1
|
Lautarescu A, Bonthrone AF, Bos B, Barratt B, Counsell SJ. Advances in fetal and neonatal neuroimaging and everyday exposures. Pediatr Res 2024; 96:1404-1416. [PMID: 38877283 PMCID: PMC11624138 DOI: 10.1038/s41390-024-03294-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 06/16/2024]
Abstract
The complex, tightly regulated process of prenatal brain development may be adversely affected by "everyday exposures" such as stress and environmental pollutants. Researchers are only just beginning to understand the neural sequelae of such exposures, with advances in fetal and neonatal neuroimaging elucidating structural, microstructural, and functional correlates in the developing brain. This narrative review discusses the wide-ranging literature investigating the influence of parental stress on fetal and neonatal brain development as well as emerging literature assessing the impact of exposure to environmental toxicants such as lead and air pollution. These 'everyday exposures' can co-occur with other stressors such as social and financial deprivation, and therefore we include a brief discussion of neuroimaging studies assessing the effect of social disadvantage. Increased exposure to prenatal stressors is associated with alterations in the brain structure, microstructure and function, with some evidence these associations are moderated by factors such as infant sex. However, most studies examine only single exposures and the literature on the relationship between in utero exposure to pollutants and fetal or neonatal brain development is sparse. Large cohort studies are required that include evaluation of multiple co-occurring exposures in order to fully characterize their impact on early brain development. IMPACT: Increased prenatal exposure to parental stress and is associated with altered functional, macro and microstructural fetal and neonatal brain development. Exposure to air pollution and lead may also alter brain development in the fetal and neonatal period. Further research is needed to investigate the effect of multiple co-occurring exposures, including stress, environmental toxicants, and socioeconomic deprivation on early brain development.
Collapse
Affiliation(s)
- Alexandra Lautarescu
- Department of Perinatal Imaging and Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alexandra F Bonthrone
- Department of Perinatal Imaging and Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Brendan Bos
- MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Ben Barratt
- MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Serena J Counsell
- Department of Perinatal Imaging and Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| |
Collapse
|
2
|
Wang Z, Zheng L, Yang L, Yin S, Yu S, Chen K, Zhang T, Wang H, Zhang T, Zhang Y. Structural and functional whole brain changes in autism spectrum disorder at different age stages. Eur Child Adolesc Psychiatry 2024:10.1007/s00787-024-02585-6. [PMID: 39382650 DOI: 10.1007/s00787-024-02585-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/28/2024] [Indexed: 10/10/2024]
Abstract
Autism spectrum disorder (ASD) is a developmental disorder involving regional changes and local neural disturbances. However, few studies have investigated the dysfunctional phenomenon across different age stages. This study explores the structural and functional brain changes across different developmental stages in individuals with ASD, focusing on childhood (6-12 years), adolescence (12-18 years), and adulthood (18 + years). Using a comprehensive set of neuroimaging metrics, including modulated and non-modulated voxel-based morphometry (VBM), regional homogeneity (ReHo), amplitude of low-frequency fluctuation (ALFF), and fractional ALFF (fALFF), we identified significant stage-specific alterations in both VBM and functional measurements. Our results reveal that ASD is associated with progressive and stage-specific abnormalities in brain structure and function, with distinct patterns emerging at each developmental stage. Specifically, we observed significant modulated VBM reductions in the precuneus, lentiform nucleus, and inferior parietal lobule, accompanied by increases in the midbrain and sub-gyral regions. Moreover, we observed unmodulated VBM increment in regions including lentiform nucleus and thalamus. Functionally, ReHo analyses demonstrated disrupted local synchronization in the medial frontal gyrus, while ALFF and fALFF metrics highlighted altered spontaneous brain activity in the sub-gyral and sub-lobar. Finally, correlation analyses revealed that stage-specific findings are closely linked to clinical social- and behavior-related scores, with VBM in the inferior parietal lobule and putamen as well as ReHo in supplemental motor area being significantly associated with restrictive repetitive behaviors in childhood. These findings underscore the importance of considering age-specific brain changes when studying ASD and suggest that targeted interventions may be necessary at different developmental stages.
Collapse
Affiliation(s)
- Zedong Wang
- Microecology Research Center, Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Life Science and Technology, High Field Magnetic Resonance Brain Imaging Laboratory of Sichuan and Key Laboratory for Neuro Information, Ministry of Education, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Liqin Zheng
- School of Life Science and Technology, High Field Magnetic Resonance Brain Imaging Laboratory of Sichuan and Key Laboratory for Neuro Information, Ministry of Education, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Lijuan Yang
- Department of Paediatrics, Zhejiang Provincial People's Hospital Bijie Hospital (The First people's Hospital of Bijie), Bijie, Guizhou, China
| | - Shunjie Yin
- Mental Health Education Center, School of Science, Xihua University, Chengdu, China
| | - Shiqi Yu
- Mental Health Education Center, School of Science, Xihua University, Chengdu, China
| | - Kai Chen
- Microecology Research Center, Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Mental Health Education Center, School of Science, Xihua University, Chengdu, China
| | - Tao Zhang
- School of Life Science and Technology, High Field Magnetic Resonance Brain Imaging Laboratory of Sichuan and Key Laboratory for Neuro Information, Ministry of Education, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Hesong Wang
- Microecology Research Center, Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Zhang
- Microecology Research Center, Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Mental Health Education Center, School of Science, Xihua University, Chengdu, China.
| | - Yong Zhang
- Microecology Research Center, Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Nelson CA, Sullivan E, Engelstad AM. Annual Research Review: Early intervention viewed through the lens of developmental neuroscience. J Child Psychol Psychiatry 2024; 65:435-455. [PMID: 37438865 DOI: 10.1111/jcpp.13858] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 07/14/2023]
Abstract
The overarching goal of this paper is to examine the efficacy of early intervention when viewed through the lens of developmental neuroscience. We begin by briefly summarizing neural development from conception through the first few postnatal years. We emphasize the role of experience during the postnatal period, and consistent with decades of research on critical periods, we argue that experience can represent both a period of opportunity and a period of vulnerability. Because plasticity is at the heart of early intervention, we next turn our attention to the efficacy of early intervention drawing from two distinct literatures: early intervention services for children growing up in disadvantaged environments, and children at elevated likelihood of developing a neurodevelopmental delay or disorder. In the case of the former, we single out interventions that target caregiving and in the case of the latter, we highlight recent work on autism. A consistent theme throughout our review is a discussion of how early intervention is embedded in the developing brain. We conclude our article by discussing the implications our review has for policy, and we then offer recommendations for future research.
Collapse
Affiliation(s)
- Charles A Nelson
- Department of Pediatrics and Neuroscience, Harvard Medical School, Boston, MA, USA
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Graduate School of Education, Cambridge, MA, USA
| | - Eileen Sullivan
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Graduate School of Education, Cambridge, MA, USA
| | - Anne-Michelle Engelstad
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Graduate School of Education, Cambridge, MA, USA
| |
Collapse
|
4
|
Hadaya L, Vanes L, Karolis V, Kanel D, Leoni M, Happé F, Edwards AD, Counsell SJ, Batalle D, Nosarti C. Distinct Neurodevelopmental Trajectories in Groups of Very Preterm Children Screening Positively for Autism Spectrum Conditions. J Autism Dev Disord 2024; 54:256-269. [PMID: 36273367 DOI: 10.1007/s10803-022-05789-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 10/24/2022]
Abstract
Very preterm (VPT; < 33 weeks' gestation) toddlers screening positively for autism spectrum conditions (ASC) may display heterogenous neurodevelopmental trajectories. Here we studied neonatal brain volumes and childhood ASC traits evaluated with the Social Responsiveness Scale (SRS-2) in VPT-born toddlers (N = 371; median age 20.17 months) sub-divided into three groups based on their Modified-Checklist for Autism in Toddlers scores. These were: those screening positively failing at least 2 critical items (critical-positive); failing any 3 items, but less than 2 critical items (non-critical-positive); and screening negatively. Critical-positive scorers had smaller neonatal cerebellar volumes compared to non-critical-positive and negative scorers. However, both positive screening groups exhibited higher childhood ASC traits compared to the negative screening group, suggesting distinct aetiological trajectories associated with ASC outcomes.
Collapse
Affiliation(s)
- Laila Hadaya
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Lucy Vanes
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Vyacheslav Karolis
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Dana Kanel
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Marguerite Leoni
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Francesca Happé
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - A David Edwards
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Serena J Counsell
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Dafnis Batalle
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Chiara Nosarti
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK.
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK.
| |
Collapse
|
5
|
Huang Q, Velthuis H, Pereira AC, Ahmad J, Cooke SF, Ellis CL, Ponteduro FM, Puts NAJ, Dimitrov M, Batalle D, Wong NML, Kowalewski L, Ivin G, Daly E, Murphy DGM, McAlonan GM. Exploratory evidence for differences in GABAergic regulation of auditory processing in autism spectrum disorder. Transl Psychiatry 2023; 13:320. [PMID: 37852957 PMCID: PMC10584846 DOI: 10.1038/s41398-023-02619-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023] Open
Abstract
Altered reactivity and responses to auditory input are core to the diagnosis of autism spectrum disorder (ASD). Preclinical models implicate ϒ-aminobutyric acid (GABA) in this process. However, the link between GABA and auditory processing in humans (with or without ASD) is largely correlational. As part of a study of potential biosignatures of GABA function in ASD to inform future clinical trials, we evaluated the role of GABA in auditory repetition suppression in 66 adults (n = 28 with ASD). Neurophysiological responses (temporal and frequency domains) to repetitive standard tones and novel deviants presented in an oddball paradigm were compared after double-blind, randomized administration of placebo, 15 or 30 mg of arbaclofen (STX209), a GABA type B (GABAB) receptor agonist. We first established that temporal mismatch negativity was comparable between participants with ASD and those with typical development (TD). Next, we showed that temporal and spectral responses to repetitive standards were suppressed relative to responses to deviants in the two groups, but suppression was significantly weaker in individuals with ASD at baseline. Arbaclofen reversed weaker suppression of spectral responses in ASD but disrupted suppression in TD. A post hoc analysis showed that arbaclofen-elicited shift in suppression was correlated with autistic symptomatology measured using the Autism Quotient across the entire group, though not in the smaller sample of the ASD and TD group when examined separately. Thus, our results confirm: GABAergic dysfunction contributes to the neurophysiology of auditory sensory processing alterations in ASD, and can be modulated by targeting GABAB activity. These GABA-dependent sensory differences may be upstream of more complex autistic phenotypes.
Collapse
Affiliation(s)
- Qiyun Huang
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- Research Center for Brain-Computer Interface, Pazhou Lab, Guangzhou, China.
| | - Hester Velthuis
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Andreia C Pereira
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
| | - Jumana Ahmad
- School of Human Sciences, University of Greenwich, London, UK
| | - Samuel F Cooke
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Claire L Ellis
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Francesca M Ponteduro
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Nicolaas A J Puts
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Mihail Dimitrov
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Dafnis Batalle
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Nichol M L Wong
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Psychology, The Education University of Hong Kong, Hong Kong, China
| | - Lukasz Kowalewski
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Glynis Ivin
- South London and Maudsley NHS Foundation Trust Pharmacy, London, UK
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Declan G M Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Gráinne M McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| |
Collapse
|
6
|
Associations between Symptom Severity of Autism Spectrum Disorder and Screen Time among Toddlers Aged 16 to 36 Months. Behav Sci (Basel) 2023; 13:bs13030208. [PMID: 36975233 PMCID: PMC10045374 DOI: 10.3390/bs13030208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
There is growing evidence that prevalence rates of autism spectrum disorder (ASD) are increasing. A number of factors appear to contribute to this increase, including excessive screen time. Screen time seems to be linked to the severity of the symptoms of ASD. Given this, the aim of the present cross-sectional study was to investigate the association between early screen time and ASD symptoms severity in the first 36 months of life. To this end, sixty-eight Iranian toddlers (mean age: 27.09 months; 22.1% females) with ASD were recruited. Parents completed the modified checklist for autism in toddlers (M-CHAT), the Repetitive Behavior Scale-Revised (RBS-R), and a lifestyle checklist. Next, parents rated children’s daily exposure to content specifically designed (foreground media) and not specifically designed (background media) for children, along with their daily exposure to social interaction. Per day, toddlers spent 5.12 h (±3.77) with foreground media, 3.72 h (±3.57) with background media, and 2.89 h (±2.74) in interaction with other people (parents). To test the hypotheses, we performed a series of Pearson’s correlations and multiple regression analyses. Toddlers’ higher severity scores for ASD symptoms were associated with longer foreground (r = 0.234, p = 0.001) and longer background (r = 0.180, p = 0.012) media duration, and with shorter duration of interaction with others (r = 0.192, p = 0.009). Toddlers spending 1 h more in foreground screen time and background screen time have 0.38 and 0.29 more units in the ASD symptom severity scale, respectively, while toddlers spending 1 h more in social interactions have 0.42 fewer units in the ASD symptom severity scale. The screen time and interaction duration are related to ASD symptoms severity of toddlers. The cross-sectional study design precludes causal associations, although bi-directional relationships appear plausible.
Collapse
|
7
|
De Asis-Cruz J, Limperopoulos C. Harnessing the Power of Advanced Fetal Neuroimaging to Understand In Utero Footprints for Later Neuropsychiatric Disorders. Biol Psychiatry 2022; 93:867-879. [PMID: 36804195 DOI: 10.1016/j.biopsych.2022.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Adverse intrauterine events may profoundly impact fetal risk for future adult diseases. The mechanisms underlying this increased vulnerability are complex and remain poorly understood. Contemporary advances in fetal magnetic resonance imaging (MRI) have provided clinicians and scientists with unprecedented access to in vivo human fetal brain development to begin to identify emerging endophenotypes of neuropsychiatric disorders such as autism spectrum disorder, attention-deficit/hyperactivity disorder, and schizophrenia. In this review, we discuss salient findings of normal fetal neurodevelopment from studies using advanced, multimodal MRI that have provided unparalleled characterization of in utero prenatal brain morphology, metabolism, microstructure, and functional connectivity. We appraise the clinical utility of these normative data in identifying high-risk fetuses before birth. We highlight available studies that have investigated the predictive validity of advanced prenatal brain MRI findings and long-term neurodevelopmental outcomes. We then discuss how ex utero quantitative MRI findings can inform in utero investigations toward the pursuit of early biomarkers of risk. Lastly, we explore future opportunities to advance our understanding of the prenatal origins of neuropsychiatric disorders using precision fetal imaging.
Collapse
|
8
|
Hadders‐Algra M. Emerging signs of autism spectrum disorder in infancy: Putative neural substrate. Dev Med Child Neurol 2022; 64:1344-1350. [PMID: 35801808 PMCID: PMC9796067 DOI: 10.1111/dmcn.15333] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/30/2022]
Abstract
Autism spectrum disorder (ASD) is characterized by altered development of the social brain with prominent atypical features in the fronto-temporo-parietal cortex and cerebellum. Early signs of ASD emerge between 6 and 12 months: reduced social communication, slightly less advanced motor development, and repetitive behaviour. The fronto-temporo-parietal cortex and cerebellum play a prominent role in the development of social communication, whereas fronto-parietal-cerebellar networks are involved in the planning of movements, that is, movement selection. Atypical sensory responsivity, a core feature of ASD, may result in impaired development of social communication and motor skills and/or selection of atypical repetitive behaviour. In the first postnatal year, the brain areas involved are characterized by gradual dissolution of temporary structures: the fronto-temporo-parietal cortical subplate and cerebellar external granular layer. It is hypothesized that altered dissolution of the transient structures opens the window for the expression of early signs of ASD arising in the impaired developing permanent networks. WHAT THIS PAPER ADDS: The early social and motor signs of autism spectrum disorder emerge between the ages of 6 and 12 months. Altered dissolution of transient brain structures in the fronto-temporo-parietal cortex and cerebellum may underlie the emergence of these early signs.
Collapse
Affiliation(s)
- Mijna Hadders‐Algra
- University of Groningen, University Medical Center GroningenDepartment of Paediatrics, Section of Developmental NeurologyGroningenthe Netherlands,University of Groningen, Faculty of Theology and Religious StudiesGroningenthe Netherlands
| |
Collapse
|
9
|
Scheinost D, Chang J, Lacadie C, Brennan-Wydra E, Foster R, Boxberger A, Macari S, Vernetti A, Constable RT, Ment LR, Chawarska K. Hypoconnectivity between anterior insula and amygdala associates with future vulnerabilities in social development in a neurodiverse sample of neonates. Sci Rep 2022; 12:16230. [PMID: 36171268 PMCID: PMC9517994 DOI: 10.1038/s41598-022-20617-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
Altered resting state functional connectivity (FC) involving the anterior insula (aINS), a key node in the salience network, has been reported consistently in autism. Here we examined, for the first time, FC between the aINS and the whole brain in a sample of full-term, postmenstrual age (PMA) matched neonates (mean 44.0 weeks, SD = 1.5) who due to family history have high likelihood (HL) for developing autism (n = 12) and in controls (n = 41) without family history of autism (low likelihood, LL). Behaviors associated with autism were evaluated between 12 and 18 months (M = 17.3 months, SD = 2.5) in a subsample (25/53) of participants using the First Year Inventory (FYI). Compared to LL controls, HL neonates showed hypoconnectivity between left aINS and left amygdala. Lower connectivity between the two nodes was associated with higher FYI risk scores in the social domain (r(25) = -0.561, p = .003) and this association remained robust when maternal mental health factors were considered. Considering that a subsample of LL participants (n = 14/41) underwent brain imaging during the fetal period at PMA 31 and 34 weeks, in an exploratory analysis, we evaluated prospectively development of the LaINS-Lamy connectivity and found that the two areas strongly coactivate throughout the third trimester of pregnancy. The study identifies left lateralized anterior insula-amygdala connectivity as a potential target of further investigation into neural circuitry that enhances likelihood of future onset of social behaviors associated with autism during neonatal and potentially prenatal periods.
Collapse
Affiliation(s)
- Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT, 06520, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Joseph Chang
- Department of Statistics and Data Science, Yale University, New Haven, CT, 06520, USA
| | - Cheryl Lacadie
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06510, USA
| | | | - Rachel Foster
- Child Study Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | | | - Suzanne Macari
- Child Study Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Angelina Vernetti
- Child Study Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | - R Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Laura R Ment
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Katarzyna Chawarska
- Department of Statistics and Data Science, Yale University, New Haven, CT, 06520, USA.
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, 06510, USA.
- Yale Child Study Center, Yale School of Medicine, 300 George Street, Suite 900, New Haven, CT, 06510, USA.
| |
Collapse
|
10
|
Okada NJ, Liu J, Tsang T, Nosco E, McDonald N, Cummings KK, Jung J, Patterson G, Bookheimer SY, Green SA, Jeste SS, Dapretto M. Atypical cerebellar functional connectivity at 9 months of age predicts delayed socio-communicative profiles in infants at high and low risk for autism. J Child Psychol Psychiatry 2022; 63:1002-1016. [PMID: 34882790 PMCID: PMC9177892 DOI: 10.1111/jcpp.13555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND While the cerebellum is traditionally known for its role in sensorimotor control, emerging research shows that particular subregions, such as right Crus I (RCrusI), support language and social processing. Indeed, cerebellar atypicalities are commonly reported in autism spectrum disorder (ASD), a neurodevelopmental disorder characterized by socio-communicative impairments. However, the cerebellum's contribution to early socio-communicative development remains virtually unknown. METHODS Here, we characterized functional connectivity within cerebro-cerebellar networks implicated in language/social functions in 9-month-old infants who exhibit distinct 3-year socio-communicative developmental profiles. We employed a data-driven clustering approach to stratify our sample of infants at high (n = 82) and low (n = 37) familial risk for ASD into three cohorts-Delayed, Late-Blooming, and Typical-who showed unique socio-communicative trajectories. We then compared the cohorts on indices of language and social development. Seed-based functional connectivity analyses with RCrusI were conducted on infants with fMRI data (n = 66). Cohorts were compared on connectivity estimates from a-priori regions, selected on the basis of reported coactivation with RCrusI during language/social tasks. RESULTS The three trajectory-based cohorts broadly differed in social communication development, as evidenced by robust differences on numerous indices of language and social skills. Importantly, at 9 months, the cohorts showed striking differences in cerebro-cerebellar circuits implicated in language/social functions. For all regions examined, the Delayed cohort exhibited significantly weaker RCrusI connectivity compared to both the Late-Blooming and Typical cohorts, with no significant differences between the latter cohorts. CONCLUSIONS We show that hypoconnectivity within distinct cerebro-cerebellar networks in infancy predicts altered socio-communicative development before delays overtly manifest, which may be relevant for early detection and intervention. As the cerebellum is implicated in prediction, our findings point to probabilistic learning as a potential intermediary mechanism that may be disrupted in infancy, cascading into alterations in social communication.
Collapse
Affiliation(s)
- Nana J. Okada
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Janelle Liu
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Tawny Tsang
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Erin Nosco
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Nicole McDonald
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Kaitlin K. Cummings
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Jiwon Jung
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Genevieve Patterson
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Susan Y. Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Shulamite A. Green
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Shafali S. Jeste
- Children’s Hospital Los Angeles, USC Keck School of Medicine, Los Angeles
| | - Mirella Dapretto
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| |
Collapse
|
11
|
Della Longa L, Nosarti C, Farroni T. Emotion Recognition in Preterm and Full-Term School-Age Children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6507. [PMID: 35682092 PMCID: PMC9180201 DOI: 10.3390/ijerph19116507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/15/2022] [Accepted: 05/25/2022] [Indexed: 12/04/2022]
Abstract
Children born preterm (<37 weeks’ gestation) show a specific vulnerability for socio-emotional difficulties, which may lead to an increased likelihood of developing behavioral and psychiatric problems in adolescence and adulthood. The accurate decoding of emotional signals from faces represents a fundamental prerequisite for early social interactions, allowing children to derive information about others’ feelings and intentions. The present study aims to explore possible differences between preterm and full-term children in the ability to detect emotional expressions, as well as possible relationships between this ability and socio-emotional skills and problem behaviors during everyday activities. We assessed 55 school-age children (n = 34 preterm and n = 21 full-term) with a cognitive battery that ensured comparable cognitive abilities between the two groups. Moreover, children were asked to identify emotional expressions from pictures of peers’ faces (Emotion Recognition Task). Finally, children’s emotional, social and behavioral outcomes were assessed with parent-reported questionnaires. The results revealed that preterm children were less accurate than full-term children in detecting positive emotional expressions and they showed poorer social and behavioral outcomes. Notably, correlational analyses showed a relationship between the ability to recognize emotional expressions and socio-emotional functioning. The present study highlights that early difficulties in decoding emotional signals from faces may be critically linked to emotional and behavioral regulation problems, with important implications for the development of social skills and effective interpersonal interactions.
Collapse
Affiliation(s)
- Letizia Della Longa
- Developmental Psychology and Socialization Department, University of Padova, 35131 Padova, Italy;
| | - Chiara Nosarti
- Department of Child and Adolescent Psychiatry, King’s College London, London SE5 8AF, UK;
| | - Teresa Farroni
- Developmental Psychology and Socialization Department, University of Padova, 35131 Padova, Italy;
| |
Collapse
|
12
|
Xu S, Li M, Yang C, Fang X, Ye M, Wu Y, Yang B, Huang W, Li P, Ma X, Fu S, Yin Y, Tian J, Gan Y, Jiang G. Abnormal Degree Centrality in Children with Low-Function Autism Spectrum Disorders: A Sleeping-State Functional Magnetic Resonance Imaging Study. Neuropsychiatr Dis Treat 2022; 18:1363-1374. [PMID: 35818374 PMCID: PMC9270980 DOI: 10.2147/ndt.s367104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
PURPOSE This study used the graph-theory approach, degree centrality (DC) to analyze whole-brain functional networks at the voxel level in children with ASD, and investigated whether DC changes were correlated with any clinical variables in ASD children. METHODS The current study included 86 children with ASD and 54 matched healthy subjects Aged 2-5.5 years. Next, chloral hydrate induced sleeping-state functional magnetic resonance imaging (ss-fMRI) datasets were acquired from these ASD and healthy subjects. For a given voxel, the DC was calculated by calculating the number of functional connections with significantly positive correlations at the individual level. Group differences were tested using two-sample t-tests (p < 0.01, AlphaSim corrected). Finally, relationships between abnormal DCs and clinical variables were investigated via Pearson's correlation analysis. RESULTS Children with ASD exhibited low DC values in the right middle frontal gyrus (MFG) (p < 0.01, AlphaSim corrected). Furthermore, significantly negative correlations were established between the decreased average DC values within the right MFG in ASD children and the total ABC scores, as well as with two ABC subscales measuring highly relevant impairments in ASD (ie, stereotypes and object-use behaviors and difficulties in language). CONCLUSION Taken together, the results of our ss-fMRI study suggest that abnormal DC may represent an important contribution to elucidation of the neuropathophysiological mechanisms of preschoolers with ASD.
Collapse
Affiliation(s)
- Shoujun Xu
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Meng Li
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Chunlan Yang
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Xiangling Fang
- Department of Department of Children Healthcare, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Miaoting Ye
- Department of Department of Children Healthcare, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Yunfan Wu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Binrang Yang
- Department of Department of Children Healthcare, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Wenxian Huang
- Department of Department of Children Healthcare, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Peng Li
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Xiaofen Ma
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Shishun Fu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Yi Yin
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Junzhang Tian
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Yungen Gan
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Guihua Jiang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| |
Collapse
|
13
|
Rajasilta O, Häkkinen S, Björnsdotter M, Scheinin NM, Lehtola SJ, Saunavaara J, Parkkola R, Lähdesmäki T, Karlsson L, Karlsson H, Tuulari JJ. Maternal pre-pregnancy BMI associates with neonate local and distal functional connectivity of the left superior frontal gyrus. Sci Rep 2021; 11:19182. [PMID: 34584134 PMCID: PMC8478954 DOI: 10.1038/s41598-021-98574-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 09/06/2021] [Indexed: 11/09/2022] Open
Abstract
Maternal obesity/overweight during pregnancy has reached epidemic proportions and has been linked with adverse outcomes for the offspring, including cognitive impairment and increased risk for neuropsychiatric disorders. Prior neuroimaging investigations have reported widespread aberrant functional connectivity and white matter tract abnormalities in neonates born to obese mothers. Here we explored whether maternal pre-pregnancy adiposity is associated with alterations in local neuronal synchrony and distal connectivity in the neonate brain. 21 healthy mother-neonate dyads from uncomplicated pregnancies were included in this study (age at scanning 26.14 ± 6.28 days, 12 male). The neonates were scanned with a 6-min resting-state functional magnetic resonance imaging (rs-fMRI) during natural sleep. Regional homogeneity (ReHo) maps were computed from obtained rs-fMRI data. Multiple regression analysis was performed to assess the association of pre-pregnancy maternal body-mass-index (BMI) and ReHo. Seed-based connectivity analysis with multiple regression was subsequently performed with seed-ROI derived from ReHo analysis. Maternal adiposity measured by pre-pregnancy BMI was positively associated with neonate ReHo values within the left superior frontal gyrus (SFG) (FWE-corrected p < 0.005). Additionally, we found both positive and negative associations (p < 0.05, FWE-corrected) for maternal pre-pregnancy BMI and seed-based connectivity between left SFG and prefrontal, amygdalae, basal ganglia and insular regions. Our results imply that maternal pre-pregnancy BMI associates with local and distal functional connectivity within the neonate left superior frontal gyrus. These findings add to the evidence that increased maternal pre-pregnancy BMI has a programming influence on the developing neonate brain functional networks.
Collapse
Affiliation(s)
- Olli Rajasilta
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland.
| | - Suvi Häkkinen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland.,Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Malin Björnsdotter
- Department of Psychiatry for Affective Disorders, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Noora M Scheinin
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Satu J Lehtola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
| | - Jani Saunavaara
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Tuire Lähdesmäki
- Department of Pediatric Neurology, Turku University Hospital and University of Turku, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland.,Center for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland.,Center for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland.,Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland.,Department of Psychiatry, University of Oxford, UK (Sigrid Juselius Fellowship), Oxford, UK.,Turku Collegium for Science, Medicine and Technology, University of Turku, Turku, Finland
| |
Collapse
|
14
|
A white paper on a neurodevelopmental framework for drug discovery in autism and other neurodevelopmental disorders. Eur Neuropsychopharmacol 2021; 48:49-88. [PMID: 33781629 DOI: 10.1016/j.euroneuro.2021.02.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/20/2022]
Abstract
In the last decade there has been a revolution in terms of genetic findings in neurodevelopmental disorders (NDDs), with many discoveries critical for understanding their aetiology and pathophysiology. Clinical trials in single-gene disorders such as fragile X syndrome highlight the challenges of investigating new drug targets in NDDs. Incorporating a developmental perspective into the process of drug development for NDDs could help to overcome some of the current difficulties in identifying and testing new treatments. This paper provides a summary of the proceedings of the 'New Frontiers Meeting' on neurodevelopmental disorders organised by the European College of Neuropsychopharmacology in conjunction with the Innovative Medicines Initiative-sponsored AIMS-2-TRIALS consortium. It brought together experts in developmental genetics, autism, NDDs, and clinical trials from academia and industry, regulators, patient and family associations, and other stakeholders. The meeting sought to provide a platform for focused communication on scientific insights, challenges, and methodologies that might be applicable to the development of CNS treatments from a neurodevelopmental perspective. Multidisciplinary translational consortia to develop basic and clinical research in parallel could be pivotal to advance knowledge in the field. Although implementation of clinical trials for NDDs in paediatric populations is widely acknowledged as essential, safety concerns should guide each aspect of their design. Industry and academia should join forces to improve knowledge of the biology of brain development, identify the optimal timing of interventions, and translate these findings into new drugs, allowing for the needs of users and families, with support from regulatory agencies.
Collapse
|
15
|
Kushki A, Cardy RE, Panahandeh S, Malihi M, Hammill C, Brian J, Iaboni A, Taylor MJ, Schachar R, Crosbie J, Arnold P, Kelley E, Ayub M, Nicolson R, Georgiades S, Lerch JP, Anagnostou E. Cross-Diagnosis Structural Correlates of Autistic-Like Social Communication Differences. Cereb Cortex 2021; 31:5067-5076. [PMID: 34080611 PMCID: PMC8491692 DOI: 10.1093/cercor/bhab142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 11/14/2022] Open
Abstract
Social communication differences are seen in autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and obsessive–compulsive disorder (OCD), but the brain mechanisms contributing to these differences remain largely unknown. To address this gap, we used a data-driven and diagnosis-agnostic approach to discover brain correlates of social communication differences in ASD, ADHD, and OCD, and subgroups of individuals who share similar patterns of brain-behavior associations. A machine learning pipeline (regression clustering) was used to discover the pattern of association between structural brain measures (volume, surface area, and cortical thickness) and social communication abilities. Participants (n = 416) included children with a diagnosis of ASD (n = 192, age = 12.0[5.6], 19% female), ADHD (n = 109, age = 11.1[4.1], 18% female), or OCD (n = 50, age = 12.3[4.2], 42% female), and typically developing controls (n = 65, age = 11.6[7.1], 48% female). The analyses revealed (1) associations with social communication abilities in distributed cortical and subcortical networks implicated in social behaviors, language, attention, memory, and executive functions, and (2) three data-driven, diagnosis-agnostic subgroups based on the patterns of association in the above networks. Our results suggest that different brain networks may contribute to social communication differences in subgroups that are not diagnosis-specific.
Collapse
Affiliation(s)
- Azadeh Kushki
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario M4G 1R8, Canada.,University of Toronto, Institute of Biomedical Engineering, Toronto, Ontario M5S 3G9, Canada
| | - Robyn E Cardy
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario M4G 1R8, Canada.,University of Toronto, Institute of Biomedical Engineering, Toronto, Ontario M5S 3G9, Canada
| | - Sina Panahandeh
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario M4G 1R8, Canada.,University of Toronto, Institute of Biomedical Engineering, Toronto, Ontario M5S 3G9, Canada
| | - Mahan Malihi
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario M4G 1R8, Canada.,University of Toronto, Institute of Biomedical Engineering, Toronto, Ontario M5S 3G9, Canada
| | - Christopher Hammill
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario M5T 3H7, Canada
| | - Jessica Brian
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario M4G 1R8, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | - Alana Iaboni
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario M4G 1R8, Canada
| | - Margot J Taylor
- Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.,Department of Medical Imaging, University of Toronto, Toronto M5T 1W7, Canada
| | - Russell Schachar
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada.,Department of Psychiatry, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Jennifer Crosbie
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada.,Department of Psychiatry, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Paul Arnold
- Hotchkiss Brain Institute, Departments of Psychiatry & Medical Genetics, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Elizabeth Kelley
- Department of Psychology and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Muhammad Ayub
- Department of Psychiatry, Queen's University, Kingston, Ontario K7L 7X3, Canada
| | - Robert Nicolson
- Department of Psychiatry, Western University, London, Ontario M6c 0A7, Canada
| | - Stelios Georgiades
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario M5T 3H7, Canada.,Program in Neuroscience and Mental Health, The Hospital for Sick Children, Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 0A4, Canada.,Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Evdokia Anagnostou
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario M4G 1R8, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
16
|
Roy D, Uddin LQ. Atypical core-periphery brain dynamics in autism. Netw Neurosci 2021; 5:295-321. [PMID: 34189366 PMCID: PMC8233106 DOI: 10.1162/netn_a_00181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/31/2020] [Indexed: 11/06/2022] Open
Abstract
The intrinsic function of the human brain is dynamic, giving rise to numerous behavioral subtypes that fluctuate distinctively at multiple timescales. One of the key dynamical processes that takes place in the brain is the interaction between core-periphery brain regions, which undergoes constant fluctuations associated with developmental time frames. Core-periphery dynamical changes associated with macroscale brain network dynamics span multiple timescales and may lead to atypical behavior and clinical symptoms. For example, recent evidence suggests that brain regions with shorter intrinsic timescales are located at the periphery of brain networks (e.g., sensorimotor hand, face areas) and are implicated in perception and movement. On the contrary, brain regions with longer timescales are core hub regions. These hubs are important for regulating interactions between the brain and the body during self-related cognition and emotion. In this review, we summarize a large body of converging evidence derived from time-resolved fMRI studies in autism to characterize atypical core-periphery brain dynamics and how they relate to core and contextual sensory and cognitive profiles.
Collapse
Affiliation(s)
- Dipanjan Roy
- Cognitive Brain Dynamics Lab, National Brain Research Centre, Manesar, India
| | - Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| |
Collapse
|
17
|
Nair A, Jalal R, Liu J, Tsang T, McDonald NM, Jackson L, Ponting C, Jeste SS, Bookheimer SY, Dapretto M. Altered Thalamocortical Connectivity in 6-Week-Old Infants at High Familial Risk for Autism Spectrum Disorder. Cereb Cortex 2021; 31:4191-4205. [PMID: 33866373 DOI: 10.1093/cercor/bhab078] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
Converging evidence from neuroimaging studies has revealed altered connectivity in cortical-subcortical networks in youth and adults with autism spectrum disorder (ASD). Comparatively little is known about the development of cortical-subcortical connectivity in infancy, before the emergence of overt ASD symptomatology. Here, we examined early functional and structural connectivity of thalamocortical networks in infants at high familial risk for ASD (HR) and low-risk controls (LR). Resting-state functional connectivity and diffusion tensor imaging data were acquired in 52 6-week-old infants. Functional connectivity was examined between 6 cortical seeds-prefrontal, motor, somatosensory, temporal, parietal, and occipital regions-and bilateral thalamus. We found significant thalamic-prefrontal underconnectivity, as well as thalamic-occipital and thalamic-motor overconnectivity in HR infants, relative to LR infants. Subsequent structural connectivity analyses also revealed atypical white matter integrity in thalamic-occipital tracts in HR infants, compared with LR infants. Notably, aberrant connectivity indices at 6 weeks predicted atypical social development between 9 and 36 months of age, as assessed with eye-tracking and diagnostic measures. These findings indicate that thalamocortical connectivity is disrupted at both the functional and structural level in HR infants as early as 6 weeks of age, providing a possible early marker of risk for ASD.
Collapse
Affiliation(s)
- Aarti Nair
- Department of Psychology, School of Behavioral Health, Loma Linda University, Loma Linda, CA 92354, USA
| | - Rhideeta Jalal
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA
| | - Janelle Liu
- Interdepartmental Neuroscience Program, University of California, Los Angeles, CA 90095, USA
| | - Tawny Tsang
- Department of Psychology, University of California, Los Angeles, CA 90095, USA
| | - Nicole M McDonald
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA
| | - Lisa Jackson
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA
| | - Carolyn Ponting
- Department of Psychology, University of California, Los Angeles, CA 90095, USA
| | - Shafali S Jeste
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA
| | - Susan Y Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA
| | - Mirella Dapretto
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
18
|
Early behavioral profiles elucidating vulnerability and resiliency to later ASD outcomes. Dev Psychopathol 2020; 32:1217-1229. [PMID: 32928316 DOI: 10.1017/s0954579420000814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Infant siblings of children with autism spectrum disorder (ASD) exhibit greater heterogeneity in behavioral presentation and outcomes relative to infants at low familial risk (LR), yet there is limited understanding of the diverse developmental profiles that characterize these infants. We applied a hierarchical agglomerative cluster analysis approach to parse developmental heterogeneity in 420 toddlers with heightened (HR) and low (LR) familial risk for ASD using measures of four dimensions of development: language, social, play, and restricted and repetitive behaviors (RRB). Results revealed a two-cluster solution. Comparisons of clusters revealed significantly lower language, social, and play performance, and higher levels of restricted and repetitive behaviors in Cluster 1 relative to Cluster 2. In Cluster 1, 25% of children were later diagnosed with ASD compared to 8% in Cluster 2. Comparisons within Cluster 1 between subgroups of toddlers having ASD+ versus ASD- 36-month outcomes revealed significantly lower functioning in the ASD+ subgroup across cognitive, motor, social, language, symbolic, and speech dimensions. Findings suggest profiles of early development associated with resiliency and vulnerability to later ASD diagnosis, with multidimensional developmental lags signaling vulnerability to ASD diagnosis.
Collapse
|
19
|
Ciarrusta J, Dimitrova R, McAlonan G. Early maturation of the social brain: How brain development provides a platform for the acquisition of social-cognitive competence. PROGRESS IN BRAIN RESEARCH 2020; 254:49-70. [PMID: 32859293 DOI: 10.1016/bs.pbr.2020.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Across the last century psychology has provided a lot of insight about social-cognitive competence. Recognizing facial expressions, joint attention, discrimination of cues and experiencing empathy are just a few examples of the social skills humans acquire from birth to adolescence. However, how very early brain maturation provides a platform to support the attainment of highly complex social behavior later in development remains poorly understood. Magnetic Resonance Imaging provides a safe means to investigate the typical and atypical maturation of regions of the brain responsible for social cognition in as early as the perinatal period. Here, we first review some technical challenges and advances of using functional magnetic resonance imaging on developing infants to then describe current knowledge on the development of diverse systems associated with social function. We will then explain how these characteristics might differ in infants with genetic or environmental risk factors, who are vulnerable to atypical neurodevelopment. Finally, given the rapid early development of systems necessary for social skills, we propose a new framework to investigate sensitive time windows of development when neural substrates might be more vulnerable to impairment due to a genetic or environmental insult.
Collapse
Affiliation(s)
- Judit Ciarrusta
- Centre for the Developing Brain, School Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, United Kingdom; Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Ralica Dimitrova
- Centre for the Developing Brain, School Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, United Kingdom; Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Grainne McAlonan
- Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
20
|
Neuroimaging Markers of Risk and Pathways to Resilience in Autism Spectrum Disorder. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:200-210. [PMID: 32839155 DOI: 10.1016/j.bpsc.2020.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/04/2020] [Accepted: 06/28/2020] [Indexed: 01/22/2023]
Abstract
Autism spectrum disorder is a complex, heterogeneous neurodevelopmental condition of largely unknown etiology. This heterogeneity of symptom presentation, combined with high rates of comorbidity with other developmental disorders and a lack of reliable biomarkers, makes diagnosing and evaluating life outcomes for individuals with autism spectrum disorder a challenge. We review the growing literature on neuroimaging-based biomarkers of risk for the development of autism and explore evidence for resilience in some autistic individuals. The current literature suggests that neuroimaging during early infancy, in combination with prebirth and early genetic studies, is a promising tool for identifying biomarkers of risk, while studies of gene expression and DNA methylation have provided some key insights into mechanisms of resilience. With genetics and the environment contributing to both risk for the development of autism spectrum disorder and conditions for resilience, additional studies are needed to understand how risk and resilience interact mechanistically, whereby factors of risk may engender conditions for adaptation. Future studies should prioritize longitudinal designs in global cohorts, with the involvement of the autism community as partners in research to help identify domains of functioning that hold value and importance to the community.
Collapse
|
21
|
Carroll L, Braeutigam S, Dawes JM, Krsnik Z, Kostovic I, Coutinho E, Dewing JM, Horton CA, Gomez-Nicola D, Menassa DA. Autism Spectrum Disorders: Multiple Routes to, and Multiple Consequences of, Abnormal Synaptic Function and Connectivity. Neuroscientist 2020; 27:10-29. [PMID: 32441222 PMCID: PMC7804368 DOI: 10.1177/1073858420921378] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Autism spectrum disorders (ASDs) are a heterogeneous group of
neurodevelopmental disorders of genetic and environmental etiologies.
Some ASD cases are syndromic: associated with clinically defined
patterns of somatic abnormalities and a neurobehavioral phenotype
(e.g., Fragile X syndrome). Many cases, however, are idiopathic or
non-syndromic. Such disorders present themselves during the early
postnatal period when language, speech, and personality start to
develop. ASDs manifest by deficits in social communication and
interaction, restricted and repetitive patterns of behavior across
multiple contexts, sensory abnormalities across multiple modalities
and comorbidities, such as epilepsy among many others. ASDs are
disorders of connectivity, as synaptic dysfunction is common to both
syndromic and idiopathic forms. While multiple theories have been
proposed, particularly in idiopathic ASDs, none address why certain
brain areas (e.g., frontotemporal) appear more vulnerable than others
or identify factors that may affect phenotypic specificity. In this
hypothesis article, we identify possible routes leading to, and the
consequences of, altered connectivity and review the evidence of
central and peripheral synaptic dysfunction in ASDs. We postulate that
phenotypic specificity could arise from aberrant experience-dependent
plasticity mechanisms in frontal brain areas and peripheral sensory
networks and propose why the vulnerability of these areas could be
part of a model to unify preexisting pathophysiological theories.
Collapse
Affiliation(s)
- Liam Carroll
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Sven Braeutigam
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, Oxfordshire, UK
| | - John M Dawes
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Zeljka Krsnik
- Croatian Institute for Brain Research, Centre of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivica Kostovic
- Croatian Institute for Brain Research, Centre of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ester Coutinho
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Jennifer M Dewing
- Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| | - Christopher A Horton
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire, UK
| | - Diego Gomez-Nicola
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - David A Menassa
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK.,Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Impairments in social interaction/communication become apparent after 12 months of age in children who develop Autism spectrum disorder (ASD). Studies of baby siblings of children with ASD provide the means to detect changes in the brain that are present before behavioral symptoms appear. In this review, advances from brain imaging studies of infant siblings over the past 18 months are highlighted. RECENT FINDINGS During the first 2 months of life, functional differences in social brain regions and microstructural differences in dorsal language tracks are found in some high-risk baby siblings. At 4-6 months of age, differences in subcortical and cerebellum volumes and atypical cortical responses to social stimuli are evident. At 6 months, extra-axial cerebrospinal fluid is increased, and at 8 months there is evidence of cortical hyper-reactivity. Patterns of functional connectivity are distinct in infant siblings and suggest dysfunctional activation and integration of information across the cortex and neural networks underlying social behaviors. SUMMARY Further replication in very large independent samples is needed to verify the majority of the findings discussed and understand how they are related within individual infants. Much more research is needed before translation to clinical practice.
Collapse
|
23
|
Lord C, Brugha TS, Charman T, Cusack J, Dumas G, Frazier T, Jones EJH, Jones RM, Pickles A, State MW, Taylor JL, Veenstra-VanderWeele J. Autism spectrum disorder. Nat Rev Dis Primers 2020; 6:5. [PMID: 31949163 PMCID: PMC8900942 DOI: 10.1038/s41572-019-0138-4] [Citation(s) in RCA: 695] [Impact Index Per Article: 139.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/26/2019] [Indexed: 12/27/2022]
Abstract
Autism spectrum disorder is a construct used to describe individuals with a specific combination of impairments in social communication and repetitive behaviours, highly restricted interests and/or sensory behaviours beginning early in life. The worldwide prevalence of autism is just under 1%, but estimates are higher in high-income countries. Although gross brain pathology is not characteristic of autism, subtle anatomical and functional differences have been observed in post-mortem, neuroimaging and electrophysiological studies. Initially, it was hoped that accurate measurement of behavioural phenotypes would lead to specific genetic subtypes, but genetic findings have mainly applied to heterogeneous groups that are not specific to autism. Psychosocial interventions in children can improve specific behaviours, such as joint attention, language and social engagement, that may affect further development and could reduce symptom severity. However, further research is necessary to identify the long-term needs of people with autism, and treatments and the mechanisms behind them that could result in improved independence and quality of life over time. Families are often the major source of support for people with autism throughout much of life and need to be considered, along with the perspectives of autistic individuals, in both research and practice.
Collapse
Affiliation(s)
- Catherine Lord
- Departments of Psychiatry and School of Education, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Traolach S Brugha
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Tony Charman
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | | | - Guillaume Dumas
- Institut Pasteur, UMR3571 CNRS, Université de Paris, Paris, France
| | | | - Emily J H Jones
- Centre for Brain & Cognitive Development, University of London, London, UK
| | - Rebecca M Jones
- The Sackler Institute for Developmental Psychobiology, New York, NY, USA
- The Center for Autism and the Developing Brain, White Plains, NY, USA
| | - Andrew Pickles
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Matthew W State
- Department of Psychiatry, Langley Porter Psychiatric Institute and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Julie Lounds Taylor
- Department of Pediatrics and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | | |
Collapse
|
24
|
Girault JB, Piven J. The Neurodevelopment of Autism from Infancy Through Toddlerhood. Neuroimaging Clin N Am 2019; 30:97-114. [PMID: 31759576 DOI: 10.1016/j.nic.2019.09.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Autism spectrum disorder (ASD) emerges during early childhood and is marked by a relatively narrow window in which infants transition from exhibiting normative behavioral profiles to displaying the defining features of the ASD phenotype in toddlerhood. Prospective brain imaging studies in infants at high familial risk for autism have revealed important insights into the neurobiology and developmental unfolding of ASD. In this article, we review neuroimaging studies of brain development in ASD from birth through toddlerhood, relate these findings to candidate neurobiological mechanisms, and discuss implications for future research and translation to clinical practice.
Collapse
Affiliation(s)
- Jessica B Girault
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill School of Medicine, 101 Renee Lynne Court, Chapel Hill, NC 27599, USA.
| | - Joseph Piven
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill School of Medicine, 101 Renee Lynne Court, Chapel Hill, NC 27599, USA
| |
Collapse
|