aim was to present a comprehensive overview of basic auditory processing in schizophrenia and its relationship with symptoms. We conducted a systematic review according to the PRISMA guidelines. PubMed, Embase, and PsycINFO databases were searched for studies exploring auditory perception in schizophrenia compared to controls, with at least one behavioral task investigating basic auditory processing using pure tones. Forty-one studies were included. The majority investigated pitch processing while the others investigated intensity, duration and sound localization. The results revealed that patients have a significant deficit in the processing of all basic auditory features. Although the search for a relationship with symptoms was limited, auditory hallucinations experience appears to have an impact on basic auditory processing. Further research may examine correlations with clinical symptoms to explore the performance of patient subgroups and possibly implement remediation strategies.
Collapse
Affiliation(s)
- Laure Fivel
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, PSYR2, Bron F-69500, France
| | - Marine Mondino
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, PSYR2, Bron F-69500, France; Centre Hospitalier Le Vinatier, 95 Boulevard Pinel, Bron F-69500, France.
| | - Jerome Brunelin
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, PSYR2, Bron F-69500, France; Centre Hospitalier Le Vinatier, 95 Boulevard Pinel, Bron F-69500, France
| | - Frédéric Haesebaert
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, PSYR2, Bron F-69500, France; Centre Hospitalier Le Vinatier, 95 Boulevard Pinel, Bron F-69500, France
| |
Collapse
|
13
|
Slapø NB, Nerland S, Nordbø Jørgensen K, Mørch-Johnsen L, Pettersen JH, Roelfs D, Parker N, Valstad M, Pentz A, Timpe CMF, Richard G, Beck D, Werner MCF, Lagerberg TV, Melle I, Agartz I, Westlye LT, Steen NE, Andreassen OA, Moberget T, Elvsåshagen T, Jönsson EG. Auditory Cortex Thickness Is Associated With N100 Amplitude in Schizophrenia Spectrum Disorders. SCHIZOPHRENIA BULLETIN OPEN 2023; 4:sgad015. [PMID: 38812720 PMCID: PMC7616042 DOI: 10.1093/schizbullopen/sgad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Background and Hypothesis The auditory cortex (AC) may play a central role in the pathophysiology of schizophrenia and auditory hallucinations (AH). Previous schizophrenia studies report thinner AC and impaired AC function, as indicated by decreased N100 amplitude of the auditory evoked potential. However, whether these structural and functional alterations link to AH in schizophrenia remain poorly understood. Study Design Patients with a schizophrenia spectrum disorder (SCZspect), including patients with a lifetime experience of AH (AH+), without (AH-), and healthy controls underwent magnetic resonance imaging (39 SCZspect, 22 AH+, 17 AH-, and 146 HC) and electroencephalography (33 SCZspect, 17 AH+, 16 AH-, and 144 HC). Cortical thickness of the primary (AC1, Heschl's gyrus) and secondary (AC2, Heschl's sulcus, and the planum temporale) AC was compared between SCZspect and controls and between AH+, AH-, and controls. To examine if the association between AC thickness and N100 amplitude differed between groups, we used regression models with interaction terms. Study Results N100 amplitude was nominally smaller in SCZspect (P = .03, d = 0.42) and in AH- (P = .020, d = 0.61), while AC2 was nominally thinner in AH+ (P = .02, d = 0.53) compared with controls. AC1 thickness was positively associated with N100 amplitude in SCZspect (t = 2.56, P = .016) and AH- (t = 3.18, P = .008), while AC2 thickness was positively associated with N100 amplitude in SCZspect (t = 2.37, P = .024) and in AH+ (t = 2.68, P = .019). Conclusions The novel findings of positive associations between AC thickness and N100 amplitude in SCZspect, suggest that a common neural substrate may underlie AC thickness and N100 amplitude alterations.
Collapse
Affiliation(s)
- Nora Berz Slapø
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Stener Nerland
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Kjetil Nordbø Jørgensen
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry, Telemark Hospital, Skien, Norway
| | - Lynn Mørch-Johnsen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychiatry, Østfold Hospital, Grålum, Norway
- Department of Clinical Research, Østfold Hospital, Grålum, Norway
| | | | - Daniel Roelfs
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nadine Parker
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mathias Valstad
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
| | - Atle Pentz
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Clara M. F. Timpe
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Geneviève Richard
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dani Beck
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Maren C. Frogner Werner
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Ingrid Melle
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatry, Telemark Hospital, Skien, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Sciences, Stockholm Region, Sweden
| | - Lars T. Westlye
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A. Andreassen
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Torgeir Moberget
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Behavioral Sciences, Faculty of Health Sciences, Oslo Metropolitan University, OsloMet, Oslo, Norway
| | - Torbjørn Elvsåshagen
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Erik G. Jönsson
- Department of medicine, NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
14
|
Vouga Ribeiro N, Tavares V, Bramon E, Toulopoulou T, Valli I, Shergill S, Murray R, Prata D. Effects of psychosis-associated genetic markers on brain volumetry: a systematic review of replicated findings and an independent validation. Psychol Med 2022; 52:1-16. [PMID: 36168994 PMCID: PMC9811278 DOI: 10.1017/s0033291722002896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/13/2022] [Accepted: 08/24/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Given psychotic illnesses' high heritability and associations with brain structure, numerous neuroimaging-genetics findings have been reported in the last two decades. However, few findings have been replicated. In the present independent sample we aimed to replicate any psychosis-implicated SNPs (single nucleotide polymorphisms), which had previously shown at least two main effects on brain volume. METHODS A systematic review for SNPs showing a replicated effect on brain volume yielded 25 studies implicating seven SNPs in five genes. Their effect was then tested in 113 subjects with either schizophrenia, bipolar disorder, 'at risk mental state' or healthy state, for whole-brain and region-of-interest (ROI) associations with grey and white matter volume changes, using voxel-based morphometry. RESULTS We found FWER-corrected (Family-wise error rate) (i.e. statistically significant) associations of: (1) CACNA1C-rs769087-A with larger bilateral hippocampus and thalamus white matter, across the whole brain; and (2) CACNA1C-rs769087-A with larger superior frontal gyrus, as ROI. Higher replication concordance with existing literature was found, in decreasing order, for: (1) CACNA1C-rs769087-A, with larger dorsolateral-prefrontal/superior frontal gyrus and hippocampi (both with anatomical and directional concordance); (2) ZNF804A-rs11681373-A, with smaller angular gyrus grey matter and rectus gyri white matter (both with anatomical and directional concordance); and (3) BDNF-rs6265-T with superior frontal and middle cingulate gyri volume change (with anatomical and allelic concordance). CONCLUSIONS Most literature findings were not herein replicated. Nevertheless, high degree/likelihood of replication was found for two genome-wide association studies- and one candidate-implicated SNPs, supporting their involvement in psychosis and brain structure.
Collapse
Affiliation(s)
- Nuno Vouga Ribeiro
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Vânia Tavares
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Elvira Bramon
- Division of Psychiatry, University College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’ College London, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Timothea Toulopoulou
- Department of Psychology & National Magnetic Resonance Research Center (UMRAM), Aysel Sabuncu Brain Research Centre (ASBAM), Bilkent University, Ankara, Turkey
| | - Isabel Valli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’ College London, London, UK
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Sukhi Shergill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’ College London, London, UK
| | - Robin Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’ College London, London, UK
| | - Diana Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
15
|
Curtis MT, Ren X, Coffman BA, Salisbury DF. Attentional M100 gain modulation localizes to auditory sensory cortex and is deficient in first-episode psychosis. Hum Brain Mapp 2022; 44:218-228. [PMID: 36073535 PMCID: PMC9783396 DOI: 10.1002/hbm.26067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 02/05/2023] Open
Abstract
Selective attention is impaired in first-episode psychosis (FEP). Selective attention effects can be detected during auditory tasks as increased sensory activity. We previously reported electroencephalography scalp-measured N100 enhancement is reduced in FEP. Here, we localized magnetoencephalography (MEG) M100 source activity within the auditory cortex, making novel use of the Human Connectome Project multimodal parcellation (HCP-MMP) to identify precise auditory cortical areas involved in attention modulation and its impairment in FEP. MEG was recorded from 27 FEP and 31 matched healthy controls (HC) while individuals either ignored frequent standard and rare oddball tones while watching a silent movie or attended tones by pressing a button to oddballs. Because M100 arises mainly in the auditory cortices, MEG activity during the M100 interval was projected to the auditory sensory cortices defined by the HCP-MMP (A1, lateral belt, and parabelt parcels). FEP had less auditory sensory cortex M100 activity in both conditions. In addition, there was a significant interaction between group and attention. HC enhanced source activity with attention, but FEP did not. These results demonstrate deficits in both sensory processing and attentional modulation of the M100 in FEP. Novel use of the HCP-MMP revealed the precise cortical areas underlying attention modulation of auditory sensory activity in healthy individuals and impairments in FEP. The sensory reduction and attention modulation impairment indicate local and systems-level pathophysiology proximal to disease onset that may be critical for etiology. Further, M100 and N100 enhancement may serve as outcome variables for targeted intervention to improve attention in early psychosis.
Collapse
Affiliation(s)
- Mark T. Curtis
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Xi Ren
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Brian A. Coffman
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Dean F. Salisbury
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
16
|
Hu XQ, Shi YD, Chen J, You Z, Pan YC, Ling Q, Wei H, Zou J, Ying P, Liao XL, Su T, Wang YX, Shao Y. Children with strabismus and amblyopia presented abnormal spontaneous brain activities measured through fractional amplitude of low-frequency fluctuation (fALFF). Front Neurol 2022; 13:967794. [PMID: 36034279 PMCID: PMC9413152 DOI: 10.3389/fneur.2022.967794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeBased on fMRI technology, we explored whether children with strabismus and amblyopia (SA) showed significant change in fractional amplitude of low-frequency fluctuation (fALFF) values in specific brain regions compared with healthy controls and whether this change could point to the clinical manifestations and pathogenesis of children with strabismus to a certain extent.MethodsWe enrolled 23 children with SA and the same number matched healthy controls in the ophthalmology department of the First Affiliated Hospital of Nanchang University, and the whole brain was scanned by rs-fMRI. The fALFF value of each brain area was derived to examine whether there is a statistical difference between the two groups. Meanwhile, the ROC curve was made in a view to evaluate whether this difference proves useful as a diagnostic index. Finally, we analyzed whether changes in the fALFF value of some specific brain regions are related to clinical manifestations.ResultsCompared with HCs, children with SA presented decreased fALFF values in the left temporal pole: the superior temporal gyrus, right middle temporal gyrus, right superior frontal gyrus, and right supplementary motor area. Meanwhile, they also showed higher fALFF values in specific brain areas, which included the left precentral gyrus, left inferior parietal, and left precuneus.ConclusionChildren with SA showed abnormal fALFF values in different brain regions. Most of these regions were allocated to the visual formation pathway, the eye movement-related pathway, or other visual-related pathways, suggesting the pathological mechanism of the patient.
Collapse
Affiliation(s)
- Xiao-Qin Hu
- Department of Strabismus and Amblyopia, Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Yi-Dan Shi
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Branch of National Clinical Research Center for Ocular Disease, Nanchang, China
| | - Zhipeng You
- Department of Strabismus and Amblyopia, Affiliated Eye Hospital of Nanchang University, Nanchang, China
- Zhipeng You
| | - Yi-Cong Pan
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qian Ling
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hong Wei
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jie Zou
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ping Ying
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xu-Lin Liao
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ting Su
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Yi-Xin Wang
- School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Yi Shao
- Department of Ophthalmology, Jiangxi Branch of National Clinical Research Center for Ocular Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Yi Shao
| |
Collapse
|
17
|
Insula volumes in first-episode and chronic psychosis: A longitudinal MRI study. Schizophr Res 2022; 241:14-23. [PMID: 35074528 DOI: 10.1016/j.schres.2021.12.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/21/2021] [Accepted: 12/28/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Alterations in insular grey matter (GM) volume has been consistently reported for affective and non-affective psychoses both in chronic and first-episode patients, ultimately suggesting that the insula might represent a good region to study in order to assess the longitudinal course of psychotic disorders. Therefore, in this longitudinal Magnetic Resonance Imaging (MRI) study, we aimed at further investigating the key role of insular volumes in psychosis. MATERIAL AND METHODS 68 First-Episode Psychosis (FEP) patients, 68 patients with Schizophrenia (SCZ), 47 Bipolar Disorder (BD) patients, and 94 Healthy Controls (HC) were enrolled and underwent a 1.5 T MRI evaluation. A subsample of 99 subjects (10 HC, 23 BD, 29 SCZ, 37 FEP) was rescanned after 2,53 ± 1,68 years. The insular cortex was manually traced and then divided into an anterior and posterior portion. Group and correlation analyses were then performed both at baseline and at follow-up. RESULTS At baseline, greater anterior and lower posterior insular GM volumes were observed in chronic patients. At follow-up, we found that FEP patients had a significant GM volume increase from baseline to follow-up, especially in the posterior insula whereas chronic patients showed a relative stability. Finally, significant negative correlations between illness severity and pharmacological treatment and insular GM volumes were observed in the whole group of psychotic patients. CONCLUSIONS The longitudinal assessment of both chronic and first-episode patients allowed us to detect a complex pattern of GM abnormalities in selective sub-portions of insular volumes, ultimately suggesting that this structure could represent a key biological marker of psychotic disorders.
Collapse
|
18
|
Li L, Zhang Y, Zhao Y, Li Z, Kemp GJ, Wu M, Gong Q. Cortical thickness abnormalities in patients with post-traumatic stress disorder: A vertex-based meta-analysis. Neurosci Biobehav Rev 2022; 134:104519. [PMID: 34979190 DOI: 10.1016/j.neubiorev.2021.104519] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 02/05/2023]
Abstract
Neuroimaging studies report altered cortical thickness in patients with post-traumatic stress disorder (PTSD), but the results are inconsistent. Using anisotropic effect-size seed-based d mapping (AES-SDM) software with its recently-developed meta-analytic thickness mask, we conducted a meta-analysis of published studies which used whole-brain surface-based morphometry, in order to define consistent cortical thickness alterations in PTSD patients. Eleven studies with 438 patients and 396 controls were included. Compared with all controls, patients with PTSD showed increased cortical thickness in right superior temporal gyrus, and in left and right superior frontal gyrus; the former survived in subgroup analysis of adult patients, and in subgroup comparison with only non-PTSD trauma-exposed controls, the latter in subgroup comparison with only non-trauma-exposed healthy controls. Cortical thickness in right superior frontal gyrus was positively associated with percentage of female patients, and cortical thickness in left superior frontal gyrus was positively associated with symptom severity measured by the clinician-administered PTSD scale. These robust results may help to elucidate the pathophysiology of PTSD.
Collapse
Affiliation(s)
- Lei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yu Zhang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China
| | - Youjin Zhao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China
| | - Zhenlin Li
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Min Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China.
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
| |
Collapse
|
19
|
Zhou S, Huang Y, Kuang Q, Yan S, Li H, Wu K, Wu F, Huang X. Kynurenine pathway metabolites are associated with gray matter volume in subjects with schizophrenia. Front Psychiatry 2022; 13:941479. [PMID: 36016974 PMCID: PMC9395706 DOI: 10.3389/fpsyt.2022.941479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND There has been growing evidence of the existence of abnormalities in the kynurenine pathway (KP) and structural gray matter volume (GMV) in schizophrenia (SCZ). Numerous studies have suggested that abnormal kynurenine metabolism (KM) in the brain is clearly associated with the pathogenesis of schizophrenia and may be one of the pathological mechanisms of SCZ. In this pilot study, we investigated whether there was a correlation between KP and GMV in schizophrenia patients. METHODS The plasma levels of KM were measured in 41 patients who met the Structured Clinical Interview of the Diagnostic IV criteria for schizophrenia and 60 healthy controls by using liquid chromatography-tandem mass spectrometry, and cortical thickness (as measured via magnetic resonance imaging) was obtained. RESULTS Our study showed no statistically significant differences in the concentrations of kynurenine (KYN), tryptophan (TRP), and KYNA/TRP (all p > 0.05), but kynurenic acid (KYNA) and the KYNA/KYN ratio were significantly higher in the schizophrenia subjects than in the healthy controls (F = 4.750, p = 0.032; F = 6.153, p = 0.015, respectively) after controlling for age and sex. Spearman's tests showed that KYN concentrations in SCZ patients were negatively correlated with GMV in the left front cingulate belt (r = -0.325, p = 0.046) and that KYN/TRP was negatively correlated with GMV in the left island (r = -0.396, p = 0.014) and right island (r = -0.385, p = 0.017). CONCLUSION Our findings appear to provide new insights into the predisposition of an imbalance in the relative metabolism of KYN/TRP and KYN to GMV in schizophrenia.
Collapse
Affiliation(s)
- Sumiao Zhou
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuanyuan Huang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qijie Kuang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Su Yan
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hehua Li
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kai Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Fengchun Wu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.,School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xingbing Huang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Westhoff MLS, Ladwig J, Heck J, Schülke R, Groh A, Deest M, Bleich S, Frieling H, Jahn K. Early Detection and Prevention of Schizophrenic Psychosis-A Review. Brain Sci 2021; 12:11. [PMID: 35053755 PMCID: PMC8774083 DOI: 10.3390/brainsci12010011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 01/04/2023] Open
Abstract
Psychotic disorders often run a chronic course and are associated with a considerable emotional and social impact for patients and their relatives. Therefore, early recognition, combined with the possibility of preventive intervention, is urgently warranted since the duration of untreated psychosis (DUP) significantly determines the further course of the disease. In addition to established diagnostic tools, neurobiological factors in the development of schizophrenic psychoses are increasingly being investigated. It is shown that numerous molecular alterations already exist before the clinical onset of the disease. As schizophrenic psychoses are not elicited by a single mutation in the deoxyribonucleic acid (DNA) sequence, epigenetics likely constitute the missing link between environmental influences and disease development and could potentially serve as a biomarker. The results from transcriptomic and proteomic studies point to a dysregulated immune system, likely evoked by epigenetic alterations. Despite the increasing knowledge of the neurobiological mechanisms involved in the development of psychotic disorders, further research efforts with large population-based study designs are needed to identify suitable biomarkers. In conclusion, a combination of blood examinations, functional imaging techniques, electroencephalography (EEG) investigations and polygenic risk scores should be considered as the basis for predicting how subjects will transition into manifest psychosis.
Collapse
Affiliation(s)
- Martin Lennart Schulze Westhoff
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, D-30625 Hannover, Germany; (J.L.); (R.S.); (A.G.); (M.D.); (S.B.); (H.F.); (K.J.)
| | - Johannes Ladwig
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, D-30625 Hannover, Germany; (J.L.); (R.S.); (A.G.); (M.D.); (S.B.); (H.F.); (K.J.)
| | - Johannes Heck
- Institute for Clinical Pharmacology, Hannover Medical School, D-30625 Hannover, Germany;
| | - Rasmus Schülke
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, D-30625 Hannover, Germany; (J.L.); (R.S.); (A.G.); (M.D.); (S.B.); (H.F.); (K.J.)
| | - Adrian Groh
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, D-30625 Hannover, Germany; (J.L.); (R.S.); (A.G.); (M.D.); (S.B.); (H.F.); (K.J.)
| | - Maximilian Deest
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, D-30625 Hannover, Germany; (J.L.); (R.S.); (A.G.); (M.D.); (S.B.); (H.F.); (K.J.)
| | - Stefan Bleich
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, D-30625 Hannover, Germany; (J.L.); (R.S.); (A.G.); (M.D.); (S.B.); (H.F.); (K.J.)
| | - Helge Frieling
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, D-30625 Hannover, Germany; (J.L.); (R.S.); (A.G.); (M.D.); (S.B.); (H.F.); (K.J.)
| | - Kirsten Jahn
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, D-30625 Hannover, Germany; (J.L.); (R.S.); (A.G.); (M.D.); (S.B.); (H.F.); (K.J.)
| |
Collapse
|
21
|
Lee D, Seo J, Jeong HC, Lee H, Lee SB. The Perspectives of Early Diagnosis of Schizophrenia Through the Detection of Epigenomics-Based Biomarkers in iPSC-Derived Neurons. Front Mol Neurosci 2021; 14:756613. [PMID: 34867186 PMCID: PMC8633873 DOI: 10.3389/fnmol.2021.756613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
The lack of early diagnostic biomarkers for schizophrenia greatly limits treatment options that deliver therapeutic agents to affected cells at a timely manner. While previous schizophrenia biomarker research has identified various biological signals that are correlated with certain diseases, their reliability and practicality as an early diagnostic tool remains unclear. In this article, we discuss the use of atypical epigenetic and/or consequent transcriptional alterations (ETAs) as biomarkers of early-stage schizophrenia. Furthermore, we review the viability of discovering and applying these biomarkers through the use of cutting-edge technologies such as human induced pluripotent stem cell (iPSC)-derived neurons, brain models, and single-cell level analyses.
Collapse
Affiliation(s)
- Davin Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Jinsoo Seo
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Hae Chan Jeong
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Hyosang Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Sung Bae Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| |
Collapse
|
22
|
Grubisha MJ, Sun X, MacDonald ML, Garver M, Sun Z, Paris KA, Patel DS, DeGiosio RA, Lewis DA, Yates NA, Camacho C, Homanics GE, Ding Y, Sweet RA. MAP2 is differentially phosphorylated in schizophrenia, altering its function. Mol Psychiatry 2021; 26:5371-5388. [PMID: 33526823 PMCID: PMC8325721 DOI: 10.1038/s41380-021-01034-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 01/04/2021] [Accepted: 01/15/2021] [Indexed: 01/30/2023]
Abstract
Schizophrenia (Sz) is a highly polygenic disorder, with common, rare, and structural variants each contributing only a small fraction of overall disease risk. Thus, there is a need to identify downstream points of convergence that can be targeted with therapeutics. Reduction of microtubule-associated protein 2 (MAP2) immunoreactivity (MAP2-IR) is present in individuals with Sz, despite no change in MAP2 protein levels. MAP2 is phosphorylated downstream of multiple receptors and kinases identified as Sz risk genes, altering its immunoreactivity and function. Using an unbiased phosphoproteomics approach, we quantified 18 MAP2 phosphopeptides, 9 of which were significantly altered in Sz subjects. Network analysis grouped MAP2 phosphopeptides into three modules, each with a distinct relationship to dendritic spine loss, synaptic protein levels, and clinical function in Sz subjects. We then investigated the most hyperphosphorylated site in Sz, phosphoserine1782 (pS1782). Computational modeling predicted phosphorylation of S1782 reduces binding of MAP2 to microtubules, which was confirmed experimentally. We generated a transgenic mouse containing a phosphomimetic mutation at S1782 (S1782E) and found reductions in basilar dendritic length and complexity along with reduced spine density. Because only a limited number of MAP2 interacting proteins have been previously identified, we combined co-immunoprecipitation with mass spectrometry to characterize the MAP2 interactome in mouse brain. The MAP2 interactome was enriched for proteins involved in protein translation. These associations were shown to be functional as overexpression of wild type and phosphomimetic MAP2 reduced protein synthesis in vitro. Finally, we found that Sz subjects with low MAP2-IR had reductions in the levels of synaptic proteins relative to nonpsychiatric control (NPC) subjects and to Sz subjects with normal and MAP2-IR, and this same pattern was recapitulated in S1782E mice. These findings suggest a new conceptual framework for Sz-that a large proportion of individuals have a "MAP2opathy"-in which MAP function is altered by phosphorylation, leading to impairments of neuronal structure, synaptic protein synthesis, and function.
Collapse
Affiliation(s)
- M J Grubisha
- Department of Psychiatry, Translational Neuroscience Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - X Sun
- Department of Psychiatry, Translational Neuroscience Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Tsinghua MD Program, School of Medicine, Tsinghua University, Beijing, China
| | - M L MacDonald
- Department of Psychiatry, Translational Neuroscience Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Garver
- Department of Psychiatry, Translational Neuroscience Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Z Sun
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - K A Paris
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - D S Patel
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - R A DeGiosio
- Department of Psychiatry, Translational Neuroscience Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - D A Lewis
- Department of Psychiatry, Translational Neuroscience Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - N A Yates
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Biomedical Mass Spectrometry Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - C Camacho
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - G E Homanics
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Y Ding
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - R A Sweet
- Department of Psychiatry, Translational Neuroscience Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
23
|
Longitudinal grey matter changes following first episode mania in bipolar I disorder: A systematic review. J Affect Disord 2021; 291:198-208. [PMID: 34049189 DOI: 10.1016/j.jad.2021.04.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/12/2021] [Accepted: 04/25/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND While widespread grey matter (GM) changes are seen in bipolar I disorder (BD-I), it is unclear how early in the illness such changes emerge. To date there has been little synthesis of findings regarding longitudinal grey matter changes early in the course of BD-I. We conducted a systematic review to examine the evolution of GM changes in BD-I patients following the first episode of mania (FEM). METHODS Following PRISMA guidelines, we conducted a systematic review of studies examining longitudinal changes in GM volume (GMV), cortical thickness and/or surface area in BD-I patients following FEM. We qualitatively synthesized results regarding longitudinal GM changes in BD-I patients. RESULTS Fifteen studies met inclusion criteria, all examining GMV changes. Longitudinal ACC volume decrease following FEM was the most replicated finding, but was only reported in 4 out of 7 studies that examined this region as part of a whole brain/region of interest analysis, with 2 of these positive studies using an overlapping patient sample. The impact of episode recurrence, medications, and other clinical factors was inconsistently examined. LIMITATIONS The literature regarding GM changes early in BD-I is highly inconsistent, likely due to heterogeneity in participant characteristics, imaging methodology/analysis and duration of follow up. CONCLUSIONS Though there was some suggestion that structural ACC changes may represent a marker for neuroprogression following FEM, results were too inconsistent to draw any conclusions. Larger longitudinal studies examining cortical thickness/surface area, and the influence of relevant clinical factors, are needed to better understand neuroprogression in early BD-I.
Collapse
|
24
|
Koshiyama D, Miyakoshi M, Joshi YB, Molina JL, Tanaka-Koshiyama K, Sprock J, Braff DL, Swerdlow NR, Light GA. Neural network dynamics underlying gamma synchronization deficits in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2021; 107:110224. [PMID: 33340619 PMCID: PMC8631608 DOI: 10.1016/j.pnpbp.2020.110224] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 01/09/2023]
Abstract
Gamma-band (40-Hz) activity is critical for cortico-cortical transmission and the integration of information across neural networks during sensory and cognitive processing. Patients with schizophrenia show selective reductions in the capacity to support synchronized gamma-band oscillations in response to auditory stimulation presented 40-Hz. Despite widespread application of this 40-Hz auditory steady-state response (ASSR) as a translational electroencephalographic biomarker for therapeutic development for neuropsychiatric disorders, the spatiotemporal dynamics underlying the ASSR have not been fully characterized. In this study, a novel Granger causality analysis was applied to assess the propagation of gamma oscillations in response to 40-Hz steady-state stimulation across cortical sources in schizophrenia patients (n = 426) and healthy comparison subjects (n = 293). Both groups showed multiple ASSR source interactions that were broadly distributed across brain regions. Schizophrenia patients showed distinct, hierarchically sequenced connectivity abnormalities. During the response onset interval, patients exhibited abnormal increased connectivity from the inferior frontal gyrus to the superior temporal gyrus, followed by decreased connectivity from the superior temporal to the middle cingulate gyrus. In the later portion of the ASSR response (300-500 ms), patients showed significantly increased connectivity from the superior temporal to the middle frontal gyrus followed by decreased connectivity from the left superior frontal gyrus to the right superior and middle frontal gyri. These findings highlight both the orchestration of distributed multiple sources in response to simple gamma-frequency stimulation in healthy subjects as well as the patterns of deficits in the generation and maintenance of gamma-band oscillations across the temporo-frontal sources in schizophrenia patients.
Collapse
Affiliation(s)
- Daisuke Koshiyama
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093-0804, USA
| | - Makoto Miyakoshi
- Swartz Center for Neural Computation, University of California San Diego, La Jolla, CA 92093-0559, USA.
| | - Yash B. Joshi
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093-0804, USA,VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Juan L. Molina
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093-0804, USA,VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA 92161, USA
| | | | - Joyce Sprock
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093-0804, USA,VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - David L. Braff
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093-0804, USA,VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Neal R. Swerdlow
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093-0804, USA
| | - Gregory A. Light
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093-0804, USA,VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA 92161, USA
| |
Collapse
|
25
|
Curtis MT, Coffman BA, Salisbury DF. Pitch and Duration Mismatch Negativity are Associated With Distinct Auditory Cortex and Inferior Frontal Cortex Volumes in the First-Episode Schizophrenia Spectrum. ACTA ACUST UNITED AC 2021; 2:sgab005. [PMID: 33738454 PMCID: PMC7953127 DOI: 10.1093/schizbullopen/sgab005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background Pitch and duration mismatch negativity (pMMN/dMMN) are related to left Heschl's gyrus gray matter volumes in first-episode schizophrenia (FESz). Previous methods were unable to delineate functional subregions within and outside Heschl's gyrus. The Human Connectome Project multimodal parcellation (HCP-MMP) atlas overcomes this limitation by parcellating these functional subregions. Further, MMN has generators in inferior frontal cortex, and therefore, may be associated with inferior frontal cortex pathology. With the novel use of the HCP-MMP to precisely parcellate auditory and inferior frontal cortex, we investigated relationships between gray matter and pMMN and dMMN in FESz. Methods pMMN and dMMN were measured at Fz from 27 FESz and 27 matched healthy controls. T1-weighted MRI scans were acquired. The HCP-MMP atlas was applied to individuals, and gray matter volumes were calculated for bilateral auditory and inferior frontal cortex parcels and correlated with MMN. FDR correction was used for multiple comparisons. Results In FESz only, pMMN was negatively correlated with left medial belt in auditory cortex and area 47L in inferior frontal cortex. Duration MMN negatively correlated with the following auditory parcels: left medial belt, lateral belt, parabelt, TA2, and right A5. Further, dMMN was associated with left area 47L, right area 44, and right area 47L in inferior frontal cortex. Conclusions The novel approach revealed overlapping and distinct gray matter associations for pMMN and dMMN in auditory and inferior frontal cortex in FESz. Thus, pMMN and dMMN may serve as biomarkers of underlying pathological deficits in both similar and slightly different cortical areas.
Collapse
Affiliation(s)
- Mark T Curtis
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Brian A Coffman
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Dean F Salisbury
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| |
Collapse
|
26
|
Sato J, Hirano Y, Hirakawa N, Takahashi J, Oribe N, Kuga H, Nakamura I, Hirano S, Ueno T, Togao O, Hiwatashi A, Nakao T, Onitsuka T. Lower Hippocampal Volume in Patients with Schizophrenia and Bipolar Disorder: A Quantitative MRI Study. J Pers Med 2021; 11:jpm11020121. [PMID: 33668432 PMCID: PMC7918861 DOI: 10.3390/jpm11020121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 01/02/2023] Open
Abstract
Since patients with schizophrenia (SZ) and bipolar disorder (BD) share many biological features, detecting biomarkers that differentiate SZ and BD patients is crucial for optimized treatments. High-resolution magnetic resonance imaging (MRI) is suitable for detecting subtle brain structural differences in patients with psychiatric disorders. In the present study, we adopted a neuroanatomically defined and manually delineated region of interest (ROI) method to evaluate the amygdalae, hippocampi, Heschl’s gyrus (HG), and planum temporale (PT), because these regions are crucial in the development of SZ and BD. ROI volumes were measured using high resolution MRI in 31 healthy subjects (HS), 23 SZ patients, and 21 BD patients. Right hippocampal volumes differed significantly among groups (HS > BD > SZ), whereas left hippocampal volumes were lower in SZ patients than in HS and BD patients (HS = BD > SZ). Volumes of the amygdalae, HG, and PT did not differ among the three groups. For clinical correlations, there were no significant associations between ROI volumes and demographics/clinical symptoms. Our study revealed significant lower hippocampal volume in patients with SZ and BD, and we suggest that the right hippocampal volume is a potential biomarker for differentiation between SZ and BD.
Collapse
Affiliation(s)
- Jinya Sato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (J.S.); (N.H.); (J.T.); (N.O.); (H.K.); (I.N.); (S.H.); (T.N.)
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (J.S.); (N.H.); (J.T.); (N.O.); (H.K.); (I.N.); (S.H.); (T.N.)
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
- Correspondence: (Y.H.); (T.O.); Tel.: +81-92-642-5627 (Y.H. & T.O.)
| | - Noriaki Hirakawa
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (J.S.); (N.H.); (J.T.); (N.O.); (H.K.); (I.N.); (S.H.); (T.N.)
| | - Junichi Takahashi
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (J.S.); (N.H.); (J.T.); (N.O.); (H.K.); (I.N.); (S.H.); (T.N.)
| | - Naoya Oribe
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (J.S.); (N.H.); (J.T.); (N.O.); (H.K.); (I.N.); (S.H.); (T.N.)
- Hizen Psychiatric Medical Center, Division of Clinical Research, National Hospital Organization, Saga 842-0192, Japan;
| | - Hironori Kuga
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (J.S.); (N.H.); (J.T.); (N.O.); (H.K.); (I.N.); (S.H.); (T.N.)
- Hizen Psychiatric Medical Center, Division of Clinical Research, National Hospital Organization, Saga 842-0192, Japan;
| | - Itta Nakamura
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (J.S.); (N.H.); (J.T.); (N.O.); (H.K.); (I.N.); (S.H.); (T.N.)
| | - Shogo Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (J.S.); (N.H.); (J.T.); (N.O.); (H.K.); (I.N.); (S.H.); (T.N.)
| | - Takefumi Ueno
- Hizen Psychiatric Medical Center, Division of Clinical Research, National Hospital Organization, Saga 842-0192, Japan;
| | - Osamu Togao
- Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| | - Akio Hiwatashi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (J.S.); (N.H.); (J.T.); (N.O.); (H.K.); (I.N.); (S.H.); (T.N.)
| | - Toshiaki Onitsuka
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (J.S.); (N.H.); (J.T.); (N.O.); (H.K.); (I.N.); (S.H.); (T.N.)
- Correspondence: (Y.H.); (T.O.); Tel.: +81-92-642-5627 (Y.H. & T.O.)
| |
Collapse
|
27
|
Izumi R, Hino M, Wada A, Nagaoka A, Kawamura T, Mori T, Sainouchi M, Kakita A, Kasai K, Kunii Y, Yabe H. Detailed Postmortem Profiling of Inflammatory Mediators Expression Revealed Post-inflammatory Alternation in the Superior Temporal Gyrus of Schizophrenia. Front Psychiatry 2021; 12:653821. [PMID: 33815179 PMCID: PMC8012534 DOI: 10.3389/fpsyt.2021.653821] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Recent studies have lent support to the possibility that inflammation is associated with the pathology of schizophrenia. In the study of measurement of inflammatory mediators, which are markers of inflammation, elevated inflammatory cytokine levels in the brain and blood have been reported in patients with schizophrenia. Several postmortem brain studies have also reported changes in the expression of inflammatory cytokines. However, it is not clear how these elevated inflammatory cytokines interact with other inflammatory mediators, and their association with the pathology of schizophrenia. We comprehensively investigated the expression of 30 inflammatory mediators in the superior temporal gyrus (STG) of 24 patients with schizophrenia and 26 controls using a multiplex method. Overall, inflammatory mediator expression in the STG was mostly unchanged. However, the expression of interleukin (IL)1-α and interferon-gamma-inducible protein (IP)-10 was decreased [IL-1α, median (IQR), 0.51 (0.37-0.70) vs. 0.87 (0.47-1.23), p = 0.01; IP-10, 13.99 (8.00-36.64) vs. 30.29 (10.23-134.73), p = 0.05], whereas that of IFN-α was increased [2.34 (1.84-4.48) vs. 1.94 (1.39-2.36), p = 0.04] in schizophrenia, although these alterations did not remain significant after multiple testing. Clustering based on inflammatory mediator expression pattern and analysis of upstream transcription factors using pathway analysis revealed that the suppression of IL-1α and IP-10 protein expression may be induced by regulation of a common upstream pathway. Neuroinflammation is important in understanding the biology of schizophrenia. While neuroimaging has been previously used, direct observation to determine the expression of inflammatory mediators is necessary. In this study, we identified protein changes, previously unreported, using comprehensive protein analysis in STG. These results provide insight into post-inflammatory alternation in chronic schizophrenia.
Collapse
Affiliation(s)
- Ryuta Izumi
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan.,Department of Psychology, Takeda General Hospital, Aizuwakamatu, Japan
| | - Mizuki Hino
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Akira Wada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Atsuko Nagaoka
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Takashi Kawamura
- Department of Human Life Sciences, School of Nursing, Fukushima Medical University, Fukushima, Japan
| | - Tsutomu Mori
- Department of Human Life Sciences, School of Nursing, Fukushima Medical University, Fukushima, Japan
| | - Makoto Sainouchi
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuto Kunii
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan.,Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
28
|
Faria AV, Zhao Y, Ye C, Hsu J, Yang K, Cifuentes E, Wang L, Mori S, Miller M, Caffo B, Sawa A. Multimodal MRI assessment for first episode psychosis: A major change in the thalamus and an efficient stratification of a subgroup. Hum Brain Mapp 2020; 42:1034-1053. [PMID: 33377594 PMCID: PMC7856640 DOI: 10.1002/hbm.25276] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/29/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023] Open
Abstract
Multi‐institutional brain imaging studies have emerged to resolve conflicting results among individual studies. However, adjusting multiple variables at the technical and cohort levels is challenging. Therefore, it is important to explore approaches that provide meaningful results from relatively small samples at institutional levels. We studied 87 first episode psychosis (FEP) patients and 62 healthy subjects by combining supervised integrated factor analysis (SIFA) with a novel pipeline for automated structure‐based analysis, an efficient and comprehensive method for dimensional data reduction that our group recently established. We integrated multiple MRI features (volume, DTI indices, resting state fMRI—rsfMRI) in the whole brain of each participant in an unbiased manner. The automated structure‐based analysis showed widespread DTI abnormalities in FEP and rs‐fMRI differences between FEP and healthy subjects mostly centered in thalamus. The combination of multiple modalities with SIFA was more efficient than the use of single modalities to stratify a subgroup of FEP (individuals with schizophrenia or schizoaffective disorder) that had more robust deficits from the overall FEP group. The information from multiple MRI modalities and analytical methods highlighted the thalamus as significantly abnormal in FEP. This study serves as a proof‐of‐concept for the potential of this methodology to reveal disease underpins and to stratify populations into more homogeneous sub‐groups.
Collapse
Affiliation(s)
- Andreia V Faria
- Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yi Zhao
- Department of Biostatistics, Indiana University, School of Medicine, Indianapolis, Indiana, USA
| | - Chenfei Ye
- Department of Electronics and Information, Harbin Institute of Technology Shenzhen Graduate School, Guangdong, China
| | - Johnny Hsu
- Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kun Yang
- Department Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth Cifuentes
- Department Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences and Radiology, Northwestern University, Evanston, Illinois, USA
| | - Susumu Mori
- Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Miller
- Department of Biomedical Engineering, The Whiting School of Engineering, Baltimore, Maryland, USA
| | - Brian Caffo
- Department of Biostatistics, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Akira Sawa
- Department Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, The Whiting School of Engineering, Baltimore, Maryland, USA.,Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Mental Health, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
29
|
Koshiyama D, Miyakoshi M, Joshi YB, Molina JL, Tanaka-Koshiyama K, Sprock J, Braff DL, Swerdlow NR, Light GA. A distributed frontotemporal network underlies gamma-band synchronization impairments in schizophrenia patients. Neuropsychopharmacology 2020; 45:2198-2206. [PMID: 32829382 PMCID: PMC7784692 DOI: 10.1038/s41386-020-00806-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/02/2020] [Accepted: 08/07/2020] [Indexed: 12/24/2022]
Abstract
Synaptic interactions between parvalbumin-positive γ-aminobutyric acid (GABA)-ergic interneurons and pyramidal neurons evoke cortical gamma oscillations, which are known to be abnormal in schizophrenia. These cortical gamma oscillations can be indexed by the gamma-band auditory steady-state response (ASSR), a robust electroencephalographic (EEG) biomarker that is increasingly used to advance the development of novel therapeutics for schizophrenia, and other related brain disorders. Despite promise of ASSR, the neural substrates of ASSR have not yet been characterized. This study investigated the sources underlying ASSR in healthy subjects and schizophrenia patients. In this study, a novel method for noninvasively characterizing source locations was developed and applied to EEG recordings obtained from 293 healthy subjects and 427 schizophrenia patients who underwent ASSR testing. Results revealed a distributed network of temporal and frontal sources in both healthy subjects and schizophrenia patients. In both groups, primary contributing ASSR sources were identified in the right superior temporal cortex and the orbitofrontal cortex. In conjunction with normal activity in these areas, schizophrenia patients showed significantly reduced source dipole density of gamma-band ASSR (ITC > 0.25) in the left superior temporal cortex, orbitofrontal cortex, and left superior frontal cortex. In conclusion, a distributed network of temporal and frontal brain regions supports gamma phase synchronization. We demonstrated that failure to mount a coherent physiologic response to simple 40-Hz stimulation reflects disorganized network function in schizophrenia patients. Future translational studies are needed to more fully understand the neural mechanisms underlying gamma-band ASSR network abnormalities in schizophrenia.
Collapse
Affiliation(s)
- Daisuke Koshiyama
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Makoto Miyakoshi
- Swartz Center for Neural Computation, University of California San Diego, La Jolla, CA, USA.
| | - Yash B Joshi
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, USA
| | - Juan L Molina
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Joyce Sprock
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - David L Braff
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Neal R Swerdlow
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Gregory A Light
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
30
|
Curtis MT, Coffman BA, Salisbury DF. Parahippocampal area three gray matter is reduced in first-episode schizophrenia spectrum: Discovery and replication samples. Hum Brain Mapp 2020; 42:724-736. [PMID: 33219733 PMCID: PMC7814759 DOI: 10.1002/hbm.25256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/02/2020] [Accepted: 10/07/2020] [Indexed: 12/27/2022] Open
Abstract
Early course schizophrenia is associated with reduced gray matter. The specific structures affected first and how deficits impact symptoms and cognition remain unresolved. We used the Human Connectome Project multimodal parcellation (HCP‐MMP) to precisely identify cortical areas and investigate thickness abnormalities in discovery and replication samples of first‐episode schizophrenia spectrum individuals (FESz). In the discovery sample, T1w scans were acquired from 31 FESz and 31 matched healthy controls (HC). Thickness was calculated for 360 regions in Freesurfer. In the replication sample, high‐resolution T1w, T2w, and BOLD‐rest scans were acquired from 23 FESz and 32 HC and processed with HCP protocols. Thickness was calculated for regions significant in the discovery sample. After FDR correction (q < .05), left and right parahippocampal area 3 (PHA3) were significantly thinner in FESz. In the replication sample, bilateral PHA3 were again thinner in FESz (q < .05). Exploratory correlation analyses revealed left PHA3 was positively associated with hallucinations and right PHA3 was positively associated with processing speed, working memory, and verbal learning. The novel use of the HCP‐MMP in two independent FESz samples revealed thinner bilateral PHA3, suggesting this byway between cortical and limbic processing is a critical site of pathology near the emergence of psychosis.
Collapse
Affiliation(s)
- Mark T Curtis
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Brian A Coffman
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dean F Salisbury
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
31
|
Salisbury DF, Shafer AR, Murphy TK, Haigh SM, Coffman BA. Pitch and Duration Mismatch Negativity and Heschl's Gyrus Volume in First-Episode Schizophrenia-Spectrum Individuals. Clin EEG Neurosci 2020; 51:359-364. [PMID: 32241184 PMCID: PMC8118142 DOI: 10.1177/1550059420914214] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background. The mismatch negativity (MMN) brainwave indexes novelty detection. MMN to infrequent pitch (pMMN) and duration (dMMN) deviants is reduced in long-term schizophrenia. Although not reduced at first psychosis, pMMN is inversely associated with left hemisphere Heschl's gyrus (HG) gray matter volume within 1 year of first hospitalization for schizophrenia-spectrum psychosis, consistent with pathology of left primary auditory cortex early in disease course. We examined whether the relationship was present earlier, at first psychiatric contact for psychosis, and whether the same structural-functional association was apparent for dMMN. Method. Twenty-seven first-episode schizophrenia-spectrum (FESz) and 27 matched healthy comparison (HC) individuals were compared. EEG-derived pMMN and dMMN were measured by subtracting the standard tone waveform (80%) from the pitch- and duration-deviant waveforms (10% each). HG volumes were calculated from T1-weighted structural magnetic resonance imaging using Freesurfer. Results. In FESz, pMMN amplitudes at Fz were inversely associated with left HG (but not right) gray matter volumes, and dMMN amplitudes were associated significantly with left HG volumes and at trend-level with right HG. There were no structural-functional associations in HC. Conclusions. pMMN and dMMN index gray matter reduction in left hemisphere auditory cortex early in psychosis, with dMMN also marginally indexing right HG volumes. This suggest conjoint functional and structural pathology that affects the automatic detection of novelty with varying degrees of penetrance prior to psychosis. These brainwaves are sensitive biomarkers of pathology early in the psychotic disease course, and may serve as biomarkers of disease progression and as therapeutic outcome measures.
Collapse
Affiliation(s)
- Dean F Salisbury
- Department of Psychiatry, University of Pittsburgh School of Medicine, Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Pittsburgh, PA, USA
| | - Anna R Shafer
- Department of Psychiatry, University of Pittsburgh School of Medicine, Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Pittsburgh, PA, USA
| | - Timothy K Murphy
- Department of Psychiatry, University of Pittsburgh School of Medicine, Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Pittsburgh, PA, USA
| | - Sarah M Haigh
- Department of Psychiatry, University of Pittsburgh School of Medicine, Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Pittsburgh, PA, USA
| | - Brian A Coffman
- Department of Psychiatry, University of Pittsburgh School of Medicine, Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Pittsburgh, PA, USA
| |
Collapse
|
32
|
Smucny J, Lesh TA, Zarubin VC, Niendam TA, Ragland JD, Tully LM, Carter CS. One-Year Stability of Frontoparietal Cognitive Control Network Connectivity in Recent Onset Schizophrenia: A Task-Related 3T fMRI Study. Schizophr Bull 2020; 46:1249-1258. [PMID: 31903495 PMCID: PMC7505169 DOI: 10.1093/schbul/sbz122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Kraepelinian theory posits that schizophrenia (SZ) is a degenerative disorder that worsens throughout the lifespan. Behavioral studies of cognition have since challenged that viewpoint, particularly in the early phases of illness. Nonetheless, the extent to which cognition remains functionally stable during the early course of illness is unclear, particularly with regard to task-associated connectivity in cognition-related brain networks. In this study, we examined the 1-year stability of the frontoparietal control network during the AX-Continuous Performance Task (AX-CPT) from a new baseline sample of 153 participants scanned at 3T, of which 29 recent onset individuals with SZ and 42 healthy control (HC) participants had follow-up data available for analysis. Among individuals that had both baseline and follow-up data, reduced functional connectivity in SZ was observed between the dorsolateral prefrontal cortex (DLPFC) and superior parietal cortex (SPC) during the high control (B cue) condition. Furthermore, this deficit was stable over time, as no significant time × diagnosis interaction or effects of time were observed and intraclass correlation coefficients were greater than 0.6 in HCs and SZ. Previous 1.5T findings showing stable deficits with no evidence of degeneration in performance or DLPFC activation in an independent SZ sample were replicated. Overall, these results suggest that the neuronal circuitry supporting cognitive control is stably impaired during the early course of illness in SZ across multiple levels of analysis with no evidence of functional decline.
Collapse
Affiliation(s)
- Jason Smucny
- Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, University of California, Davis, CA
| | - Tyler A Lesh
- Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, University of California, Davis, CA
| | - Vanessa C Zarubin
- Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, University of California, Davis, CA
| | - Tara A Niendam
- Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, University of California, Davis, CA
| | - J Daniel Ragland
- Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, University of California, Davis, CA
| | - Laura M Tully
- Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, University of California, Davis, CA
| | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, University of California, Davis, CA
| |
Collapse
|
33
|
Chwa WJ, Tishler TA, Raymond C, Tran C, Anwar F, Villablanca JP, Ventura J, Subotnik KL, Nuechterlein KH, Ellingson BM. Association between cortical volume and gray-white matter contrast with second generation antipsychotic medication exposure in first episode male schizophrenia patients. Schizophr Res 2020; 222:397-410. [PMID: 32487466 PMCID: PMC7572538 DOI: 10.1016/j.schres.2020.03.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/06/2020] [Accepted: 03/31/2020] [Indexed: 01/19/2023]
Abstract
This cross-sectional study examines the differences in cortical volume and gray-to-white matter contrast (GWC) in first episode schizophrenia patients (SCZ) compared to healthy control participants (HC) and in SCZ patients as a function of exposure to second generation antipsychotic medication. We hypothesize 1) SCZ exhibit regionally lower cortical volumes relative to HCs, 2) cortical volume will be greater with longer exposure to second generation antipsychotics prior to the MRI scan, and 3) lower GWC with longer exposure to second generation antipsychotics prior to the MRI scan, suggesting more blurring from greater intracortical myelin. To accomplish this, MRI scans from 71 male SCZ patients treated with second generation oral risperidone and 42 male HCs were examined. 3D T1-weighted MPRAGE images collected at 1.5T were used to estimate cortical volume and GWC by sampling signal intensity at 30% within the cortical ribbon. Average cortical volume and GWC were calculated and compared between SCZ and HC. Cortical volume and GWC in SCZ patients were correlated with duration of medication exposure for the time period prior to the scan. First-episode SCZ patients had significantly lower cortical volume compared to HCs in bilateral temporal, superior and rostral frontal, postcentral gyral, and parahippocampal regions. In SCZ patients, greater cortical volume was associated with (log-transformed) duration of second-generation antipsychotic medication exposure in bilateral precuneus, right lingual, and right superior parietal regions. Lower GWC was correlated with longer duration of medication exposure bilaterally in the superior frontal lobes. In summary, second generation antipsychotics may increase cortical volume and decrease GWC in first episode SCZ patients.
Collapse
Affiliation(s)
- Won Jong Chwa
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA,Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Todd A. Tishler
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Catalina Raymond
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Cathy Tran
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Faizan Anwar
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - J. Pablo Villablanca
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Joseph Ventura
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Kenneth L. Subotnik
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Keith H. Nuechterlein
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA,Department of Psychology, University of California Los Angeles, Los Angeles, CA
| | - Benjamin M. Ellingson
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA,Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
34
|
Yang Y, Xu L. Autophagy and Schizophrenia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1207:195-209. [PMID: 32671748 DOI: 10.1007/978-981-15-4272-5_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Schizophrenia (SCZ) is characterized by abnormal thoughts, behaviors and speech, along with a decreased perception of reality that can included visual or auditory hallucinations, withdrawal of social activity and lack of motivation, etc. Many hypotheses related to the causes of SCZ have been proposed, but the underlying neuropathological mechanism remains unclear. Recent studies have suggested that there is an association between autophagy and SCZ. The strongest evidence for this comes from the expression of ATGs in the BA22 of postmortem samples from SCZ patients, coinciding with some of the brain imaging studies and certain hypotheses about SCZ in interpreting the positive symptoms. Autophagy dysfunction in the hippocampus, especially in the CA2 region, may relate to deficits of social communication and interaction in SCZ patients. mTOR regulation of autophagy is also potentially a piece of strong supporting evidence for the autophagic neuropathogenesis of SCZ. In vitro studies show that antipsychotics often induce autophagy through distinct mechanisms of drug action, but they may all share common features as autophagy inducers and antagonists of dopamine receptors.
Collapse
Affiliation(s)
- Yuexiong Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Laboratory of Learning and Memory, Center for Excellence in Brain Science and Intelligence Technology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Laboratory of Learning and Memory, Center for Excellence in Brain Science and Intelligence Technology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| |
Collapse
|
35
|
Hirano Y, Oribe N, Onitsuka T, Kanba S, Nestor PG, Hosokawa T, Levin M, Shenton ME, McCarley RW, Spencer KM. Auditory Cortex Volume and Gamma Oscillation Abnormalities in Schizophrenia. Clin EEG Neurosci 2020; 51:244-251. [PMID: 32204613 DOI: 10.1177/1550059420914201] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We investigated whether the gray matter volume of primary auditory cortex (Heschl's gyrus [HG]) was associated with abnormal patterns of auditory γ activity in schizophrenia, namely impaired γ synchronization in the 40-Hz auditory steady-state response (ASSR) and increased spontaneous broadband γ power. (The γ data were previously reported in Hirano et al, JAMA Psychiatry, 2015;72:813-821). Participants were 24 healthy controls (HC) and 23 individuals with chronic schizophrenia (SZ). The ASSR was obtained from the electroencephalogram to click train stimulation at 20, 30, and 40 Hz rates. Dipole source localization of the ASSR was used to provide a spatial filter of auditory cortex activity, from which ASSR evoked power and phase locking factor (PLF), and induced γ power were computed. HG gray matter volume was derived from structural magnetic resonance imaging at 3 T with manually traced regions of interest. As expected, HG gray matter volume was reduced in SZ compared with HC. In SZ, left hemisphere ASSR PLF and induced γ power during the 40-Hz stimulation condition were positively and negatively correlated with left HG gray matter volume, respectively. These results provide evidence that cortical gray matter structure, possibly resulting from reduced synaptic connectivity at the microcircuit level, is related to impaired γ synchronization and increased spontaneous γ activity in schizophrenia.
Collapse
Affiliation(s)
- Yoji Hirano
- Neural Dynamics Laboratory, Research Service, Veterans Affairs Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Boston, MA, USA.,Departments of Psychiatry and Radiology, Veterans Affairs Boston Healthcare System, and Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoya Oribe
- Neural Dynamics Laboratory, Research Service, Veterans Affairs Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Boston, MA, USA.,Departments of Psychiatry and Radiology, Veterans Affairs Boston Healthcare System, and Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Onitsuka
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigenobu Kanba
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Paul G Nestor
- Neural Dynamics Laboratory, Research Service, Veterans Affairs Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Boston, MA, USA.,Department of Psychology, University of Massachusetts, Boston, MA, USA
| | - Taiga Hosokawa
- Neural Dynamics Laboratory, Research Service, Veterans Affairs Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Boston, MA, USA.,Departments of Psychiatry and Radiology, Veterans Affairs Boston Healthcare System, and Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Martha E Shenton
- Departments of Psychiatry and Radiology, Veterans Affairs Boston Healthcare System, and Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert W McCarley
- Laboratory of Neuroscience, Veterans Affairs Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Kevin M Spencer
- Neural Dynamics Laboratory, Research Service, Veterans Affairs Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Abnormal Effective Connectivity Underlying Auditory Mismatch Negativity Impairments in Schizophrenia. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:1028-1039. [PMID: 32830097 DOI: 10.1016/j.bpsc.2020.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Auditory mismatch negativity (MMN) is a translatable event-related potential biomarker, and its reduction in schizophrenia is associated with the severity of clinical symptoms. While MMN recorded at the scalp is generated by a distributed network of temporofrontal neural sources, the primary contributing sources and the dynamic interactions among sources underlying MMN impairments in schizophrenia have not been previously characterized. METHODS A novel data-driven analytic framework was applied to large cohorts of healthy comparison subjects (n = 449) and patients with schizophrenia (n = 589) to identify the independent contributing sources of MMN, characterize the patterns of effective connectivity underlying reduced MMN in patients, and explore the clinical significance of these abnormal source dynamics in schizophrenia. RESULTS A network of 11 independent contributing sources underlying MMN distributed across temporofrontal cortices was identified. Orderly shifts in peak source activity were detected in a steplike manner, starting at temporal structures and progressing across frontal brain regions. MMN reduction in patients was predominantly associated with reduced contributions from 3 frontal midline sources: orbitofrontal, anterior cingulate, and middle cingulate cortices. Patients showed increased connectivity from temporal to prefrontal regions in conjunction with decreased cross-hemispheric connectivity to prefrontal regions. The decreased connectivity strength of precentral to prefrontal regions in patients with schizophrenia was associated with greater severity of negative symptoms. CONCLUSIONS Alterations in the dynamic interactions among temporofrontal sources underlie MMN abnormalities in schizophrenia. These results advance our understanding of the neural substrates and temporal dynamics of normal and impaired information processing with novel applications for translatable biomarkers of neuropsychiatric disorders.
Collapse
|
37
|
DeRamus T, Silva R, Iraji A, Damaraju E, Belger A, Ford J, McEwen S, Mathalon D, Mueller B, Pearlson G, Potkin S, Preda A, Turner J, Vaidya J, van Erp T, Calhoun V. Covarying structural alterations in laterality of the temporal lobe in schizophrenia: A case for source-based laterality. NMR IN BIOMEDICINE 2020; 33:e4294. [PMID: 32207187 PMCID: PMC8311554 DOI: 10.1002/nbm.4294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
The human brain is asymmetrically lateralized for certain functions (such as language processing) to regions in one hemisphere relative to the other. Asymmetries are measured with a laterality index (LI). However, traditional LI measures are limited by a lack of consensus on metrics used for its calculation. To address this limitation, source-based laterality (SBL) leverages an independent component analysis for the identification of laterality-specific alterations, identifying covarying components between hemispheres across subjects. SBL is successfully implemented with simulated data with inherent differences in laterality. SBL is then compared with a voxel-wise analysis utilizing structural data from a sample of patients with schizophrenia and controls without schizophrenia. SBL group comparisons identified three distinct temporal regions and one cerebellar region with significantly altered laterality in patients with schizophrenia relative to controls. Previous work highlights reductions in laterality (ie, reduced left gray matter volume) in patients with schizophrenia compared with controls without schizophrenia. Results from this pilot SBL project are the first, to our knowledge, to identify covarying laterality differences within discrete temporal brain regions. The authors argue SBL provides a unique focus to detect covarying laterality differences in patients with schizophrenia, facilitating the discovery of laterality aspects undetected in previous work.
Collapse
Affiliation(s)
- T.P. DeRamus
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | - R.F. Silva
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | - A. Iraji
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | - E. Damaraju
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | - A. Belger
- Department of Psychiatry, University of North Carolina Chapel Hill, North Carolina, USA
| | - J.M. Ford
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - S. McEwen
- Pacific Neuroscience Institute Foundation, Santa Monica, CA, USA
| | - D.H. Mathalon
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - B.A. Mueller
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - G.D. Pearlson
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Institute of Living, Olin Neuropsychiatry Research Center, Hartford, CT, USA
| | - S.G. Potkin
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | - A. Preda
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | - J.A. Turner
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
- Department of Psychology, Georgia State University, GA, USA
| | - J.G. Vaidya
- Department of Psychiatry, University of Iowa, IA, USA
| | - T.G.M. van Erp
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | - V.D. Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, Georgia State University, GA, USA
- Department of Electrical and Computer Engineering, Georgia Tech, GA, USA
| |
Collapse
|
38
|
Antipsychotic effects of sex hormones and atypical hemispheric asymmetries. Cortex 2020; 127:313-332. [DOI: 10.1016/j.cortex.2020.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 12/16/2022]
|
39
|
van Haren N, Cahn W, Hulshoff Pol H, Kahn R. Schizophrenia as a progressive brain disease. Eur Psychiatry 2020; 23:245-54. [DOI: 10.1016/j.eurpsy.2007.10.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 10/11/2007] [Accepted: 10/18/2007] [Indexed: 01/06/2023] Open
Abstract
AbstractThere is convincing evidence that schizophrenia is characterized by abnormalities in brain volume. At the Department of Psychiatry of the University Medical Centre Utrecht, Netherlands, we have been carrying out neuroimaging studies in schizophrenia since 1995. We focused our research on three main questions. First, are brain volume abnormalities static or progressive in nature? Secondly, can brain volume abnormalities in schizophrenia be explained (in part) by genetic influences? Finally, what environmental factors are associated with the brain volume abnormalities in schizophrenia?Based on our findings we suggest that schizophrenia is a progressive brain disease. We showed different age-related trajectories of brain tissue loss suggesting that brain maturation that occurs in the third and fourth decade of life is abnormal in schizophrenia. Moreover, brain volume has been shown to be a useful phenotype for studying schizophrenia. Brain volume is highly heritable and twin and family studies show that unaffected relatives show abnormalities that are similar, but usually present to a lesser extent, to those found in the patients. However, also environmental factors play a role. Medication intake is indeed a confounding factor when interpreting brain volume (change) abnormalities, while independent of antipsychotic medication intake brain volume abnormalities appear influenced by the outcome of the illness.In conclusion, schizophrenia can be considered as a progressive brain disease with brain volume abnormalities that are for a large part influenced by genetic factors. Whether the progressive volume change is also mediated by genes awaits the results of longitudinal twin analyses. One of the main challenges for the coming years, however, will be the search for gene-by-environment interactions on the progressive brain changes in schizophrenia.
Collapse
|
40
|
Nagaoka A, Kunii Y, Hino M, Izumi R, Nagashima C, Takeshima A, Sainouchi M, Nawa H, Kakita A, Yabe H. ALDH4A1 expression levels are elevated in postmortem brains of patients with schizophrenia and are associated with genetic variants in enzymes related to proline metabolism. J Psychiatr Res 2020; 123:119-127. [PMID: 32065947 DOI: 10.1016/j.jpsychires.2020.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND The molecular mechanisms underlying schizophrenia remain largely unclear, and we recently identified multiple proteins significantly altered in the postmortem prefrontal cortex (PFC) of schizophrenia patients amongst which aldehyde dehydrogenase 4 family member A1 (ALDH4A1) was especially elevated. In this study, we aimed to investigate the expression of ALDH4A1 in the PFC and superior temporal gyrus (STG) and to elucidate functional correlations between schizophrenia risk alleles and molecular expression profiles in the postmortem brains of patients with schizophrenia. METHODS The levels of ALDH4A1 protein expression in the PFC and STG in postmortem brains from 24 patients with schizophrenia, 8 patients with bipolar disorder, and 32 controls were assessed using enzyme-linked immunosorbent assay. Moreover, we explored the associations between ALDH4A1 expression and genetic variants in enzymes associated with proline metabolism, including ALDH4A1 (schizophrenia [n = 22], bipolar disorder [n = 6], controls [n = 11]). RESULTS ALDH4A1 levels were significantly elevated in both the PFC and STG in patients with schizophrenia and tended to elevate in patients with bipolar disorder. Furthermore, ALDH4A1 expression levels in the PFC were significantly associated with the following three single-nucleotide polymorphisms: rs10882639, rs33823, rs153508. We also found partial coexpression of ALDH4A1 in mitochondria in a subset of putative astrocytes of postmortem brain. LIMITATIONS Our study population was relatively small, particularly for a genetic study. CONCLUSION These findings indicate that altered expression of ALDH4A1 may reflect the potential molecular mechanisms underlying the pathogenesis of schizophrenia and bipolar disorder, and may aid in the development of novel drug therapies.
Collapse
Affiliation(s)
- Atsuko Nagaoka
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, 960-1295, Fukushima, Japan
| | - Yasuto Kunii
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, 960-1295, Fukushima, Japan; Department of Psychiatry, Aizu Medical Center, Fukushima Medical University, 969-3492, Fukushima, Japan.
| | - Mizuki Hino
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, 960-1295, Fukushima, Japan
| | - Ryuta Izumi
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, 960-1295, Fukushima, Japan
| | - Chisato Nagashima
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, 960-1295, Fukushima, Japan
| | - Akari Takeshima
- Department of Pathology, Brain Research Institute, Niigata University, 951-8585, Niigata, Japan
| | - Makoto Sainouchi
- Department of Pathology, Brain Research Institute, Niigata University, 951-8585, Niigata, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, 951-8585, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, 951-8585, Niigata, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, 960-1295, Fukushima, Japan
| |
Collapse
|
41
|
TASH: Toolbox for the Automated Segmentation of Heschl's gyrus. Sci Rep 2020; 10:3887. [PMID: 32127593 PMCID: PMC7054571 DOI: 10.1038/s41598-020-60609-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 02/13/2020] [Indexed: 11/25/2022] Open
Abstract
Auditory cortex volume and shape differences have been observed in the context of phonetic learning, musicianship and dyslexia. Heschl’s gyrus, which includes primary auditory cortex, displays large anatomical variability across individuals and hemispheres. Given this variability, manual labelling is the gold standard for segmenting HG, but is time consuming and error prone. Our novel toolbox, called ‘Toolbox for the Automated Segmentation of HG’ or TASH, automatically segments HG in brain structural MRI data, and extracts measures including its volume, surface area and cortical thickness. TASH builds upon FreeSurfer, which provides an initial segmentation of auditory regions, and implements further steps to perform finer auditory cortex delineation. We validate TASH by showing significant relationships between HG volumes obtained using manual labelling and using TASH, in three independent datasets acquired on different scanners and field strengths, and by showing good qualitative segmentation. We also present two applications of TASH, demonstrating replication and extension of previously published findings of relationships between HG volumes and (a) phonetic learning, and (b) musicianship. In sum, TASH effectively segments HG in a fully automated and reproducible manner, opening up a wide range of applications in the domains of expertise, disease, genetics and brain plasticity.
Collapse
|
42
|
Oxidative-Antioxidant Imbalance and Impaired Glucose Metabolism in Schizophrenia. Biomolecules 2020; 10:biom10030384. [PMID: 32121669 PMCID: PMC7175146 DOI: 10.3390/biom10030384] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
Schizophrenia is a neurodevelopmental disorder featuring chronic, complex neuropsychiatric features. The etiology and pathogenesis of schizophrenia are not fully understood. Oxidative-antioxidant imbalance is a potential determinant of schizophrenia. Oxidative, nitrosative, or sulfuric damage to enzymes of glycolysis and tricarboxylic acid cycle, as well as calcium transport and ATP biosynthesis might cause impaired bioenergetics function in the brain. This could explain the initial symptoms, such as the first psychotic episode and mild cognitive impairment. Another concept of the etiopathogenesis of schizophrenia is associated with impaired glucose metabolism and insulin resistance with the activation of the mTOR mitochondrial pathway, which may contribute to impaired neuronal development. Consequently, cognitive processes requiring ATP are compromised and dysfunctions in synaptic transmission lead to neuronal death, preceding changes in key brain areas. This review summarizes the role and mutual interactions of oxidative damage and impaired glucose metabolism as key factors affecting metabolic complications in schizophrenia. These observations may be a premise for novel potential therapeutic targets that will delay not only the onset of first symptoms but also the progression of schizophrenia and its complications.
Collapse
|
43
|
Murphy TK, Haigh SM, Coffman BA, Salisbury DF. Mismatch Negativity and Impaired Social Functioning in Long-Term and in First Episode Schizophrenia Spectrum Psychosis. Front Psychiatry 2020; 11:544. [PMID: 32612547 PMCID: PMC7308533 DOI: 10.3389/fpsyt.2020.00544] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/27/2020] [Indexed: 12/03/2022] Open
Abstract
Mismatch negativity (MMN) is elicited by infrequent physical parameter sound changes. MMN to pitch-deviants (pMMN) and duration-deviants (dMMN) are severely reduced in long-term schizophrenia (Sz). Although symptom factors (positive, negative, cognitive) are inconsistently associated with MMN amplitude in Sz, several studies have shown smaller dMMN is associated with impaired social functioning in Sz. MMN is less reduced at the first psychotic episode in the schizophrenia spectrum (FESz). Meta-analyses demonstrate that pMMN is not reduced, while dMMN is moderately impaired. Correlations of pMMN and dMMN with symptom factors in FESz are also equivocal. Associations with social functioning have not been reported. FESz and matched controls (n = 40/group), and Sz and matched controls (n = 50/group) were assessed for baseline and current cognitive functioning, symptoms, and social functioning, and pMMN and dMMN were recorded. Sz showed reductions in pMMN (p = 0.001) and dMMN (p = 0.006) amplitude. By contrast, pMMN (p = 0.27) and dMMN (p = 0.84) were not reduced in FESz. However, FESz showed associations between both MMNs and negative symptoms and social functioning. More impaired MMNs in FESz were associated with increased negative symptoms and impaired social functioning, both current and in the year prior to the emergence of psychosis. These data suggest that the extent of pathological process occurring before first psychosis as reflected in compromised social behavior prior to first break and reduced interpersonal communication and increased alogia at first break is indexed by pMMN and dMMN, putative biomarkers of disease progression sensitive to functional impairment.
Collapse
Affiliation(s)
- Timothy K Murphy
- Clinical Neurophysiology Research Laboratory, Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Sarah M Haigh
- Clinical Neurophysiology Research Laboratory, Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Brian A Coffman
- Clinical Neurophysiology Research Laboratory, Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Dean F Salisbury
- Clinical Neurophysiology Research Laboratory, Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
44
|
Takayanagi Y, Kulason S, Sasabayashi D, Takahashi T, Katagiri N, Sakuma A, Ohmuro N, Katsura M, Nishiyama S, Nakamura M, Kido M, Furuichi A, Noguchi K, Matsumoto K, Mizuno M, Ratnanather JT, Suzuki M. Structural MRI Study of the Planum Temporale in Individuals With an At-Risk Mental State Using Labeled Cortical Distance Mapping. Front Psychiatry 2020; 11:593952. [PMID: 33329144 PMCID: PMC7732500 DOI: 10.3389/fpsyt.2020.593952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Recent studies have demonstrated brain structural changes that predate or accompany the onset of frank psychosis, such as schizophrenia, among individuals with an at-risk mental state (ARMS). The planum temporale (PT) is a brain region involved in language processing. In schizophrenia patients, gray matter volume reduction and lack of normal asymmetry (left > right) of PT have repeatedly been reported. Some studies showed progressive gray matter reduction of PT in first-episode schizophrenia patients, and in ARMS subjects during their development of psychosis. Methods: MRI scans (1.5 T field strength) were obtained from 73 ARMS subjects and 74 gender- and age-matched healthy controls at three sites (University of Toyama, Toho University and Tohoku University). Participants with ARMS were clinically monitored for at least 2 years to confirm whether they subsequently developed frank psychosis. Cortical thickness, gray matter volume, and surface area of PT were estimated using FreeSurfer-initiated labeled cortical distance mapping (FSLCDM). PT measures were compared among healthy controls, ARMS subjects who later developed overt psychosis (ARMS-P), and those who did not (ARMS-NP). In each statistical model, age, sex, intracranial volume, and scanning sites were treated as nuisance covariates. Results: Of 73 ARMS subjects, 18 developed overt psychosis (12 schizophrenia and 6 other psychoses) within the follow-up period. There were no significant group differences of PT measures. In addition, significant asymmetries of PT volume and surface area (left > right) were found in all diagnostic groups. PT measures did not correlate with the neurocognitive performance of ARMS subjects. Discussion: Our results suggest that the previously-reported gray matter reduction and lack of normal anatomical asymmetry of PT in schizophrenia patients may not emerge during the prodromal stage of psychosis; taken together with previous longitudinal findings, such PT structural changes may occur just before or during the onset of psychosis.
Collapse
Affiliation(s)
- Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Arisawabashi Hospital, Toyama, Japan
| | - Sue Kulason
- Center for Imaging Science and Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Naoyuki Katagiri
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Atsushi Sakuma
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan
| | - Noriyuki Ohmuro
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan.,Osaki Citizen Hospital, Sendai, Japan
| | - Masahiro Katsura
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan
| | - Shimako Nishiyama
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Health Administration Center, University of Toyama, Toyama, Japan
| | - Mihoko Nakamura
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Mikio Kido
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Kazunori Matsumoto
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan.,Kokoro no Clinic OASIS, Sendai, Japan
| | - Masafumi Mizuno
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - J Tilak Ratnanather
- Center for Imaging Science and Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| |
Collapse
|
45
|
de la Garrigue N, Glasser J, Sehatpour P, Iosifescu DV, Dias E, Carlson M, Shope C, Sobeih T, Choo TH, Wall MM, Kegeles LS, Gangwisch J, Mayer M, Brazis S, De Baun HM, Wolfer S, Bermudez D, Arnold M, Rette D, Meftah AM, Conant M, Lieberman JA, Kantrowitz JT. Grant Report on d-Serine Augmentation of Neuroplasticity-Based Auditory Learning in Schizophrenia †. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2020; 5:e200018. [PMID: 32856005 PMCID: PMC7448686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We report on the rationale and design of an ongoing NIMH sponsored R61-R33 project in schizophrenia/schizoaffective disorder. This project studies augmenting the efficacy of auditory neuroplasticity cognitive remediation (AudRem) with d-serine, an N-methyl-d-aspartate-type glutamate receptor (NMDAR) glycine-site agonist. We operationalize improved (smaller) thresholds in pitch (frequency) between successive auditory stimuli after AudRem as improved plasticity, and mismatch negativity (MMN) and auditory θ as measures of functional target engagement of both NMDAR agonism and plasticity. Previous studies showed that AudRem alone produces significant, but small cognitive improvements, while d-serine alone improves symptoms and MMN. However, the strongest results for plasticity outcomes (improved pitch thresholds, auditory MMN and θ) were found when combining d-serine and AudRem. AudRem improvements correlated with reading and other auditory cognitive tasks, suggesting plasticity improvements are predictive of functionally relevant outcomes. While d-serine appears to be efficacious for acute AudRem enhancement, the optimal dose remains an open question, as does the ability of combined d-serine + AudRem to produce sustained improvement. In the ongoing R61, 45 schizophrenia patients will be randomized to receive three placebo-controlled, double-blind d-serine + AudRem sessions across three separate 15 subject dose cohorts (80/100/120 mg/kg). Successful completion of the R61 is defined by ≥moderate effect size changes in target engagement and correlation with function, without safety issues. During the three-year R33, we will assess the sustained effects of d-serine + AudRem. In addition to testing a potentially viable treatment, this project will develop a methodology to assess the efficacy of novel NMDAR modulators, using d-serine as a "gold-standard".
Collapse
Affiliation(s)
| | - Juliana Glasser
- New York State Psychiatric Institute, New York, NY 10032, USA
| | - Pejman Sehatpour
- New York State Psychiatric Institute, New York, NY 10032, USA,Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA,Nathan Kline Institute, Orangeburg, NY 10962, USA
| | - Dan V. Iosifescu
- Nathan Kline Institute, Orangeburg, NY 10962, USA,NYU Langone Medical Center, New York, NY 10016, USA
| | - Elisa Dias
- Nathan Kline Institute, Orangeburg, NY 10962, USA,NYU Langone Medical Center, New York, NY 10016, USA
| | - Marlene Carlson
- New York State Psychiatric Institute, New York, NY 10032, USA,Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | - Tarek Sobeih
- Nathan Kline Institute, Orangeburg, NY 10962, USA
| | - Tse-Hwei Choo
- New York State Psychiatric Institute, New York, NY 10032, USA,Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Melanie M. Wall
- New York State Psychiatric Institute, New York, NY 10032, USA,Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Lawrence S. Kegeles
- New York State Psychiatric Institute, New York, NY 10032, USA,Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - James Gangwisch
- New York State Psychiatric Institute, New York, NY 10032, USA,Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Megan Mayer
- New York State Psychiatric Institute, New York, NY 10032, USA
| | | | | | | | - Dalton Bermudez
- New York State Psychiatric Institute, New York, NY 10032, USA
| | - Molly Arnold
- Nathan Kline Institute, Orangeburg, NY 10962, USA
| | | | - Amir M. Meftah
- New York State Psychiatric Institute, New York, NY 10032, USA
| | - Melissa Conant
- New York State Psychiatric Institute, New York, NY 10032, USA
| | - Jeffrey A. Lieberman
- New York State Psychiatric Institute, New York, NY 10032, USA,Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Joshua T. Kantrowitz
- New York State Psychiatric Institute, New York, NY 10032, USA,Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA,Nathan Kline Institute, Orangeburg, NY 10962, USA,Correspondence: Joshua T. Kantrowitz, ; Tel.: +1-646-774-6738
| |
Collapse
|
46
|
Parfianowicz D, Espiridion ED. Chronic Post-stroke Psychosis with Left Cortical and Bilateral Inferior Cerebellar Involvement. Cureus 2019; 11:e6437. [PMID: 31993274 PMCID: PMC6970439 DOI: 10.7759/cureus.6437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Post-stroke psychosis is the presence of delusions and/or hallucinations that result from an infarct in the cerebrovascular network. Involvement of a predominantly right-sided cortical pathology has been described in triggering the psychosis. In identified cases, patients often have little to no prior psychiatric history. We report a case of a 70-year-old female with chronic post-stroke psychosis consisting of auditory hallucinations and persecutory delusions. Our patient serves as a unique case in not only contributing to the limited number of documentations overall, but also in highlighting a presentation with infarction of the left parietal-temporal-occipital cortex and bilateral inferior cerebellum.
Collapse
|
47
|
Jung S, Lee A, Bang M, Lee SH. Gray matter abnormalities in language processing areas and their associations with verbal ability and positive symptoms in first-episode patients with schizophrenia spectrum psychosis. NEUROIMAGE-CLINICAL 2019; 24:102022. [PMID: 31670071 PMCID: PMC6831896 DOI: 10.1016/j.nicl.2019.102022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/16/2019] [Accepted: 09/27/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Impaired verbal communication is a prominent feature in patients with schizophrenia. Verbal communication difficulties adversely affect psychosocial outcomes and worsen schizophrenia's clinical manifestation. In the present study, we aimed to investigate associations among gray matter (GM) volumes in language processing areas (LPAs), verbal ability, and positive symptoms in first-episode patients (FEPs) with schizophrenia spectrum psychosis. METHODS We enrolled 94 FEPs and 52 healthy controls (HCs) and subjected them to structural magnetic resonance imaging. The GM volumes of the bilateral pars opercularis (POp), pars triangularis (PTr), planum temporale (PT), Heschl's gyrus (HG), insula, and fusiform gyrus (FG), were estimated and compared between the FEPs and HCs. Verbal intelligence levels and positive symptom severity were examined for correlations with the left LPA volumes. RESULTS The GM volumes of the left POp, HG, and FG were significantly smaller in the FEPs than in the HCs, while the right regions showed no significant between-group difference. A multiple linear regression model revealed that larger left PT volume was associated with better verbal intelligence in FEPs. In exploratory correlation analysis, several LPAs showed significant correlations with the severity of positive symptoms in FEPs. The left FG volume had a strong inverse correlation with the severity of auditory verbal hallucinations, while the left PT volume was inversely associated with the severity of positive formal thought disorder and delusions. Moreover, the volume of the left insula was positively associated with the severity of bizarre behavior. CONCLUSIONS The present study suggests that GM abnormalities in the LPAs, which can be detected during the early stage of illness, may underlie impaired verbal communication and positive symptoms in patients with schizophrenia spectrum psychosis.
Collapse
Affiliation(s)
- Sra Jung
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Arira Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Minji Bang
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea.
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Clinical Pharmacology and Therapeutics, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
48
|
Auditory mismatch detection, distraction, and attentional reorientation (MMN-P3a-RON) in neurological and psychiatric disorders: A review. Int J Psychophysiol 2019; 146:85-100. [PMID: 31654696 DOI: 10.1016/j.ijpsycho.2019.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
Abstract
Involuntary attention allows for the detection and processing of novel and potentially relevant stimuli that lie outside of cognitive focus. These processes comprise change detection in sensory contexts, automatic orientation toward this change, and the selection of adaptive responses, including reorientation to the original goal in cases when the detected change is not relevant for task demands. These processes have been studied using the Event-Related Potential (ERP) technique and have been associated to the Mismatch Negativity (MMN), the P3a, and the Reorienting Negativity (RON) electrophysiological components, respectively. This has allowed for the objective evaluation of the impact of different neuropsychiatric pathologies on involuntary attention. Additionally, these ERP have been proposed as alternative measures for the early detection of disease and the tracking of its progression. The objective of this review was to integrate the results reported to date about MMN, P3a, and RON in different neurological and psychiatric disorders. We included experimental studies with clinical populations that reported at least two of these three components in the same experimental paradigm. Overall, involuntary attention seems to reflect the state of cognitive integrity in different pathologies in adults. However, if the main goal for these ERP is to consider them as biomarkers, more research about their pathophysiological specificity in each disorder is needed, as well as improvement in the general experimental conditions under which these components are elicited. Nevertheless, these ERP represent a valuable neurophysiological tool for early detection and follow-up of diverse clinical populations.
Collapse
|
49
|
Li S, Hu N, Zhang W, Tao B, Dai J, Gong Y, Tan Y, Cai D, Lui S. Dysconnectivity of Multiple Brain Networks in Schizophrenia: A Meta-Analysis of Resting-State Functional Connectivity. Front Psychiatry 2019; 10:482. [PMID: 31354545 PMCID: PMC6639431 DOI: 10.3389/fpsyt.2019.00482] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/19/2019] [Indexed: 02/05/2023] Open
Abstract
Background: Seed-based studies on resting-state functional connectivity (rsFC) in schizophrenia have shown disrupted connectivity involving a number of brain networks; however, the results have been controversial. Methods: We conducted a meta-analysis based on independent component analysis (ICA) brain templates to evaluate dysconnectivity within resting-state brain networks in patients with schizophrenia. Seventy-six rsFC studies from 70 publications with 2,588 schizophrenia patients and 2,567 healthy controls (HCs) were included in the present meta-analysis. The locations and activation effects of significant intergroup comparisons were extracted and classified based on the ICA templates. Then, multilevel kernel density analysis was used to integrate the results and control bias. Results: Compared with HCs, significant hypoconnectivities were observed between the seed regions and the areas in the auditory network (left insula), core network (right superior temporal cortex), default mode network (right medial prefrontal cortex, and left precuneus and anterior cingulate cortices), self-referential network (right superior temporal cortex), and somatomotor network (right precentral gyrus) in schizophrenia patients. No hyperconnectivity between the seed regions and any other areas within the networks was detected in patients, compared with the connectivity in HCs. Conclusions: Decreased rsFC within the self-referential network and default mode network might play fundamental roles in the malfunction of information processing, while the core network might act as a dysfunctional hub of regulation. Our meta-analysis is consistent with diffuse hypoconnectivities as a dysregulated brain network model of schizophrenia.
Collapse
Affiliation(s)
- Siyi Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Na Hu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjing Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Tao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Dai
- Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, China
| | - Yao Gong
- Department of Geriatric Psychiatry, The Fourth People’s Hospital of Chengdu, Chengdu, China
| | - Youguo Tan
- Department of Psychiatry, Zigong Mental Health Center, Zigong, China
| | - Duanfang Cai
- Department of Psychiatry, Zigong Mental Health Center, Zigong, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
50
|
Mitelman SA. Transdiagnostic neuroimaging in psychiatry: A review. Psychiatry Res 2019; 277:23-38. [PMID: 30639090 DOI: 10.1016/j.psychres.2019.01.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 01/10/2023]
Abstract
Transdiagnostic approach has a long history in neuroimaging, predating its recent ascendance as a paradigm for new psychiatric nosology. Various psychiatric disorders have been compared for commonalities and differences in neuroanatomical features and activation patterns, with different aims and rationales. This review covers both structural and functional neuroimaging publications with direct comparison of different psychiatric disorders, including schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorder, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, conduct disorder, anorexia nervosa, and bulimia nervosa. Major findings are systematically presented along with specific rationales for each comparison.
Collapse
Affiliation(s)
- Serge A Mitelman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Psychiatry, Division of Child and Adolescent Psychiatry, Elmhurst Hospital Center, 79-01 Broadway, Elmhurst, NY 11373, USA.
| |
Collapse
|