1
|
Asiamah R, Kyei S, Owusu P, Koomson K, Arthur P. Association between gene polymorphisms and glaucoma susceptibility among Africans: a systematic review and meta-analysis. Ophthalmic Genet 2025; 46:110-121. [PMID: 39757584 DOI: 10.1080/13816810.2024.2447501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
PURPOSE This study sought to analyze the effect of allele mutations and gene functions specific to glaucoma susceptibility among Africans. METHODS Potentially relevant studies were retrieved from major bibliographic databases (PubMed, Scopus, and Web of Science). Data were extracted and study-specific estimates were meta-analyzed using various models to obtain pooled results. RESULTS A total of 11 studies were included in the study. The studies included a total of 3,191 cases with glaucoma and 3,013 controls across all variants. There is no association between the E396E variants of the myocilin (MYOC) gene and an increased likelihood of susceptibility to POAG (OR: 0.91 [95% CI 0.42 to 1.97]). The R141L variant of the Lysyl Oxidase Like 1 (LOXL1) gene is associated with an approximately 3-fold increased likelihood of susceptibility to exfoliative syndrome/exfoliative glaucoma (XFS/XFG) (OR: 2.68 [95% CI 0.04 to 198.94]). There is no association between the G153D variant of the LOXL1 gene and an increased likelihood of susceptibility to XFS/XFG (OR: 0.42 [95% CI 0.02 to 7.65]). The rs59892895*C variant of the Amyloid Beta Precursor Protein Binding Family B Member 2 (APBB2) is associated with a 34% increased likelihood of susceptibility to POAG (OR: 1.34 [95% CI 1.13 to 1.58]). CONCLUSION Although progress has been made in understanding the genetic basis of the pathogenesis of glaucoma, several gene mutations related to glaucoma pathogenesis in Africans are yet to be discovered, especially those associated with the pathogenesis of POAG, the most prevalent glaucoma subtype in Africa.
Collapse
Affiliation(s)
- Randy Asiamah
- School of Optometry, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Samuel Kyei
- Biomedical and Clinical Research Centre, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
- Department of Ophthalmic Science, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Paul Owusu
- School of Optometry, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Keren Koomson
- School of Optometry, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Prince Arthur
- School of Optometry, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
2
|
Downs CS, Percelay PJ, Williams B, Goedecke PJ, Wesberry JM, Mandal N. Socioeconomic and Racial Disparities in Primary Open Angle Glaucoma in the United States. J Glaucoma 2025; 34:157-163. [PMID: 39440994 DOI: 10.1097/ijg.0000000000002513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
PRCIS Socioeconomic status is a potentially significant, although difficult to isolate, factor in determining glaucoma severity. PURPOSE To analyze the level of glaucoma severity (mild, moderate, or severe) based on demographic factors, including age, gender, ethnicity, insurance profile, and zip code, and to use this data to extrapolate the effect of socioeconomic status (SES) and race on glaucoma severity at the community level in Memphis, TN. PATIENTS AND METHODS Totally, 2913 patients from a tertiary care center with 3 clinic locations in Memphis, TN who had been given the diagnosis of primary open angle glaucoma (POAG) through use of the ICD-10 codes for mild (H40.1111, H40.1121, H40.1131), moderate (H40.1112, H40.1122, H40.1132), and severe (H40.1113, H40.1123, H40.1133) POAG between January 2016 and July 2021 were included in this study. Diagnoses were made after a complete glaucoma workup consisting of Snellen visual acuity, applanation IOP measurement, gonioscopy, automated Humphreys visual fields (10-2 and 24-2), and optic nerve OCT. Demographic information, including age, gender, ethnicity, insurance profile, and zip code, was also collected with disease severity for each patient. SES was approximated using zip code-level census poverty data and insurance profiles. Statistical analyses were performed, including descriptive, multivariable ordinal logistic modeling, and stepwise multivariable linear modeling. RESULTS Glaucoma severity was shown to increase with poverty rate (OR=1.089, P <0.0071), age (OR=1.030, P <0.0001), male sex (OR=1.374, P <0.0001), and Black race (OR=1.896, P <0.0001). Severity was shown to be decreased in patients with private insurance compared with Medicare (OR=0.895, P <0.093) and those from Shelby County compared with other counties (OR=0.703, P <0.0001). CONCLUSIONS Our findings indicate that worsening glaucoma severity was associated with higher poverty rates in our patient population. However, isolating socioeconomic status (SES) as an independent factor influencing the incidence and severity of glaucoma remains challenging, given the strong correlation between race and SES.
Collapse
Affiliation(s)
| | - Paul J Percelay
- Department of Ophthalmology, University of Missouri, Columbia, MO
| | | | | | | | - Nawajes Mandal
- Department of Ophthalmology, Hamilton Eye Institute
- Departments of Anatomy and Neurobiology and Pharmaceutical Sciences, University of Tennessee Health Science Center
- Memphis VA Medical Center, Memphis, TN
| |
Collapse
|
3
|
Protásio PSPDGV, Almeida MDC, Maestri MK, da Silva Junior GB, Alvim S, Brunoni AR, Vidal KSM, Aquino EML, Lotufo PA, Barreto SM, Schmidt MI, Lopes AA. Exploring Associations between Race/Ethnicity and Glaucoma Prevalence in a Multicenter Brazilian Study: The ELSA-Brasil. Ethn Dis 2025; 35:27-34. [PMID: 40124638 PMCID: PMC11928023 DOI: 10.18865/ethndis-2024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025] Open
Abstract
Purpose Previous research indicates a higher prevalence of glaucoma in Black individuals of African descent. However, the association between race and glaucoma in Brazil's multiracial population remains underexplored. This study examines this association and seeks to identify preventable factors potentially influencing prevalence differences among racial groups in Brazil, should such difference be found. Methods Employing a cross-sectional design, data were analyzed from 10,696 participants in the multicenter Brazilian Longitudinal Study of Adult Health (2008-2010) who self-identified their race as White, Black, mixed race (pardo), Asian, or Indigenous and completed an ophthalmological questionnaire including their self-reported glaucoma status (yes or no). Poisson regression was used to estimate prevalence ratios (PRs) with robust SEs and adjustments for sociodemographic characteristics and the presence of diabetes, hypertension, and obesity. Results The prevalence of glaucoma was 5.8% in Black (86/1483), 3.8% in mixed race (101/2688), 3.8% in indigenous (4/106), 3.5% in Asian (10/288), and 2.4% in White (145/6131) populations. Compared with Whites, Blacks and mixed-race individuals were younger. Age-adjusted prevalence was 175% higher in Black individuals (PR=2.75, 95% confidence interval [CI]: 2.12, 3.56) and 85% higher in mixed-race individuals (PR=1.85, 95% CI: 1.44, 2.36) compared with Whites. The strength of these associations was reduced in models including the comorbidities of obesity, hypertension, and diabetes, which are more prevalent in Black and mixed-race individuals. Conclusions Our results reveal a higher prevalence of self-reported glaucoma in non-White groups, especially among Black and mixed-race individuals. Although causality cannot be conclusively established, our data suggest that the increased prevalence of glaucoma in these groups, compared with their White peers, is partially influenced by preventable health conditions.
Collapse
Affiliation(s)
- Patrícia Sena P. de G. V. Protásio
- Programa de Pós Graduação em Medicina e Saúde (PPGMS), Universidade Federal da Bahia (UFBA), Salvador, Brazil
- Serviço de Oftalmologia, Hospital de Olhos Ruy Cunha (DAY HORC), Salvador, Brazil
- Serviço de Oftalmologia, Instituto de Olhos Freitas (IOF), Salvador, Brazil
- Serviço de Oftalmologia, Serviço Médico Universitário Rubens Brasil (SMURB) da Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | | | - Marcelo Krieger Maestri
- Professor de Oftalmologia, Departamento de Oftalmologia e Otorrinolaringologia, Faculdade de Medicina (FAMED), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Sheila Alvim
- Instituto de Saúde Coletiva, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - André R. Brunoni
- Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP, São Paulo, Brazil
| | - Kallene S. M. Vidal
- Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP, São Paulo, Brazil
| | - Estela M. L. Aquino
- Instituto de Saúde Coletiva, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Paulo A. Lotufo
- Centro de Pesquisa Clínica e Epidemiologica, Hospital Universitario, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Sandhi M. Barreto
- Medical School and Clinical Hospital/EBSERH, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Inês Schmidt
- Programa de Pós-Graduação em Epidemiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Antonio Alberto Lopes
- Programa de Pós Graduação em Medicina e Saúde (PPGMS), Universidade Federal da Bahia (UFBA), Salvador, Brazil
- Núcleo de Epidemiologia Clínica e Medicina Baseada em Evidências, Hospital Universitário Professor Edgard Santos (HUPES), UFBA, Salvador, Brazil
- Departamento de Medicina Interna, Faculdade de Medicina da Bahia, Salvador, Brazil
| |
Collapse
|
4
|
Mabuchi F, Tanaka-Mabuchi N, Sakurada Y, Yoneyama S, Yamagata Z, Kashiwagi K. Genetic Variants Associated With a History of Glaucoma Surgery in Japanese Patients With Primary Open Angle Glaucoma. J Glaucoma 2025; 34:7-12. [PMID: 39470345 DOI: 10.1097/ijg.0000000000002510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/28/2024] [Indexed: 10/30/2024]
Abstract
PRCIS The genetic risk score (GRS) of genetic variants associated with intraocular pressure (IOP) elevation, but not those associated with optic nerve vulnerability, was associated with a history of glaucoma surgery in Japanese patients with primary open angle glaucoma (POAG). OBJECTIVE To investigate genetic variants associated with a history of glaucoma surgery in Japanese patients with POAG. METHODS Japanese patients with POAG (n = 468), including normal tension glaucoma (n = 246) and high tension glaucoma (n = 222), and control subjects (n = 246) were genotyped for 22 genetic variants predisposing to POAG, which can be classified into those associated with IOP elevation (IOP-related genetic variants) and optic nerve vulnerability independent of IOP (optic nerve-related genetic variants). The unweighted and weighted GRSs of 17 IOP-related, 5 optic nerve-related, and all 22 genetic variants were calculated, and the association between the GRS and a history of glaucoma surgery was evaluated. RESULTS There was a significant association (odds ratio 1.13 per unweighted GRS, 95% CI: 1.03 to 1.24, P = 0.0093) between IOP-related unweighted GRS and a history of glaucoma surgery. A significant association (odds ratio 1.09 per 0.1 weighted GRS, 95% CI: 1.04 to 1.14, P = 0.00022) was also found between IOP-related weighted GRS and a history of glaucoma surgery. The IOP-related GRS was positively correlated with the need for glaucoma surgery. The mean of IOP-related unweighted and weighted GRS in patients with POAG with a history of glaucoma surgery were significantly higher ( P = 0.013 and P = 0.00031, respectively) than those in patients with POAG without a history of glaucoma surgery. CONCLUSIONS IOP-related, but not optic nerve-related, genetic variants were associated with a history of glaucoma surgery in Japanese patients with POAG. These results indicate that IOP elevation induced by IOP-related genetic variants rather than optic nerve vulnerability induced by optic nerve-related genetic variants may play an important role in requiring glaucoma surgery.
Collapse
Affiliation(s)
| | | | | | | | - Zentaro Yamagata
- Department of Health Sciences, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | | |
Collapse
|
5
|
Chang-Wolf JM, Kinzy TG, Driessen SJ, Cruz LA, Iyengar SK, Peachey NS, Aung T, Khor CC, Williams SE, Ramsay M, Olawoye O, Ashaye A, Klaver CCW, Hauser MA, Thiadens AAHJ, Cooke Bailey JN, Bonnemaijer PWM. Performance of Polygenic Risk Scores for Primary Open-Angle Glaucoma in Populations of African Descent. JAMA Ophthalmol 2025; 143:7-14. [PMID: 39541127 PMCID: PMC11565374 DOI: 10.1001/jamaophthalmol.2024.4784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/18/2024] [Indexed: 11/16/2024]
Abstract
Importance Primary open-angle glaucoma (POAG) polygenic risk scores (PRSs) continue to be evaluated in primarily European-ancestry populations despite higher prevalence and worse outcomes in African-ancestry populations. Objective To evaluate how established POAG PRSs perform in African-ancestry samples from the Genetics in Glaucoma Patients of African Descent (GIGA), Genetics of Glaucoma in Individuals of African Descent (GGLAD), and Million Veteran Program (MVP) datasets and compare these with European-ancestry samples. Design, Setting, and Participants This was a multicenter, cross-sectional study of POAG cases and controls from Tanzania, South Africa, Nigeria, Ghana, and the US. Included were individuals of African descent from South Africa and Tanzania from the GIGA dataset; individuals of African descent from Ghana, Nigeria, and the US from the GGLAD dataset; and individuals of African or European descent from the US in the MVP dataset. Data were analyzed from January 2022 to July 2023. Exposures Three PRSs derived from large meta-analyses of European and Asian populations, namely Gharahkhani et al (Gharahkhani PRS), Han et al (Han PRS), and Craig et al (Craig PRS). Main Outcomes and Measures Odds ratios (ORs) for POAG risk stratification comparing the highest and lowest quintiles; area under the receiver operating characteristic curve (AUROC), and liability coefficient of determination (R2) for the addition of PRS to a baseline of age, sex, and first 5 principal components. Results A total of 11 673 cases and 66 432 controls were included in this study across 7 ancestral groups. Mean (SD) age of the total participants was 76.9 (8.7) years, with 74 304 males (95.1%). The following were included in each dataset: GIGA (663 cases, 476 controls), GGLAD (1471 cases, 1482 controls), and MVP (9559 cases, 64 474 controls). Increases in ORs were found for the highest POAG risk quintile ranging from an OR of 1.68 (95% CI, 1.17-2.43) in Ghanaians to 7.05 (95% CI, 2.73-19.6) in the South African multiple ancestry group (which derives from at least 5 distinct ancestral groups: Khoisan, Bantus, Europeans, Indians, and Southeast Asians) with the Gharahkhani PRS. The Han PRS showed OR increases for the highest POAG risk quintile ranging from 2.27 (95% CI, 1.49-3.47) in African American individuals in the GGLAD dataset to 7.24 (95% CI, 6.47-8.12) in Europeans. The Craig PRS predicted OR increases in the highest quintile for all groups ranging from 1.51 (95% CI, 1.05-2.18) in Ghanaians to 6.31 (95% CI, 5.67-7.04) in Europeans. However, AUROC and R2 increases above baseline were lower for all African-ancestry compared with European-ancestry groups in the 3 tested PRSs. Conclusions and Relevance In this cross-sectional study, despite some improvements in OR-based risk stratification using the Gharahkhani PRSs, Han PRSs, and Craig PRSs, consistently lower improvements in AUROC and R2 for African-ancestry compared with European-ancestry groups highlight the need for risk prediction models tailored to diverse populations.
Collapse
Affiliation(s)
- Jennifer M Chang-Wolf
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Ophthalmology, Duke University, Durham, North Carolina
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Tyler G Kinzy
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, Ohio
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio
- Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
- Center for Health Disparities, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Sjoerd J Driessen
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Lauren A Cruz
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, Ohio
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Sudha K Iyengar
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, Ohio
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio
| | - Neal S Peachey
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Tin Aung
- Singapore Eye Research Institute, Singapore
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Susan E Williams
- Division of Ophthalmology, Department of Neurosciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Michele Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Olusola Olawoye
- Department of Ophthalmology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeyinka Ashaye
- Department of Ophthalmology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Caroline C W Klaver
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Ophthalmology, Radboud University Medical Centre, Nijmegen, Gelderland, the Netherlands
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Michael A Hauser
- Department of Ophthalmology, Duke University, Durham, North Carolina
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
- Singapore Eye Research Institute, Singapore
| | - Alberta A H J Thiadens
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jessica N Cooke Bailey
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, Ohio
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio
- Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
- Center for Health Disparities, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Pieter W M Bonnemaijer
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- The Rotterdam Eye Hospital, Rotterdam, the Netherlands
| |
Collapse
|
6
|
Akiyama M, Tamiya G, Fujiwara K, Shiga Y, Yokoyama Y, Hashimoto K, Sato M, Sato K, Narita A, Hashimoto S, Ueda E, Furuta Y, Hata J, Miyake M, Ikeda HO, Suda K, Numa S, Mori Y, Morino K, Murakami Y, Shimokawa S, Nakamura S, Yawata N, Fujisawa K, Yamana S, Mori K, Ikeda Y, Miyata K, Mori K, Ogino K, Koyanagi Y, Kamatani Y, Ninomiya T, Sonoda KH, Nakazawa T. Genetic Risk Stratification of Primary Open-Angle Glaucoma in Japanese Individuals. Ophthalmology 2024; 131:1271-1280. [PMID: 39023470 DOI: 10.1016/j.ophtha.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 07/20/2024] Open
Abstract
PURPOSE To assess the impact of genetic risk estimation for primary open-angle glaucoma (POAG) in Japanese individuals. DESIGN Cross-sectional analysis. PARTICIPANTS Genetic risk scores (GRSs) were constructed based on a genome-wide association study (GWAS) of POAG in Japanese people. A total of 3625 Japanese individuals, including 1191 patients and 2434 controls (Japanese Tohoku), were used for the model selection. We also evaluated the discriminative accuracy of constructed GRSs in a dataset comprising 1034 patients and 1147 controls (the Japan Glaucoma Society Omics Group [JGS-OG] and the Genomic Research Committee of the Japanese Ophthalmological Society [GRC-JOS]) and 1900 participants from a population-based study (Hisayama Study). METHODS We evaluated 2 types of GRSs: polygenic risk scores using the pruning and thresholding procedure and a GRS using variants associated with POAG in the GWAS of the International Glaucoma Genetics Consortium (IGGC). We selected the model with the highest areas under the receiver operating characteristic curve (AUC). In the population-based study, we evaluated the correlations between GRS and ocular measurements. MAIN OUTCOME MEASURE Proportion of patients with POAG after stratification according to the GRS. RESULTS We found that a GRS using 98 variants, which showed genome-wide significance in the IGGC, showed the best discriminative accuracy (AUC, 0.65). In the Japanese Tohoku, the proportion of patients with POAG in the top 10% individuals was significantly higher than that in the lowest 10% (odds ratio [OR], 6.15; 95% confidence interval [CI], 4.35-8.71). In the JGS-OG and GRC-JOS, we confirmed similar impact of POAG GRS (AUC, 0.64; OR [top vs. bottom decile], 5.81; 95% CI, 3.79-9.01). In the population-based study, POAG prevalence was significantly higher in the top 20% individuals of the GRS compared with the bottom 20% (9.2% vs. 5.0%). However, the discriminative accuracy was low (AUC, 0.56). The POAG GRS was correlated positively with intraocular pressure (r = 0.08: P = 4.0 × 10-4) and vertical cup-to-disc ratio (r = 0.11; P = 4.0 × 10-6). CONCLUSIONS The GRS showed moderate discriminative accuracy for POAG in the Japanese population. However, risk stratification in the general population showed relatively weak discriminative performance. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Masato Akiyama
- Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Gen Tamiya
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kohta Fujiwara
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukihiro Shiga
- Department of Neuroscience, Université de Montréal, Montréal, Canada; Neuroscience Division, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Canada; Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yu Yokoyama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuki Hashimoto
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masataka Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Akira Narita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Sawako Hashimoto
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Emi Ueda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiko Furuta
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun Hata
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Miyake
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hanako O Ikeda
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Suda
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shogo Numa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Mori
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuya Morino
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sakurako Shimokawa
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shun Nakamura
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuyo Yawata
- Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kimihiko Fujisawa
- Department of Ophthalmology, Japan Community Healthcare Organization Kyushu Hospital, Fukuoka, Japan
| | - Satoshi Yamana
- Department of Ophthalmology, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Kenichiro Mori
- Department of Ophthalmology, Aso Iizuka Hospital, Iizuka, Japan
| | - Yasuhiro Ikeda
- Department of Ophthalmology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | | | - Keisuke Mori
- Department of Ophthalmology, International University of Health and Welfare, Nasu-shiobara, Tochigi, Japan
| | - Ken Ogino
- Department of Ophthalmology, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Yoshito Koyanagi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoichiro Kamatani
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshiharu Ninomiya
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
7
|
Mackey DA, Bigirimana D, Staffieri SE. Integrating Genetics in Glaucoma Screening. J Glaucoma 2024; 33:S49-S53. [PMID: 39149951 PMCID: PMC11332373 DOI: 10.1097/ijg.0000000000002425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/02/2024] [Indexed: 08/17/2024]
Abstract
PRCIS As additional glaucoma genes are identified and classified, polygenic risk scores will be refined, facilitating early diagnosis and treatment. Ensuring genetic research is equitable to prevent glaucoma blindness worldwide is crucial. PURPOSE To review the progress in glaucoma genetics over the past 25 years, including the identification of genes with varying contributions to the disease and the development of polygenic risk scores. METHODS/RESULTS Over the last 2 and a half decades, glaucoma genetics has evolved from identifying genes with Mendelian inheritance patterns, such as myocilin and CYP1B1, to the discovery of hundreds of genes associated with the disease. Polygenic risk scores have been developed, primarily based on research in Northern European populations, and efforts to refine these scores are ongoing. However, there is a question regarding their applicability to other ethnic groups, especially those at higher risk of primary open angle glaucoma, like individuals of African ancestry. Glaucoma is highly heritable and family history can be used for cascade clinical screening programs, but these will not be feasible in all populations. Thus, cascade genetic testing using well-established genes such as myocilin may help improve glaucoma diagnosis. In addition, ongoing investigations seek to identify pathogenic genetic variants within genes like myocilin. CONCLUSIONS The expanding availability of genetic testing for various diseases and early access to genetic risk information necessitates further research to determine when and how to act on specific genetic results. Polygenic risk scores involving multiple genes with subtle effects will require continuous refinement to improve clinical utility. This is crucial for effectively interpreting an individual's risk of developing glaucoma and preventing blindness.
Collapse
Affiliation(s)
| | - Deus Bigirimana
- Glaucoma Investigation and Research Unit, Royal Victorian Eye and Ear Hospital
| | - Sandra Elfride Staffieri
- Centre for Eye Research Australia Ltd., Royal Victorian Eye and Ear Hospital
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia
| |
Collapse
|
8
|
Lo Faro V, Bhattacharya A, Zhou W, Zhou D, Wang Y, Läll K, Kanai M, Lopera-Maya E, Straub P, Pawar P, Tao R, Zhong X, Namba S, Sanna S, Nolte IM, Okada Y, Ingold N, MacGregor S, Snieder H, Surakka I, Shortt J, Gignoux C, Rafaels N, Crooks K, Verma A, Verma SS, Guare L, Rader DJ, Willer C, Martin AR, Brantley MA, Gamazon ER, Jansonius NM, Joos K, Cox NJ, Hirbo J. Novel ancestry-specific primary open-angle glaucoma loci and shared biology with vascular mechanisms and cell proliferation. Cell Rep Med 2024; 5:101430. [PMID: 38382466 PMCID: PMC10897632 DOI: 10.1016/j.xcrm.2024.101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/28/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024]
Abstract
Primary open-angle glaucoma (POAG), a leading cause of irreversible blindness globally, shows disparity in prevalence and manifestations across ancestries. We perform meta-analysis across 15 biobanks (of the Global Biobank Meta-analysis Initiative) (n = 1,487,441: cases = 26,848) and merge with previous multi-ancestry studies, with the combined dataset representing the largest and most diverse POAG study to date (n = 1,478,037: cases = 46,325) and identify 17 novel significant loci, 5 of which were ancestry specific. Gene-enrichment and transcriptome-wide association analyses implicate vascular and cancer genes, a fifth of which are primary ciliary related. We perform an extensive statistical analysis of SIX6 and CDKN2B-AS1 loci in human GTEx data and across large electronic health records showing interaction between SIX6 gene and causal variants in the chr9p21.3 locus, with expression effect on CDKN2A/B. Our results suggest that some POAG risk variants may be ancestry specific, sex specific, or both, and support the contribution of genes involved in programmed cell death in POAG pathogenesis.
Collapse
Affiliation(s)
- Valeria Lo Faro
- Department of Ophthalmology, Amsterdam University Medical Center (AMC), Amsterdam, the Netherlands; Department of Clinical Genetics, Amsterdam University Medical Center (AMC), Amsterdam, the Netherlands; Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Arjun Bhattacharya
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Quantitative and Computational Biosciences, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Wei Zhou
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Dan Zhou
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ying Wang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Kristi Läll
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Masahiro Kanai
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Esteban Lopera-Maya
- University of Groningen, UMCG, Department of Genetics, Groningen, the Netherlands
| | - Peter Straub
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Priyanka Pawar
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ran Tao
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xue Zhong
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shinichi Namba
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Serena Sanna
- University of Groningen, UMCG, Department of Genetics, Groningen, the Netherlands; Institute for Genetics and Biomedical Research (IRGB), National Research Council (CNR), Cagliari, Italy
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Nathan Ingold
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Queensland University of Technology, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ida Surakka
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Shortt
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Chris Gignoux
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nicholas Rafaels
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristy Crooks
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anurag Verma
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Shefali S Verma
- Department of Pathology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lindsay Guare
- Department of Pathology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Rader
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Cristen Willer
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Alicia R Martin
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Milam A Brantley
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric R Gamazon
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nomdo M Jansonius
- Department of Ophthalmology, Amsterdam University Medical Center (AMC), Amsterdam, the Netherlands
| | - Karen Joos
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nancy J Cox
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jibril Hirbo
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
9
|
Verma SS, Gudiseva HV, Chavali VRM, Salowe RJ, Bradford Y, Guare L, Lucas A, Collins DW, Vrathasha V, Nair RM, Rathi S, Zhao B, He J, Lee R, Zenebe-Gete S, Bowman AS, McHugh CP, Zody MC, Pistilli M, Khachatryan N, Daniel E, Murphy W, Henderer J, Kinzy TG, Iyengar SK, Peachey NS, Taylor KD, Guo X, Chen YDI, Zangwill L, Girkin C, Ayyagari R, Liebmann J, Chuka-Okosa CM, Williams SE, Akafo S, Budenz DL, Olawoye OO, Ramsay M, Ashaye A, Akpa OM, Aung T, Wiggs JL, Ross AG, Cui QN, Addis V, Lehman A, Miller-Ellis E, Sankar PS, Williams SM, Ying GS, Cooke Bailey J, Rotter JI, Weinreb R, Khor CC, Hauser MA, Ritchie MD, O'Brien JM. A multi-cohort genome-wide association study in African ancestry individuals reveals risk loci for primary open-angle glaucoma. Cell 2024; 187:464-480.e10. [PMID: 38242088 PMCID: PMC11844349 DOI: 10.1016/j.cell.2023.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/24/2023] [Accepted: 12/04/2023] [Indexed: 01/21/2024]
Abstract
Primary open-angle glaucoma (POAG), the leading cause of irreversible blindness worldwide, disproportionately affects individuals of African ancestry. We conducted a genome-wide association study (GWAS) for POAG in 11,275 individuals of African ancestry (6,003 cases; 5,272 controls). We detected 46 risk loci associated with POAG at genome-wide significance. Replication and post-GWAS analyses, including functionally informed fine-mapping, multiple trait co-localization, and in silico validation, implicated two previously undescribed variants (rs1666698 mapping to DBF4P2; rs34957764 mapping to ROCK1P1) and one previously associated variant (rs11824032 mapping to ARHGEF12) as likely causal. For individuals of African ancestry, a polygenic risk score (PRS) for POAG from our mega-analysis (African ancestry individuals) outperformed a PRS from summary statistics of a much larger GWAS derived from European ancestry individuals. This study quantifies the genetic architecture similarities and differences between African and non-African ancestry populations for this blinding disease.
Collapse
Affiliation(s)
- Shefali S Verma
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Harini V Gudiseva
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Venkata R M Chavali
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca J Salowe
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuki Bradford
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lindsay Guare
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anastasia Lucas
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David W Collins
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vrathasha Vrathasha
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rohini M Nair
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sonika Rathi
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bingxin Zhao
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Jie He
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Roy Lee
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Selam Zenebe-Gete
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anita S Bowman
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Maxwell Pistilli
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Naira Khachatryan
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ebenezer Daniel
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jeffrey Henderer
- Department of Ophthalmology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Tyler G Kinzy
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA; Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Sudha K Iyengar
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA; Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Neal S Peachey
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA; Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kent D Taylor
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Xiuqing Guo
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yii-Der Ida Chen
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Linda Zangwill
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, La Jolla, CA, USA
| | - Christopher Girkin
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Radha Ayyagari
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, La Jolla, CA, USA
| | - Jeffrey Liebmann
- Department of Ophthalmology, Columbia University Medical Center, Columbia University, New York, NY, USA
| | | | - Susan E Williams
- Division of Ophthalmology, Department of Neurosciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stephen Akafo
- Unit of Ophthalmology, Department of Surgery, University of Ghana Medical School, Accra, Ghana
| | - Donald L Budenz
- Department of Ophthalmology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Michele Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adeyinka Ashaye
- Department of Ophthalmology, University of Ibadan, Ibadan, Nigeria
| | - Onoja M Akpa
- Department of Epidemiology and Medical Statistics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Tin Aung
- Singapore Eye Research Institute, Singapore, Singapore
| | - Janey L Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Ahmara G Ross
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qi N Cui
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Victoria Addis
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amanda Lehman
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eydie Miller-Ellis
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Prithvi S Sankar
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Gui-Shuang Ying
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica Cooke Bailey
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA; Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA; Department of Pharmacology and Toxicology, Center for Health Disparities, Brody School of Medicine. East Carolina University, Greenville, NC, 27834, USA
| | - Jerome I Rotter
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Robert Weinreb
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Marylyn D Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joan M O'Brien
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. joan.o'
| |
Collapse
|
10
|
Stuart KV, Khawaja AP. Genomics enabling personalised glaucoma care. Br J Ophthalmol 2023; 108:5-9. [PMID: 37989536 DOI: 10.1136/bjo-2023-324618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 11/23/2023]
Abstract
Glaucoma is a leading cause of visual impairment and a significant public health concern, but despite ongoing advances in our understanding of the disease, several important clinical challenges remain. With the number of affected people projected to increase substantially over coming decades, novel approaches to screening, risk stratification, therapy and glaucoma research are essential to deal with this expanding burden in an efficient and cost-effective manner. Genomics may hold the key to unlocking further biological insights and enabling precision medicine, in which glaucoma care is tailored to the individual patient, based on their unique profile for disease. Here, we provide an overview of how genomics may enable cost-effective targeted population screening and personalised predictions of risk, response to treatment and effective lifestyle advice. Given rapid advances in genetic testing technology and a move towards population-level genotyping, these early results have several important implications that promise to revolutionise the way in which glaucoma is detected and managed in years to come.
Collapse
Affiliation(s)
- Kelsey V Stuart
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
11
|
Yu H, Armstrong N, Pavela G, Kaiser K. Sex and Race Differences in Obesity-Related Genetic Susceptibility and Risk of Cardiometabolic Disease in Older US Adults. JAMA Netw Open 2023; 6:e2347171. [PMID: 38064210 PMCID: PMC10709778 DOI: 10.1001/jamanetworkopen.2023.47171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/29/2023] [Indexed: 12/18/2023] Open
Abstract
Importance The fat mass and obesity-associated gene (FTO) is associated with obesity phenotypes, but the association is inconsistent across populations. Within-population differences may explain some of the variability observed. Objective To investigate sex differences in the association between FTO single-nucleotide variants (SNVs) and obesity traits among self-identified non-Hispanic Black and non-Hispanic White US adults, to examine whether the SNVs were associated with cardiometabolic diseases, and to evaluate whether obesity mediated the association between FTO SNVs and cardiometabolic diseases. Design, Setting, and Participants This cross-sectional study used data from the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study, a US population-based cohort study with available genetic data (assayed in 2018) and phenotypic data at baseline (enrolled 2003-2007). Participants were aged 45 to 98 years at baseline. Data were analyzed from October 2021 to October 2022. Exposures Eleven SNVs in the FTO gene present among both Black and White participants. Main Outcomes and Measures Objectively measured obesity indicators (body mass index and waist-to-height ratio), objectively measured and/or self-reported cardiometabolic diseases (hypertension, stroke history, heart disease, and diabetes), and self-reported social-economic and psychosocial status. Results A total of 10 447 participants (mean [SD] age, 64.4 [9.7] years; 5276 [55.8%] women; 8743 [83.7%] Black and 1704 [16.3%] White) were included. In the White group, 11 FTO SNVs were significantly associated with obesity, hypertension, and diabetes using linear models (eg, body mass index: β = 0.536; 95% CI, 0.197-0.875), but none of the FTO SNVs were associated with obesity traits in the Black group. White males had a higher risk of obesity while White females had a higher risk of hypertension and diabetes. However, 1 FTO SNV (rs1121980) was associated with a direct increase in the risk of heart disease in Black participants not mediated by obesity (c' = 0.145 [SE, 0.0517]; P = .01). Conclusions and Relevance In this cross-sectional study of obesity phenotypes and their association with cardiometabolic diseases, the tested FTO SNVs reflected sex differences in White participants. Different patterns of associations were observed among self-identified Black participants. Therefore, these results could inform future work discovering risk alleles or risk scores unique to Black individuals or further investigating genetic risk in all US residents.
Collapse
Affiliation(s)
- Hairui Yu
- Department of Health Behavior, School of Public Health, University of Alabama at Birmingham
- Department of Family and Community Medicine, School of Medicine, University of Alabama at Birmingham
| | - Nicole Armstrong
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham
| | - Greg Pavela
- Department of Health Behavior, School of Public Health, University of Alabama at Birmingham
| | - Kathryn Kaiser
- Department of Health Behavior, School of Public Health, University of Alabama at Birmingham
| |
Collapse
|
12
|
Grassi L, Salazar Vega D, De Gainza A, Bouris E, Morales E, Caprioli J. Phenotypic expressions of the optic disc in primary open-angle glaucoma. Eye (Lond) 2023; 37:3839-3846. [PMID: 37355755 PMCID: PMC10698030 DOI: 10.1038/s41433-023-02627-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Which phenotypes are we able to recognize in the optic nerve of patients with primary open angle glaucoma? METHODS Retrospective interventional case series. 885 eyes from 885 patients at an outpatient tertiary care centre who met specified criteria for POAG were included. Disc photographs were classified by three glaucoma specialists into the following phenotypes according to their predominant characteristics: (1) concentric rim thinning, (2) focal rim thinning, (3) acquired pit of the optic nerve (APON), (4) tilted, (5) extensive peripapillary atrophy (PPA), and (6) broad rim thinning. Demographic, medical, and ocular data were collected. Kruskal-Wallis was used as a non-parametric test and pairwise comparison was performed by using Wilcoxon rank sum test corrected. RESULTS Phenotypic distribution was as follows: 398(45%) focal thinning, 153(18%) concentric thinning, 153(17%) broad thinning, 109(12%) tilted, 47(5%) extensive PPA and 25(3%) APON. Phenotypic traits of interest included a higher proportion of female patients with the focal thinning phenotype (p = 0.015); myopia (p = 0.000), Asian race (OR: 8.8, p = 0.000), and younger age (p = 0.000) were associated with the tilted phenotype; the concentric thinning patients had thicker RNFL (p = 0.000), higher MD (p = 0.008) and lower PSD (p = 0.043) than broad thinning, despite no difference in disc sizes (p = 0.849). The focal thinning group had a localized VF pattern with high PSD compared to concentric thinning (p = 0.005). CONCLUSION We report six phenotypic classifications of POAG patients with demographic and ocular differences between phenotypes. Future refinement of phenotypes should allow enhanced identification of genetic associations and improved individualization of patient care.
Collapse
Affiliation(s)
- Lourdes Grassi
- Glaucoma Division, Jules Stein Eye Institute, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Diana Salazar Vega
- Department of Ophthalmology, Vision Consultants and Surgeons, Falls Church, VA, USA
| | | | - Ella Bouris
- Glaucoma Division, Jules Stein Eye Institute, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Esteban Morales
- Glaucoma Division, Jules Stein Eye Institute, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Joseph Caprioli
- Glaucoma Division, Jules Stein Eye Institute, University of California Los Angeles (UCLA), Los Angeles, CA, USA.
| |
Collapse
|
13
|
Wang W, Wang H. Understanding the complex genetics and molecular mechanisms underlying glaucoma. Mol Aspects Med 2023; 94:101220. [PMID: 37856931 DOI: 10.1016/j.mam.2023.101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Glaucoma is the leading cause of irreversible blindness worldwide. Currently the only effective treatment for glaucoma is to reduce the intraocular pressure, which can halt the progression of the disease. Highlighting the importance of identifying individuals at risk of developing glaucoma and those with early-stage glaucoma will help patients receive treatment before sight loss. However, some cases of glaucoma do not have raised intraocular pressure. In fact, glaucoma is caused by a variety of different mechanisms and has a wide range of different subtypes. Understanding other risk factors, the underlying mechanisms, and the pathology of glaucoma might lead to novel treatments and treatment of underlying diseases. In this review we present the latest research into glaucoma including the genetics and molecular basis of the disease.
Collapse
Affiliation(s)
- Weiwei Wang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital, Northwest University, Xi'an, 710004, Shaanxi Province, China.
| | - Huaizhou Wang
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| |
Collapse
|
14
|
Gharahkhani P, He W, Han X, Ong JS, Rentería ME, Wiggs JL, Khawaja AP, Trzaskowski M, Mackey DA, Craig JE, Hewitt AW, MacGregor S, Wu Y. WITHDRAWN: Genome-wide risk prediction of primary open-angle glaucoma across multiple ancestries. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.08.23298255. [PMID: 37986775 PMCID: PMC10659472 DOI: 10.1101/2023.11.08.23298255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
This manuscript has been withdrawn by medRxiv following a formal request by the QIMR Berghofer Medical Research Institute Research Integrity Office owing to lack of author consent.
Collapse
|
15
|
Uche NJ, Okoye O, Kizor-Akaraiwe N, Chuka-Okosa C, Uche EO. Determinants of participation in glaucoma genomic research in South East Nigeria: A cross-sectional analytical study. PLoS One 2023; 18:e0289643. [PMID: 37976286 PMCID: PMC10655997 DOI: 10.1371/journal.pone.0289643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/21/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Genomic research advances the understanding of human health and disease. It also drives both the discovery of salient genetic association(s) as well as targeted screening, diagnostic and therapeutic strategies. Human subject participation is crucial for the success of genomic research. METHODS This is a cross sectional analytical study conducted at two tertiary centers in Enugu Southeast Nigeria. Semi structured questionnaires were administered to eligible consenting participants. Data on their demographics, willingness to participate in genomic research and motivation for participation were obtained. Data was analyzed using Stata version 17 and summarized using median, frequencies and interquartile range(IQR). Associations between covariates were evaluated with Chi square test and multivariable logistic regression. RESULTS Among 228 glaucoma subjects who participated in our study,119(52.2%) were female and 109(47.8%) were male. The median age was 64 years(IQR = 50-76). Although 219 (96.0%) participants expressed willingness to participate in a glaucoma genetic study, only 27(11.9%) of them will be willing to participate if there will not be feedback of results to participants (χ2 = 18.59, P<0.001). No participant expressed willingness to submit ocular tissue samples. Majority (96.2%) of subjects will not participate if the intended research required submission of body samples after death. Desire to know more about glaucoma (63%) was the most common reason for participation. In a multivariable logistic model, subjects between 61-90 years (p = 0.004, OR = 7.2) were 7 times more likely to express willingness to participate in glaucoma genetic research after adjusting for other covariates when compared to subjects aged 41-60 years. Other covariates did not influence participants' willingness. CONCLUSION Glaucoma subjects are more likely to be willing to participate in genetic research, if they would receive feedback of results. Willingness to participate in genetic research is significantly associated with age. LIMITATIONS We did not evaluate the salient options for feedback of results to participants in our study.
Collapse
Affiliation(s)
- Nkechinyere J. Uche
- Department of Ophthalmology, University of Nigeria Teaching Hospital, Ituku Ozalla, Enugu, Nigeria
| | - Onochie Okoye
- Department of Ophthalmology, University of Nigeria Teaching Hospital, Ituku Ozalla, Enugu, Nigeria
| | | | - Chimdi Chuka-Okosa
- Department of Ophthalmology, University of Nigeria Teaching Hospital, Ituku Ozalla, Enugu, Nigeria
| | - Enoch O. Uche
- Department of Surgery, University of Nigeria Teaching Hospital, Ituku Ozalla, Enugu, Nigeria
| |
Collapse
|
16
|
Kitayama K, Wilson MR. Glaucoma in Black Individuals: How Far Have We Come and Where Do We Go From Here? Am J Ophthalmol 2023; 259:S0002-9394(23)00426-9. [PMID: 39491123 DOI: 10.1016/j.ajo.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 11/05/2024]
Abstract
PURPOSE To provide updates on the key scientific discoveries made and sociological theories put forth that have allowed for a better understanding of the disproportionate burden of glaucoma among Black individuals, and to provide insights into future directions for this important field of work. DESIGN Perspective with a scoping review of the literature. METHODS Review, synthesis, and critical appraisal of selected literature on the impact of glaucoma in Black Americans. Important studies within and outside of ophthalmology are considered to allow for a greater understanding of the historical, sociopolitical, and encompassing medical contexts surrounding this complex issue. RESULTS A historical overview of key epidemiologic studies highlights the repeated and unequivocal demonstration of increased risk of glaucoma in Black individuals. To begin to understand this multi-layered racial disparity, a historical review of race as a social-legal construct is provided. A careful examination of genetic ancestry is considered as a partial means by which increased glaucoma risk is conferred among Black individuals. The growing body of work examining social determinants as an important driver for racial disparities in glaucoma is also reviewed. Finally, the pitfalls and dangers of race-based medicine are highlighted through illustrative cases before providing insights to future directions. CONCLUSIONS Though our understanding of the disparities in glaucoma in Black individuals has grown over the past decades, gaps persist, particularly due to deficient data driven by a lack of studies in this disproportionately burdened group. Though the use of race as a variable may become increasingly less relevant with the rise of precision medicine, it remains a crucial, though flawed concept that continues to be our best means by which to measure, investigate, and intervene upon these disparities in our efforts to achieve health equity.
Collapse
Affiliation(s)
- Ken Kitayama
- Center for Community Outreach and Policy, UCLA Department of Ophthalmology, Stein & Doheny Eye Institutes, Los Angeles, CA, USA; Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - M Roy Wilson
- School of Medicine, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
17
|
Davuluru SS, Jess AT, Kim JSB, Yoo K, Nguyen V, Xu BY. Identifying, Understanding, and Addressing Disparities in Glaucoma Care in the United States. Transl Vis Sci Technol 2023; 12:18. [PMID: 37889504 PMCID: PMC10617640 DOI: 10.1167/tvst.12.10.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Glaucoma is the leading cause of irreversible blindness worldwide, currently affecting around 80 million people. Glaucoma prevalence is rapidly rising in the United States due to an aging population. Despite recent advances in the diagnosis and treatment of glaucoma, significant disparities persist in disease detection, management, and outcomes among the diverse patient populations of the United States. Research on disparities is critical to identifying, understanding, and addressing societal and healthcare inequalities. Disparities research is especially important and impactful in the context of irreversible diseases such as glaucoma, where earlier detection and intervention are the primary approach to improving patient outcomes. In this article, we first review recent studies identifying disparities in glaucoma care that affect patient populations based on race, age, and gender. We then review studies elucidating and furthering our understanding of modifiable factors that contribute to these inequities, including socioeconomic status (particularly age and education), insurance product, and geographic region. Finally, we present work proposing potential strategies addressing disparities in glaucoma care, including teleophthalmology and artificial intelligence. We also discuss the presence of non-modifiable factors that contribute to differences in glaucoma burden and can confound the detection of glaucoma disparities. Translational Relevance By recognizing underlying causes and proposing potential solutions, healthcare providers, policymakers, and other stakeholders can work collaboratively to reduce the burden of glaucoma and improve visual health and clinical outcomes in vulnerable patient populations.
Collapse
Affiliation(s)
- Shaili S. Davuluru
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alison T. Jess
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Kristy Yoo
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Van Nguyen
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Benjamin Y. Xu
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
18
|
Mohammadzadeh V, Moghimi S, Nishida T, Walker E, Kamalipour A, Micheletti E, Mahmoudinezhad G, Wu JH, Liebmann JM, Girkin CA, Fazio M, Zangwill LM, Weinreb RN. Association of Rates of Ganglion Cell and Inner Plexiform Thinning With Development of Glaucoma in Eyes With Suspected Glaucoma. JAMA Ophthalmol 2023; 141:349-356. [PMID: 36862395 PMCID: PMC9982742 DOI: 10.1001/jamaophthalmol.2023.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/02/2023] [Indexed: 03/03/2023]
Abstract
Importance In eyes with suspected glaucoma, it is clinically relevant to find diagnostic tests for the risk of development of perimetric glaucoma. Objective To investigate the association between rates of ganglion cell/inner plexiform layer (GCIPL) and circumpapillary retinal nerve fiber layer (cpRNFL) thinning and the development of perimetric glaucoma in eyes with suspected glaucoma. Design, Setting, and Participants This observational cohort study used data collected in December 2021 from a tertiary center study and a multicenter study. Participants with suspected glaucoma were followed up for 3.1 years. The study was designed in December 2021 and finalized in August 2022. Exposures Development of perimetric glaucoma was defined as having 3 consecutive results showing abnormal visual fields. Using linear mixed-effect models, rates of GCIPL were compared between eyes with suspected glaucoma that did and did not develop perimetric glaucoma. A joint longitudinal multivariable survival model was used to investigate the performance of rates of GCIPL and cpRNFL thinning in predicting the risk of developing perimetric glaucoma. Main Outcomes and Measures Rates of GCIPL thinning and hazard ratio (HR) of developing perimetric glaucoma. Results Among a total of 462 participants, the mean (SD) age was 63.3 (11.1) years, and 275 patients (60%) were female. Of 658 eyes, 153 eyes (23%) developed perimetric glaucoma. The mean rates of GCIPL thinning were faster in eyes that developed perimetric glaucoma (-1.28 vs -0.66 μm/y for minimum GCIPL thinning; difference, -0.62; 95% CI, -1.07 to -0.16; P = .02). Based on the joint longitudinal survival model, every 1-μm/y faster rate of minimum GCIPL and rate of global cpRNFL thinning were associated with a 2.4 and 1.9 higher risk of developing perimetric glaucoma, respectively (HR, 2.4; 95% CI, 1.8 to 3.2, and HR, 1.99; 95% CI, 1.76 to 2.22, respectively; P < .001). Among the predictive factors, African American race (HR, 1.56; 95% CI, 1.05 to 2.34; P = .02), male sex (HR, 1.47; 95% CI, 1.02 to 2.15; P = .03), 1-dB higher baseline visual field pattern standard deviation (HR, 1.73; 95% CI, 1.56 to 1.91; P < .001), and 1-mm Hg higher mean intraocular pressure during follow-up (HR, 1.11; 95% CI, 1.05 to 1.17; P < .001) were associated with higher risk of developing perimetric glaucoma. Conclusions and Relevance This study found that faster rates of GCIPL and cpRNFL thinning were associated with higher risks of developing perimetric glaucoma. Rates of cpRNFL thinning and specifically GCIPL thinning may be useful measures for monitoring eyes with suspected glaucoma.
Collapse
Affiliation(s)
- Vahid Mohammadzadeh
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla
| | - Sasan Moghimi
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla
| | - Takashi Nishida
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla
| | - Evan Walker
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla
| | - Alireza Kamalipour
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla
| | - Eleonora Micheletti
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla
| | - Golnoush Mahmoudinezhad
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla
| | - Jo-Hsuan Wu
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla
| | - Jeffrey M. Liebmann
- Bernard and Shirlee Brown Glaucoma Research Laboratory, Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Medical Center, New York, New York
| | - Christopher A. Girkin
- Department of Ophthalmology and Vision Sciences, Heersink School of Medicine, The University of Alabama at Birmingham
| | - Massimo Fazio
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla
- Department of Ophthalmology and Vision Sciences, Heersink School of Medicine, The University of Alabama at Birmingham
| | - Linda M. Zangwill
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla
| | - Robert N. Weinreb
- Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla
| |
Collapse
|
19
|
Ma D, Pasquale LR, Girard MJA, Leung CKS, Jia Y, Sarunic MV, Sappington RM, Chan KC. Reverse translation of artificial intelligence in glaucoma: Connecting basic science with clinical applications. FRONTIERS IN OPHTHALMOLOGY 2023; 2:1057896. [PMID: 36866233 PMCID: PMC9976697 DOI: 10.3389/fopht.2022.1057896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 04/16/2023]
Abstract
Artificial intelligence (AI) has been approved for biomedical research in diverse areas from bedside clinical studies to benchtop basic scientific research. For ophthalmic research, in particular glaucoma, AI applications are rapidly growing for potential clinical translation given the vast data available and the introduction of federated learning. Conversely, AI for basic science remains limited despite its useful power in providing mechanistic insight. In this perspective, we discuss recent progress, opportunities, and challenges in the application of AI in glaucoma for scientific discoveries. Specifically, we focus on the research paradigm of reverse translation, in which clinical data are first used for patient-centered hypothesis generation followed by transitioning into basic science studies for hypothesis validation. We elaborate on several distinctive areas of research opportunities for reverse translation of AI in glaucoma including disease risk and progression prediction, pathology characterization, and sub-phenotype identification. We conclude with current challenges and future opportunities for AI research in basic science for glaucoma such as inter-species diversity, AI model generalizability and explainability, as well as AI applications using advanced ocular imaging and genomic data.
Collapse
Affiliation(s)
- Da Ma
- School of Medicine, Wake Forest University, Winston-Salem, NC, United States
- Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Louis R. Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michaël J. A. Girard
- Ophthalmic Engineering & Innovation Laboratory (OEIL), Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Institute for Molecular and Clinical Ophthalmology, Basel, Switzerland
| | | | - Yali Jia
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Marinko V. Sarunic
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Rebecca M. Sappington
- School of Medicine, Wake Forest University, Winston-Salem, NC, United States
- Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Kevin C. Chan
- Departments of Ophthalmology and Radiology, Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
| |
Collapse
|
20
|
Cooke Bailey JN, Funk KL, Cruz LA, Waksmunski AR, Kinzy TG, Wiggs JL, Hauser MA. Diversity in Polygenic Risk of Primary Open-Angle Glaucoma. Genes (Basel) 2022; 14:111. [PMID: 36672852 PMCID: PMC9859496 DOI: 10.3390/genes14010111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022] Open
Abstract
Glaucoma is the leading cause of irreversible blindness worldwide. Primary open-angle glaucoma (POAG), the most common glaucoma subtype, is more prevalent and severe in individuals of African ancestry. Unfortunately, this ancestral group has been historically under-represented among genetic studies of POAG. Moreover, both genetic and polygenic risk scores (GRS, PRS) that are typically based on genetic data from European-descent populations are not transferable to individuals without a majority of European ancestry. Given the aspirations of leveraging genetic information for precision medicine, GRS and PRS demonstrate clinical potential but fall short, in part due to the lack of diversity in these studies. Prioritizing diversity in the discovery of risk variants will improve the performance and utility of GRS and PRS-derived risk estimation for disease stratification, which could bring about earlier POAG intervention and treatment for a disease that often goes undetected until significant damage has occurred.
Collapse
Affiliation(s)
- Jessica N. Cooke Bailey
- Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Kaitlyn L. Funk
- Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Lauren A. Cruz
- Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Andrea R. Waksmunski
- Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Tyler G. Kinzy
- Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Janey L. Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
21
|
Mabuchi F, Mabuchi N, Sakurada Y, Yoneyama S, Kashiwagi K, Yamagata Z, Takamoto M, Aihara M, Iwata T, Hashimoto K, Sato K, Shiga Y, Nakazawa T, Akiyama M, Kawase K, Ozaki M, Araie M. Genetic variants associated with glaucomatous visual field loss in primary open-angle glaucoma. Sci Rep 2022; 12:20744. [PMID: 36456827 PMCID: PMC9715669 DOI: 10.1038/s41598-022-24915-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Primary open-angle glaucoma (POAG) is characterized by a progressive optic neuropathy with visual field loss. To investigate the genetic variants associated with visual field loss in POAG, Japanese POAG patients (n = 426) and control subjects (n = 246) were genotyped for 22 genetic variants predisposing to POAG that can be classified into those associated with intraocular pressure (IOP) elevation (IOP-related genetic variants) and optic nerve vulnerability independent of IOP (optic nerve-related genetic variants). The genetic risk score (GRS) of the 17 IOP-related and five optic nerve-related genetic variants was calculated, and the associations between the GRS and the mean deviation (MD) of automated static perimetry as an indicator of the severity of visual field loss and pattern standard deviation (PSD) as an indicator of the focal disturbance were evaluated. There was a significant association (Beta = - 0.51, P = 0.0012) between the IOP-related GRS and MD. The severity of visual field loss may depend on the magnitude of IOP elevation induced by additive effects of IOP-related genetic variants. A significant association (n = 135, Beta = 0.65, P = 0.0097) was found between the optic nerve-related, but not IOP-related, GRS and PSD. The optic nerve-related (optic nerve vulnerability) and IOP-related (IOP elevation) genetic variants may play an important role in the focal and diffuse visual field loss respectively. To our knowledge, this is the first report to show an association between additive effects of genetic variants predisposing to POAG and glaucomatous visual field loss, including severity and focal/diffuse disturbance of visual field loss, in POAG.
Collapse
Affiliation(s)
- Fumihiko Mabuchi
- grid.267500.60000 0001 0291 3581Department of Ophthalmology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Nakako Mabuchi
- grid.267500.60000 0001 0291 3581Department of Ophthalmology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Yoichi Sakurada
- grid.267500.60000 0001 0291 3581Department of Ophthalmology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Seigo Yoneyama
- grid.267500.60000 0001 0291 3581Department of Ophthalmology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Kenji Kashiwagi
- grid.267500.60000 0001 0291 3581Department of Ophthalmology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Zentaro Yamagata
- grid.267500.60000 0001 0291 3581Department of Health Sciences, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Mitsuko Takamoto
- grid.416704.00000 0000 8733 7415Department of Ophthalmology, Saitama Red Cross Hospital, Chuo-ku, Saitama, Japan
| | - Makoto Aihara
- grid.26999.3d0000 0001 2151 536XDepartment of Ophthalmology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takeshi Iwata
- grid.416239.bDivision of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan
| | - Kazuki Hashimoto
- grid.69566.3a0000 0001 2248 6943Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi Japan
| | - Kota Sato
- grid.69566.3a0000 0001 2248 6943Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Miyagi Japan
| | - Yukihiro Shiga
- grid.69566.3a0000 0001 2248 6943Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi Japan
| | - Toru Nakazawa
- grid.69566.3a0000 0001 2248 6943Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi Japan ,grid.69566.3a0000 0001 2248 6943Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Miyagi Japan ,grid.69566.3a0000 0001 2248 6943Collaborative Program for Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Sendai, Miyagi Japan
| | - Masato Akiyama
- grid.177174.30000 0001 2242 4849Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Kazuhide Kawase
- Yasuma Eye Clinic, Nagoya, Aichi Japan ,grid.27476.300000 0001 0943 978XDepartment of Ophthalmology Protective Care for Sensory Disorders, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | | | - Makoto Araie
- grid.414990.10000 0004 1764 8305Kanto Central Hospital of the Mutual Aid Association of Public School Teachers, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
22
|
Olawoye O, Salami KK, Azeez A, Adebola P, Sarimiye T, Imaledo J, Realini T, Hauser MA, Ashaye A. The social construction of genomics and genetic analysis in ocular diseases in Ibadan, South-western Nigeria. PLoS One 2022; 17:e0278286. [PMID: 36454870 PMCID: PMC9714877 DOI: 10.1371/journal.pone.0278286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Genomics, an emerging field to improve public health practice, has potential benefits to understanding ocular diseases. This study explored the social construction of genomics in ocular diseases in the blind community in Ibadan, Nigeria, through two focus group discussions and twelve in-depth interview sessions conducted among people living with ocular disorders. The data were thematic and content-analysed. Although the participants had limited knowledge about ocular diseases, genomics, and their nexus, they maintained a positive attitude toward its potential benefits. This informed their willingness to participate in genomics testing for ocular diseases. The participants preferred saliva-based sample collection over blood-based, and expressed concern for the procedure and accrued benefits of genomics studies. Thus, public sensitisation about ocular diseases and client-centred genomics testing procedures should be engendered.
Collapse
Affiliation(s)
- Olusola Olawoye
- Department of Ophthalmology, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Ophthalmology, University College Hospital Ibadan, Ibadan, Nigeria
| | - Kabiru K. Salami
- Department of Sociology, Faculty of the Social Sciences, University of Ibadan, Ibadan, Nigeria
| | - Abolaji Azeez
- Department of Sociology, Faculty of the Social Sciences, University of Ibadan, Ibadan, Nigeria
| | - Precious Adebola
- Department of Ophthalmology, University College Hospital Ibadan, Ibadan, Nigeria
| | - Tarela Sarimiye
- Department of Ophthalmology, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Ophthalmology, University College Hospital Ibadan, Ibadan, Nigeria
| | - John Imaledo
- Department of Health Promotion and Education, Faculty of Public Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Tony Realini
- Department of Ophthalmology and Visual Sciences, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Michael A. Hauser
- Department of Medicine, Duke University School of Medicine, Duke University, Durham, North Carolina, United States of America
- Department of Ophthalmology, Duke University School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Adeyinka Ashaye
- Department of Ophthalmology, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Ophthalmology, University College Hospital Ibadan, Ibadan, Nigeria
| |
Collapse
|
23
|
Nealon CL, Halladay CW, Kinzy TG, Simpson P, Canania RL, Anthony SA, Roncone DP, Sawicki Rogers LR, Leber JN, Dougherty JM, Sullivan JM, Wu WC, Greenberg PB, Iyengar SK, Crawford DC, Peachey NS, Bailey JNC. Development and Evaluation of a Rules-based Algorithm for Primary Open-Angle Glaucoma in the VA Million Veteran Program. Ophthalmic Epidemiol 2022; 29:640-648. [PMID: 34822319 PMCID: PMC9583190 DOI: 10.1080/09286586.2021.1992784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/20/2021] [Accepted: 10/09/2021] [Indexed: 10/19/2022]
Abstract
The availability of electronic health record (EHR)-linked biobank data for research presents opportunities to better understand complex ocular diseases. Developing accurate computable phenotypes for ocular diseases for which gold standard diagnosis includes imaging remains inaccessible in most biobank-linked EHRs. The objective of this study was to develop and validate a computable phenotype to identify primary open-angle glaucoma (POAG) through accessing the Department of Veterans Affairs (VA) Computerized Patient Record System (CPRS) and Million Veteran Program (MVP) biobank. Accessing CPRS clinical ophthalmology data from VA Medical Center Eye Clinic (VAMCEC) patients, we developed and iteratively refined POAG case and control algorithms based on clinical, prescription, and structured diagnosis data (ICD-CM codes). Refinement was performed via detailed chart review, initially at a single VAMCEC (n = 200) and validated at two additional VAMCECs (n = 100 each). Positive and negative predictive values (PPV, NPV) were computed as the proportion of CPRS patients correctly classified with POAG or without POAG, respectively, by the algorithms, validated by ophthalmologists and optometrists with access to gold-standard clinical diagnosis data. The final algorithms performed better than previously reported approaches in assuring the accuracy and reproducibility of POAG classification (PPV >83% and NPV >97%) with consistent performance in Black or African American and in White Veterans. Applied to the MVP to identify cases and controls, genetic analysis of a known POAG-associated locus further validated the algorithms. We conclude that ours is a viable approach to use combined EHR-genetic data to study patients with complex diseases that require imaging confirmation.
Collapse
Affiliation(s)
| | | | - Tyler G. Kinzy
- VA Northeast Ohio Healthcare System, Cleveland, OH
- Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH
| | | | | | | | | | | | - Jenna N. Leber
- Ophthalmology Section, VA Western NY Health Care System, Buffalo NY
| | | | - Jack M. Sullivan
- Ophthalmology Section, VA Western NY Health Care System, Buffalo NY
| | - Wen-Chih Wu
- Cardiology Section, Medical Service, Providence VA Medical Center, Providence, RI
| | - Paul B. Greenberg
- Ophthalmology Section, Providence VA Medical Center, Providence, RI
- Division of Ophthalmology, Alpert Medical School, Brown University, Providence, RI
| | - Sudha K. Iyengar
- VA Northeast Ohio Healthcare System, Cleveland, OH
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Dana C. Crawford
- VA Northeast Ohio Healthcare System, Cleveland, OH
- Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Neal S. Peachey
- VA Northeast Ohio Healthcare System, Cleveland, OH
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH
| | - Jessica N. Cooke Bailey
- VA Northeast Ohio Healthcare System, Cleveland, OH
- Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH
| | | |
Collapse
|
24
|
Waksmunski AR, Kinzy TG, Cruz LA, Nealon CL, Halladay CW, Simpson P, Canania RL, Anthony SA, Roncone DP, Sawicki Rogers L, Leber JN, Dougherty JM, Greenberg PB, Sullivan JM, Wu WC, Iyengar SK, Crawford DC, Peachey NS, Cooke Bailey JN. Glaucoma Genetic Risk Scores in the Million Veteran Program. Ophthalmology 2022; 129:1263-1274. [PMID: 35718050 PMCID: PMC9997524 DOI: 10.1016/j.ophtha.2022.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Primary open-angle glaucoma (POAG) is a degenerative eye disease for which early treatment is critical to mitigate visual impairment and irreversible blindness. POAG-associated loci individually confer incremental risk. Genetic risk score(s) (GRS) could enable POAG risk stratification. Despite significantly higher POAG burden among individuals of African ancestry (AFR), GRS are limited in this population. A recent large-scale, multi-ancestry meta-analysis identified 127 POAG-associated loci and calculated cross-ancestry and ancestry-specific effect estimates, including in European ancestry (EUR) and AFR individuals. We assessed the utility of the 127-variant GRS for POAG risk stratification in EUR and AFR Veterans in the Million Veteran Program (MVP). We also explored the association between GRS and documented invasive glaucoma surgery (IGS). DESIGN Cross-sectional study. PARTICIPANTS MVP Veterans with imputed genetic data, including 5830 POAG cases (445 with IGS documented in the electronic health record) and 64 476 controls. METHODS We tested unweighted and weighted GRS of 127 published risk variants in EUR (3382 cases and 58 811 controls) and AFR (2448 cases and 5665 controls) Veterans in the MVP. Weighted GRS were calculated using effect estimates from the most recently published report of cross-ancestry and ancestry-specific meta-analyses. We also evaluated GRS in POAG cases with documented IGS. MAIN OUTCOME MEASURES Performance of 127-variant GRS in EUR and AFR Veterans for POAG risk stratification and association with documented IGS. RESULTS GRS were significantly associated with POAG (P < 5 × 10-5) in both groups; a higher proportion of EUR compared with AFR were consistently categorized in the top GRS decile (21.9%-23.6% and 12.9%-14.5%, respectively). Only GRS weighted by ancestry-specific effect estimates were associated with IGS documentation in AFR cases; all GRS types were associated with IGS in EUR cases. CONCLUSIONS Varied performance of the GRS for POAG risk stratification and documented IGS association in EUR and AFR Veterans highlights (1) the complex risk architecture of POAG, (2) the importance of diverse representation in genomics studies that inform GRS construction and evaluation, and (3) the necessity of expanding diverse POAG-related genomic data so that GRS can equitably aid in screening individuals at high risk of POAG and who may require more aggressive treatment.
Collapse
Affiliation(s)
- Andrea R Waksmunski
- Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Tyler G Kinzy
- Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio; Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio
| | - Lauren A Cruz
- Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Cari L Nealon
- Eye Clinic, VA Northeast Ohio Healthcare System, Cleveland, Ohio
| | - Christopher W Halladay
- Center of Innovation in Long Term Services and Supports, Providence VA Medical Center, Providence, Rhode Island
| | - Piana Simpson
- Eye Clinic, VA Northeast Ohio Healthcare System, Cleveland, Ohio
| | | | - Scott A Anthony
- Eye Clinic, VA Northeast Ohio Healthcare System, Cleveland, Ohio
| | - David P Roncone
- Eye Clinic, VA Northeast Ohio Healthcare System, Cleveland, Ohio
| | - Lea Sawicki Rogers
- Ophthalmology Section, VA Western NY Healthcare System, Buffalo, New York
| | - Jenna N Leber
- Ophthalmology Section, VA Western NY Healthcare System, Buffalo, New York
| | | | - Paul B Greenberg
- Ophthalmology Section, Providence VA Medical Center, Providence, Rhode Island; Division of Ophthalmology, Alpert Medical School, Brown University, Providence, Rhode Island
| | - Jack M Sullivan
- Ophthalmology Section, VA Western NY Healthcare System, Buffalo, New York; Research Service, VA Western NY Healthcare System, Buffalo, New York
| | - Wen-Chih Wu
- Cardiology Section, Medical Service, Providence VA Medical Center, Providence, Rhode Island
| | - Sudha K Iyengar
- Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio; Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio
| | - Dana C Crawford
- Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio; Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio
| | - Neal S Peachey
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio; Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Jessica N Cooke Bailey
- Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio; Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio.
| |
Collapse
|
25
|
Simcoe MJ, Shah A, Fan B, Choquet H, Weisschuh N, Waseem NH, Jiang C, Melles RB, Ritch R, Mahroo OA, Wissinger B, Jorgenson E, Wiggs JL, Garway-Heath DF, Hysi PG, Hammond CJ. Genome-Wide Association Study Identifies Two Common Loci Associated with Pigment Dispersion Syndrome/Pigmentary Glaucoma and Implicates Myopia in its Development. Ophthalmology 2022; 129:626-636. [PMID: 35031440 DOI: 10.1016/j.ophtha.2022.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 11/27/2022] Open
Abstract
PURPOSE To identify genetic variants associated with pigment dispersion syndrome (PDS) and pigmentary glaucoma (PG) in unrelated patients and to further understand the genetic and potentially causal relationships between PDS and associated risk factors. DESIGN A 2-stage genome-wide association meta-analysis with replication and subsequent in silico analyses including Mendelian randomization. PARTICIPANTS A total of 574 cases with PG or PDS and 52 627 controls of European descent. METHODS Genome-wide association analyses were performed in 4 cohorts and meta-analyzed in 3 stages: (1) a discovery meta-analysis was performed in 3 cohorts, (2) replication was performed in the fourth cohort, and (3) all 4 cohorts were meta-analyzed to increase statistical power. Two-sample Mendelian randomization was used to determine whether refractive error and intraocular pressure exert causal effects over PDS. MAIN OUTCOME MEASURES The association of genetic variants with PDS and whether myopia exerts causal effects over PDS. RESULTS Significant association was present at 2 novel loci for PDS/PG. These loci and follow-up analyses implicate the genes gamma secretase activator protein (GSAP) (lead single nucleotide polymorphism [SNP]: rs9641220, P = 6.0×10-10) and glutamate metabotropic receptor 5 (GRM5)/TYR (lead SNP: rs661177, P = 3.9×10-9) as important factors in disease risk. Mendelian randomization showed significant evidence that negative refractive error (myopia) exerts a direct causal effect over PDS (P = 8.86×10-7). CONCLUSIONS Common SNPs relating to the GSAP and GRM5/TYR genes are associated risk factors for the development of PDS and PG. Although myopia is a known risk factor, this study uses genetic data to demonstrate that myopia is, in part, a cause of PDS and PG.
Collapse
Affiliation(s)
- Mark J Simcoe
- Department of Ophthalmology, Kings College London, London, United Kingdom; Department of Twins Research and Genetic Epidemiology, Kings College London, London, United Kingdom; Institute of Ophthalmology, University College London, London, United Kingdom
| | - Ameet Shah
- Department of Ophthalmology, Royal Free Hospital NHS Foundation Trust, Pond Street, London, United Kingdom
| | - Baojian Fan
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Nicole Weisschuh
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Naushin H Waseem
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Chen Jiang
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Ronald B Melles
- Kaiser Permanente Northern California, Department of Ophthalmology, Redwood City, California
| | - Robert Ritch
- Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
| | - Omar A Mahroo
- Department of Ophthalmology, Kings College London, London, United Kingdom; Department of Twins Research and Genetic Epidemiology, Kings College London, London, United Kingdom; Institute of Ophthalmology, University College London, London, United Kingdom
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Janey L Wiggs
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | - David F Garway-Heath
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Pirro G Hysi
- Department of Ophthalmology, Kings College London, London, United Kingdom; Department of Twins Research and Genetic Epidemiology, Kings College London, London, United Kingdom
| | - Christopher J Hammond
- Department of Ophthalmology, Kings College London, London, United Kingdom; Department of Twins Research and Genetic Epidemiology, Kings College London, London, United Kingdom.
| |
Collapse
|
26
|
Fu Q, Liu H, Zhong YL. The Predictive Values of Changes in Local and Remote Brain Functional Connectivity in Primary Angle-Closure Glaucoma Patients According to Support Vector Machine Analysis. Front Hum Neurosci 2022; 16:910669. [PMID: 35664342 PMCID: PMC9160336 DOI: 10.3389/fnhum.2022.910669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/26/2022] [Indexed: 12/30/2022] Open
Abstract
Purpose The primary angle-closure glaucoma (PACG) is an irreversible blinding eye disease in the world. Previous neuroimaging studies demonstrated that PACG patients were associated with cerebral changes. However, the effect of optic atrophy on local and remote brain functional connectivity in PACG patients remains unknown. Materials and Methods In total, 23 patients with PACG and 23 well-matched Health Controls (HCs) were enrolled in our study and underwent resting-state functional magnetic resonance imaging (rs-fMRI) scanning. The regional homogeneity (ReHo) method and functional connectivity (FC) method were used to evaluate the local and remote brain functional connectivity. Moreover, support vector machine (SVM) method was applied to constructing PACG classification model. Results Compared with the HC, PACG patients showed increased ReHo values in right cerebellum (CER)_8, left CER_4-5, and right CER_8. In contrast, PACG patients showed decreased ReHo values in the bilateral lingual gyrus (LING)/calcarine (CAL)/superior occipital gyrus (SOG) and right postcentral gyrus (PostCG). The ReHo value exhibited an accuracy of 91.30% and area under curve (AUC) of 0.95 for distinguishing the PACG patients from HC. Conclusion Our study demonstrated that the PACG patients showed abnormal ReHo value in the cerebellum, visual cortex, and supplementary motor area, which might be reflect the neurological mechanisms underlying vision loss and eye pain in PACG patients. Moreover, the ReHo values can be used as a useful biomarker for distinguishing the PACG patients from HCs.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Emergency, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Hui Liu
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yu Lin Zhong
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- *Correspondence: Yu Lin Zhong,
| |
Collapse
|
27
|
Wang Z, Wiggs JL, Aung T, Khawaja AP, Khor CC. The genetic basis for adult onset glaucoma: Recent advances and future directions. Prog Retin Eye Res 2022; 90:101066. [PMID: 35589495 DOI: 10.1016/j.preteyeres.2022.101066] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 11/26/2022]
Abstract
Glaucoma, a diverse group of eye disorders that results in the degeneration of retinal ganglion cells, is the world's leading cause of irreversible blindness. Apart from age and ancestry, the major risk factor for glaucoma is increased intraocular pressure (IOP). In primary open-angle glaucoma (POAG), the anterior chamber angle is open but there is resistance to aqueous outflow. In primary angle-closure glaucoma (PACG), crowding of the anterior chamber angle due to anatomical alterations impede aqueous drainage through the angle. In exfoliation syndrome and exfoliation glaucoma, deposition of white flaky material throughout the anterior chamber directly interfere with aqueous outflow. Observational studies have established that there is a strong hereditable component for glaucoma onset and progression. Indeed, a succession of genome wide association studies (GWAS) that were centered upon single nucleotide polymorphisms (SNP) have yielded more than a hundred genetic markers associated with glaucoma risk. However, a shortcoming of GWAS studies is the difficulty in identifying the actual effector genes responsible for disease pathogenesis. Building on the foundation laid by GWAS studies, research groups have recently begun to perform whole exome-sequencing to evaluate the contribution of protein-changing, coding sequence genetic variants to glaucoma risk. The adoption of this technology in both large population-based studies as well as family studies are revealing the presence of novel, protein-changing genetic variants that could enrich our understanding of the pathogenesis of glaucoma. This review will cover recent advances in the genetics of primary open-angle glaucoma, primary angle-closure glaucoma and exfoliation glaucoma, which collectively make up the vast majority of all glaucoma cases in the world today. We will discuss how recent advances in research methodology have uncovered new risk genes, and how follow up biological investigations could be undertaken in order to define how the risk encoded by a genetic sequence variant comes into play in patients. We will also hypothesise how data arising from characterising these genetic variants could be utilized to predict glaucoma risk and the manner in which new therapeutic strategies might be informed.
Collapse
Affiliation(s)
- Zhenxun Wang
- Duke-NUS Medical School, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.
| | - Janey L Wiggs
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tin Aung
- Duke-NUS Medical School, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Chiea Chuen Khor
- Duke-NUS Medical School, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| |
Collapse
|
28
|
Aboobakar IF, Wiggs JL. The genetics of glaucoma: Disease associations, personalised risk assessment and therapeutic opportunities-A review. Clin Exp Ophthalmol 2022; 50:143-162. [PMID: 35037362 DOI: 10.1111/ceo.14035] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/23/2022]
Abstract
Glaucoma refers to a heterogenous group of disorders characterised by progressive loss of retinal ganglion cells and associated visual field loss. Both early-onset and adult-onset forms of the disease have a strong genetic component. Here, we summarise the known genetic associations for various forms of glaucoma and the possible functional roles for these genes in disease pathogenesis. We also discuss efforts to translate genetic knowledge into clinical practice, including gene-based tests for disease diagnosis and risk-stratification as well as gene-based therapies.
Collapse
Affiliation(s)
- Inas F Aboobakar
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Janey L Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Shahian DM, Badhwar V, O'Brien SM, Habib RH, Han J, McDonald DE, Antman MS, Higgins RSD, Preventza O, Estrera AL, Calhoon JH, Grondin SC, Cooke DT. Social Risk Factors in Society of Thoracic Surgeons Risk Models Part 1: Concepts, Indicator Variables, and Controversies. Ann Thorac Surg 2022; 113:1703-1717. [PMID: 34998732 DOI: 10.1016/j.athoracsur.2021.11.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/01/2022]
Affiliation(s)
- David M Shahian
- Division of Cardiac Surgery, Department of Surgery, and Center for Quality and Safety, Massachusetts General Hospital and Harvard Medical School, Boston, MA.
| | - Vinay Badhwar
- Department of Cardiovascular and Thoracic Surgery, West Virginia University, Morgantown WV
| | | | | | - Jane Han
- Society of Thoracic Surgeons, Chicago, IL
| | | | | | - Robert S D Higgins
- Johns Hopkins University School of Medicine and Johns Hopkins Hospital, Baltimore, MD
| | - Ourania Preventza
- Baylor College of Medicine, Texas Heart Institute, Baylor St. Luke's Medical Center, Houston, TX
| | - Anthony L Estrera
- McGovern Medical School at UTHealth; Memorial Hermann Heart and Vascular Institute; Houston, TX
| | - John H Calhoon
- Department of Cardiothoracic Surgery, University of Texas Health Science Center at San Antonio
| | - Sean C Grondin
- Cumming School of Medicine, University of Calgary, and Foothills Medical Centre, Calgary, Alberta, Canada
| | - David T Cooke
- Division of General Thoracic Surgery, UC Davis Health, Sacramento, CA
| |
Collapse
|
30
|
Torabi R, Harris A, Siesky B, Zukerman R, Oddone F, Mathew S, Januleviciene I, Vercellin ACV. Prevalence Rates and Risk Factors for Primary Open Angle Glaucoma in the Middle East. J Ophthalmic Vis Res 2021; 16:644-656. [PMID: 34840687 PMCID: PMC8593541 DOI: 10.18502/jovr.v16i4.9755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/09/2021] [Indexed: 12/16/2022] Open
Abstract
Glaucoma is a multifactorial disease and a leading cause of irreversible blindness worldwide. Current data has demonstrated the approximate distribution of primary open-angle glaucoma (POAG) in patients of European, African, Hispanic, and Eastern Asian descent. However, a significant gap in the literature exists regarding the prevalence of POAG in Middle Eastern (ME) populations. Current studies estimate ME POAG prevalence based on a European model. Herein we screened 65 total publications on ME prevalence of POAG and specific risk factors using keywords: "glaucoma", "prevalence", "incidence", "risk factor", "Middle East", "Mideast", "Persian", "Far East", as well as searching by individual ME countries through PubMed, Embase, Ovid, Scopus, and Trip searches with additional reference list searches from relevant articles published up to and including March 1, 2021. Fifty qualifying records were included after 15 studies identified with low statistical power, confounding co-morbid ophthalmic diseases, and funding bias were excluded. Studies of ME glaucoma risk factors that identify chromosomes, familial trend, age/gender, socioeconomic status, lifestyle, intraocular pressure, vascular influences, optic disc hemorrhage, cup-to-disc ratio, blood pressure, obstructive sleep apnea, and diabetes mellitus were included in this systematic review. We conclude that the prevalence of POAG in the ME is likely higher than the prevalence rate that European models suggest, with ME specific risk factors likely playing a role. However, these findings are severely limited by the paucity of population-level data in the ME. Well-designed, longitudinal population-based studies with rigorous inclusion and exclusion criteria are ultimately needed to accurately assess the epidemiology and specific mechanistic risk factors of glaucoma in ME populations.
Collapse
Affiliation(s)
- Rana Torabi
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana, University School of Medicine, Indianapolis, IN, USA
| | - Alon Harris
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brent Siesky
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ryan Zukerman
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Sunu Mathew
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana, University School of Medicine, Indianapolis, IN, USA
| | - Ingrida Januleviciene
- Eye Clinic of Medical Academy of Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | |
Collapse
|
31
|
Kondkar AA, Azad TA, Alobaidan AS, Sultan T, Osman EA, Almobarak FA, Lobo GP, Al-Obeidan SA. Lack of Association Between Polymorphisms in TXNRD2 and LMX1B and Primary Open-Angle Glaucoma in a Saudi Cohort. Front Genet 2021; 12:690780. [PMID: 34408771 PMCID: PMC8365832 DOI: 10.3389/fgene.2021.690780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Recent studies have demonstrated an association of single nucleotide polymorphisms (SNPs) rs35934224 in TXNRD2 and rs6478746 near LMX1B genes in primary open-angle glaucoma (POAG) among Europeans. We performed a retrospective, case-control study to investigate the association between the rs35934224 (TXNRD2) and rs6478746 (LMX1B) and POAG in a middle-eastern population from Saudi Arabia. Methods: DNA from 399 participants consisting of 150 POAG cases (83 males and 67 females) and 249 controls (135 males and 114 females) were genotyped using TaqMan® real-time PCR. Statistical tests were performed to evaluate genetic association with POAG and related clinical indices. Results: The minor allele frequency (MAF) of rs35934224[T] was 0.19 and 0.20 in POAG and controls, respectively. The difference was non-significant (odds ratio [OR] = 1.08, 95% confidence interval [CI] = 0.75-1.55, p = 0.663). Likewise, rs6478746[G] MAF was 0.12 in both cases and controls with no statistical significance (OR = 1.02, 95% CI = 0.67-1.56, p = 0.910). Genotype analysis showed no association with POAG for both the SNPs in combined and gender-stratified groups. Regression analysis showed no significant effect of risk factors such as age, sex, rs35934224, and rs6478746 genotypes on POAG outcome. Furthermore, both the SNPs showed no significant genotype effect on clinical indices such as intraocular pressure (IOP) and cup/disc ratio in POAG patients. Conclusions: Rs35934224 in TXNRD2 and rs6478746 near LMX1B genes are not associated with POAG or related clinical indices such as IOP and cup/disc ratio in a Saudi cohort. Since the study is limited by sample size further investigations are needed to confirm these results in a larger cohort.
Collapse
Affiliation(s)
- Altaf A Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Taif A Azad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Tahira Sultan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Essam A Osman
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Faisal A Almobarak
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Glenn P Lobo
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, United States
| | - Saleh A Al-Obeidan
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
32
|
Hamid S, Desai P, Hysi P, Burr JM, Khawaja AP. Population screening for glaucoma in UK: current recommendations and future directions. Eye (Lond) 2021; 36:504-509. [PMID: 34345031 PMCID: PMC8873198 DOI: 10.1038/s41433-021-01687-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/24/2022] Open
Abstract
Effective population screening for glaucoma would enable earlier diagnosis and prevention of irreversible vision loss. The UK National Screening Committee (NSC) recently published a review that examined the viability, effectiveness and appropriateness of a population-based screening programme for primary open-angle glaucoma (POAG). In our article, we summarise the results of the review and discuss some future directions that may enable effective population screening for glaucoma in the future. Two key questions were addressed by the UK NSC review; is there a valid, accurate screening test for POAG, and does evidence exist that screening reduces morbidity from POAG compared with standard care. Six new studies were identified since the previous 2015 review. The review concluded that screening for glaucoma in adults is not recommended because there is no clear evidence for a sufficiently accurate screening test or for better outcomes with screening compared to current care. The next UK NSC review is due to be conducted in 2023. One challenge for POAG screening is that the relatively low disease prevalence results in too many false-positive referrals, even with an accurate test. In the future, targeted screening of a population subset with a higher prevalence of glaucoma may be effective. Recent developments in POAG polygenic risk prediction and deep learning image analysis offer potential avenues to identifying glaucoma-enriched sub-populations. Until such time, opportunistic case finding through General Ophthalmic Services remains the primary route for identification of glaucoma in the UK and greater public awareness of the service would be of benefit.
Collapse
Affiliation(s)
- Sana Hamid
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, UK
| | - Parul Desai
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, UK
| | - Pirro Hysi
- Section of Ophthalmology, School of Life Course Sciences, King's College London, London, UK.,Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Jennifer M Burr
- School of Medicine, University of St Andrews, St Andrews, Scotland, UK
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, UK.
| |
Collapse
|
33
|
Olawoye O, Chuka-Okosa C, Akpa O, Realini T, Hauser M, Ashaye A. Eyes of Africa: The Genetics of Blindness: Study Design and Methodology. BMC Ophthalmol 2021; 21:272. [PMID: 34243759 PMCID: PMC8267233 DOI: 10.1186/s12886-021-02029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This report describes the design and methodology of the "Eyes of Africa: The Genetics of Blindness," a collaborative study funded through the Human Heredity and Health in Africa (H3Africa) program of the National Institute of Health. METHODS This is a case control study that is collecting a large well phenotyped data set among glaucoma patients and controls for a genome wide association study. (GWAS). Multiplex families segregating Mendelian forms of early-onset glaucoma will also be collected for exome sequencing. DISCUSSION A total of 4500 cases/controls have been recruited into the study at the end of the 3rd funded year of the study. All these participants have been appropriately phenotyped and blood samples have been received from these participants. Recent GWAS of POAG in African individuals demonstrated genome-wide significant association with the APBB2 locus which is an association that is unique to individuals of African ancestry. This study will add to the existing knowledge and understanding of POAG in the African population.
Collapse
Affiliation(s)
- Olusola Olawoye
- Department of Ophthalmology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Chimdi Chuka-Okosa
- Department of Ophthalmology, College of Medicine, University of Nigeria, Enugu Campus, Enugu, Nigeria
| | - Onoja Akpa
- Department of Epidemiology and Medical Statistics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Tony Realini
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, USA
| | - Michael Hauser
- Department of Medicine, Duke University, NC Durham, USA
- Department of Ophthalmology, Duke University, NC Durham, USA
| | - Adeyinka Ashaye
- Department of Ophthalmology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
34
|
A Comparison of Genomic Advances in Exfoliation Syndrome and Primary Open-Angle Glaucoma. CURRENT OPHTHALMOLOGY REPORTS 2021. [DOI: 10.1007/s40135-021-00270-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Qassim A, Souzeau E, Hollitt G, Hassall MM, Siggs OM, Craig JE. Risk Stratification and Clinical Utility of Polygenic Risk Scores in Ophthalmology. Transl Vis Sci Technol 2021; 10:14. [PMID: 34111261 PMCID: PMC8114010 DOI: 10.1167/tvst.10.6.14] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/19/2021] [Indexed: 11/24/2022] Open
Abstract
Translational Relevance Common genetic variants can be used to effectively stratify the risk of disease development and progression and may be used to guide screening, triaging, monitoring, or treatment thresholds.
Collapse
Affiliation(s)
- Ayub Qassim
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, Australia
| | - Emmanuelle Souzeau
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, Australia
| | - Georgie Hollitt
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, Australia
| | - Mark M. Hassall
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, Australia
| | - Owen M. Siggs
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, Australia
| | - Jamie E. Craig
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, Australia
| |
Collapse
|
36
|
African genetic diversity and adaptation inform a precision medicine agenda. Nat Rev Genet 2021; 22:284-306. [PMID: 33432191 DOI: 10.1038/s41576-020-00306-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 01/29/2023]
Abstract
The deep evolutionary history of African populations, since the emergence of modern humans more than 300,000 years ago, has resulted in high genetic diversity and considerable population structure. Selected genetic variants have increased in frequency due to environmental adaptation, but recent exposures to novel pathogens and changes in lifestyle render some of them with properties leading to present health liabilities. The unique discoverability potential from African genomic studies promises invaluable contributions to understanding the genomic and molecular basis of health and disease. Globally, African populations are understudied, and precision medicine approaches are largely based on data from European and Asian-ancestry populations, which limits the transferability of findings to the continent of Africa. Africa needs innovative precision medicine solutions based on African data that use knowledge and implementation strategies aligned to its climatic, cultural, economic and genomic diversity.
Collapse
|
37
|
Han X, Hewitt AW, MacGregor S. Predicting the Future of Genetic Risk Profiling of Glaucoma: A Narrative Review. JAMA Ophthalmol 2021; 139:224-231. [PMID: 33331888 DOI: 10.1001/jamaophthalmol.2020.5404] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Importance Glaucoma is the world's leading cause of irreversible blindness. Primary open-angle glaucoma (POAG) is typically asymptomatic early in the disease process, and unfortunately, many are diagnosed too late to prevent vision loss. Observations Genome-wide association studies, which evaluate the association between genetic variants and phenotype across the genome, have mapped many genes for POAG. As well as uncovering new biology, genetic information can be combined into a polygenic risk score (PRS), which aggregates an individual's disease risk over many genetic variants. In this nonsystematic review, performed from June 21, 2019, to October 1, 2020, we address a series of questions to explain the challenges and opportunities in translating genetic discoveries in POAG. We summarize what is known about POAG genetics and how its endophenotypes, such as intraocular pressure or cup-disc ratio, can help with prediction. We discuss the sample sizes available and how increases in the future may have an effect on the utility of prediction approaches. We explore particular scenarios, such as the use of PRS in risk stratification, and applications for individuals who are particularly high risk for POAG as a result of them carrying both a high penetrance mutation and an unfavorable PRS. Finally, we discuss the issue of equity in applying these tests and the prospects for prediction for people from various ancestry groups. The cost-effectiveness evaluation of glaucoma PRS in direct-to-consumer genetic testing and across different ancestry groups is warranted in future research. Conclusions and Relevance Advances in glaucoma genetics have opened the door for risk stratification based on genetic risk predictions. The PRS approach has shown good promise in predicting who will be at highest risk of POAG, which could improve outcomes if these predictions can be acted on to result in improved clinical outcomes.
Collapse
Affiliation(s)
- Xikun Han
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Medicine, University of Queensland, St Lucia, Brisbane, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia.,Centre for Eye Research Australia, University of Melbourne, Australia
| | | |
Collapse
|
38
|
Shin HT, Yoon BW, Seo JH. Analysis of risk allele frequencies of single nucleotide polymorphisms related to open-angle glaucoma in different ethnic groups. BMC Med Genomics 2021; 14:80. [PMID: 33726755 PMCID: PMC7962394 DOI: 10.1186/s12920-021-00921-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/25/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The prevalence of open-angle glaucoma (OAG) varies from 0.5% to 7.0% among populations of diverse ancestry, suggesting the existence of genetic differences. The purposes of this study were to provide insights into genetic causes of OAG, which can result in prevalence and phenotype differences among populations of diverse ancestry for OAG, and to compare allele frequencies of intraocular pressure (IOP) elevation-related SNPs in OAG among Koreans and other ethnic groups. METHODS We collected the data on a total of 135 OAG-associated single nucleotide polymorphisms (SNPs) from a genome-wide association studies (GWAS) catalog. The population-level allele frequencies of these SNPs were derived based on the 1000 Genomes Project and Korean Reference Genome Database. We used Fisher's exact test to assess whether the effect allele at a given SNP was significantly enriched or depleted. RESULTS European, American, and South Asian populations showed similar heatmap patterns, while African, East Asian, and Korean populations had distinct patterns. Korean population presented different profiles compared to other groups; rs1579050 (FMNL2 gene), rs2024211 (CAV2;CAV1), and rs8141433 (GNB1L;TXNRD2 gene), which are known to be associated with IOP variation, were enriched in Americans, Europeans, and Africans, and depleted in Koreans. These can be the candidates for the causative genes of differences in the prevalence of IOP variation in OAG according to ethnic groups. CONCLUSIONS Differences in allele frequencies associated with IOP related SNPs between Koreans and other ethnicities were observed, which may explain the high prevalence of OAG with normal IOP predominantly in Koreans and East Asians.
Collapse
Affiliation(s)
- Hyun-Tae Shin
- Veterans Health Service Medical Center, Veterans Medical Research Institute, Jinhwangdo-ro 61-gil 53,Gangdong-gu, Seoul, 05368, Korea
- Department of Dermatology, Inha University School of Medicine, Inha-ro 100, Michuhol-gu, Incheon, 22212, Korea
| | - Byung Woo Yoon
- Division of Oncology, Department of Internal Medicine, Inje University Seoul Paik Hospital, Mareunnae-ro 9,Jung-gu, Seoul, 04551, Korea
| | - Je Hyun Seo
- Veterans Health Service Medical Center, Veterans Medical Research Institute, Jinhwangdo-ro 61-gil 53,Gangdong-gu, Seoul, 05368, Korea.
| |
Collapse
|
39
|
Tolman NG, Balasubramanian R, Macalinao DG, Kearney AL, MacNicoll KH, Montgomery CL, de Vries WN, Jackson IJ, Cross SH, Kizhatil K, Nair KS, John SWM. Genetic background modifies vulnerability to glaucoma-related phenotypes in Lmx1b mutant mice. Dis Model Mech 2021; 14:dmm.046953. [PMID: 33462143 PMCID: PMC7903917 DOI: 10.1242/dmm.046953] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022] Open
Abstract
Variants in the LIM homeobox transcription factor 1-beta (LMX1B) gene predispose individuals to elevated intraocular pressure (IOP), a key risk factor for glaucoma. However, the effect of LMX1B mutations varies widely between individuals. To better understand the mechanisms underlying LMX1B-related phenotypes and individual differences, we backcrossed the Lmx1bV265D (also known as Lmx1bIcst ) allele onto the C57BL/6J (B6), 129/Sj (129), C3A/BLiA-Pde6b+ /J (C3H) and DBA/2J-Gpnmb+ (D2-G) mouse strain backgrounds. Strain background had a significant effect on the onset and severity of ocular phenotypes in Lmx1bV265D/+ mutant mice. Mice of the B6 background were the most susceptible to developing abnormal IOP distribution, severe anterior segment developmental anomalies (including malformed eccentric pupils, iridocorneal strands and corneal abnormalities) and glaucomatous nerve damage. By contrast, Lmx1bV265D mice of the 129 background were the most resistant to developing anterior segment abnormalities, had less severe IOP elevation than B6 mutants at young ages and showed no detectable nerve damage. To identify genetic modifiers of susceptibility to Lmx1bV265D -induced glaucoma-associated phenotypes, we performed a mapping cross between mice of the B6 (susceptible) and 129 (resistant) backgrounds. We identified a modifier locus on Chromosome 18, with the 129 allele(s) substantially lessening severity of ocular phenotypes, as confirmed by congenic analysis. By demonstrating a clear effect of genetic background in modulating Lmx1b-induced phenotypes, providing a panel of strains with different phenotypic severities and identifying a modifier locus, this study lays a foundation for better understanding the roles of LMX1B in glaucoma with the goal of developing new treatments.
Collapse
Affiliation(s)
- Nicholas G. Tolman
- Howard Hughes Medical Institute, Department of Ophthalmology, Columbia University Medical Center, and Zuckerman Mind Brain Behavior Institute, New York, NY 10027, USA,Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02115, USA,The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Revathi Balasubramanian
- Howard Hughes Medical Institute, Department of Ophthalmology, Columbia University Medical Center, and Zuckerman Mind Brain Behavior Institute, New York, NY 10027, USA
| | | | | | | | - Christa L. Montgomery
- Howard Hughes Medical Institute, Department of Ophthalmology, Columbia University Medical Center, and Zuckerman Mind Brain Behavior Institute, New York, NY 10027, USA
| | | | - Ian J. Jackson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Sally H. Cross
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | | | - K. Saidas Nair
- Departments of Ophthalmology and Anatomy, School of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Simon W. M. John
- Howard Hughes Medical Institute, Department of Ophthalmology, Columbia University Medical Center, and Zuckerman Mind Brain Behavior Institute, New York, NY 10027, USA,The Jackson Laboratory, Bar Harbor, ME 04609, USA,Author for correspondence ()
| |
Collapse
|
40
|
Cole BS, Gudiseva HV, Pistilli M, Salowe R, McHugh CP, Zody MC, Chavali VRM, Ying GS, Moore JH, O'Brien JM. The Role of Genetic Ancestry as a Risk Factor for Primary Open-angle Glaucoma in African Americans. Invest Ophthalmol Vis Sci 2021; 62:28. [PMID: 33605984 PMCID: PMC7900887 DOI: 10.1167/iovs.62.2.28] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/27/2021] [Indexed: 01/01/2023] Open
Abstract
Purpose POAG is the leading cause of irreversible blindness in African Americans. In this study, we quantitatively assess the association of autosomal ancestry with POAG risk in a large cohort of self-identified African Americans. Methods Subjects recruited to the Primary Open-Angle African American Glaucoma Genetics (POAAGG) study were classified as glaucoma cases or controls by fellowship-trained glaucoma specialists. POAAGG subjects were genotyped using the MEGA Ex array (discovery cohort, n = 3830; replication cohort, n = 2135). Population structure was interrogated using principal component analysis in the context of the 1000 Genomes Project superpopulations. Results The majority of POAAGG samples lie on an axis between African and European superpopulations, with great variation in admixture. Cases had a significantly lower mean value of the ancestral component q0 than controls for both cohorts (P = 6.14-4; P = 3-6), consistent with higher degree of African ancestry. Among POAG cases, higher African ancestry was also associated with thinner central corneal thickness (P = 2-4). Admixture mapping showed that local genetic ancestry was not a significant risk factor for POAG. A polygenic risk score, comprised of 23 glaucoma-associated single nucleotide polymorphisms from the NHGRI-EBI genome-wide association study catalog, was significant in both cohorts (P < 0.001), suggesting that both known POAG single nucleotide polymorphisms and an omnigenic ancestry effect influence POAG risk. Conclusions In sum, the POAAGG study population is very admixed, with a higher degree of African ancestry associated with an increased POAG risk. Further analyses should consider social and environmental factors as possible confounding factors for disease predisposition.
Collapse
Affiliation(s)
- Brian S. Cole
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Harini V. Gudiseva
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Maxwell Pistilli
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Rebecca Salowe
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | | | - Michael C. Zody
- New York Genome Center, New York City, New York, United States
| | - Venkata R. M. Chavali
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Gui Shuang Ying
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Jason H. Moore
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Joan M. O'Brien
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
41
|
Chan JW, Chan NCY, Sadun AA. Glaucoma as Neurodegeneration in the Brain. Eye Brain 2021; 13:21-28. [PMID: 33500674 PMCID: PMC7822087 DOI: 10.2147/eb.s293765] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/07/2021] [Indexed: 12/31/2022] Open
Abstract
Glaucoma, a group of diseases characterized by progressive optic nerve degeneration that results in irreversible blindness, can be considered a neurodegenerative disorder of both the eye and the brain. Increasing evidence from human and animal studies have shown that glaucoma shares some common neurodegenerative pathways with Alzheimer’s disease (AD) and other tauopathies, such as chronic traumatic encephalopathy (CTE) and frontotemporal dementia. This hypothesis is based on the focal adhesion pathway hypothesis and the spreading hypothesis of tau. Not only has the Apolipoprotein E (APOE) gene been shown to be associated with AD, but also with primary open angle glaucoma (POAG). This review will highlight the relevant literature in the past 20 years from PubMed that show the pathogenic overlap between POAG and AD. Neurodegenerative pathways that contribute to transsynaptic neurodegeneration in AD and other tauopathies might also be similar to those in glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Jane W Chan
- Department of Ophthalmology, Doheny Eye Institute, Pasadena, CA, USA
| | - Noel C Y Chan
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong, People's Republic of China
| | - Alfredo A Sadun
- Department of Ophthalmology, Doheny Eye Institute, Pasadena, CA, USA.,Department of Ophthalmology, University of California, Los Angeles, CA, USA
| |
Collapse
|
42
|
Abstract
IMPORTANCE Glaucoma is the most common cause of irreversible blindness worldwide. Many patients with glaucoma are asymptomatic early in the disease course. Primary care clinicians should know which patients to refer to an eye care professional for a complete eye examination to check for signs of glaucoma and to determine what systemic conditions or medications can increase a patient's risk of glaucoma. Open-angle and narrow-angle forms of glaucoma are reviewed, including a description of the pathophysiology, risk factors, screening, disease monitoring, and treatment options. OBSERVATIONS Glaucoma is a chronic progressive optic neuropathy, characterized by damage to the optic nerve and retinal nerve fiber layer, that can lead to permanent loss of peripheral or central vision. Intraocular pressure is the only known modifiable risk factor. Other important risk factors include older age, nonwhite race, and a family history of glaucoma. Several systemic medical conditions and medications including corticosteroids, anticholinergics, certain antidepressants, and topiramate may predispose patients to glaucoma. There are 2 broad categories of glaucoma, open-angle and angle-closure glaucoma. Diagnostic testing to assess for glaucoma and to monitor for disease progression includes measurement of intraocular pressure, perimetry, and optical coherence tomography. Treatment of glaucoma involves lowering intraocular pressure. This can be achieved with various classes of glaucoma medications as well as laser and incisional surgical procedures. CONCLUSIONS AND RELEVANCE Vision loss from glaucoma can be minimized by recognizing systemic conditions and medications that increase a patient's risk of glaucoma and referring high-risk patients for a complete ophthalmologic examination. Clinicians should ensure that patients remain adherent with taking glaucoma medications and should monitor for adverse events from medical or surgical interventions used to treat glaucoma.
Collapse
Affiliation(s)
- Joshua D Stein
- W.K. Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor
- Center for Eye Policy and Innovation, University of Michigan, Ann Arbor
- Department of Health Management and Policy, University of Michigan School of Public Health, Ann Arbor
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Jennifer S Weizer
- W.K. Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor
| |
Collapse
|
43
|
Molecular Genetics of Glaucoma: Subtype and Ethnicity Considerations. Genes (Basel) 2020; 12:genes12010055. [PMID: 33396423 PMCID: PMC7823611 DOI: 10.3390/genes12010055] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
Glaucoma, the world’s leading cause of irreversible blindness, is a complex disease, with differential presentation as well as ethnic and geographic disparities. The multifactorial nature of glaucoma complicates the study of genetics and genetic involvement in the disease process. This review synthesizes the current literature on glaucoma and genetics, as stratified by glaucoma subtype and ethnicity. Primary open-angle glaucoma (POAG) is the most common cause of glaucoma worldwide, with the only treatable risk factor (RF) being the reduction of intraocular pressure (IOP). Genes associated with elevated IOP or POAG risk include: ABCA1, AFAP1, ARHGEF12, ATXN2, CAV1, CDKN2B-AS1, FOXC1, GAS7, GMDS, SIX1/SIX6, TMCO1, and TXNRD2. However, there are variations in RF and genetic factors based on ethnic and geographic differences; it is clear that unified molecular pathways accounting for POAG pathogenesis remain uncertain, although inflammation and senescence likely play an important role. There are similar ethnic and geographic complexities in primary angle closure glaucoma (PACG), but several genes have been associated with this disorder, including MMP9, HGF, HSP70, MFRP, and eNOS. In exfoliation glaucoma (XFG), genes implicated include LOXL1, CACNA1A, POMP, TMEM136, AGPAT1, RBMS3, and SEMA6A. Despite tremendous progress, major gaps remain in resolving the genetic architecture for the various glaucoma subtypes across ancestries. Large scale carefully designed studies are required to advance understanding of genetic loci as RF in glaucoma pathophysiology and to improve diagnosis and treatment options.
Collapse
|
44
|
Baxter SL, Keenan WT, Athanas AJ, Proudfoot JA, Zangwill LM, Ayyagari R, Liebmann JM, Girkin CA, Patapoutian A, Weinreb RN. Investigation of associations between Piezo1 mechanoreceptor gain-of-function variants and glaucoma-related phenotypes in humans and mice. Sci Rep 2020; 10:19013. [PMID: 33149214 PMCID: PMC7643131 DOI: 10.1038/s41598-020-76026-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/07/2020] [Indexed: 11/09/2022] Open
Abstract
Glaucoma disproportionately affects individuals of African descent. Prior studies of the PIEZO1 mechanoreceptor have suggested a possible role in glaucoma pathophysiology. Here, we investigated associations between a Piezo1 gain-of-function variant common in individuals of African descent with glaucoma-related phenotypes. We analyzed whole genome sequences to identify Piezo1 variants and their frequencies among 1565 human participants. For the most common variant (e756del), we compared phenotypes between heterozygotes, homozygotes, and wildtypes. Longitudinal mixed effects models of visual field mean deviation (MD) and retinal nerve fiber layer (RNFL) thickness were used to evaluate progression. Based on trends in the models, further investigation was conducted using Piezo1 gain-of-function mice. About 30% of African descent individuals had at least one e756del allele. There were trends suggesting e756del was associated with higher IOPs, thinner RNFLs, lower optic nerve head capillary densities, and greater decreases in MD and RNFL thickness over time, but these did not reach statistical significance. Among mice, increased Piezo1 activity was not significantly associated with IOP or retinal ganglion cell density. Our study confirms that the Piezo1 e756del gain-of-function variant is a frequent polymorphism present in African descent individuals but is unrelated to examined differences in glaucoma phenotypes. Ongoing work is needed to elucidate the role of Piezo1-mediated mechanotransduction in glaucoma.
Collapse
Affiliation(s)
- Sally L Baxter
- Hamilton Glaucoma Center, Viterbi Family Department of Ophthalmology, and Shiley Eye Institute, University of California San Diego (UCSD), 9415 Campus Point Drive, MC0946, La Jolla, CA, 92093, USA
- Health Department of Biomedical Informatics, UCSD, La Jolla, CA, USA
| | | | - Argus J Athanas
- Health Department of Biomedical Informatics, UCSD, La Jolla, CA, USA
| | - James A Proudfoot
- Hamilton Glaucoma Center, Viterbi Family Department of Ophthalmology, and Shiley Eye Institute, University of California San Diego (UCSD), 9415 Campus Point Drive, MC0946, La Jolla, CA, 92093, USA
| | - Linda M Zangwill
- Hamilton Glaucoma Center, Viterbi Family Department of Ophthalmology, and Shiley Eye Institute, University of California San Diego (UCSD), 9415 Campus Point Drive, MC0946, La Jolla, CA, 92093, USA
| | - Radha Ayyagari
- Hamilton Glaucoma Center, Viterbi Family Department of Ophthalmology, and Shiley Eye Institute, University of California San Diego (UCSD), 9415 Campus Point Drive, MC0946, La Jolla, CA, 92093, USA
| | - Jeffrey M Liebmann
- Bernard and Shirlee Brown Glaucoma Research Laboratory, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, NY, USA
| | - Christopher A Girkin
- Department of Ophthalmology and Vision Sciences, Callahan Eye Hospital, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Robert N Weinreb
- Hamilton Glaucoma Center, Viterbi Family Department of Ophthalmology, and Shiley Eye Institute, University of California San Diego (UCSD), 9415 Campus Point Drive, MC0946, La Jolla, CA, 92093, USA.
| |
Collapse
|
45
|
Kalayci M, Cetinkaya E, Erol MK. Prevalence of primary open-angle glaucoma in a Somalia population. Int Ophthalmol 2020; 41:581-586. [PMID: 33057866 DOI: 10.1007/s10792-020-01612-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/02/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE To determine the prevalence of primary open-angle glaucoma (POAG) in patients over 40 years that presented to our tertiary hospital in Somalia Mogadishu. METHODS This prospective cross-sectional study included 1550 patients older than 40 years that presented to the ophthalmology clinic of Somalia Mogadishu - Turkey Training and Research Hospital. The patients were evaluated in terms of age, gender, intraocular pressure, and optical cup/disk (C/D) ratio, and central corneal thickness measurements were taken. RESULTS The prevalence of glaucoma in the study population over the age of 40 years was 7%. The prevalence of glaucoma was 40% in the 40-50-year group, 6.8% in the 50-60-year group, 7% in the 60-70-year group, 9.9% in the 70-80-year group, and 12.3% in the 80-90-year group. The prevalence of glaucoma statistically significantly increased with advancing age (p < 0.001). The mean intraocular pressure was measured as 16.7 ± 3.3 mmHg for the overall patient population, 16.3 ± 2.9 mmHg for the female patients, and 17.1 ± 3.1 mmHg for the male patients. The mean intraocular pressure of the patients diagnosed with POAG was 27.3 ± 4.2 mmHg, and their mean corneal thickness was 507.9 µm, which was significantly lower than the value of the patients without POAG (545.8) (p < 0.001). The mean C/D ratio was calculated as 0.56 ± 0.21 for the patients with POAG and general 0.24 ± 0.16 for the overall patient population, indicating a statistically significant difference (p < 0.001). CONCLUSIONS A high rate of POAG is seen in patients over 40 years of age in Somalia. The mechanism underlying POAG needs to be investigated in this population.
Collapse
Affiliation(s)
- Mustafa Kalayci
- Department of Ophthalmology, Antalya Training and Research Hospital, University of Health Sciences, Antalya, Turkey.
- Department of Ophthalmology, Somalia Mogadishu - Turkey Education and Research Hospital, Mogadishu, Somalia.
| | - Ersan Cetinkaya
- Department of Ophthalmology, Antalya Training and Research Hospital, University of Health Sciences, Antalya, Turkey
| | - Muhammet Kazim Erol
- Department of Ophthalmology, Antalya Training and Research Hospital, University of Health Sciences, Antalya, Turkey
| |
Collapse
|
46
|
Hreha KP, Fisher SR, Reistetter TA, Ottenbacher K, Haas A, Li CY, Ehrlich JR, Whitaker DB, Whitson HE. Use of the ICD-10 vision codes to study ocular conditions in Medicare beneficiaries with stroke. BMC Health Serv Res 2020; 20:628. [PMID: 32641050 PMCID: PMC7346474 DOI: 10.1186/s12913-020-05484-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/29/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Ocular conditions are common following stroke and frequently occur in combination with pre-existing ophthalmologic disease. The Medicare International Statistical Classification of Diseases and Related Health Problems (ICD-10) coding system for identifying vision related health conditions provides a much higher level of detail for coding these complex scenarios than the previous ICD-9 system. While this new coding system has advantages for clinical care and billing, the degree to which providers and researchers are utilizing the expanded code structure is unknown. The purpose of this study was to describe the use of ICD-10 vision codes in a large cohort of stroke survivors. METHODS Retrospective cohort design to study national 100% Medicare claims files from 2015 through 2017. Descriptive data analyses were conducted using all available ICD-10 vision codes for beneficiaries who had an acute care stay because of a new stroke. The outcome of interest was ≥1 ICD-10 visual code recorded in the claims chart. RESULTS The cohort (n = 269,314) was mostly female (57.1%) with ischemic stroke (87.8%). Approximately 15% were coded as having one or more ocular condition. Unspecified glaucoma was the most frequently used code among men (2.83%), those over 85+ (4.80%) and black beneficiaries (4.12%). Multiple vision codes were used in few patients (0.6%). Less than 3% of those in the oldest group (85+ years) had two or more vision codes in their claims. CONCLUSIONS Ocular comorbidity was present in a portion of this cohort of stroke survivors, however the vision codes used to describe impairments in this population were few and lacked specificity. Future studies should compare ophthalmic examination results with billing codes to characterize the type and frequency of ocular comorbidity. It important to understand how the use of ICD-10 vision codes impacts clinical decision making, recovery, and outcomes.
Collapse
Affiliation(s)
- Kimberly P Hreha
- Division of Rehabilitation Sciences, University of Texas Medical Branch, School of Health Professions, 301 University Blvd., Galveston, TX, 77555, USA.
| | - Steve R Fisher
- Physical Therapy Department, University of Texas Medical Branch, School of Health Professions, 301 University Blvd., Galveston, TX, 77555, USA
| | - Timothy A Reistetter
- Department of Occupational Therapy, School of Health Professions, University of Texas, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Kenneth Ottenbacher
- Division of Rehabilitation Sciences, University of Texas Medical Branch, School of Health Professions, 301 University Blvd., Galveston, TX, 77555, USA
| | - Allen Haas
- Department of Preventive Medicine and Population Health, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA
| | - Chih-Ying Li
- Occupational Therapy Department, University of Texas Medical Branch, School of Health Professions, 301 University Blvd., Galveston, TX, 77555, USA
| | - Joshua R Ehrlich
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, 100 Wall Street, Ann Arbor, MI, 48105, USA
| | - Diane B Whitaker
- Department of Ophthalmology, Duke University School of Medicine, 2351 Erwin Rd, Durham, NC, 27705, USA
| | - Heather E Whitson
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Center for the Study of Aging and Human Disease, Duke University School of Medicine, Durham, NC, USA
- Geriatrics Research Education and Clinical Center, Durham VA Medical Center, 8 Searle Center Drive, Durham, NC, 27710, USA
| |
Collapse
|
47
|
Genetic Variants Associated With the Onset and Progression of Primary Open-Angle Glaucoma. Am J Ophthalmol 2020; 215:135-140. [PMID: 32217119 DOI: 10.1016/j.ajo.2020.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/02/2020] [Accepted: 03/13/2020] [Indexed: 01/20/2023]
Abstract
PURPOSE We sought to investigate the genetic variants associated with the onset and progression of primary open-angle glaucoma (POAG). DESIGN Case-control genetic association study. METHODS Japanese POAG patients (n = 505) and control subjects (n = 246) were genotyped for 22 genetic variants predisposing to POAG that can be classified into those associated with intraocular pressure (IOP) elevation (IOP-related genetic variants) and optic nerve vulnerability independent of IOP (non-IOP-related genetic variants). The total number of risk alleles of the 17 IOP-related and 5 non-IOP-related genetic variants were calculated as the genetic risk score (GRS), and the associations between the GRS and family history of glaucoma as an indicator of POAG onset and age at the diagnosis of glaucoma as an indicator of POAG progression were evaluated. RESULTS There was a significant association (P = .014; odds ratio 1.26 per GRS) between the non-IOP-related GRS, but not IOP-related GRS, and a family history of glaucoma in POAG. As the non-IOP-related GRS increased, the risk of a family history of glaucoma increased. In contrast, a significant association (P = .0014; β = -0.14) was found between the IOP-related GRS, but not non-IOP-related GRS, and age at the diagnosis of glaucoma. As the IOP-related GRS increased, age at the diagnosis of glaucoma decreased. CONCLUSION The results indicate that non-IOP-related (optic nerve vulnerability) rather than IOP-related (IOP elevation) genetic variants may play an important role in the onset of POAG (family history of glaucoma) and that IOP-related rather than non-IOP-related genetic variants may play an important role in its progression (age at the diagnosis of glaucoma).
Collapse
|
48
|
Sunaric Megevand G, Bron AM. Personalising surgical treatments for glaucoma patients. Prog Retin Eye Res 2020; 81:100879. [PMID: 32562883 DOI: 10.1016/j.preteyeres.2020.100879] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023]
Abstract
Surgical treatments for glaucoma have relied for decades on traditional filtering surgery such as trabeculectomy and, in more challenging cases, tubes. Antifibrotics were introduced to improve surgical success in patients at increased risk of failure but have been shown to be linked to a greater incidence of complications, some being potentially vision-threatening. As our understanding of glaucoma and its early diagnosis have improved, a more individualised management has been suggested. Recently the term "precision medicine" has emerged as a new concept of an individualised approach to disease management incorporating a wide range of individual data in the choice of therapeutic modalities. For glaucoma surgery, this involves evaluation of the right timing, individual risk factors, targeting the correct anatomical and functional outflow pathways and appropriate prevention of scarring. As a consequence, there is an obvious need for better knowledge of anatomical and functional pathways and for more individualised surgical approaches with new, less invasive and safer techniques allowing for earlier intervention. With the recent advent of minimally invasive glaucoma surgery (MIGS) a large number of novel devices have been introduced targeting potential new sites of the outflow pathway for lowering intraocular pressure (IOP). Their popularity is growing in view of the relative surgical simplicity and apparent lack of serious side effects. However, these new surgical techniques are still in an era of early experiences, short follow-up and lack of evidence of their superiority in safety and cost-effectiveness over the traditional methods. Each year several new devices are introduced while others are withdrawn from the market. Glaucoma continues to be the primary cause of irreversible blindness worldwide and access to safe and efficacious treatment is a serious problem, particularly in the emerging world where the burden of glaucoma-related blindness is important and concerning. Early diagnosis, individualised treatment and, very importantly, safe surgical management should be the hallmarks of glaucoma treatment. However, there is still need for a better understanding of the disease, its onset and progression, the functional and structural elements of the outflow pathways in relation to the new devices as well as their long-term IOP-lowering efficacy and safety. This review discusses current knowledge and the future need for personalised glaucoma surgery.
Collapse
Affiliation(s)
- Gordana Sunaric Megevand
- Clinical Eye Research Centre Memorial Adolphe de Rothschild, Geneva, Switzerland; Centre Ophtalmologique de Florissant, Geneva, Switzerland.
| | - Alain M Bron
- Department of Ophthalmology, University Hospital, Dijon, France; Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| |
Collapse
|
49
|
Fujisaki M, Mitsumori N, Shinohara T, Takahashi N, Aoki H, Nyumura Y, Kitazawa S, Yanaga K. Short- and long-term outcomes of laparoscopic versus open gastrectomy for locally advanced gastric cancer following neoadjuvant chemotherapy. Surg Endosc 2020; 35:1682-1690. [PMID: 32277356 DOI: 10.1007/s00464-020-07552-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/04/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND This study aimed to investigate the short- and long-term outcomes of laparoscopic gastrectomy (LG) in patients with advanced gastric cancer following neoadjuvant chemotherapy (NAC) to determine its safety and feasibility. METHODS We retrospectively investigated 51 patients who underwent gastrectomy for locally advanced gastric cancer [cT3-4/N1-3 or macroscopic type 3 (> 80 mm) or type 4] following NAC between November 2009 and January 2018. After excluding two patients who underwent palliative surgery due to peritoneal dissemination, 49 patients were ultimately selected for this cohort study. The patients were then divided into the LG group and open gastrectomy (OG) group, after which the clinicopathological characteristics as well as short- and long-term outcomes were examined. RESULTS Compared with the OG group, the LG group demonstrated a significantly lower amount of intraoperative blood loss and a shorter hospital stay. The overall complication rates were 10% (2 of 20 patients) and 24% (7 of 29 patients) in the LG and OG groups (P = 0.277), respectively. No significant differences in 5-year disease-free (LG 44.4% vs. OG 53.3%; P = 0.382) or overall survival rates (LG 46.9% vs. OG 54.0%; P = 0.422) were observed between the groups. Multivariate analysis revealed that the surgical procedure (LG vs. OG) was not an independent risk factor for disease-free (P = 0.645) or overall survival (P = 0.489). CONCLUSIONS LG may be a potential therapeutic option for patients with gastric cancer following NAC considering its high success rates and acceptable short- and long-term outcomes.
Collapse
Affiliation(s)
- Muneharu Fujisaki
- Department of Surgery, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan.
- Department of Surgery, Machida Municipal Hospital, Tokyo, Japan.
| | - Norio Mitsumori
- Department of Surgery, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | | | - Naoto Takahashi
- Department of Surgery, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Hiroaki Aoki
- Department of Surgery, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Yuya Nyumura
- Department of Surgery, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Seizo Kitazawa
- Department of Surgery, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Katsuhiko Yanaga
- Department of Surgery, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| |
Collapse
|