1
|
Ren S, Li J, Dorado J, Sierra A, González-Díaz H, Duardo A, Shen B. From molecular mechanisms of prostate cancer to translational applications: based on multi-omics fusion analysis and intelligent medicine. Health Inf Sci Syst 2024; 12:6. [PMID: 38125666 PMCID: PMC10728428 DOI: 10.1007/s13755-023-00264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Prostate cancer is the most common cancer in men worldwide and has a high mortality rate. The complex and heterogeneous development of prostate cancer has become a core obstacle in the treatment of prostate cancer. Simultaneously, the issues of overtreatment in early-stage diagnosis, oligometastasis and dormant tumor recognition, as well as personalized drug utilization, are also specific concerns that require attention in the clinical management of prostate cancer. Some typical genetic mutations have been proved to be associated with prostate cancer's initiation and progression. However, single-omic studies usually are not able to explain the causal relationship between molecular alterations and clinical phenotypes. Exploration from a systems genetics perspective is also lacking in this field, that is, the impact of gene network, the environmental factors, and even lifestyle behaviors on disease progression. At the meantime, current trend emphasizes the utilization of artificial intelligence (AI) and machine learning techniques to process extensive multidimensional data, including multi-omics. These technologies unveil the potential patterns, correlations, and insights related to diseases, thereby aiding the interpretable clinical decision making and applications, namely intelligent medicine. Therefore, there is a pressing need to integrate multidimensional data for identification of molecular subtypes, prediction of cancer progression and aggressiveness, along with perosonalized treatment performing. In this review, we systematically elaborated the landscape from molecular mechanism discovery of prostate cancer to clinical translational applications. We discussed the molecular profiles and clinical manifestations of prostate cancer heterogeneity, the identification of different states of prostate cancer, as well as corresponding precision medicine practices. Taking multi-omics fusion, systems genetics, and intelligence medicine as the main perspectives, the current research results and knowledge-driven research path of prostate cancer were summarized.
Collapse
Affiliation(s)
- Shumin Ren
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041 China
- Department of Computer Science and Information Technology, University of A Coruña, 15071 A Coruña, Spain
| | - Jiakun Li
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Julián Dorado
- Department of Computer Science and Information Technology, University of A Coruña, 15071 A Coruña, Spain
| | - Alejandro Sierra
- Department of Computer Science and Information Technology, University of A Coruña, 15071 A Coruña, Spain
- IKERDATA S.L., ZITEK, University of Basque Country UPVEHU, Rectorate Building, 48940 Leioa, Spain
| | - Humbert González-Díaz
- Department of Computer Science and Information Technology, University of A Coruña, 15071 A Coruña, Spain
- IKERDATA S.L., ZITEK, University of Basque Country UPVEHU, Rectorate Building, 48940 Leioa, Spain
| | - Aliuska Duardo
- Department of Computer Science and Information Technology, University of A Coruña, 15071 A Coruña, Spain
- IKERDATA S.L., ZITEK, University of Basque Country UPVEHU, Rectorate Building, 48940 Leioa, Spain
| | - Bairong Shen
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
2
|
Dinerman BF, Skomra A, Dovirak I, Rutkowski J. Utility of pembrolizumab for metastatic castrate resistant prostate cancer with MMR deficiency. Urol Case Rep 2024; 57:102833. [PMID: 39301117 PMCID: PMC11408038 DOI: 10.1016/j.eucr.2024.102833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024] Open
Abstract
Molecular tumor profiling has become an important diagnostic for prostate cancer, allowing for personalized treatment regimens based on somatic and germline genetic information. We report a 67-year-old patient with metastatic castrate-resistant prostate cancer which was intermittently responsive to androgen-deprivation therapy, docetaxel, abiraterone, radium-223, Sipuleucel-T, and radiotherapy who ultimately demonstrated a remarkable and durable response to pembrolizumab. Our case report underlines the significance of early tumor molecular profiling in aggressive or atypical prostate cancer patients and exhibits the potential for a remarkable clinical response with immunotherapy in candidates with the appropriate tumor profiles.
Collapse
Affiliation(s)
- Brian F Dinerman
- University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Department of Urology, Buffalo, NY, USA
| | - Andrew Skomra
- University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Department of Urology, Buffalo, NY, USA
| | - Iryna Dovirak
- University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - John Rutkowski
- University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Department of Urology, Buffalo, NY, USA
| |
Collapse
|
3
|
Pagadala MS, Lui A, Lynch J, Karunamuni R, Lee KM, Plym A, Rose BS, Carter H, Kibel AS, DuVall SL, Vassy J, Gaziano JM, Panizzon MS, Hauger RL, Seibert TM. Healthy lifestyle and prostate cancer risk in the Million Veteran Program. Cancer 2024; 130:3496-3505. [PMID: 38865417 DOI: 10.1002/cncr.35434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/24/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND This study aims to assess the impact of healthy lifestyle on prostate cancer (PCa) risk in a diverse population. METHODS Data for 281,923 men from the Million Veteran Program (MVP), a nationwide, health system-based cohort study, were analyzed. Self-reported information at enrollment included smoking status, exercise, diet, family history of PCa, and race/ethnicity. Body mass index (BMI) was obtained from clinical records. Genetic risk was assessed via a validated polygenic score. Cox proportional hazards models were used to assess associations with PCa outcomes. RESULTS After accounting for ancestry, family history, and genetic risk, smoking was associated with an increased risk of metastatic PCa (hazard ratio [HR], 1.83; 95% confidence interval [CI], 1.64-2.02; p < 10-16) and fatal PCa (HR, 2.73; 95% CI, 2.36-3.25; p < 10-16). Exercise was associated with a reduced risk of fatal PCa (HR, 0.86; 95% CI, 0.76-0.98; p = .03). Higher BMI was associated with a slightly reduced risk of fatal PCa, and diet score was not independently associated with any end point. Association with exercise was strongest among those who had nonmetastatic PCa at MVP enrollment. Absolute reductions in the risk of fatal PCa via lifestyle factors were greatest among men of African ancestry (1.7% for nonsmokers vs. 6.1% for smokers) or high genetic risk (1.4% for nonsmokers vs. 4.3% for smokers). CONCLUSIONS Healthy lifestyle is minimally related to the overall risk of developing PCa but is associated with a substantially reduced risk of dying from PCa. In multivariable analyses, both exercise and not smoking remain independently associated with reduced metastatic and fatal PCa.
Collapse
Affiliation(s)
- Meghana S Pagadala
- Research Service, Veterans Affairs (VA) San Diego Healthcare System, San Diego, California, USA
- Medical Scientist Training Program, University of California San Diego, La Jolla, California, USA
- Biomedical Science Program, University of California San Diego, La Jolla, California, USA
| | - Asona Lui
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, USA
- Cancer Center, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Julie Lynch
- VA Informatics and Computing Infrastructure, VA Salt Lake City Healthcare System, Salt Lake City, Utah, USA
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Roshan Karunamuni
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, USA
| | - Kyung Min Lee
- VA Informatics and Computing Infrastructure, VA Salt Lake City Healthcare System, Salt Lake City, Utah, USA
| | - Anna Plym
- Department of Urology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Brent S Rose
- Research Service, Veterans Affairs (VA) San Diego Healthcare System, San Diego, California, USA
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, USA
| | - Hannah Carter
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Adam S Kibel
- Department of Urology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Scott L DuVall
- VA Informatics and Computing Infrastructure, VA Salt Lake City Healthcare System, Salt Lake City, Utah, USA
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Jason Vassy
- VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - J Michael Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Matthew S Panizzon
- Research Service, Veterans Affairs (VA) San Diego Healthcare System, San Diego, California, USA
- Center for Behavioral Genetics of Aging, University of California San Diego, La Jolla, California, USA
| | - Richard L Hauger
- Research Service, Veterans Affairs (VA) San Diego Healthcare System, San Diego, California, USA
- Center for Behavioral Genetics of Aging, University of California San Diego, La Jolla, California, USA
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, California, USA
| | - Tyler M Seibert
- Research Service, Veterans Affairs (VA) San Diego Healthcare System, San Diego, California, USA
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
4
|
Bau DT, Liu TY, Yang JS, Chen WTL, Tsai CW, Chang WS, Ke TW, Liao CC, Chen YC, Chang YT, Tsai FJ. Characterizing Genetic Susceptibility to Colorectal Cancer in Taiwan Through Genome-Wide Association Study. Mol Carcinog 2024. [PMID: 39392253 DOI: 10.1002/mc.23823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
We conducted the first genome-wide association study (GWAS) of colorectal cancer (CRC) in Taiwan with 5342 cases and 61,015 controls. Ninety-two SNPs in three genomic regions reached genome-wide significance (p < 5 × 10-8). The lead SNPs in these three regions were: rs12778523 (OR = 1.18, 95% CI, 1.15-1.23, p = 4.51 × 10-13), an intergenic SNP between RNA5SP299 and LINC02676 at chromosome 10p14; rs647161 (OR = 1.14, 95% CI, 1.09-1.19, p = 2.21 × 10-9), an intronic SNP in PITX1 at 5q31.1, and rs10427139 (OR = 1.20, 95% CI, 1.14-1.28, p = 3.62 × 10-9), an intronic SNP in GPATCH1 at 19q13.1. We further validated CRC susceptibility SNPs previously identified through GWAS in other populations. A total of 61 CRC susceptibility SNPs were confirmed in Taiwanese. The top validated putative CRC susceptibility genes included: POU2AF2, HAO1, LAMC1, EIF3H, BMP2, ZMIZ1, BMP4, POLD3, CDKN1A, PREX1, CDKN2B, CDH1, and LRIG1. The top enriched pathways included TGF-β signaling, BMP signaling, extracellular matrix organization, DNA repair, and cell cycle control. We could not validate SNPs in HLA-G at 6p22.1 and in NOTCH4 at 6p21.32. We generated a weighted genetic risk score (GRS) using the 61 SNPs and constructed receiver operating characteristic (ROC) curves using the GRS to predict CRC. The area under the ROC curve (AUC) was 0.589 for GRS alone and 0.645 for GRS, sex, and age. These susceptibility SNPs and genes provide important insights into the molecular mechanisms of CRC development and help identify high-risk individuals for CRC in Taiwan.
Collapse
Affiliation(s)
- Da-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Ting-Yuan Liu
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - William Tzu-Liang Chen
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chia-Wen Tsai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Shin Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chi-Chou Liao
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yu-Chia Chen
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yen-Ting Chang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Department of Medical Research, Human Genetics Center, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Genetics, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
5
|
Moyad MA. Rapid Lifestyle Recommendations to Improve Urologic, Heart and Overall Health. Curr Urol Rep 2024; 26:10. [PMID: 39377857 DOI: 10.1007/s11934-024-01246-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
PURPOSE OF REVIEW This literature review is intended to highlight recent correlations between urologic, heart and overall health by emphasizing healthy eating patterns, physical activity, alcohol minimization and tobacco elimination, healthy sleep, weight, cholesterol, blood sugar, blood pressure management, and mental health awareness. RECENT FINDINGS Meta-analyses, systematic reviews, and clinical studies espouse a unified message for prevention, reducing the risk of disease recurrence, progression, complementing conventional medical intervention efficacy, and mitigating treatment side effects. Limiting or eliminating alcohol consumption could be considered an independent recommendation and adding a mental health and miscellaneous (genetic risk and lifestyle, planetary health, HPV or other vaccination awareness, spirituality, etc.) category could allow for individualized educational opportunities, synergism appreciation, and self-improvement. Urologic healthcare professionals have the potential to strengthen the collective public health goal of improving the quality and quantity of the lives of patients able to adhere to these heart healthy recommendations.
Collapse
Affiliation(s)
- Mark A Moyad
- Department of Urology, University of Michigan Medical Center, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Ye L, Wang F, Wu H, Yuan Y, Zhang Q. Evidence of the association between asthma and lung cancer risk from mendelian randomization analysis. Sci Rep 2024; 14:23047. [PMID: 39367168 PMCID: PMC11452391 DOI: 10.1038/s41598-024-74883-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 09/30/2024] [Indexed: 10/06/2024] Open
Abstract
Asthma and lung cancer are both significant public health concerns worldwide. Previous observational studies have indicated a potential link between asthma and an increased risk of lung cancer, whereas the causal relationship remains uncertain. We aimed to investigate the potential causal relationship between asthma and lung cancer risk utilizing Mendelian randomization (MR) design.The present study employed a two-sample MR analysis utilizing summary statistics from genome-wide association studies (GWAS) with European descent of asthma and lung cancer. The MR analysis was performed using inverse variance weighting (IVW), supplemented with MR-Egger regression and weighted median method to investigate the potential causality between asthma and lung cancer. Furthermore, Sensitivity analyses were also conducted to ensure the reliability of the findings. The MR analysis showed that genetically predicted asthma had suggestive causal association with the elevated risk of lung cancer [odds ratio (OR), 1.05 (95%Cl,1.01-1.09), P = 0.01]. The consistent direction of effects observed in the three methods further supported this finding. In addition, sensitivity analyses demonstrated the reliability of the results. This study provided potential evidence supporting a causal association between asthma and lung cancer. These findings highlighted the importance of early detection and prevention strategies for lung cancer in individuals with asthma. Further research was needed to elucidate the underlying mechanisms linking asthma and lung cancer.
Collapse
Affiliation(s)
- Lingling Ye
- Department of Oncology, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital with Nanjing Medical University, 169 Hushan Road, Dongshan Street, Nanjing, 211000, Jiangsu, China
| | - Fen Wang
- Department of Oncology, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital with Nanjing Medical University, 169 Hushan Road, Dongshan Street, Nanjing, 211000, Jiangsu, China
| | - Hao Wu
- Department of Oncology, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital with Nanjing Medical University, 169 Hushan Road, Dongshan Street, Nanjing, 211000, Jiangsu, China
| | - Yihang Yuan
- Department of Oncology, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital with Nanjing Medical University, 169 Hushan Road, Dongshan Street, Nanjing, 211000, Jiangsu, China
| | - Quan'an Zhang
- Department of Oncology, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital with Nanjing Medical University, 169 Hushan Road, Dongshan Street, Nanjing, 211000, Jiangsu, China.
| |
Collapse
|
7
|
Hammermeister Suger A, Harrison TA, Henning B, Turman C, Kraft P, Lindström S. Nonadditive Effects of Common Genetic Variants Have a Negligent Contribution to Cancer Heritability. Cancer Epidemiol Biomarkers Prev 2024; 33:1383-1388. [PMID: 39018351 PMCID: PMC11446654 DOI: 10.1158/1055-9965.epi-24-0496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/17/2024] [Accepted: 07/15/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Contribution of dominance effects to cancer heritability is unknown. We leveraged existing genome-wide association data for seven cancers to estimate the contribution of dominance effects to the heritability of individual cancer types. METHODS We estimated the proportion of phenotypic variation caused by dominance genetic effects using genome-wide association data for seven cancers (breast, colorectal, lung, melanoma, nonmelanoma skin, ovarian, and prostate) in a total of 166,772 cases and 284,824 controls. RESULTS We observed no evidence of a meaningful contribution of dominance effects to cancer heritability. By contrast, additive effects ranged between 0.11 and 0.34. CONCLUSIONS In line with studies of other human traits, the dominance effects of common genetic variants play a minimal role in cancer etiology. IMPACT These results support the assumption of an additive inheritance model when conducting cancer association studies with common genetic variants.
Collapse
Affiliation(s)
| | - Tabitha A Harrison
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
| | - Barbara Henning
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Constance Turman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Sara Lindström
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington
| |
Collapse
|
8
|
Tian L, Zhou N, Zhao N, Qiao M, He M, Mao Z, Xu W, Xu D, Wang Y, Xu Y, Chen T. Low level exposure to BDE-47 facilitates the development of prostate cancer through TOP2A/LDHA/lactylation positive feedback circuit. ENVIRONMENTAL RESEARCH 2024; 263:120094. [PMID: 39362459 DOI: 10.1016/j.envres.2024.120094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
2,2',4,4'-tetra brominated diphenyl ether (BDE-47) is one of the most widely distributed congeners of polybrominated diphenyl ethers. While the relationships between BDE-47 exposure and other hormone-dependent cancers (such as breast cancer) are well established, no previous study has examined whether BDE-47 exposure is related to the development of prostate cancer (PCa). Through bulk and single-cell RNA sequencing (scRNA-seq) analyses, as well as in vitro and in vivo experiments, this study aims to investigate the effect of BDE-47 exposure on PCa progression. Herein, we found that low dose BDE-47 promoted the growth of PCa cells (PC3 and LNCaP) in a dose-dependent manner in vitro and in vivo. Based on Comparative Toxicogenomics Database (CTD) and The Cancer Genome Atlas (TCGA), we obtained 34 BDE-47-related and PCa-related genes through screening and overlapping. These genes were significantly enriched in fatty acid metabolism-related gene ontology (GO) terms, which were also enriched for genes targeting BDE-47 obtained from the UniProt. Through scRNA-seq data, certain cell type-specific expression was observed for CYP2E1, PIK3R1, FGF2, and TOP2A in PCa tissues from men. Molecular docking simulation showed that BDE-47 was tightly bound to the protein residues of AOX1, PIK3R1, FGF2, CAV2, CYP2E1 and TOP2A. Further screening in terms of patient overall survival, receiver operating characteristics curve (ROC) curve and Gleason score grading system narrowed the candidate genes down to TOP2A. Mechanistically, the growth-promoting effect of BDE-47 on PCa cells could be reversed by TOP2A inhibitor. RNA-seq followed by experimental verification demonstrated that TOP2A promoted PCa progression through upregulating LDHA and glycolysis. Furthermore, lactate upregulated TOP2A transcription through lactylation of H3K18la in PCa cells, which could be rescued by LDHA knockdown. Taken together, low dose BDE-47 triggered PCa progression through TOP2A/LDHA/lactylation positive feedback circuit, thus revealing epigenetic shifting and metabolic reprogramming underpinning BDE-47-induced carcinogenesis of the prostate.
Collapse
Affiliation(s)
- Linlin Tian
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, PR China
| | - Nan Zhou
- Nanjing Municipal Health Commission, Nanjing, PR China
| | - Ning Zhao
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, PR China
| | - Mengkai Qiao
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, PR China
| | - Min He
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, PR China
| | - Ziqing Mao
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, PR China
| | - Wenjiong Xu
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, PR China
| | - Dandan Xu
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, PR China
| | - Yan Wang
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, PR China
| | - Yan Xu
- School of Public Health, Nanjing Medical University, Nanjing, PR China; Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, PR China; Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Nanjing, PR China; Jiangsu Provincial Medical Key Laboratory of Pathogenic Microbiology in Emerging Major Infectious Diseases, Nanjing, PR China.
| | - Tong Chen
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
9
|
Lorentz J, Woollcombe J, Loblaw A, Liu S, Vesprini D. Screening guidelines for individuals at increased risk for prostate cancer. Can Urol Assoc J 2024; 18:E301-E307. [PMID: 38896481 PMCID: PMC11477514 DOI: 10.5489/cuaj.8710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Individuals at increased risk for prostate cancer (PCa) are inconsistently defined in national and international guidelines. The National Comprehensive Cancer Network (NCCN) defines people at increased risk for PCa to include those with a concerning family history, West African/Caribbean/African-American individuals, and those who have germline mutations in known PCa-related genes. Recommendations for screening are also inconsistently defined in national and international guidelines. The NCCN and American Urological Association recommend that individuals at increased risk for PCa be screened with prostate-specific antigen and digital rectal exam starting at age 40. Defining increased risk groups and defining lifetime risk is an ongoing academic process that can be facilitated through patient registries of these cohorts at academic centers.
Collapse
Affiliation(s)
- Justin Lorentz
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada; Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Julia Woollcombe
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada; Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Andrew Loblaw
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada; Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Stanley Liu
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada; Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Danny Vesprini
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada; Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| |
Collapse
|
10
|
Janivara R, Chen WC, Hazra U, Baichoo S, Agalliu I, Kachambwa P, Simonti CN, Brown LM, Tambe SP, Kim MS, Harlemon M, Jalloh M, Muzondiwa D, Naidoo D, Ajayi OO, Snyper NY, Niang L, Diop H, Ndoye M, Mensah JE, Abrahams AOD, Biritwum R, Adjei AA, Adebiyi AO, Shittu O, Ogunbiyi O, Adebayo S, Nwegbu MM, Ajibola HO, Oluwole OP, Jamda MA, Pentz A, Haiman CA, Spies PV, van der Merwe A, Cook MB, Chanock SJ, Berndt SI, Watya S, Lubwama A, Muchengeti M, Doherty S, Smyth N, Lounsbury D, Fortier B, Rohan TE, Jacobson JS, Neugut AI, Hsing AW, Gusev A, Aisuodionoe-Shadrach OI, Joffe M, Adusei B, Gueye SM, Fernandez PW, McBride J, Andrews C, Petersen LN, Lachance J, Rebbeck TR. Heterogeneous genetic architectures of prostate cancer susceptibility in sub-Saharan Africa. Nat Genet 2024; 56:2093-2103. [PMID: 39358599 DOI: 10.1038/s41588-024-01931-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 08/12/2024] [Indexed: 10/04/2024]
Abstract
Men of African descent have the highest prostate cancer incidence and mortality rates, yet the genetic basis of prostate cancer in African men has been understudied. We used genomic data from 3,963 cases and 3,509 controls from Ghana, Nigeria, Senegal, South Africa and Uganda to infer ancestry-specific genetic architectures and fine-map disease associations. Fifteen independent associations at 8q24.21, 6q22.1 and 11q13.3 reached genome-wide significance, including four new associations. Intriguingly, multiple lead associations are private alleles, a pattern arising from recent mutations and the out-of-Africa bottleneck. These African-specific alleles contribute to haplotypes with odds ratios above 2.4. We found that the genetic architecture of prostate cancer differs across Africa, with effect size differences contributing more to this heterogeneity than allele frequency differences. Population genetic analyses reveal that African prostate cancer associations are largely governed by neutral evolution. Collectively, our findings emphasize the utility of conducting genetic studies that use diverse populations.
Collapse
Affiliation(s)
- Rohini Janivara
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wenlong C Chen
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Cancer Registry, National Institute for Communicable Diseases a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Ujani Hazra
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Ilir Agalliu
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Paidamoyo Kachambwa
- Centre for Proteomic and Genomic Research, Cape Town, South Africa
- Mediclinic Precise Southern Africa, Cape Town, South Africa
| | - Corrine N Simonti
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Lyda M Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Saanika P Tambe
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michelle S Kim
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Maxine Harlemon
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mohamed Jalloh
- Université Cheikh Anta Diop de Dakar, Dakar, Senegal
- Université Iba Der Thiam de Thiès, Thiès, Senegal
| | - Dillon Muzondiwa
- Centre for Proteomic and Genomic Research, Cape Town, South Africa
| | - Daphne Naidoo
- Centre for Proteomic and Genomic Research, Cape Town, South Africa
| | - Olabode O Ajayi
- Centre for Proteomic and Genomic Research, Cape Town, South Africa
| | | | - Lamine Niang
- Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | | | - Medina Ndoye
- Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - James E Mensah
- Korle-Bu Teaching Hospital and University of Ghana Medical School, Accra, Ghana
| | - Afua O D Abrahams
- Korle-Bu Teaching Hospital and University of Ghana Medical School, Accra, Ghana
| | - Richard Biritwum
- Korle-Bu Teaching Hospital and University of Ghana Medical School, Accra, Ghana
| | - Andrew A Adjei
- Department of Pathology, University of Ghana Medical School, Accra, Ghana
| | | | | | | | - Sikiru Adebayo
- College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Maxwell M Nwegbu
- College of Health Sciences, University of Abuja, University of Abuja Teaching Hospital and Cancer Science Centre, Abuja, Nigeria
| | - Hafees O Ajibola
- College of Health Sciences, University of Abuja, University of Abuja Teaching Hospital and Cancer Science Centre, Abuja, Nigeria
| | - Olabode P Oluwole
- College of Health Sciences, University of Abuja, University of Abuja Teaching Hospital and Cancer Science Centre, Abuja, Nigeria
| | - Mustapha A Jamda
- College of Health Sciences, University of Abuja, University of Abuja Teaching Hospital and Cancer Science Centre, Abuja, Nigeria
| | - Audrey Pentz
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Christopher A Haiman
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Petrus V Spies
- Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - André van der Merwe
- Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Michael B Cook
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | | | | | - Mazvita Muchengeti
- National Cancer Registry, National Institute for Communicable Diseases a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Sean Doherty
- Division of Urology, Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Natalie Smyth
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - David Lounsbury
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Thomas E Rohan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Judith S Jacobson
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York City, NY, USA
| | - Alfred I Neugut
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York City, NY, USA
| | - Ann W Hsing
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Alexander Gusev
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Oseremen I Aisuodionoe-Shadrach
- College of Health Sciences, University of Abuja, University of Abuja Teaching Hospital and Cancer Science Centre, Abuja, Nigeria
| | - Maureen Joffe
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | - Pedro W Fernandez
- Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jo McBride
- Centre for Proteomic and Genomic Research, Cape Town, South Africa
| | | | - Lindsay N Petersen
- Centre for Proteomic and Genomic Research, Cape Town, South Africa
- Mediclinic Precise Southern Africa, Cape Town, South Africa
| | - Joseph Lachance
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Timothy R Rebbeck
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
11
|
Constantinou SM, Bennett DC. Cell Senescence and the Genetics of Melanoma Development. Genes Chromosomes Cancer 2024; 63:e23273. [PMID: 39422311 DOI: 10.1002/gcc.23273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024] Open
Abstract
Cutaneous malignant melanoma is an aggressive skin cancer with an approximate lifetime risk of 1 in 38 in the UK. While exposure to ultraviolet radiation is a key environmental risk factor for melanoma, up to ~10% of patients report a family history of melanoma, and ~1% have a strong family history. The understanding of causal mutations in melanoma has been critical to the development of novel targeted therapies that have contributed to improved outcomes for late-stage patients. Here, we review current knowledge of the genes affected by familial melanoma mutations and their partial overlap with driver genes commonly mutated in sporadic melanoma development. One theme linking a set of susceptibility loci/genes is the regulation of skin pigmentation and suntanning. The largest functional set of susceptibility variants, typically with high penetrance, includes CDKN2A, RB1, and telomerase reverse transcriptase (TERT) mutations, associated with attenuation of cell senescence. We discuss the mechanisms of action of these gene sets in the biology and progression of nevi and melanoma.
Collapse
Affiliation(s)
- Sophie M Constantinou
- Molecular & Cellular Sciences Research Section, City St George's, University of London, London, UK
| | - Dorothy C Bennett
- Molecular & Cellular Sciences Research Section, City St George's, University of London, London, UK
| |
Collapse
|
12
|
Wu D, Zhou J, Song L, Zheng Q, Wang T, Ren Z, Huang Y, Liu S, Liu L. A multi-level investigation of the genetic relationship between gastroesophageal reflux disease and lung cancer. Transl Lung Cancer Res 2024; 13:2373-2387. [PMID: 39430334 PMCID: PMC11484728 DOI: 10.21037/tlcr-24-345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/12/2024] [Indexed: 10/22/2024]
Abstract
Background Observational studies have revealed a potential association between gastroesophageal reflux disease (GERD) and lung cancer (LC), but the genetic role in their comorbidity have not been fully elucidated. This study aimed to comprehensively dissect the genetic link underlying GERD and LC. Methods Using large-scale genome-wide association study (GWAS) data, we investigated shared genetic architecture between GERD and LC. Our analyses encompassed genetic correlation, cross-trait meta-analysis, transcriptome-wide association studies (TWASs), and the evaluation of the causality though a bidirectional Mendelian randomization (MR) analysis with sufficient sensitivities. Results We identified a significant genome-wide genetic correlation between GERD and overall LC (rg =0.33, P=1.58×10-14), as well as across other subtype-specific LC (rg ranging from 0.19 to 0.39). After separating the whole genome into approximately 2,353 independent regions, 5 specific regions demonstrated significant local genetic correlation, with most significant region located at 9q33.3. Cross-trait meta-analysis revealed 22 pleiotropic loci between GERD and LC, including 3 novel loci (rs537160, rs10156445, and rs17391694). TWASs discovered a total of 49 genes shared in multiple tissues, such as lung tissues, esophagus muscularis, esophagus mucosa, and esophagus gastroesophageal junction. MR analysis suggested a significantly causal relationship between GERD and overall LC [odds ratio (OR) =1.34, 95% confidence interval (CI): 1.19-1.51], as well as other subtype-specific LC (OR ranging from 1.25 to 1.76). No evidence supports a significant causal effect of LC on GERD. Conclusions Our findings suggest intrinsic genetic correlation underlying GERD and LC, which provides valuable insights for screening and management of LC in individuals with GERD.
Collapse
Affiliation(s)
- Dongsheng Wu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Zhou
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Lujia Song
- Department of Pulmonary and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, and Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Quan Zheng
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Tengyong Wang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhizhen Ren
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuchen Huang
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Shuqiao Liu
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Lunxu Liu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Ji C, Ge W, Zhu C, Shen F, Yu Y, Pang G, Li Q, Zhu M, Ma Z, Zhu X, Fu Y, Gong L, Wang T, Du L, Jin G, Zhu M. Family history and genetic risk score combined to guide cancer risk stratification: A prospective cohort study. Int J Cancer 2024. [PMID: 39291673 DOI: 10.1002/ijc.35187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/18/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
Family history (FH) of cancer and polygenic risk scores (PRS) are pivotal for cancer risk assessment, yet their combined impact remains unclear. Participants in the UK Biobank (UKB) were recruited between 2006 and 2010, with complete follow-up data updated until February 2020 for Scotland and January 2021 for England and Wales. Using UKB data (N = 442,399), we constructed PRS and incidence-weighted overall cancer PRS (CPRS). FH was assessed through self-reported standardized questions. Among 202,801 men (34.6% with FH) and 239,598 women (42.0% with FH), Cox regression was used to examine the associations between FH, PRS, and cancer risk. We found a significant dose-response relationship between FH of cancer and corresponding cancer risk (Ptrend < .05), with over 10 significant pairs of cross-cancer effects of FH. FH and PRS are positively correlated and independent. Joint effects of FH of cancer (multiple cancers) and PRS (CPRS) on corresponding cancer risk were observed: for instance, compared with participants with no FH of cancer and low PRS, men with FH of cancer and high PRS had the highest risk of colorectal cancer (hazard ratio [HR]: 3.69, 95% confidence interval [CI]: 3.01-4.52). Additive interactions were observed in prostate and overall cancer risk for men and breast cancer for women, with the most significant result being a relative excess risk of interaction (RERI) of 2.98, accounting for ~34% of the prostate cancer risk. In conclusion, FH and PRS collectively contribute to cancer risk, supporting their combined application in personalized risk assessment and early intervention strategies.
Collapse
Affiliation(s)
- Chen Ji
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Wenjing Ge
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Chen Zhu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Fang Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Yuhui Yu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Guanlian Pang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Qiao Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Mingxuan Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Zhimin Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Xia Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Yating Fu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Linnan Gong
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Tianpei Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Lingbin Du
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Public Health Institute of Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing, China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Schubert SA, Ruano D, Joruiz SM, Stroosma J, Glavak N, Montali A, Pinto LM, Rodríguez-Girondo M, Barge-Schaapveld DQCM, Nielsen M, van Nesselrooij BPM, Mensenkamp AR, van Leerdam ME, Sharp TH, Morreau H, Bourdon JC, de Miranda NFCC, van Wezel T. Germline variant affecting p53β isoforms predisposes to familial cancer. Nat Commun 2024; 15:8208. [PMID: 39294166 PMCID: PMC11410958 DOI: 10.1038/s41467-024-52551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/06/2024] [Indexed: 09/20/2024] Open
Abstract
Germline and somatic TP53 variants play a crucial role during tumorigenesis. However, genetic variations that solely affect the alternatively spliced p53 isoforms, p53β and p53γ, are not fully considered in the molecular diagnosis of Li-Fraumeni syndrome and cancer. In our search for additional cancer predisposing variants, we identify a heterozygous stop-lost variant affecting the p53β isoforms (p.*342Serext*17) in four families suspected of an autosomal dominant cancer syndrome with colorectal, breast and papillary thyroid cancers. The stop-lost variant leads to the 17 amino-acid extension of the p53β isoforms, which increases oligomerization to canonical p53α and dysregulates the expression of p53's transcriptional targets. Our study reveals the capacity of p53β mutants to influence p53 signalling and contribute to the susceptibility of different cancer types. These findings underscore the significance of p53 isoforms and the necessity of comprehensive investigation into the entire TP53 gene in understanding cancer predisposition.
Collapse
Affiliation(s)
- Stephanie A Schubert
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dina Ruano
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Jordy Stroosma
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nikolina Glavak
- School of Medicine, University of Dundee, Dundee, UK
- Croatian Institute of Transfusion Medicine, Zagreb, Croatia
| | - Anna Montali
- School of Medicine, University of Dundee, Dundee, UK
| | - Lia M Pinto
- School of Medicine, University of Dundee, Dundee, UK
| | - Mar Rodríguez-Girondo
- Department of Biomedical Data Sciences, Section of Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Arjen R Mensenkamp
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Monique E van Leerdam
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas H Sharp
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Antolini E, Filosa A, Santoni M, Antaldi E, Bartoli E, Sierchio L, Giantomassi F, Mandolesi A, Goteri G. Internal Overview of Prostatic Cancer Cases and Quality of BRCA1 and BRCA2 NGS Data from the FFPE Tissue. Diagnostics (Basel) 2024; 14:2067. [PMID: 39335746 PMCID: PMC11431729 DOI: 10.3390/diagnostics14182067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Comprehensive genomic profiling (CGP) has gained an important role in patients with advanced prostate cancer following the introduction of PARP inhibitors in daily clinical practice. Here, we report an overview of CGP results, specifically of BRCA1 and BRCA2 HRD-repair system genes, from patients with prostate cancer analyzed in our institution, and we compare our results with those available from more recent scientific literature. Methods: The study cohort consisted of 70 patients. Somatic DNA was extracted from Formalin-Fixed Paraffin-Embedded (FFPE) tissue using a MagCore Genomic DNA FFPE One-Step Kit for MagCore System. The DNA was quantified by EasyPGX® Real-Time qPCR and EasyPGX® Analysis Software (version 4.0.13). Tissue somatic DNA libraries were prepared with Myriapod® NGS BRCA1-2 panel-NG035 and sequenced in a Mi-Seq® System. The sequence alignment in hg19 and the variant calling were performed using Myriapod® NGS Data Analysis Software version 5.0.8 NG900-SW 5.0.8 with a software detection limit (LoD) of 95%. Variants with a coverage of 500 and VAF% ≥ 5 were evaluated. Results: Tumor tissue NGS was unsuccessful in 46/70 patients (66%). Mutations of the BRCA2 gene were detected in 4 of the samples: (1) BRCA2 ex10 c.1244A>G p.His415Arg VAF = 51.03%; (2) BRCA2 ex11 c.5946delT p.Ser1982fs VAF = 72.1%; (3) BRCA2 ex11 c.3302A>G p.His1101Arg VAF = 52.9%; and (4) BRCA2 ex11 c.3195_3198delTAAT p.Asn1066fs VAF = 51.1%. Conclusions: The results from our internal overview seem to support the data and to confirm the performance of the technical issues reported in the literature. Considering the advanced age of our patients, with 84% of men over the age of 65, the application of alternative and less invasive procedures such as liquid biopsy, could be a more suitable solution for some cases.
Collapse
Affiliation(s)
- Enrica Antolini
- Department of Biomedical Science and Public Health, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Alessandra Filosa
- Department of Biomedical Science and Public Health, Università Politecnica delle Marche, 60126 Ancona, Italy
- Anatomic Pathology Unit, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| | - Matteo Santoni
- Oncology Unit, Macerata Hospital, Via Santa Lucia 2, 62100 Macerata, Italy
| | - Elena Antaldi
- Anatomic Pathology Unit, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| | - Elisa Bartoli
- Anatomic Pathology Unit, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| | - Lidia Sierchio
- Anatomic Pathology Unit, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| | - Federica Giantomassi
- Department of Biomedical Science and Public Health, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Alessandra Mandolesi
- Anatomic Pathology Unit, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| | - Gaia Goteri
- Department of Biomedical Science and Public Health, Università Politecnica delle Marche, 60126 Ancona, Italy
- Anatomic Pathology Unit, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| |
Collapse
|
16
|
Long E, Yin J, Shin JH, Li Y, Li B, Kane A, Patel H, Sun X, Wang C, Luong T, Xia J, Han Y, Byun J, Zhang T, Zhao W, Landi MT, Rothman N, Lan Q, Chang YS, Yu F, Amos CI, Shi J, Lee JG, Kim EY, Choi J. Context-aware single-cell multiomics approach identifies cell-type-specific lung cancer susceptibility genes. Nat Commun 2024; 15:7995. [PMID: 39266564 PMCID: PMC11392933 DOI: 10.1038/s41467-024-52356-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
Genome-wide association studies (GWAS) identified over fifty loci associated with lung cancer risk. However, underlying mechanisms and target genes are largely unknown, as most risk-associated variants might regulate gene expression in a context-specific manner. Here, we generate a barcode-shared transcriptome and chromatin accessibility map of 117,911 human lung cells from age/sex-matched ever- and never-smokers to profile context-specific gene regulation. Identified candidate cis-regulatory elements (cCREs) are largely cell type-specific, with 37% detected in one cell type. Colocalization of lung cancer candidate causal variants (CCVs) with these cCREs combined with transcription factor footprinting prioritize the variants for 68% of the GWAS loci. CCV-colocalization and trait relevance score indicate that epithelial and immune cell categories, including rare cell types, contribute to lung cancer susceptibility the most. A multi-level cCRE-gene linking system identifies candidate susceptibility genes from 57% of the loci, where most loci display cell-category-specific target genes, suggesting context-specific susceptibility gene function.
Collapse
Affiliation(s)
- Erping Long
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinhu Yin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Ju Hye Shin
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yuyan Li
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bolun Li
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Alexander Kane
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Harsh Patel
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Xinti Sun
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cong Wang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Thong Luong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jun Xia
- Department of Biomedical Sciences, Creighton University, Omaha, NE, USA
| | - Younghun Han
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Jinyoung Byun
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Wei Zhao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Yoon Soo Chang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Fulong Yu
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jin Gu Lee
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Eun Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
17
|
Kim S, Mai Tran TX, Kim MK, Chung MS, Lee EH, Lee W, Park B. Associations between breast cancer risk factors and mammographic breast density in a large cross-section of Korean women. Eur J Cancer Prev 2024; 33:407-413. [PMID: 38375880 DOI: 10.1097/cej.0000000000000878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
BACKGROUND We investigated the association between established risk factors for breast cancer and mammographic breast density in Korean women. METHODS This large cross-sectional study included 8 460 928 women aged >40 years, who were screened for breast cancer between 2009 and 2018. Breast density was assessed using the Breast Imaging Reporting and Data System. This study used multiple logistic regression analyses of age, BMI, age at menarche, menopausal status, menopausal age, parity, breastfeeding status, oral contraceptive use, family history of breast cancer, physical activity, smoking, drinking and hormone replacement therapy use to investigate their associations with mammographic breast density. Analyses were performed using SAS software. RESULTS Of 8 460 928 women, 4 139 869 (48.9%) had nondense breasts and 4 321 059 (51.1%) had dense breasts. Factors associated with dense breasts were: earlier age at menarche [<15 vs. ≥15; adjusted odds ratio (aOR), 1.18; 95% confidence interval (CI), 1.17-1.18], premenopausal status (aOR, 2.01; 95% CI, 2.00-2.02), later age at menopause (≥52 vs. <52; aOR, 1.23; 95% CI, 1.22-1.23), nulliparity (aOR, 1.64; 95% CI, 1.63-1.65), never breastfed (aOR, 1.23; 95% CI, 1.23-1.24) and use of hormone replacement therapy (aOR, 1.29; 95% CI, 1.28-1.29). Women with a higher BMI and the use of oral contraceptives were more likely to have nondense breasts. CONCLUSION Lower BMI, reproductive health and behavioral factors were associated with dense breasts in Korean women. Additional research should investigate the relationship between mammographic breast density, breast cancer risk factors and breast cancer risk.
Collapse
Affiliation(s)
- Soyeoun Kim
- Department of Preventive Medicine, Hanyang University College of Medicine
- Institute for Health and Society, Hanyang University
| | - Thi Xuan Mai Tran
- Department of Preventive Medicine, Hanyang University College of Medicine
- Institute for Health and Society, Hanyang University
| | - Mi Kyung Kim
- Department of Preventive Medicine, Hanyang University College of Medicine
- Institute for Health and Society, Hanyang University
| | - Min Sung Chung
- Department of Surgery, Hanyang University College of Medicine, Seoul
| | - Eun Hye Lee
- Department of Radiology, Soonchunhyang University Hospital Bucheon, Soonchunhyang University College of Medicine, Bucheon
| | - Woojoo Lee
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Boyoung Park
- Department of Preventive Medicine, Hanyang University College of Medicine
- Institute for Health and Society, Hanyang University
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Helgadottir H. Does the Germline Genome Encode for the Invasiveness of a Cutaneous Melanoma? JAMA Dermatol 2024; 160:922-924. [PMID: 39141377 DOI: 10.1001/jamadermatol.2024.2599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Affiliation(s)
- Hildur Helgadottir
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
19
|
Maas EJ, DeBortoli E, Nathan V, Freeman NP, Mothershaw A, Smit DJ, Betz-Stablein B, Aoude LG, Stark MS, Sturm RA, Soyer HP, McInerney-Leo AM. POT1 and multiple primary melanomas: the dermatological phenotype. J Med Genet 2024; 61:891-894. [PMID: 38724174 DOI: 10.1136/jmg-2023-109637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/21/2024] [Indexed: 08/31/2024]
Abstract
POT1 is the second most frequently reported gene (after CDKN2A) in familial melanoma. Pathogenic variants are associated with earlier onset and/or multiple primary melanomas (MPMs). To date, POT1 phenotypical reports have been largely restricted to associated malignancies, and description of the dermatological landscape has been limited. We identified 10 variants in n=18 of 384 (4.7%) unrelated individuals (n=13 MPMs; n=5 single primary melanomas) of European ancestry. Five variants were rare (minor allele frequency <0.001) or novel (two loss-of-function (LOF), one splice acceptor and two missense) and were predicted to be functionally significant, in five unrelated probands with MPMs (≥3 melanomas). We performed three-dimensional total body photography on both individuals with confirmed pathogenic LOF variants to characterise the dermatological phenotype. Total body naevus counts (≥2 mm diameter) were significantly higher (p=7.72×10-12) in carriers compared with a control population. Majority of naevi were on the probands' back and lower limb regions, where only mild to moderate ultraviolet (UV) damage was observed. Conversely, the head/neck region, where both probands exhibited severe UV damage, had comparably fewer naevi. We hypothesise that carriage of functionally significant POT1 variants is associated with increased naevus counts generally, and naevi >5 mm in diameter specifically and the location of these are independent of UV damage.
Collapse
Affiliation(s)
- Ellie J Maas
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Queensland, Australia
| | - Emily DeBortoli
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Queensland, Australia
| | - Vaishnavi Nathan
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Queensland, Australia
| | - Ned P Freeman
- Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Adam Mothershaw
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Queensland, Australia
| | - Darren J Smit
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Queensland, Australia
| | - Brigid Betz-Stablein
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Queensland, Australia
| | - Lauren G Aoude
- Frazer Institute, The University of Queensland, Surgical Oncology Group, Brisbane, Queensland, Australia
| | - Mitchell S Stark
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Queensland, Australia
| | - Richard A Sturm
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Queensland, Australia
| | - H Peter Soyer
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Queensland, Australia
- Department of Dermatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Aideen M McInerney-Leo
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Queensland, Australia
| |
Collapse
|
20
|
Bell SD, Quinn AE, Spitzer TD, Voss BB, Wakefield MR, Fang Y. Emerging molecular therapies in the treatment of bladder cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:1135-1154. [PMID: 39351439 PMCID: PMC11438598 DOI: 10.37349/etat.2024.00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/08/2024] [Indexed: 10/04/2024] Open
Abstract
Bladder cancer is a leading cancer type in men. The complexity of treatment in late-stage bladder cancer after systemic spread through the lymphatic system highlights the importance of modulating disease-free progression as early as possible in cancer staging. With current therapies relying on previous standards, such as platinum-based chemotherapeutics and immunomodulation with Bacillus Calmette-Guerin, researchers, and clinicians are looking for targeted therapies to stop bladder cancer at its source early in progression. A new era of molecular therapies that target specific features upregulated in bladder cancer cell lines is surfacing, which may be able to provide clinicians and patients with better control of disease progression. Here, we discuss multiple emerging therapies including immune checkpoint inhibitors of the programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) pathway, antibody-drug conjugates, modulation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) cell proliferation pathway, chimeric antigen receptor T-cell therapy, and fibroblast growth factor receptor targeting. Together, these modern treatments provide potentially promising results for bladder cancer patients with the possibility of increasing remission and survival rates.
Collapse
Affiliation(s)
- Scott D Bell
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA
| | - Anthony E Quinn
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA
| | - Tom D Spitzer
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Brady B Voss
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
| |
Collapse
|
21
|
Feng BJ, Boyle JL, Wei J, Carroll C, Snyder NA, Shi Z, Zheng SL, Xu J, Isaacs WB, Cooney KA. Using gene and gene-set association tests to identify lethal prostate cancer genes. Prostate Cancer Prostatic Dis 2024:10.1038/s41391-024-00879-z. [PMID: 39154125 DOI: 10.1038/s41391-024-00879-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Recent advances in the detection and treatment of prostate cancer (PCa) have reduced morbidity and mortality from this common cancer. Despite these improvements, PCa remains the second leading cause of cancer death in men in the United States. Further understanding of the genetic underpinnings of lethal PCa is required to drive risk detection and prevention and ultimately reduce mortality. We therefore set out to identify germline variants associated with cases of lethal prostate cancer (LPCa). METHODS Using a two-stage study design, we compared whole-exome sequencing data of 550 LPCa patients to 488 healthy male controls. Men were classified as having LPCa based on medical record review. Candidate genes were identified using gene- and gene-set-based rare truncating variant association tests. Case-control burden testing through Firth's penalized logistic regression and case-gnomAD allelic burden testing through a one-sided mid-p Fisher's exact test were conducted. Each gene's p-values from these tests were combined into an omnibus p-value for candidate gene selection. In the subsequent validation stage, genes were assessed using the UK Biobank and Firth's penalized logistic regression for each ancestry, combined through meta-analysis. RESULTS Gene-based rare variant association tests identified 12 genes nominally associated with LPCa. Rare-variant association tests identified a gene set with a significantly higher burden of truncating germline mutations in LPCa patients than controls. Combining gene- and gene-set test results, four nominally significant genes (PPP1R3A, TG, PPFIBP2, and BTN3A3) were selected as candidates. Subsequent validation using the UK Biobank found that PPP1R3A was significantly associated with LPCa risk (odds ratio 2.34, CI 1.20-4.59). Specifically, pGln662ArgfsTer7 was identified as the predominant variant in PPP1R3A among LPCa patients in our dataset. CONCLUSIONS Both individual gene and gene-set analyses identified candidates associated with LPCa. The novel association of PPP1R3A and LPCa risk merits further investigation.
Collapse
Affiliation(s)
- Bing-Jian Feng
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - Julie L Boyle
- Department of Family and Preventative Medicine, University of Utah, Salt Lake City, UT, USA
| | - Jun Wei
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Courtney Carroll
- Department of Family and Preventative Medicine, University of Utah, Salt Lake City, UT, USA
| | - Nathan A Snyder
- Department of Medicine and the Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Zhuqing Shi
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - S Lilly Zheng
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Jianfeng Xu
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - William B Isaacs
- Department of Urology and the James Buchanan Brady Urologic Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathleen A Cooney
- Department of Medicine and the Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
22
|
Soto-Heras S, Reinacher L, Wang B, Oh JE, Bunnell M, Park CJ, Hess RA, Ko CJ. Cryptorchidism and testicular cancer in the dog: unresolved questions and challenges in translating insights from human studies†. Biol Reprod 2024; 111:269-291. [PMID: 38738783 DOI: 10.1093/biolre/ioae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024] Open
Abstract
Cryptorchidism, the failure of one or both testes to descend into the scrotum, and testicular cancer show a strong correlation in both dogs and humans. Yet, long-standing medical debates persist about whether the location of undescended testes directly causes testicular cancer in humans or if both conditions stem from a common origin. Although testicular cancer is a prevalent disease in dogs, even less is known about its cause and correlation with testicular descent in this species. This review investigates the relation between these two disorders in dogs, drawing insights from human studies, and examines key biomarkers identified thus far. In addition, it explores potential causal links, including the impact of temperature on maturing testicular cells and a potential shared genetic origin. Notably, this literature review reveals significant differences between men and dogs in reproductive development, histological and molecular features of testicular tumors, and the prevalence of specific tumor types, such as Sertoli cell tumors in cryptorchid dogs and germ cell tumors in humans. These disparities caution against using dogs as models for human testicular cancer research and underscore the limitations when drawing comparisons between species. The paper concludes by suggesting specific research initiatives to enhance our understanding of the complex interplay between cryptorchidism and testicular cancer in dogs.
Collapse
Affiliation(s)
- Sandra Soto-Heras
- Epivara, Inc., 2109 S. Oak Street, Suite 100A, Champaign, IL 61820, USA
| | - Lindsey Reinacher
- Epivara, Inc., 2109 S. Oak Street, Suite 100A, Champaign, IL 61820, USA
| | - Bensen Wang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Ji Eun Oh
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Mary Bunnell
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Chan Jin Park
- Epivara, Inc., 2109 S. Oak Street, Suite 100A, Champaign, IL 61820, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Rex A Hess
- Epivara, Inc., 2109 S. Oak Street, Suite 100A, Champaign, IL 61820, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - CheMyong Jay Ko
- Epivara, Inc., 2109 S. Oak Street, Suite 100A, Champaign, IL 61820, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
23
|
Funchain P, Ni Y, Heald B, Bungo B, Arbesman M, Behera TR, McCormick S, Song JM, Kennedy LB, Nielsen SM, Esplin ED, Nizialek E, Ko J, Diaz-Montero CM, Gastman B, Stratigos AJ, Artomov M, Tsao H, Arbesman J. Germline cancer susceptibility in individuals with melanoma. J Am Acad Dermatol 2024; 91:265-272. [PMID: 38513832 DOI: 10.1016/j.jaad.2023.11.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/05/2023] [Accepted: 11/27/2023] [Indexed: 03/23/2024]
Abstract
BACKGROUND Prior studies have estimated a small number of individuals with melanoma (2%-2.5%) have germline cancer predisposition, yet a recent twin study suggested melanoma has the highest hereditability among cancers. OBJECTIVE To determine the incidence of hereditary melanoma and characterize the spectrum of cancer predisposition genes that may increase the risk of melanoma. METHODS Four hundred individuals with melanoma and personal or family history of cancers underwent germline testing of >80 cancer predisposition genes. Comparative analysis of germline data was performed on 3 additional oncologic and dermatologic data sets. RESULTS Germline pathogenic/likely pathogenic (P/LP) variants were identified in 15.3% (61) individuals with melanoma. Most variants (41, 67%) involved genes considered unrelated to melanoma (BLM, BRIP1, CHEK2, MLH1, MSH2, PMS2, RAD51C). A third (20, 33%) were in genes previously associated with familial melanoma (BAP1, BRCA2, CDKN2A, MITF, TP53). Nearly half (30, 46.9%) of P/LP variants were in homologous repair deficiency genes. Validation cohorts demonstrated P/LP rates of 10.6% from an unselected oncologic cohort, 15.8% from a selected commercial testing cohort, and 14.5% from a highly selected dermatologic study. LIMITATIONS Cohorts with varying degrees of selection, some retrospective. CONCLUSION Germline predisposition in individuals with melanoma is common, with clinically actionable findings diagnosed in 10.6% to 15.8%.
Collapse
Affiliation(s)
- Pauline Funchain
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio.
| | - Ying Ni
- Center for Immunotherapy & Precision Immuno-Oncology, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Brandie Heald
- Genomic Medicine Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Invitae Corporation, South San Francisco, California
| | - Brandon Bungo
- Medicine Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Michelle Arbesman
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Tapas R Behera
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Center for Immunotherapy & Precision Immuno-Oncology, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Shelley McCormick
- Center Cancer Risk Assessment, Massachusetts General Hospital, Cambridge, Massachusetts
| | - Jung Min Song
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Hematology/Oncology, MetroHealth, Cleveland, Ohio
| | | | | | | | - Emily Nizialek
- Department of Medical Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Jennifer Ko
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Claudia M Diaz-Montero
- Center for Immunotherapy & Precision Immuno-Oncology, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Brian Gastman
- Dermatology and Plastic Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Alexander J Stratigos
- Department of Dermatology-Venereology, A. Sygros Hospital Medical School, University of Athens, Athens, Greece
| | | | - Hensin Tsao
- Department of Dermatology, Massachusetts General Hospital, Cambridge, Massachusetts
| | - Joshua Arbesman
- Dermatology and Plastic Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| |
Collapse
|
24
|
Nagao Y, Takeshita K. Heritability of cancers in Japanese population: Estimation from recent cohort data. Clin Genet 2024; 106:204-208. [PMID: 38685824 DOI: 10.1111/cge.14535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 05/02/2024]
Abstract
Cancers are genetically categorized into common diseases showing a so-called multifactorial inheritance except for rare familial cancers. And as a measure to estimate the strength of genetic factors in the multifactorial diseases, heritability (h2) is generally used. However, there have been few reports on the estimation of heritability for cancers. We calculated the heritability from the incidence in subject population and the familial recurrence rate in first-degree relatives of the affected for cancers quoting the data from a large-scale prospective cohort study by Hidaka et al. published in 2020. This is the first report for heritability of any cancers in Japanese population. The results showed that heritability of overall cancers in Japanese population is 0.064, which is much lower than Nordic population reported by Mucci et al. that was 0.33. For individual cancers, stomach cancer (h2 = 0.14), colorectum cancer (0.006), lung cancer (0.08) and uterine cancer (0.16) accounted for half of the total patients, and each heritability tends to be lower than previously reported for the European descent. The results of this study suggest that heritability of cancers varies greatly by ethnicity. And these results should be important in terms of cancer genetics and in the genetic counseling for cancers.
Collapse
Affiliation(s)
- Yoshiro Nagao
- Department of Clinical Genetics, Tokai University Hospital, Isehara, Kanagawa, Japan
- Department of Laboratory Examination, Takashimadaira Chuo General Hospital, Itabashi, Tokyo, Japan
| | - Kei Takeshita
- Department of Clinical Genetics, Tokai University Hospital, Isehara, Kanagawa, Japan
| |
Collapse
|
25
|
Ruffieux Y, Fernández Villalobos NV, Didden C, Haas AD, Chinogurei C, Cornell M, Egger M, Maartens G, Folb N, Rohner E. Prostate Cancer Diagnosis Rates among Insured Men with and without HIV in South Africa: A Cohort Study. Cancer Epidemiol Biomarkers Prev 2024; 33:1057-1064. [PMID: 38713162 PMCID: PMC11292191 DOI: 10.1158/1055-9965.epi-24-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/12/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Several studies have found lower prostate cancer diagnosis rates among men with human immunodeficiency virus (HIV; MWH) than men without HIV but reasons for this finding remain unclear. METHODS We used claims data from a South African private medical insurance scheme (July 2017- July 2020) to assess prostate cancer diagnosis rates among men aged ≥ 18 years with and without HIV. Using flexible parametric survival models, we estimated hazard ratios (HR) for the association between HIV and incident prostate cancer diagnoses. We accounted for potential confounding by age, population group, and sexually transmitted infections (confounder-adjusted model) and additionally for potential mediation by prostatitis diagnoses, prostate-specific antigen testing, and prostate biopsies (fully adjusted model). RESULTS We included 288,194 men, of whom 20,074 (7%) were living with HIV. Prostate cancer was diagnosed in 1,614 men without HIV (median age at diagnosis: 67 years) and in 82 MWH (median age at diagnosis: 60 years). In the unadjusted analysis, prostate cancer diagnosis rates were 35% lower among MWH than men without HIV [HR, 0.65; 95% confidence interval (CI), 0.52-0.82]. However, this association was no longer evident in the confounder-adjusted model (HR, 1.03; 95% CI, 0.82-1.30) or in the fully adjusted model (HR, 1.14; 95% CI, 0.91-1.44). CONCLUSIONS When accounting for potential confounders and mediators, our analysis found no evidence of lower prostate cancer diagnosis rates among MWH than men without HIV in South Africa. IMPACT Our results do not support the hypothesis that HIV decreases the risk of prostate cancer.
Collapse
Affiliation(s)
- Yann Ruffieux
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.
| | | | - Christiane Didden
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.
- Department of Sociology, Ludwig-Maximilians-Universität Munich, Munich, Germany.
| | - Andreas D. Haas
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.
- Centre for Infectious Disease Epidemiology and Research, School of Public Health, University of Cape Town, Cape Town, South Africa.
| | - Chido Chinogurei
- Centre for Infectious Disease Epidemiology and Research, School of Public Health, University of Cape Town, Cape Town, South Africa.
| | - Morna Cornell
- Centre for Infectious Disease Epidemiology and Research, School of Public Health, University of Cape Town, Cape Town, South Africa.
| | - Matthias Egger
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.
- Centre for Infectious Disease Epidemiology and Research, School of Public Health, University of Cape Town, Cape Town, South Africa.
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom.
| | - Gary Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa.
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
| | | | - Eliane Rohner
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
26
|
Zhou X, Zhang Z, Ruan C, Wu Y, Zeng B, Su X, Yuan Q, Li Y, Wei Q, Qiu S. Trends in the global, regional, and national burden of testicular cancer from 1990 to 2019: an observational study with 30-year global data. Int J Surg 2024; 110:4633-4647. [PMID: 38759694 PMCID: PMC11325982 DOI: 10.1097/js9.0000000000001603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/28/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Testicular cancer (TC) is currently the most common malignancy in young and middle-aged men. A comprehensive assessment of TC burden is in lack. METHOD Global incidence, deaths, and disability-adjusted life-years (DALYs) of TC from 1990 to 2019 were obtained. Estimated annual percentage change (EAPC) was calculated to quantify trends in TC changes during the period. Relationships between disease burden and age, socio-demographic index (SDI) levels, human development index (HDI) were further analyzed. RESULTS Globally, incident cases of TC more than doubled from 1990 to 2019, together with an increasing of global age-standardized incidence rates (ASIR) of TC from 1.9 to 2.8. The age-standardized deaths rates (ASDR) remained stable from 0.31 to 0.28. The similar results were reflected in the DALYs. In 2019, the highest ASIR were found in Southern Latin America, Central Europe and Western Europe. Analogously, the highest ASDR were found in Southern Latin America followed by Central Latin America and Central Europe. The burden of incidence increased with SDI, appropriately reached a peak at about 0.78, and then declined. Similarly, the burden of deaths increased with SDI, met a maximum at about 0.7. CONCLUSIONS From 1990 to 2019, the ASIR of TC has increased significantly, while the ASDR has been relatively stable and slightly decreased. The disease burden of TC is shifting to regions and countries with moderate to high levels of development. TC remains a rapidly growing global health problem, and new changes in TC burden should be considered when formulating new TC control policies.
Collapse
Affiliation(s)
- Xianghong Zhou
- Department of Urology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University
| | - Zilong Zhang
- Department of Urology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University
| | - Cheng Ruan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Yuwei Wu
- Department of Urology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University
| | - Bin Zeng
- Department of Urology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University
| | - Xinyang Su
- Department of Urology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University
| | - Qiming Yuan
- Department of Urology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University
| | - Yifan Li
- Department of Urology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University
| | - Qiang Wei
- Department of Urology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University
| | - Shi Qiu
- Department of Urology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland
| |
Collapse
|
27
|
Liu X, Duan H, Liu S, Zhang Y, Ji Y, Zhang Y, Feng Z, Li J, Liu Y, Gao Y, Wang X, Zhang Q, Yang L, Dai H, Lyu Z, Song F, Song F, Huang Y. Preliminary effects of risk-adapted PSA screening for prostate cancer after integrating PRS-specific and age-specific variation. Front Genet 2024; 15:1387588. [PMID: 39149591 PMCID: PMC11324495 DOI: 10.3389/fgene.2024.1387588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Background Although the risk of prostate cancer (PCa) varies across different ages and genetic risks, it's unclear about the effects of genetic-specific and age-specific prostate-specific antigen (PSA) screening for PCa. Methods Weighed and unweighted polygenic risk scores (PRS) were constructed to classify the participants from the PLCO trial into low- or high-PRS groups. The age-specific and PRS-specific cut-off values of PSA for PCa screening were determined with time-dependent receiver-operating-characteristic curves and area-under-curves (tdAUCs). Improved screening strategies integrating PRS-specific and age-specific cut-off values of PSA were compared to traditional PSA screening on accuracy, detection rates of high-grade PCa (Gleason score ≥7), and false positive rate. Results Weighted PRS with 80 SNPs significantly associated with PCa was determined as the optimal PRS, with an AUC of 0.631. After stratifying by PRS, the tdAUCs of PSA with a 10-year risk of PCa were 0.818 and 0.816 for low- and high-PRS groups, whereas the cut-off values were 1.42 and 1.62 ng/mL, respectively. After further stratifying by age, the age-specific cut-off values of PSA were relatively lower for low PRS (1.42, 1.65, 1.60, and 2.24 ng/mL for aged <60, 60-64, 65-69, and ≥70 years) than high PRS (1.48, 1.47, 1.89, and 2.72 ng/mL). Further analyses showed an obvious interaction of positive PSA and high PRS on PCa incidence and mortality. Very small difference in PCa risk were observed among subgroups with PSA (-) across different age and PRS, and PCa incidence and mortality with PSA (+) significantly increased as age and PRS, with highest risk for high-PRS/PSA (+) in participants aged ≥70 years [HRs (95%CI): 16.00 (12.62-20.29) and 19.48 (9.26-40.96)]. The recommended screening strategy reduced 12.8% of missed PCa, ensured high specificity, but not caused excessive false positives than traditional PSA screening. Conclusion Risk-adapted screening integrating PRS-specific and age-specific cut-off values of PSA would be more effective than traditional PSA screening.
Collapse
Affiliation(s)
- Xiaomin Liu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology (Tianjin), National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hongyuan Duan
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology (Tianjin), National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Siwen Liu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology (Tianjin), National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yunmeng Zhang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology (Tianjin), National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuting Ji
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology (Tianjin), National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yacong Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhuowei Feng
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology (Tianjin), National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jingjing Li
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology (Tianjin), National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ya Liu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology (Tianjin), National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ying Gao
- Health Management Center, Tianjin Medical University General Hospital, Tianjin, China
| | - Xing Wang
- Health Management Center, Tianjin Medical University General Hospital, Tianjin, China
| | - Qing Zhang
- Health Management Center, Tianjin Medical University General Hospital, Tianjin, China
| | - Lei Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Office for Cancer Prevention and Control, Peking University Cancer Hospital and Institute, Beijing, China
| | - Hongji Dai
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology (Tianjin), National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhangyan Lyu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology (Tianjin), National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Fangfang Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology (Tianjin), National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Fengju Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology (Tianjin), National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yubei Huang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology (Tianjin), National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
28
|
Bouttle K, Ingold N, O’Mara TA. Using Genetics to Investigate Relationships between Phenotypes: Application to Endometrial Cancer. Genes (Basel) 2024; 15:939. [PMID: 39062718 PMCID: PMC11276418 DOI: 10.3390/genes15070939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Genome-wide association studies (GWAS) have accelerated the exploration of genotype-phenotype associations, facilitating the discovery of replicable genetic markers associated with specific traits or complex diseases. This narrative review explores the statistical methodologies developed using GWAS data to investigate relationships between various phenotypes, focusing on endometrial cancer, the most prevalent gynecological malignancy in developed nations. Advancements in analytical techniques such as genetic correlation, colocalization, cross-trait locus identification, and causal inference analyses have enabled deeper exploration of associations between different phenotypes, enhancing statistical power to uncover novel genetic risk regions. These analyses have unveiled shared genetic associations between endometrial cancer and many phenotypes, enabling identification of novel endometrial cancer risk loci and furthering our understanding of risk factors and biological processes underlying this disease. The current status of research in endometrial cancer is robust; however, this review demonstrates that further opportunities exist in statistical genetics that hold promise for advancing the understanding of endometrial cancer and other complex diseases.
Collapse
Affiliation(s)
| | | | - Tracy A. O’Mara
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia (N.I.)
| |
Collapse
|
29
|
Yang Y, Chen Y, Xu S, Guo X, Jia G, Ping J, Shu X, Zhao T, Yuan F, Wang G, Xie Y, Ci H, Liu H, Qi Y, Liu Y, Liu D, Li W, Ye F, Shu XO, Zheng W, Li L, Cai Q, Long J. Integrating muti-omics data to identify tissue-specific DNA methylation biomarkers for cancer risk. Nat Commun 2024; 15:6071. [PMID: 39025880 PMCID: PMC11258330 DOI: 10.1038/s41467-024-50404-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
The relationship between tissue-specific DNA methylation and cancer risk remains inadequately elucidated. Leveraging resources from the Genotype-Tissue Expression consortium, here we develop genetic models to predict DNA methylation at CpG sites across the genome for seven tissues and apply these models to genome-wide association study data of corresponding cancers, namely breast, colorectal, renal cell, lung, ovarian, prostate, and testicular germ cell cancers. At Bonferroni-corrected P < 0.05, we identify 4248 CpGs that are significantly associated with cancer risk, of which 95.4% (4052) are specific to a particular cancer type. Notably, 92 CpGs within 55 putative novel loci retain significant associations with cancer risk after conditioning on proximal signals identified by genome-wide association studies. Integrative multi-omics analyses reveal 854 CpG-gene-cancer trios, suggesting that DNA methylation at 309 distinct CpGs might influence cancer risk through regulating the expression of 205 unique cis-genes. These findings substantially advance our understanding of the interplay between genetics, epigenetics, and gene expression in cancer etiology.
Collapse
Affiliation(s)
- Yaohua Yang
- Center for Public Health Genomics, Department of Public Health Sciences, UVA Comprehensive Cancer Center, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Yaxin Chen
- Institute of Respiratory Health, Frontiers Science Center for Disease‑Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuai Xu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Guochong Jia
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jie Ping
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiang Shu
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tianying Zhao
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fangcheng Yuan
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gang Wang
- Institute of Respiratory Health, Frontiers Science Center for Disease‑Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yufang Xie
- Institute of Respiratory Health, Frontiers Science Center for Disease‑Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hang Ci
- Institute of Respiratory Health, Frontiers Science Center for Disease‑Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongmo Liu
- Institute of Respiratory Health, Frontiers Science Center for Disease‑Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yawen Qi
- Institute of Respiratory Health, Frontiers Science Center for Disease‑Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongjun Liu
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, USA
| | - Dan Liu
- Institute of Respiratory Health, Frontiers Science Center for Disease‑Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weimin Li
- Institute of Respiratory Health, Frontiers Science Center for Disease‑Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Ye
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Li Li
- Department of Family Medicine, UVA Comprehensive Cancer Center, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
30
|
Long E, Patel H, Golden A, Antony M, Yin J, Funderburk K, Feng J, Song L, Hoskins JW, Amundadottir LT, Hung RJ, Amos CI, Shi J, Rothman N, Lan Q, Choi J. High-throughput characterization of functional variants highlights heterogeneity and polygenicity underlying lung cancer susceptibility. Am J Hum Genet 2024; 111:1405-1419. [PMID: 38906146 PMCID: PMC11267514 DOI: 10.1016/j.ajhg.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/23/2024] Open
Abstract
Genome-wide association studies (GWASs) have identified numerous lung cancer risk-associated loci. However, decoding molecular mechanisms of these associations is challenging since most of these genetic variants are non-protein-coding with unknown function. Here, we implemented massively parallel reporter assays (MPRAs) to simultaneously measure the allelic transcriptional activity of risk-associated variants. We tested 2,245 variants at 42 loci from 3 recent GWASs in East Asian and European populations in the context of two major lung cancer histological types and exposure to benzo(a)pyrene. This MPRA approach identified one or more variants (median 11 variants) with significant effects on transcriptional activity at 88% of GWAS loci. Multimodal integration of lung-specific epigenomic data demonstrated that 63% of the loci harbored multiple potentially functional variants in linkage disequilibrium. While 22% of the significant variants showed allelic effects in both A549 (adenocarcinoma) and H520 (squamous cell carcinoma) cell lines, a subset of the functional variants displayed a significant cell-type interaction. Transcription factor analyses nominated potential regulators of the functional variants, including those with cell-type-specific expression and those predicted to bind multiple potentially functional variants across the GWAS loci. Linking functional variants to target genes based on four complementary approaches identified candidate susceptibility genes, including those affecting lung cancer cell growth. CRISPR interference of the top functional variant at 20q13.33 validated variant-to-gene connections, including RTEL1, SOX18, and ARFRP1. Our data provide a comprehensive functional analysis of lung cancer GWAS loci and help elucidate the molecular basis of heterogeneity and polygenicity underlying lung cancer susceptibility.
Collapse
Affiliation(s)
- Erping Long
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Harsh Patel
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Alyxandra Golden
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Michelle Antony
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jinhu Yin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Karen Funderburk
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - James Feng
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jason W Hoskins
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Laufey T Amundadottir
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
31
|
Foley GR, Marthick JR, Lucas SE, Raspin K, Banks A, Stanford JL, Ostrander EA, FitzGerald LM, Dickinson JL. Germline Sequencing of DNA Damage Repair Genes in Two Hereditary Prostate Cancer Cohorts Reveals New Disease Risk-Associated Gene Variants. Cancers (Basel) 2024; 16:2482. [PMID: 39001544 PMCID: PMC11240467 DOI: 10.3390/cancers16132482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Rare, inherited variants in DNA damage repair (DDR) genes have a recognised role in prostate cancer (PrCa) susceptibility. In addition, these genes are therapeutically targetable. While rare variants are informing clinical management in other common cancers, defining the rare disease-associated variants in PrCa has been challenging. Here, whole-genome and -exome sequencing data from two independent, high-risk Australian and North American familial PrCa datasets were interrogated for novel DDR risk variants. Rare DDR gene variants (predicted to be damaging and present in two or more family members) were identified and subsequently genotyped in 1963 individuals (700 familial and 459 sporadic PrCa cases, 482 unaffected relatives, and 322 screened controls), and association analyses accounting for relatedness (MQLS) undertaken. In the combined datasets, rare ERCC3 (rs145201970, p = 2.57 × 10-4) and BRIP1 (rs4988345, p = 0.025) variants were significantly associated with PrCa risk. A PARP2 (rs200603922, p = 0.028) variant in the Australian dataset and a MUTYH (rs36053993, p = 0.031) variant in the North American dataset were also associated with risk. Evaluation of clinicopathological characteristics provided no evidence for a younger age or higher-grade disease at diagnosis in variant carriers, which should be taken into consideration when determining genetic screening eligibility criteria for targeted, gene-based treatments in the future. This study adds valuable knowledge to our understanding of PrCa-associated DDR genes, which will underpin effective clinical screening and treatment strategies.
Collapse
Affiliation(s)
- Georgea R Foley
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - James R Marthick
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Sionne E Lucas
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Kelsie Raspin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Annette Banks
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Janet L Stanford
- Fred Hutchinson Cancer Center, 1100 Fairview Ave. N., M4-B874, Seattle, WA 98109, USA
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liesel M FitzGerald
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Joanne L Dickinson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|
32
|
Ballin M, Berglind D, Henriksson P, Neovius M, Nordström A, Ortega FB, Sillanpää E, Nordström P, Ahlqvist VH. Adolescent Cardiorespiratory Fitness and Risk of Cancer in Late Adulthood: Nationwide Sibling-Controlled Cohort Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.01.24309761. [PMID: 39006434 PMCID: PMC11245056 DOI: 10.1101/2024.07.01.24309761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Objective To investigate whether the higher risks of certain cancers associated with high cardiorespiratory fitness can be explained by increased detection and unobserved confounders. Design Nationwide sibling-controlled cohort study of adolescents. Setting Sweden. Participants 1 124 049 men of which 477 453 were full siblings, who underwent mandatory military conscription examinations between 1972 and 1995 at a mean age of 18.3 years. Main outcome measures Hazard ratios (HR) and 95% confidence intervals (CI) of overall cancer diagnosis and cancer mortality, and 14 site-specific cancers (diagnosis or death), as recorded in the Swedish National Patient Register or Cause of Death Register until 31 December 2023, modelled using flexible parametric regressions. Results Participants were followed until a median (maximum) age of 55.9 (73.5) years, during which 98 410 were diagnosed with cancer and 16 789 had a cancer-related death (41 293 and 6908 among full siblings respectively). The most common cancers were non-melanoma skin (27 105 diagnoses & 227 deaths) and prostate cancer (24 211 diagnoses & 869 deaths). In cohort analysis, those in the highest quartile of cardiorespiratory fitness had a higher risk of prostate (adjusted HR 1.10; 95% CI: 1.05 to 1.16) and skin cancer (e.g., non-melanoma HR 1.44; 1.37 to 1.50) compared to those in the lowest quartile, which led to a higher risk of any type of cancer diagnosis (HR 1.08; 1.06 to 1.11). However, those in the highest quartile had a lower risk of cancer mortality (HR 0.71; 0.67 to 0.76). When comparing full siblings, and thereby controlling for all behavioural, environmental, and genetic factors they share, the excess risk of prostate (HR 1.01; 0.90 to 1.13) and skin cancer (e.g., non-melanoma HR 1.09; 0.99 to 1.20) attenuated to the null. In contrast, the lower risk of overall cancer mortality was still statistically significant after control for such shared confounders (HR 0.78; 0.68 to 0.89). For other site-specific cancers, the influence of such confounding tended to vary, but none showed the same excess risk as prostate and non-melanoma skin cancer. Conclusions The association between high levels of adolescent cardiorespiratory fitness and excess risk of some cancers, such as prostate and non-melanoma skin cancer, appears to be fully explained by unobserved confounders shared between full siblings. However, the protective association with cancer mortality persists even after control for such confounding.
Collapse
Affiliation(s)
- Marcel Ballin
- Department of Public Health and Caring Sciences, Clinical Geriatrics, Uppsala University, Uppsala, Sweden
- Centre for Epidemiology and Community Medicine, Region Stockholm, Stockholm, Sweden
| | - Daniel Berglind
- Centre for Epidemiology and Community Medicine, Region Stockholm, Stockholm, Sweden
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
- Center for Wellbeing, Welfare and Happiness, Stockholm School of Economics, Stockholm, Sweden
| | - Pontus Henriksson
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Martin Neovius
- Department of Medicine, Clinical Epidemiology Division, Karolinska Institutet, Stockholm, Sweden
| | - Anna Nordström
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- School of Sports Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Francisco B Ortega
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada; CIBEROBN, ISCIII, Granada, Andalucía, Spain
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Elina Sillanpää
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Wellbeing Services County of Central Finland, Jyväskylä, Finland
| | - Peter Nordström
- Department of Public Health and Caring Sciences, Clinical Geriatrics, Uppsala University, Uppsala, Sweden
| | - Viktor H Ahlqvist
- Department of Public Health and Caring Sciences, Clinical Geriatrics, Uppsala University, Uppsala, Sweden
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
33
|
Sharma P, Mahadevia H, Donepudi S, Kujtan L, Gustafson B, Ponvilawan B, Al-Obaidi A, Subramanian J, Bansal D. A Novel EGFR Germline Mutation in Lung Adenocarcinoma: Case Report and Literature Review. Clin Lung Cancer 2024; 25:479-482. [PMID: 38777674 DOI: 10.1016/j.cllc.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/14/2024] [Indexed: 05/25/2024]
Affiliation(s)
- Parth Sharma
- Department of Internal Medicine, University of Missouri-Kansas City, Kansas City, MO.
| | - Himil Mahadevia
- Department of Internal Medicine, University of Missouri-Kansas City, Kansas City, MO
| | - Sreekanth Donepudi
- Department of Hematology-Oncology, Saint Luke's Cancer Institute, Kansas City, MO
| | - Lara Kujtan
- Department of Hematology-Oncology, University of Missouri-Kansas City, Kansas City, MO
| | - Beth Gustafson
- Department of Pharmacology, Saint Luke's Cancer Institute, Kansas City, MO
| | - Ben Ponvilawan
- Department of Internal Medicine, University of Missouri-Kansas City, Kansas City, MO
| | - Ammar Al-Obaidi
- Department of Hematology-Oncology, University of Missouri-Kansas City, Kansas City, MO
| | | | - Dhruv Bansal
- Department of Hematology-Oncology, Saint Luke's Cancer Institute, Kansas City, MO
| |
Collapse
|
34
|
Jeon J, Kim JH, Ha JS, Yang WJ, Cho KS, Kim DK. Impact of family history of prostate cancer on disease progression for prostatic cancer patients undergoing active surveillance: A systematic review and meta-analysis. Investig Clin Urol 2024; 65:315-325. [PMID: 38978211 PMCID: PMC11231664 DOI: 10.4111/icu.20240053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/11/2024] [Accepted: 04/15/2024] [Indexed: 07/10/2024] Open
Abstract
PURPOSE To evaluate how a family history of prostate cancer influences the progression of the disease in individuals with prostate cancer undergoing active surveillance. MATERIALS AND METHODS We conducted a thorough literature search in PubMed/MEDLINE, Embase, and Cochrane Library up to June 2023. This systematic review was registered in PROSPERO (CRD42023441853). The study evaluated the effects of family history of prostate cancer (intervention) on disease progression (outcome) in prostate cancer patients undergoing active surveillance (population) and compared them to those without a family history (comparators). For time to disease progression outcomes, the extracted data were synthesized using the inverse variance method on the log hazard ratios scale. RESULTS A total of eight studies were incorporated into this systematic review and meta-analysis. The combined hazard ratio for unadjusted disease progression was 1.06 (95% confidential interval [CI] 0.66-1.69; p=0.82). The combined hazard ratio for adjusted disease progression was 1.31 (95% CI 1.16-1.48; p<0.0001). All the enlisted studies demonstrated high quality based on the Newcastle-Ottawa scale. The certainty of evidence for univariate and multivariate analysis of disease progression was very low and low, respectively. Publication bias for all studies was not significant. CONCLUSIONS For individuals with prostate cancer opting for active surveillance, a family history of prostate cancer may serve as an independent risk factor associated with an elevated risk of disease progression. Clinicians should be counseled about the increased risk of disease progression in patients with a family history of prostate cancer undergoing active surveillance.
Collapse
Affiliation(s)
- Jinhyung Jeon
- Department of Urology, Gangnam Severance Hospital, Seoul, Korea
- Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Heon Kim
- Department of Urology, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Jee Soo Ha
- Department of Urology, Gangnam Severance Hospital, Seoul, Korea
- Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Won Jae Yang
- Department of Urology, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Kang Su Cho
- Department of Urology, Gangnam Severance Hospital, Seoul, Korea
- Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Do Kyung Kim
- Department of Urology, Gangnam Severance Hospital, Seoul, Korea
- Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
35
|
Zhang Y, Stopsack KH, Song M, Mucci LA, Liu B, Penney KL, Tabung FK, Giovannucci E, Plym A. Healthy dietary patterns and risk of prostate cancer in men at high genetic risk. Int J Cancer 2024; 155:71-80. [PMID: 38429859 PMCID: PMC11068494 DOI: 10.1002/ijc.34898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 03/03/2024]
Abstract
Prostate cancer has high heritability. Healthy lifestyle has been associated with lower lethal prostate cancer risk among men at increased genetic susceptibility, but the role of healthy dietary patterns remains unknown. We prospectively followed 10,269 genotyped men in the Health Professionals Follow-up Study (1993-2019). Genetic risk was quantified using an established polygenic risk score (PRS). Five dietary patterns were investigated: healthy eating index, Mediterranean, diabetes risk-reducing, hyperinsulinemic and inflammatory diet. Overall and lethal prostate cancer rates (metastatic disease/prostate cancer-specific death) were analyzed using multivariable Cox proportional hazards models. During 26 years of follow-up, 2133 overall and 253 lethal prostate cancer events were documented. In the highest PRS quartile, higher adherence to a diabetes risk-reducing diet was associated with lower rates of overall (top vs. bottom quintile HR [95% CI], 0.74 [0.58-0.94]) and lethal prostate cancer (0.43 [0.21-0.88]). A low insulinemic diet was associated with similar lower rates (overall, 0.76 [0.60-0.95]; lethal, 0.46 [0.23-0.94]). Other dietary patterns showed weaker, but similar associations. In the highest PRS quartile, men with healthy lifestyles based on body weight, physical activity, and low insulinemic diet had a substantially lower rate (0.26 [0.13-0.49]) of lethal prostate cancer compared with men with unhealthy lifestyles, translating to a lifetime risk of 3.4% (95% CI, 2.3%-5.0%) among those with healthy lifestyles and 9.5% (5.3%-16.7%) among those with unhealthy lifestyles. Our findings indicate that lifestyle modifications lowering insulin resistance and chronic hyperinsulinemia could be relevant in preventing aggressive prostate cancer among men genetically predisposed to prostate cancer.
Collapse
Affiliation(s)
- Yiwen Zhang
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Konrad H. Stopsack
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mingyang Song
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Lorelei A. Mucci
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Discovery Science, American Cancer Society, Atlanta GA
| | - Binkai Liu
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Kathryn L. Penney
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Fred K. Tabung
- Division of Medicine Oncology, Department of Internal Medicine, The Ohio State University College of Medicine and Comprehensive Cancer Center-James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| | - Edward Giovannucci
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Anna Plym
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Urology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Chalker C, Chun B, Sokolova AO. Germline and somatic mutations in prostate cancer: Implications for treatment. Curr Probl Cancer 2024; 50:101101. [PMID: 38718711 DOI: 10.1016/j.currproblcancer.2024.101101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 06/16/2024]
Abstract
Genetic testing is an integral part of the workup of metastatic prostate cancer, in part, because the results can have a profound impact on the subsequent management of this disease. There are now several Food & Drug Administration (FDA) approved therapeutics available for patients with prostate cancer and certain genetic abnormalities - most notably, mutations in DNA damage repair (DDR) pathways such mismatch repair (MMR) and homologous recombination repair (HRR). In this review of the current literature, we discuss the indications for somatic and germline testing, the genetic changes of particular clinical relevance, the associated therapeutic options, and the clinical data supporting their use. We also highlight select trials-in-progress and future directions for the field.
Collapse
Affiliation(s)
- Cameron Chalker
- Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239.
| | - Brie Chun
- Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239
| | - Alexandra O Sokolova
- Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239
| |
Collapse
|
37
|
Fenton SE, VanderWeeler DJ, Rebbeck TR, Chen DL. Advancing Prostate Cancer Care: Treatment Approaches to Precision Medicine, Biomarker Innovations, and Equitable Access. Am Soc Clin Oncol Educ Book 2024; 44:e433138. [PMID: 38781539 DOI: 10.1200/edbk_433138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Genetic testing and molecular imaging have great promise in the accurate diagnosis and treatment of #prostate #cancer, but only if they can be developed and implemented to achieve equitable benefit for all men.
Collapse
Affiliation(s)
- Sarah E Fenton
- Northwestern University Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
| | - David J VanderWeeler
- Northwestern University Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
| | - Timothy R Rebbeck
- Dana-Farber Cancer Institute and Harvard TH Chan School of Public Health, Boston, MA
| | - Delphine L Chen
- University of Washington and Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
38
|
Houlahan KE, Khan A, Greenwald NF, Vivas CS, West RB, Angelo M, Curtis C. Germline-mediated immunoediting sculpts breast cancer subtypes and metastatic proclivity. Science 2024; 384:eadh8697. [PMID: 38815010 DOI: 10.1126/science.adh8697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/05/2024] [Indexed: 06/01/2024]
Abstract
Tumors with the same diagnosis can have different molecular profiles and response to treatment. It remains unclear when and why these differences arise. Somatic genomic aberrations occur within the context of a highly variable germline genome. Interrogating 5870 breast cancer lesions, we demonstrated that germline-derived epitopes in recurrently amplified genes influence somatic evolution by mediating immunoediting. Individuals with a high germline-epitope burden in human epidermal growth factor receptor 2 (HER2/ERBB2) are less likely to develop HER2-positive breast cancer compared with other subtypes. The same holds true for recurrent amplicons defining three aggressive estrogen receptor (ER)-positive subgroups. Tumors that overcome such immune-mediated negative selection are more aggressive and demonstrate an "immune cold" phenotype. These data show that the germline genome plays a role in dictating somatic evolution.
Collapse
Affiliation(s)
- Kathleen E Houlahan
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Aziz Khan
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Noah F Greenwald
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | - Robert B West
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Michael Angelo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Christina Curtis
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
39
|
Cheng Y, Shi R, Ben S, Chen S, Li S, Xin J, Wang M, Cheng G. Genetic variation of circHIBADH enhances prostate cancer risk through regulating HNRNPA1-related RNA splicing. J Biomed Res 2024; 38:358-368. [PMID: 38808547 PMCID: PMC11300518 DOI: 10.7555/jbr.38.20240030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
The current study aimed to investigate associations of circRNAs and related genetic variants with the risk of prostate cancer (PCa) as well as to elucidate biological mechanisms underlying the associations. We first compared expression levels of circRNAs between 25 paired PCa and adjacent normal tissues to identify risk-associated circRNAs by using the MiOncoCirc database. We then used logistic regression models to evaluate associations between genetic variants in candidate circRNAs and PCa risk among 4662 prostate cancer patients and 3114 healthy controls, and identified circHIBADH rs11973492 T>C as a significant risk-associated variant (odds ratio = 1.20, 95% confidence interval: 1.08-1.34, P = 7.06 × 10 -4) in a dominant genetic model, which altered the secondary structure of the corresponding RNA chain. In the in silico analysis, we found that circHIBADH sponged and silenced 21 RNA-binding proteins (RBPs) enriched in the RNA splicing pathway, among which HNRNPA1 was identified and validated as a hub RBP using an external RNA-sequencing data as well as the in-house (four tissue samples) and publicly available single-cell transcriptomes. Additionally, we demonstrated that HNRNPA1 influenced hallmarks including MYC target, DNA repair, and E2F target signaling pathways, thereby promoting carcinogenesis. In conclusion, genetic variants in circHIBADH may act as sponges and inhibitors of RNA splicing-associated RBPs including HNRNPA1, playing an oncogenic role in PCa.
Collapse
Affiliation(s)
- Yifei Cheng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Rongjie Shi
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shuai Ben
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Silu Chen
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Shuwei Li
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Junyi Xin
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Meilin Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215002, China
| | - Gong Cheng
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
40
|
Mitchell J, Camacho N, Shea P, Stopsack KH, Joseph V, Burren O, Dhindsa R, Nag A, Berchuck JE, O'Neill A, Abbasi A, Zoghbi AW, Alegre-Díaz J, Kuri-Morales P, Berumen J, Tapia-Conyer R, Emberson J, Torres JM, Collins R, Wang Q, Goldstein D, Matakidou A, Haefliger C, Anderson-Dring L, March R, Jobanputra V, Dougherty B, Carss K, Petrovski S, Kantoff PW, Offit K, Mucci LA, Pomerantz M, Fabre MA. Characterising the contribution of rare protein-coding germline variants to prostate cancer risk and severity in 37,184 cases. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.10.24307164. [PMID: 38766261 PMCID: PMC11100931 DOI: 10.1101/2024.05.10.24307164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The etiology of prostate cancer, the second most common cancer in men globally, has a strong heritable component. While rare coding germline variants in several genes have been identified as risk factors from candidate gene and linkage studies, the exome-wide spectrum of causal rare variants remains to be fully explored. To more comprehensively address their contribution, we analysed data from 37,184 prostate cancer cases and 331,329 male controls from five cohorts with germline exome/genome sequencing and one cohort with imputed array data from a population enriched in low-frequency deleterious variants. Our gene-level collapsing analysis revealed that rare damaging variants in SAMHD1 as well as genes in the DNA damage response pathway (BRCA2, ATM and CHEK2) are associated with the risk of overall prostate cancer. We also found that rare damaging variants in AOX1 and BRCA2 were associated with increased severity of prostate cancer in a case-only analysis of aggressive versus non-aggressive prostate cancer. At the single-variant level, we found rare non-synonymous variants in three genes (HOXB13, CHEK2, BIK) significantly associated with increased risk of overall prostate cancer and in four genes (ANO7, SPDL1, AR, TERT) with decreased risk. Altogether, this study provides deeper insights into the genetic architecture and biological basis of prostate cancer risk and severity.
Collapse
Affiliation(s)
- Jonathan Mitchell
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Niedzica Camacho
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Patrick Shea
- Institute for Genomic Medicine, Columbia University, New York, New York, USA
| | - Konrad H Stopsack
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Vijai Joseph
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, New York, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Oliver Burren
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Ryan Dhindsa
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Abhishek Nag
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | - Amanda O'Neill
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Ali Abbasi
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Anthony W Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jesus Alegre-Díaz
- Faculty of Medicine, National Autonomous University of Mexico, Copilco Universidad, Coyoacán, Ciudad de México, Mexico
| | - Pablo Kuri-Morales
- Faculty of Medicine, National Autonomous University of Mexico, Copilco Universidad, Coyoacán, Ciudad de México, Mexico
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Tecnológico, Monterrey, Nuevo León, Mexico
| | - Jaime Berumen
- Faculty of Medicine, National Autonomous University of Mexico, Copilco Universidad, Coyoacán, Ciudad de México, Mexico
| | - Roberto Tapia-Conyer
- Faculty of Medicine, National Autonomous University of Mexico, Copilco Universidad, Coyoacán, Ciudad de México, Mexico
| | - Jonathan Emberson
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jason M Torres
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Rory Collins
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Quanli Wang
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, Massachusetts, USA
| | - David Goldstein
- Institute for Genomic Medicine, Columbia University, New York, New York, USA
| | - Athena Matakidou
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Carolina Haefliger
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Lauren Anderson-Dring
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Ruth March
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Vaidehi Jobanputra
- Institute for Genomic Medicine, Columbia University, New York, New York, USA
| | | | - Keren Carss
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Slavé Petrovski
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Convergent Therapeutics, Cambridge, Massachusetts, USA
| | - Kenneth Offit
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, New York, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- American Cancer Society, Boston, Massachusetts, USA
| | - Mark Pomerantz
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Margarete A Fabre
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| |
Collapse
|
41
|
Vince RA, Sun H, Singhal U, Schumacher FR, Trapl E, Rose J, Cullen J, Zaorsky N, Shoag J, Hartman H, Jia AY, Spratt DE, Fritsche LG, Morgan TM. Assessing the Clinical Utility of Published Prostate Cancer Polygenic Risk Scores in a Large Biobank Data Set. Eur Urol Oncol 2024:S2588-9311(24)00111-1. [PMID: 38734542 DOI: 10.1016/j.euo.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/26/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND AND OBJECTIVE Polygenic risk scores (PRSs) have been developed to identify men with the highest risk of prostate cancer. Our aim was to compare the performance of 16 PRSs in identifying men at risk of developing prostate cancer and then to evaluate the performance of the top-performing PRSs in differentiating individuals at risk of aggressive prostate cancer. METHODS For this case-control study we downloaded 16 published PRSs from the Polygenic Score Catalog on May 28, 2021 and applied them to Michigan Genomics Initiative (MGI) patients. Cases were matched to the Michigan Urological Surgery Improvement Collaborative (MUSIC) registry to obtain granular clinical and pathological data. MGI prospectively enrolls patients undergoing surgery at the University of Michigan, and MUSIC is a multi-institutional registry that prospectively tracks demographic, treatment, and clinical variables. The predictive performance of each PRS was evaluated using the area under the covariate-adjusted receiver operating characteristic curve (aAUC), and the association between PRS and disease aggressiveness according to prostate biopsy data was measured using logistic regression. KEY FINDINGS AND LIMITATIONS We included 18 050 patients in the analysis, of whom 15 310 were control subjects and 2740 were prostate cancer cases. The median age was 66.1 yr (interquartile range 59.9-71.6) for cases and 56.6 yr (interquartile range 42.6-66.7) for control subjects. The PRS performance in predicting the risk of developing prostate cancer according to aAUC ranged from 0.51 (95% confidence interval 0.51-0.53) to 0.67 (95% confidence interval 0.66-0.68). By contrast, there was no association between PRS and disease aggressiveness. CONCLUSIONS AND CLINICAL IMPLICATIONS Prostate cancer PRSs have modest real-world performance in identifying patients at higher risk of developing prostate cancer; however, they are limited in distinguishing patients with indolent versus aggressive disease. PATIENT SUMMARY Risk scores using data for multiple genes (called polygenic risk scores) can identify men at higher risk of developing prostate cancer. However, these scores need to be refined to be able to identify men with the highest risk for clinically significant prostate cancer.
Collapse
Affiliation(s)
- Randy A Vince
- Department of Urology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| | - Helen Sun
- Department of Urology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Udit Singhal
- Department of Urology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Fredrick R Schumacher
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Erika Trapl
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Johnie Rose
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Jennifer Cullen
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Nicholas Zaorsky
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Johnathan Shoag
- Department of Urology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Holly Hartman
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Angela Y Jia
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Daniel E Spratt
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Lars G Fritsche
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Todd M Morgan
- Department of Urology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
42
|
Li S, Che J, Gu B, Li Y, Han X, Sun T, Pan K, Lv J, Zhang S, Wang C, Zhang T, Wang J, Xue F. Metabolites, Healthy Lifestyle, and Polygenic Risk Score Associated with Upper Gastrointestinal Cancer: Findings from the UK Biobank Study. J Proteome Res 2024; 23:1679-1688. [PMID: 38546438 DOI: 10.1021/acs.jproteome.3c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Previous metabolomics studies have highlighted the predictive value of metabolites on upper gastrointestinal (UGI) cancer, while most of them ignored the potential effects of lifestyle and genetic risk on plasma metabolites. This study aimed to evaluate the role of lifestyle and genetic risk in the metabolic mechanism of UGI cancer. Differential metabolites of UGI cancer were identified using partial least-squares discriminant analysis and the Wilcoxon test. Then, we calculated the healthy lifestyle index (HLI) score and polygenic risk score (PRS) and divided them into three groups, respectively. A total of 15 metabolites were identified as UGI-cancer-related differential metabolites. The metabolite model (AUC = 0.699) exhibited superior discrimination ability compared to those of the HLI model (AUC = 0.615) and the PRS model (AUC = 0.593). Moreover, subgroup analysis revealed that the metabolite model showed higher discrimination ability for individuals with unhealthy lifestyles compared to that with healthy individuals (AUC = 0.783 vs 0.684). Furthermore, in the genetic risk subgroup analysis, individuals with a genetic predisposition to UGI cancer exhibited the best discriminative performance in the metabolite model (AUC = 0.770). These findings demonstrated the clinical significance of metabolic biomarkers in UGI cancer discrimination, especially in individuals with unhealthy lifestyles and a high genetic risk.
Collapse
Affiliation(s)
- Shuting Li
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jiajing Che
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Bingbing Gu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yunfei Li
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xinyue Han
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Tiantian Sun
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Keyu Pan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jiali Lv
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shuai Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Cheng Wang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Tao Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jialin Wang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Fuzhong Xue
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
43
|
Xu HM, Han Y, Liu ZC, Yin ZY, Wang MY, Yu C, Ma JL, Sun D, Liu WD, Zhang Y, Zhou T, Zhang JY, Pei P, Yang L, Millwood IY, Walters RG, Chen Y, Du H, Chen Z, You WC, Li L, Pan KF, Lv J, Li WQ. Helicobacter pylori Treatment and Gastric Cancer Risk Among Individuals With High Genetic Risk for Gastric Cancer. JAMA Netw Open 2024; 7:e2413708. [PMID: 38809553 PMCID: PMC11137637 DOI: 10.1001/jamanetworkopen.2024.13708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/25/2024] [Indexed: 05/30/2024] Open
Abstract
Importance Helicobacter pylori treatment and nutrition supplementation may protect against gastric cancer (GC), but whether the beneficial effects only apply to potential genetic subgroups and whether high genetic risk may be counteracted by these chemoprevention strategies remains unknown. Objective To examine genetic variants associated with the progression of gastric lesions and GC risk and to assess the benefits of H pylori treatment and nutrition supplementation by levels of genetic risk. Design, Setting, and Participants This cohort study used follow-up data of the Shandong Intervention Trial (SIT, 1989-2022) and China Kadoorie Biobank (CKB, 2004-2018) in China. Based on the SIT, a longitudinal genome-wide association study was conducted to identify genetic variants for gastric lesion progression. Significant variants were examined for incident GC in a randomly sampled set of CKB participants (set 1). Polygenic risk scores (PRSs) combining independent variants were assessed for GC risk in the remaining CKB participants (set 2) and in an independent case-control study in Linqu. Exposures H pylori treatment and nutrition supplementation. Main Outcomes and Measures Primary outcomes were the progression of gastric lesions (in SIT only) and the risk of GC. The associations of H pylori treatment and nutrition supplementation with GC were evaluated among SIT participants with different levels of genetic risk. Results Our analyses included 2816 participants (mean [SD] age, 46.95 [9.12] years; 1429 [50.75%] women) in SIT and 100 228 participants (mean [SD] age, 53.69 [11.00] years; 57 357 [57.23%] women) in CKB, with 147 GC cases in SIT and 825 GC cases in CKB identified during follow-up. A PRS integrating 12 genomic loci associated with gastric lesion progression and incident GC risk was derived, which was associated with GC risk in CKB (highest vs lowest decile of PRS: hazard ratio [HR], 2.54; 95% CI, 1.80-3.57) and further validated in the analysis of 702 case participants and 692 control participants (mean [SD] age, 54.54 [7.66] years; 527 [37.80%] women; odds ratio, 1.83; 95% CI, 1.11-3.05). H pylori treatment was associated with reduced GC risk only for individuals with high genetic risk (top 25% of PRS: HR, 0.45; 95% CI, 0.25-0.82) but not for those with low genetic risk (HR, 0.81; 95% CI, 0.50-1.34; P for interaction = .03). Such effect modification was not found for vitamin (P for interaction = .93) or garlic (P for interaction = .41) supplementation. Conclusions and Relevance The findings of this cohort study indicate that a high genetic risk of GC may be counteracted by H pylori treatment, suggesting primary prevention could be tailored to genetic risk for more effective prevention.
Collapse
Affiliation(s)
- Heng-Min Xu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yuting Han
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Zong-Chao Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhou-Yi Yin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Meng-Yuan Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Canqing Yu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Jun-Ling Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Dianjianyi Sun
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Wei-Dong Liu
- Linqu Public Health Bureau, Linqu, Shandong, China
| | - Yang Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Tong Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Jing-Ying Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Pei Pei
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Ling Yang
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, United Kingdom
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Iona Y. Millwood
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, United Kingdom
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Robin G. Walters
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, United Kingdom
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Yiping Chen
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, United Kingdom
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Huaidong Du
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, United Kingdom
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Zhengming Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Wei-Cheng You
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Liming Li
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Kai-Feng Pan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jun Lv
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Wen-Qing Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
44
|
Gu J, Chery L, González GMN, Huff C, Strom S, Jones JA, Griffith DP, Canfield SE, Wang X, Huang X, Roberson P, Meng QH, Troncoso P, Ittmann M, Covinsky M, Scheurer M, Irizarry Ramirez M, Pettaway CA. A west African ancestry-associated SNP on 8q24 predicts a positive biopsy in African American men with suspected prostate cancer following PSA screening. Prostate 2024; 84:694-705. [PMID: 38477020 PMCID: PMC11240849 DOI: 10.1002/pros.24686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/28/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND African American (AA) men have the highest incidence and mortality rates of prostate cancer (PCa) among all racial groups in the United States. While race is a social construct, for AA men, this overlaps with west African ancestry. Many of the PCa susceptibility variants exhibit distinct allele frequencies and risk estimates across different races and contribute substantially to the large disparities of PCa incidence among races. We previously reported that a single-nucleotide polymorphism (SNP) in 8q24, rs7824364, was strongly associated with west African ancestry and increased risks of PCa in both AA and Puerto Rican men. In this study, we determined whether this SNP can predict biopsy positivity and detection of clinically significant disease (Gleason score [GS] ≥ 7) in a cohort of AA men with suspected PCa. METHODS SNP rs7824364 was genotyped in 199 AA men with elevated total prostate-specific antigen (PSA) (>2.5 ng/mL) or abnormal digital rectal exam (DRE) and the associations of different genotypes with biopsy positivity and clinically significant disease were analyzed. RESULTS The variant allele carriers were significantly over-represented in the biopsy-positive group compared to the biopsy-negative group (44% vs. 25.7%, p = 0.011). In the multivariate logistic regression analyses, variant allele carriers were at a more than a twofold increased risk of a positive biopsy (odds ratio [OR] = 2.14, 95% confidence interval [CI] = 1.06-4.32). Moreover, the variant allele was a predictor (OR = 2.26, 95% CI = 1.06-4.84) of a positive biopsy in the subgroup of patients with PSA < 10 ng/mL and normal DRE. The variant allele carriers were also more prevalent in cases with GS ≥ 7 compared to cases with GS < 7 and benign biopsy. CONCLUSIONS This study demonstrated that the west African ancestry-specific SNP rs7824364 on 8q24 independently predicted a positive prostate biopsy in AA men who were candidates for prostate biopsy subsequent to PCa screening.
Collapse
Affiliation(s)
- Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lisly Chery
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Chad Huff
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sara Strom
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jeffrey A Jones
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Urology, Baylor College of Medicine, Houston, Texas, USA
- Urology Section, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
| | - Donald P Griffith
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Steven E Canfield
- Division of Urology, UTHealth McGovern Medical School, Houston, Texas, USA
| | - Xuemei Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xuelin Huang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Pamela Roberson
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qing H Meng
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael Ittmann
- Department of Pathology, Baylor College of Medicine, Houston, Texas, USA
| | - Michael Covinsky
- Division of Pathology, UTHealth McGovern Medical School, Houston, Texas, USA
| | - Michael Scheurer
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Margarita Irizarry Ramirez
- Department of Graduate Studies, Clinical Laboratory Sciences, School of Health Professions, University of Puerto Rico, San Juan, Puerto Rico
| | - Curtis A Pettaway
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
45
|
Purdue MP, Dutta D, Machiela MJ, Gorman BR, Winter T, Okuhara D, Cleland S, Ferreiro-Iglesias A, Scheet P, Liu A, Wu C, Antwi SO, Larkin J, Zequi SC, Sun M, Hikino K, Hajiran A, Lawson KA, Cárcano F, Blanchet O, Shuch B, Nepple KG, Margue G, Sundi D, Diver WR, Folgueira MAAK, van Bokhoven A, Neffa F, Brown KM, Hofmann JN, Rhee J, Yeager M, Cole NR, Hicks BD, Manning MR, Hutchinson AA, Rothman N, Huang WY, Linehan WM, Lori A, Ferragu M, Zidane-Marinnes M, Serrano SV, Magnabosco WJ, Vilas A, Decia R, Carusso F, Graham LS, Anderson K, Bilen MA, Arciero C, Pellegrin I, Ricard S, Scelo G, Banks RE, Vasudev NS, Soomro N, Stewart GD, Adeyoju A, Bromage S, Hrouda D, Gibbons N, Patel P, Sullivan M, Protheroe A, Nugent FI, Fournier MJ, Zhang X, Martin LJ, Komisarenko M, Eisen T, Cunningham SA, Connolly DC, Uzzo RG, Zaridze D, Mukeria A, Holcatova I, Hornakova A, Foretova L, Janout V, Mates D, Jinga V, Rascu S, Mijuskovic M, Savic S, Milosavljevic S, Gaborieau V, Abedi-Ardekani B, McKay J, Johansson M, Phouthavongsy L, Hayman L, Li J, Lungu I, Bezerra SM, Souza AG, Sares CTG, Reis RB, Gallucci FP, Cordeiro MD, Pomerantz M, Lee GSM, Freedman ML, Jeong A, Greenberg SE, Sanchez A, Thompson RH, Sharma V, Thiel DD, Ball CT, Abreu D, Lam ET, Nahas WC, Master VA, Patel AV, Bernhard JC, Freedman ND, Bigot P, Reis RM, Colli LM, Finelli A, Manley BJ, Terao C, Choueiri TK, Carraro DM, Houlston R, Eckel-Passow JE, Abbosh PH, Ganna A, Brennan P, Gu J, Chanock SJ. Multi-ancestry genome-wide association study of kidney cancer identifies 63 susceptibility regions. Nat Genet 2024; 56:809-818. [PMID: 38671320 DOI: 10.1038/s41588-024-01725-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/13/2024] [Indexed: 04/28/2024]
Abstract
Here, in a multi-ancestry genome-wide association study meta-analysis of kidney cancer (29,020 cases and 835,670 controls), we identified 63 susceptibility regions (50 novel) containing 108 independent risk loci. In analyses stratified by subtype, 52 regions (78 loci) were associated with clear cell renal cell carcinoma (RCC) and 6 regions (7 loci) with papillary RCC. Notably, we report a variant common in African ancestry individuals ( rs7629500 ) in the 3' untranslated region of VHL, nearly tripling clear cell RCC risk (odds ratio 2.72, 95% confidence interval 2.23-3.30). In cis-expression quantitative trait locus analyses, 48 variants from 34 regions point toward 83 candidate genes. Enrichment of hypoxia-inducible factor-binding sites underscores the importance of hypoxia-related mechanisms in kidney cancer. Our results advance understanding of the genetic architecture of kidney cancer, provide clues for functional investigation and enable generation of a validated polygenic risk score with an estimated area under the curve of 0.65 (0.74 including risk factors) among European ancestry individuals.
Collapse
Affiliation(s)
- Mark P Purdue
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| | - Diptavo Dutta
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Mitchell J Machiela
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | | | - Timothy Winter
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | | | | | | | - Paul Scheet
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aoxing Liu
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Chao Wu
- Biosample Repository, Fox Chase Cancer Center-Temple Health, Philadelphia, PA, USA
| | - Samuel O Antwi
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - James Larkin
- Department of Medical Oncology, Royal Marsden NHS Foundation Trust, London, UK
| | - Stênio C Zequi
- Department of Urology, A.C. Camargo Cancer Center, São Paulo, Brazil
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation INCIT-INOTE, São Paulo, Brazil
- Latin American Renal Cancer Group, São Paulo, Brazil
- Department of Surgery, Division of Urology, São Paulo Federal University, São Paulo, Brazil
| | - Maxine Sun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Keiko Hikino
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ali Hajiran
- Department of Urology, Division of Urologic Oncology, West Virginia University Cancer Institute, Morgantown, WV, USA
| | - Keith A Lawson
- Department of Surgical Oncology, Division of Urology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Flavio Cárcano
- Department of Medical Oncology, Barretos Cancer Hospital, Barretos, Brazil
| | | | - Brian Shuch
- Department of Urology, UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Kenneth G Nepple
- Department of Urology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Gaëlle Margue
- Department of Urology, CHU Bordeaux, Bordeaux, France
| | - Debasish Sundi
- Department of Urology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - W Ryan Diver
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Maria A A K Folgueira
- Departments of Radiology and Oncology, Comprehensive Center for Precision Oncology-C2PO, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas, Faculdade de Medicina Universidade de São Paulo, São Paulo, Brazil
| | - Adrie van Bokhoven
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Kevin M Brown
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jonathan N Hofmann
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jongeun Rhee
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Frederick National Laboratory, Rockville, MD, USA
| | - Nathan R Cole
- Cancer Genomics Research Laboratory, Frederick National Laboratory, Rockville, MD, USA
| | - Belynda D Hicks
- Cancer Genomics Research Laboratory, Frederick National Laboratory, Rockville, MD, USA
| | - Michelle R Manning
- Cancer Genomics Research Laboratory, Frederick National Laboratory, Rockville, MD, USA
| | - Amy A Hutchinson
- Cancer Genomics Research Laboratory, Frederick National Laboratory, Rockville, MD, USA
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Wen-Yi Huang
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Adriana Lori
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | | | | | - Sérgio V Serrano
- Department of Medical Oncology, Barretos Cancer Hospital, Barretos, Brazil
| | | | - Ana Vilas
- Department of Pathology, Hospital Pasteur, Montevideo, Uruguay
| | - Ricardo Decia
- Department of Urology, Hospital Pasteur, Montevideo, Uruguay
| | | | - Laura S Graham
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kyra Anderson
- Oncology Clinical Research Support Team, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mehmet A Bilen
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Cletus Arciero
- Department of Surgery, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Solène Ricard
- Department of Urology, CHU Bordeaux, Bordeaux, France
| | - Ghislaine Scelo
- Observational and Pragmatic Research Institute Pte Ltd, Singapore, Singapore
| | - Rosamonde E Banks
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Naveen S Vasudev
- Department of Oncology, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Naeem Soomro
- Department of Urology, Newcastle Hospitals NHS Foundation Trust, Newcastle, UK
| | - Grant D Stewart
- Department of Urology, Western General Hospital, NHS Lothian, Edinburgh, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Adebanji Adeyoju
- Department of Urology, Stockport NHS Foundation Trust, Stockport, UK
| | - Stephen Bromage
- Department of Urology, Stockport NHS Foundation Trust, Stockport, UK
| | - David Hrouda
- Department of Urology, Imperial College Healthcare NHS Trust, London, UK
| | - Norma Gibbons
- Department of Urology, Imperial College Healthcare NHS Trust, London, UK
| | - Poulam Patel
- Division of Oncology, University of Nottingham, Nottingham, UK
| | - Mark Sullivan
- Department of Urology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Andrew Protheroe
- Department of Oncology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Francesca I Nugent
- Department of Urology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | | | - Xiaoyu Zhang
- Department of Surgical Oncology, Division of Urology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Lisa J Martin
- Department of Surgical Oncology, Division of Urology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Maria Komisarenko
- Department of Surgical Oncology, Division of Urology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Timothy Eisen
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sonia A Cunningham
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Denise C Connolly
- Cancer Signaling and Microenvironment, Biosample Repository Facility, Fox Chase Cancer Center-Temple Health, Philadelphia, PA, USA
| | - Robert G Uzzo
- Department of Urology, Fox Chase Cancer Center-Temple Health, Philadelphia, PA, USA
| | - David Zaridze
- Department of Clinical Epidemiology, N.N. Blokhin National Medical Research Centre of Oncology, Moscow, Russia
| | - Anush Mukeria
- Department of Clinical Epidemiology, N.N. Blokhin National Medical Research Centre of Oncology, Moscow, Russia
| | - Ivana Holcatova
- Institute of Public Health and Preventive Medicine, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Oncology, Second Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Anna Hornakova
- Institute of Hygiene and Epidemiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Vladimir Janout
- Faculty of Health Sciences, Palacky University, Olomouc, Czech Republic
| | - Dana Mates
- Department of Occupational Health and Toxicology, National Center for Environmental Risk Monitoring, National Institute of Public Health, Bucharest, Romania
| | - Viorel Jinga
- Urology Department, Academy of Romanian Scientists, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Stefan Rascu
- Urology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mirjana Mijuskovic
- Clinic of Nephrology, Faculty of Medicine, Military Medical Academy, Belgrade, Serbia
| | - Slavisa Savic
- Department of Urology, Clinical Hospital Center Dr Dragisa Misovic Dedinje, Belgrade, Serbia
| | - Sasa Milosavljevic
- International Organisation for Cancer Prevention and Research, Belgrade, Serbia
| | - Valérie Gaborieau
- Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | | | - James McKay
- Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | - Mattias Johansson
- Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | - Larry Phouthavongsy
- Ontario Tumour Bank, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Lindsay Hayman
- Diagnostic Development Program, Tissue Portal, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Jason Li
- Diagnostic Development Program, Tissue Portal, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Ilinca Lungu
- Ontario Tumour Bank, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Diagnostic Development Program, Tissue Portal, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | | | - Aline G Souza
- Departments of Medical Imaging, Hematology and Oncology, Division of Medical Oncology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Claudia T G Sares
- Departments of Surgery and Anatomy, Division of Urology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Rodolfo B Reis
- Departments of Surgery and Anatomy, Division of Urology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Fabio P Gallucci
- Surgery Department, Urology Division, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Mauricio D Cordeiro
- Surgery Department, Urology Division, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Gwo-Shu M Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Matthew L Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Anhyo Jeong
- Department of Urology, UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Samantha E Greenberg
- Department of Population Sciences, Genetic Counseling Shared Resource, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Alejandro Sanchez
- Department of Surgery, Division of Urology, Huntsman Cancer Institute and University of Utah, Salt Lake City, UT, USA
| | | | - Vidit Sharma
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| | - David D Thiel
- Department of Urology, Mayo Clinic, Jacksonville, FL, USA
| | - Colleen T Ball
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Diego Abreu
- Department of Urology, Hospital Pasteur, Montevideo, Uruguay
| | - Elaine T Lam
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - William C Nahas
- Surgery Department, Urology Division, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Viraj A Master
- Department of Urology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Alpa V Patel
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | | | - Neal D Freedman
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Pierre Bigot
- Department of Urology, CHU Angers, Angers, France
| | - Rui M Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Leandro M Colli
- Departament of Medical Image, Hematology and Oncology, Division of Medical Oncology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Antonio Finelli
- Department of Surgical Oncology, Division of Urology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Brandon J Manley
- Genitourinary Oncology Program, Moffitt Cancer Center, Tampa, FL, USA
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Toni K Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Dirce M Carraro
- Clinical and Functional Genomics Group, CIPE (International Research Center), A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Richard Houlston
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, UK
| | | | - Philip H Abbosh
- Department of Nuclear Dynamics and Cancer, Fox Chase Cancer Center-Temple Health, Philadelphia, PA, USA
| | - Andrea Ganna
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Paul Brennan
- Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | - Jian Gu
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephen J Chanock
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| |
Collapse
|
46
|
Yu Z, Zhang Z, Liu J, Wu X, Fan X, Pang J, Bao H, Yin J, Wu X, Shao Y, Liu Z, Liu F. Identification of pathogenic germline variants in a large Chinese lung cancer cohort by clinical sequencing. Mol Oncol 2024; 18:1301-1315. [PMID: 37885353 PMCID: PMC11076998 DOI: 10.1002/1878-0261.13548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/29/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023] Open
Abstract
Genetic factors play significant roles in the tumorigenicity of lung cancer; however, there is lack of systematic and large-scale characterization of pathogenic germline variants for lung cancer. In this study, germline variants in 146 preselected cancer-susceptibility genes were detected in 17 904 Chinese lung cancer patients by clinical next-generation sequencing. Among 17 904 patients, 1738 patients (9.7%) carried 1840 pathogenic/likely pathogenic (P/LP) variants from 87 cancer-susceptibility genes. SBDS (SBDS ribosome maturation factor) (1.37%), TSHR (thyroid stimulating hormone receptor) (1.20%), BLM (BLM RecQ like helicase) (0.62%), BRCA2 (BRCA2 DNA repair associated) (0.62%), and ATM (ATM serine/threonine kinase) (0.45%) were the top five genes with the highest overall prevalence. The top mutated pathways were all involved in DNA damage repair (DDR). Case-control analysis showed SBDS c.184A>T(p.K62*), TSHR c.1574T>C(p.F525S), BRIP1 (BRCA1 interacting helicase 1) c.1018C>T(p.L340F), and MUTYH (mutY DNA glycosylase) c.55C>T(p.R19*) were significantly associated with increased lung cancer risk (q value < 0.05). P/LP variants in certain genes were associated with early onset of lung cancer. Our study indicates that Chinese lung cancer patients have a higher prevalence of P/LP variants than previously reported. P/LP variants are distributed in multiple pathways and dominated by DNA damage repair-associated pathways. The association between identified P/LP variants and lung cancer risk requires further studies for verification.
Collapse
Affiliation(s)
- Zhe Yu
- Department of Respiratory MedicineNingbo NO.2 HospitalChina
| | - Zirui Zhang
- Department of Cardiovascular and Thoracic SurgeryNanjing Drum Tower Hospital Affiliated to Nanjing University School of MedicineChina
| | - Jun Liu
- Department of ChemotherapyAffiliated Hospital of Nantong UniversityChina
| | | | | | | | - Hua Bao
- Nanjing Geneseeq Technology Inc.China
| | - Jiani Yin
- Nanjing Geneseeq Technology Inc.China
| | - Xue Wu
- Nanjing Geneseeq Technology Inc.China
| | - Yang Shao
- Nanjing Geneseeq Technology Inc.China
- School of Public HealthNanjing Medical UniversityChina
| | - Zhengcheng Liu
- Department of Cardiovascular and Thoracic SurgeryNanjing Drum Tower Hospital Affiliated to Nanjing University School of MedicineChina
| | - Fang Liu
- Senior Department of OncologyThe Fifth Medical Center of PLA General HospitalBeijingChina
| |
Collapse
|
47
|
Shi X, Bu A, Yang Y, Wang Y, Zhao C, Fan J, Yang C, Jia X. Investigating the shared genetic architecture between breast and ovarian cancers. Genet Mol Biol 2024; 47:e20230181. [PMID: 38626574 PMCID: PMC11021043 DOI: 10.1590/1678-4685-gmb-2023-0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 12/27/2023] [Indexed: 04/18/2024] Open
Abstract
High heritability and strong correlation have been observed in breast and ovarian cancers. However, their shared genetic architecture remained unclear. Linkage disequilibrium score regression (LDSC) and heritability estimation from summary statistics (ρ-HESS) were applied to estimate heritability and genetic correlations. Bivariate causal mixture model (MiXeR) was used to qualify the polygenic overlap. Then, stratified-LDSC (S-LDSC) was used to identify tissue and cell type specificity. Meanwhile, the adaptive association test called MTaSPUsSet was performed to identify potential pleiotropic genes. The Single Nucleotide Polymorphisms (SNP) heritability was 13% for breast cancer and 5% for ovarian cancer. There was a significant genetic correlation between breast and ovarian cancers (rg=0.21). Breast and ovarian cancers exhibited polygenic overlap, sharing 0.4 K out 2.8 K of causal variants. Tissue and cell type specificity displayed significant enrichment in female breast mammary, uterus, kidney tissues, and adipose cell. Moreover, the 74 potential pleiotropic genes were identified between breast and ovarian cancers, which were related to the regulation of cell cycle and cell death. We quantified the shared genetic architecture between breast and ovarian cancers and shed light on the biological basis of the co-morbidity. Ultimately, these findings facilitated the understanding of disease etiology.
Collapse
Affiliation(s)
- Xuezhong Shi
- Zhengzhou University, College of Public Health, Department of Epidemiology and Biostatistics, Zhengzhou, Henan, China
| | - Anqi Bu
- Zhengzhou University, College of Public Health, Department of Epidemiology and Biostatistics, Zhengzhou, Henan, China
| | - Yongli Yang
- Zhengzhou University, College of Public Health, Department of Epidemiology and Biostatistics, Zhengzhou, Henan, China
| | - Yuping Wang
- Zhengzhou University, College of Public Health, Department of Epidemiology and Biostatistics, Zhengzhou, Henan, China
| | - Chenyu Zhao
- Zhengzhou University, College of Public Health, Department of Epidemiology and Biostatistics, Zhengzhou, Henan, China
| | - Jingwen Fan
- Zhengzhou University, College of Public Health, Department of Epidemiology and Biostatistics, Zhengzhou, Henan, China
| | - Chaojun Yang
- Zhengzhou University, College of Public Health, Department of Epidemiology and Biostatistics, Zhengzhou, Henan, China
| | - Xiaocan Jia
- Zhengzhou University, College of Public Health, Department of Epidemiology and Biostatistics, Zhengzhou, Henan, China
| |
Collapse
|
48
|
Wei GH, Dong D, Zhang P, Liu M, Wei Y, Wang Z, Xu W, Zhang Q, Zhu Y, Zhang Q, Yang X, Zhu J, Wang L. Combined SNPs sequencing and allele specific proteomics capture reveal functional causality underpinning the 2p25 prostate cancer susceptibility locus. RESEARCH SQUARE 2024:rs.3.rs-3943095. [PMID: 38645058 PMCID: PMC11030545 DOI: 10.21203/rs.3.rs-3943095/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Genome wide association studies (GWASs) have identified numerous risk loci associated with prostate cancer, yet unraveling their functional significance remains elusive. Leveraging our high-throughput SNPs-seq method, we pinpointed rs4519489 within the multi-ancestry GWAS-discovered 2p25 locus as a potential functional SNP due to its significant allelic differences in protein binding. Here, we conduct a comprehensive analysis of rs4519489 and its associated gene, NOL10, employing diverse cohort data and experimental models. Clinical findings reveal a synergistic effect between rs4519489 genotype and NOL10 expression on prostate cancer prognosis and severity. Through unbiased proteomics screening, we reveal that the risk allele A of rs4519489 exhibits enhanced binding to USF1, a novel oncogenic transcription factor (TF) implicated in prostate cancer progression and prognosis, resulting in elevated NOL10 expression. Furthermore, we elucidate that NOL10 regulates cell cycle pathways, fostering prostate cancer progression. The concurrent expression of NOL10 and USF1 correlates with aggressive prostate cancer characteristics and poorer prognosis. Collectively, our study offers a robust strategy for functional SNP screening and TF identification through high-throughput SNPs-seq and unbiased proteomics, highlighting the rs4519489-USF1-NOL10 regulatory axis as a promising biomarker or therapeutic target for clinical diagnosis and treatment of prostate cancer.
Collapse
Affiliation(s)
- Gong-Hong Wei
- Fudan University Shanghai Cancer Center & MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School Basic Medical Sciences, Shanghai Medi
| | - Dandan Dong
- Shanghai Medical College of Fudan University
| | - Peng Zhang
- Shanghai Medical College of Fudan University
| | - Mengqi Liu
- Shanghai Medical College of Fudan University
| | - Yu Wei
- Fudan Unversity Shanghai Cancer Center
| | - Zixian Wang
- Shanghai Medical College of Fudan University
| | - Wenjie Xu
- Shanghai Medical College of Fudan University
| | | | - Yao Zhu
- Fudan University Shanghai Cancer Center
| | | | | | | | | |
Collapse
|
49
|
Han SH, Camp SY, Chu H, Collins R, Gillani R, Park J, Bakouny Z, Ricker CA, Reardon B, Moore N, Kofman E, Labaki C, Braun D, Choueiri TK, AlDubayan SH, Van Allen EM. Integrative Analysis of Germline Rare Variants in Clear and Non-clear Cell Renal Cell Carcinoma. EUR UROL SUPPL 2024; 62:107-122. [PMID: 38496821 PMCID: PMC10940785 DOI: 10.1016/j.euros.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
Background and objective Previous germline studies on renal cell carcinoma (RCC) have usually pooled clear and non-clear cell RCCs and have not adequately accounted for population stratification, which might have led to an inaccurate estimation of genetic risk. Here, we aim to analyze the major germline drivers of RCC risk and clinically relevant but underexplored germline variant types. Methods We first characterized germline pathogenic variants (PVs), cryptic splice variants, and copy number variants (CNVs) in 1436 unselected RCC patients. To evaluate the enrichment of PVs in RCC, we conducted a case-control study of 1356 RCC patients ancestry matched with 16 512 cancer-free controls using approaches accounting for population stratification and histological subtypes, followed by characterization of secondary somatic events. Key findings and limitations Clear cell RCC patients (n = 976) exhibited a significant burden of PVs in VHL compared with controls (odds ratio [OR]: 39.1, p = 4.95e-05). Non-clear cell RCC patients (n = 380) carried enrichment of PVs in FH (OR: 77.9, p = 1.55e-08) and MET (OR: 1.98e11, p = 2.07e-05). In a CHEK2-focused analysis with European participants, clear cell RCC (n = 906) harbored nominal enrichment of low-penetrance CHEK2 variants-p.Ile157Thr (OR: 1.84, p = 0.049) and p.Ser428Phe (OR: 5.20, p = 0.045), while non-clear cell RCC (n = 295) exhibited nominal enrichment of CHEK2 loss of function PVs (OR: 3.51, p = 0.033). Patients with germline PVs in FH, MET, and VHL exhibited significantly earlier age of cancer onset than patients without germline PVs (mean: 46.0 vs 60.2 yr, p < 0.0001), and more than half had secondary somatic events affecting the same gene (n = 10/15, 66.7%). Conversely, CHEK2 PV carriers exhibited a similar age of onset to patients without germline PVs (mean: 60.1 vs 60.2 yr, p = 0.99), and only 30.4% carried somatic events in CHEK2 (n = 7/23). Finally, pathogenic germline cryptic splice variants were identified in SDHA and TSC1, and pathogenic germline CNVs were found in 18 patients, including CNVs in FH, SDHA, and VHL. Conclusions and clinical implications This analysis supports the existing link between several RCC risk genes and RCC risk manifesting in earlier age of onset. It calls for caution when assessing the role of CHEK2 due to the burden of founder variants with varying population frequency. It also broadens the definition of the RCC germline landscape of pathogenicity to incorporate previously understudied types of germline variants. Patient summary In this study, we carefully compared the frequency of rare inherited mutations with a focus on patients' genetic ancestry. We discovered that subtle variations in genetic background may confound a case-control analysis, especially in evaluating the cancer risk associated with specific genes, such as CHEK2. We also identified previously less explored forms of rare inherited mutations, which could potentially increase the risk of kidney cancer.
Collapse
Affiliation(s)
- Seung Hun Han
- Ph.D. Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sabrina Y. Camp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hoyin Chu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ryan Collins
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Riaz Gillani
- Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Boston Children’s Hospital, Boston, MA, USA
| | - Jihye Park
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ziad Bakouny
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cora A. Ricker
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Brendan Reardon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicholas Moore
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Eric Kofman
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Chris Labaki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - David Braun
- Center of Molecular and Cellular Oncology, Yale School of Medicine, New Haven, CT, USA
| | - Toni K. Choueiri
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Brigham and Women’s Hospital, Boston, MA, USA
| | - Saud H. AlDubayan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA, USA
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Eliezer M. Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
50
|
Bau DT, Tsai CW, Chang WS, Yang JS, Liu TY, Lu HF, Wang YW, Tsai FJ. Genetic susceptibility to prostate cancer in Taiwan: A genome-wide association study. Mol Carcinog 2024; 63:617-628. [PMID: 38390760 DOI: 10.1002/mc.23676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/02/2023] [Accepted: 12/15/2023] [Indexed: 02/24/2024]
Abstract
We conducted the first genome-wide association study (GWAS) of prostate cancer (PCa) in Taiwan with 1844 cases and 80,709 controls. Thirteen independent single-nucleotide polymorphisms (SNPs) reached genome-wide significance (p < 5 × 10-8 ). Among these, three were distinct from previously identified loci: rs76072851 in CORO2B gene (15q23), odds ratio (OR) = 1.54, 95% confidence interval (CI), 1.36-1.76, p = 5.30 × 10-11 ; rs7837051, near two long noncoding RNA (lncRNA) genes, PRNCR1 and PCAT2 (8q24.21), OR = 1.41 (95% CI, 1.31-1.51), p = 8.77 × 10-21 ; and rs56339048, near an lncRNA gene, CASC8 (8q24.21), OR = 1.25 (95% CI, 1.16-1.35), p = 2.14 × 10-8 . We refined the lead SNPs for two previously identified SNPs in Taiwanese: rs13255059 (near CASC8), p = 9.02 × 10-43 , and rs1456315 (inside PRNCR1), p = 4.33 × 10-42 . We confirmed 35 out of 49 GWAS-identified East Asian PCa susceptibility SNPs. In addition, we identified two SNPs more specific to Taiwanese than East Asians: rs34295433 in LAMC1 (1q25.3) and rs6853490 in PDLIM5 (4q22.3). A weighted genetic risk score (GRS) was developed using the 40 validated SNPs and the area under the receiver-operating characteristic curve for the GRS to predict PCa was 0.67 (95% CI, 0.63-0.71). These identified SNPs provide valuable insights into the molecular mechanisms of prostate carcinogenesis in Taiwan and underscore the significant role of genetic susceptibility in regional differences in PCa incidence.
Collapse
Affiliation(s)
- Da-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Chia-Wen Tsai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Shin Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Ting-Yuan Liu
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Hsing-Fang Lu
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yu-Wen Wang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Human Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Genetics, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|