1
|
Lin H, Liu J, Hou Y, Yu Z, Hong J, Yu J, Chen Y, Hu J, Xia D. Microneedle patch with pure drug tips for delivery of liraglutide: pharmacokinetics in rats and minipigs. Drug Deliv Transl Res 2025; 15:216-230. [PMID: 38619705 DOI: 10.1007/s13346-024-01582-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2024] [Indexed: 04/16/2024]
Abstract
Transdermal delivery of peptide drugs is almost impossible with conventional penetration enhancers because of epidermal barrier function. Microneedle (MN) patches can bypass the epidermal barrier and have been developed for trans- and intradermal delivery of peptide drugs and vaccines. However, dissolving MN patches are limited by low drug loading capacities due to their small size and admixture of drug and water-soluble excipients. Furthermore, few in vivo pharmacokinetic studies, especially in large animals such as pigs, have been performed to assess post-application systemic drug exposure. Here, we developed a dissolving MN patch with pure liraglutide at the needle tips. The MN patch could load up to 2.21 ± 0.14 mg of liraglutide in a patch size of 0.9 cm2, which was nearly two orders of magnitude higher than that obtained with conventional MN patches of the same size. Raman imaging confirmed that liraglutide was localized at the MN tips. The MN had sufficient mechanical strength to penetrate the epidermis and could deliver up to 0.93 ± 0.04 mg of liraglutide into skin with a dosing variability of less than 6.8%. The MN patch delivery enabled faster absorption of liraglutide than that provided by subcutaneous (S.C.) injection, and achieved relative bioavailability of 69.8% and 46.3% compared to S.C. injection in rats and minipigs, respectively. The MN patch also exhibited similar patterns of anti-hyperglycemic effect in diabetic rats and individual variability in pharmacokinetic parameters as S.C. injection. The liraglutide MN application was well tolerated; no skin irritation was observed in minipigs except for mild erythema occurring within 4 h after once daily administration for 7 days at the same site. Our preclinical study suggests that MN patch with pure drug needle tips might offer a safe and effective alternative to S.C. injection for administration of liraglutide.
Collapse
Affiliation(s)
- Hongbing Lin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jinbin Liu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yulin Hou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhiyan Yu
- Dongguan HEC Biopharmaceutical R&D Co., Ltd., Dongguan, China
| | - Juan Hong
- Dongguan HEC Biopharmaceutical R&D Co., Ltd., Dongguan, China
| | - Jianghong Yu
- Dongguan HEC Biopharmaceutical R&D Co., Ltd., Dongguan, China
| | - Yu Chen
- Dongguan HEC Biopharmaceutical R&D Co., Ltd., Dongguan, China
| | - Jingwen Hu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Dengning Xia
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
2
|
Szachniewicz MM, van den Eeden SJF, van Meijgaarden KE, Franken KLMC, van Veen S, Geluk A, Bouwstra JA, Ottenhoff THM. Intradermal versus subcutaneous immunization: Effects of administration route using a lipid-PLGA hybrid nanoparticle tuberculosis vaccine. Eur J Pharm Sci 2024; 205:106995. [PMID: 39710106 DOI: 10.1016/j.ejps.2024.106995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/17/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Tuberculosis (TB) remains a significant global health challenge, latently affecting around a quarter of the global population. The sole licensed TB vaccine, Mycobacterium bovis Bacillus Calmette-Guérin (BCG), shows variable efficacy, particularly among adolescents and adults, underscoring the pressing need for more effective vaccination strategies. The administration route is crucial for vaccine efficacy, and administration via the skin, being rich in immune cells, may offer advantages over conventional subcutaneous routes, which lack direct access to abundant antigen-presenting cells. This study compared the immunogenic effects of intradermal versus subcutaneous administration of a candidate TB vaccine delivering a Ag85B-ESAT6-Rv2034 (AER) multiphase fusion recombinant protein, in lipid-poly(D,L-lactic-co-glycolic acid) (lipid-PLGA) nanoparticles in mice. In-depth evaluation of immune responses in splenocytes was performed using 27-marker spectral flow cytometry. Both routes elicited significant T-cell responses. However, intradermal administration uniquely increased polyfunctional CD4+ and CD8+ T-cells producing IL-2, IFNγ, and TNFα, associated with protection against TB. Additionally, it significantly increased CD69+ B-cell counts and induced higher AER-specific antibody titers, particularly IgG2a. These results underscore the superior immunogenic potential of intradermal vaccine administration by effectively inducing immune cells associated with TB protection, highlighting its significance in the development of new vaccine strategies.
Collapse
Affiliation(s)
- M M Szachniewicz
- Department of Infectious Diseases, LUCID, Leiden University Medical Center (LUMC), The Netherlands.
| | - S J F van den Eeden
- Department of Infectious Diseases, LUCID, Leiden University Medical Center (LUMC), The Netherlands
| | - K E van Meijgaarden
- Department of Infectious Diseases, LUCID, Leiden University Medical Center (LUMC), The Netherlands
| | - K L M C Franken
- Department of Infectious Diseases, LUCID, Leiden University Medical Center (LUMC), The Netherlands
| | - S van Veen
- Department of Infectious Diseases, LUCID, Leiden University Medical Center (LUMC), The Netherlands
| | - A Geluk
- Department of Infectious Diseases, LUCID, Leiden University Medical Center (LUMC), The Netherlands
| | - J A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, The Netherlands
| | - T H M Ottenhoff
- Department of Infectious Diseases, LUCID, Leiden University Medical Center (LUMC), The Netherlands
| |
Collapse
|
3
|
Pollock KM, Borges ÁH, Cheeseman HM, Rosenkrands I, Schmidt KL, Søndergaard RE, Day S, Evans A, McFarlane LR, Joypooranachandran J, Amini F, Skallerup P, Dohn RB, Jensen CG, Olsen AW, Bang P, Cole T, Schronce J, Lemm NM, Kristiansen MP, Andersen PL, Dietrich J, Shattock RJ, Follmann F. An investigation of trachoma vaccine regimens by the chlamydia vaccine CTH522 administered with cationic liposomes in healthy adults (CHLM-02): a phase 1, double-blind trial. THE LANCET. INFECTIOUS DISEASES 2024; 24:829-844. [PMID: 38615673 DOI: 10.1016/s1473-3099(24)00147-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/09/2024] [Accepted: 02/22/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND There is no vaccine against the major global pathogen Chlamydia trachomatis; its different serovars cause trachoma in the eye or chlamydia in the genital tract. We did a clinical trial administering CTH522, a recombinant version of the C trachomatis major outer membrane molecule, in different dose concentrations with and without adjuvant, to establish its safety and immunogenicity when administered intramuscularly, intradermally, and topically into the eye, in prime-boost regimens. METHODS CHLM-02 was a phase 1, double-blind, randomised, placebo-controlled trial at the National Institute for Health Research Imperial Clinical Research Facility, London, UK. Participants were healthy men and non-pregnant women aged 18-45 years, without pre-existing C trachomatis genital infection. Participants were assigned into six groups by the electronic database in a pre-prepared randomisation list (A-F). Participants were randomly assigned (1:1:1:1:1) to each of the groups A-E (12 participants each) and 6 were randomly assigned to group F. Investigators were masked to treatment allocation. Groups A-E received investigational medicinal product and group F received placebo only. Two liposomal adjuvants were compared, CAF01 and CAF09b. The groups were intramuscular 85 μg CTH522-CAF01, or placebo on day 0 and two boosters or placebo at day 28 and 112, and a mucosal recall with either placebo or CTH522 topical ocularly at day 140 (A); intramuscular 85 μg CTH522-CAF01, two boosters at day 28 and 112 with additional topical ocular administration of CTH522, and a mucosal recall with either placebo or CTH522 topical ocularly at day 140 (B); intramuscular 85 μg CTH522-CAF01, two boosters at day 28 and 112 with additional intradermal administration of CTH522, and a mucosal recall with either placebo or CTH522 topical ocularly at day 140 (C); intramuscular 15 μg CTH522-CAF01, two boosters at day 28 and 112, and a mucosal recall with either placebo or CTH522 topical ocularly at day 140 (D); intramuscular 85 μg CTH522-CAF09b, two boosters at day 28 and 112, and a mucosal recall with either placebo or CTH522 topical ocularly at day 140 (E); intramuscular placebo (F). The primary outcome was safety; the secondary outcome (humoral immunogenicity) was the percentage of trial participants achieving anti-CTH522 IgG seroconversion, defined as four-fold and ten-fold increase over baseline concentrations. Analyses were done as intention to treat and as per protocol. The trial is registered with ClinicalTrials.gov, NCT03926728, and is complete. FINDINGS Between Feb 17, 2020 and Feb 22, 2022, of 154 participants screened, 65 were randomly assigned, and 60 completed the trial (34 [52%] of 65 women, 46 [71%] of 65 White, mean age 26·8 years). No serious adverse events occurred but one participant in group A2 discontinued dosing after having self-limiting adverse events after both placebo and investigational medicinal product doses. Study procedures were otherwise well tolerated; the majority of adverse events were mild to moderate, with only seven (1%) of 865 reported as grade 3 (severe). There was 100% four-fold seroconversion rate by day 42 in the active groups (A-E) and no seroconversion in the placebo group. Serum IgG anti-CTH522 titres were higher after 85 μg CTH522-CAF01 than 15 μg, although not significantly (intention-to-treat median IgG titre ratio groups A-C:D=5·6; p=0·062), with no difference after three injections of 85 μg CTH522-CAF01 compared with CTH522-CAF09b (group E). Intradermal CTH522 (group C) induced high titres of serum IgG anti-CTH522 neutralising antibodies against serovars B (trachoma) and D (urogenital). Topical ocular CTH522 (group B) at day 28 and 112 induced higher total ocular IgA compared with baseline (p<0·001). Participants in all active vaccine groups, particularly groups B and E, developed cell mediated immune responses against CTH522. INTERPRETATION CTH522, adjuvanted with CAF01 or CAF09b, is safe and immunogenic, with 85 μg CTH522-CAF01 inducing robust serum IgG binding titres. Intradermal vaccination conferred systemic IgG neutralisation breadth, and topical ocular administration increased ocular IgA formation. These findings indicate CTH522 vaccine regimens against ocular trachoma and urogenital chlamydia for testing in phase 2, clinical trials. FUNDING The EU Horizon Program TRACVAC.
Collapse
Affiliation(s)
- Katrina M Pollock
- Department of Infectious Disease, Imperial College London, London, UK
| | - Álvaro H Borges
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | | | - Ida Rosenkrands
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Kirstine L Schmidt
- Department of Vaccine Development, Statens Serum Institut, Copenhagen, Denmark
| | | | - Suzanne Day
- Department of Infectious Disease, Imperial College London, London, UK
| | - Abbey Evans
- Department of Infectious Disease, Imperial College London, London, UK
| | - Leon R McFarlane
- Department of Infectious Disease, Imperial College London, London, UK
| | | | - Fahimah Amini
- Department of Infectious Disease, Imperial College London, London, UK
| | - Per Skallerup
- Department of Vaccine Development, Statens Serum Institut, Copenhagen, Denmark
| | - Rebecca B Dohn
- Department of Vaccine Development, Statens Serum Institut, Copenhagen, Denmark
| | - Charlotte G Jensen
- Department of Vaccine Development, Statens Serum Institut, Copenhagen, Denmark
| | - Anja W Olsen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Bang
- Department of Vaccine Development, Statens Serum Institut, Copenhagen, Denmark
| | - Tom Cole
- Department of Infectious Disease, Imperial College London, London, UK
| | - Joanna Schronce
- Department of Infectious Disease, Imperial College London, London, UK
| | - Nana-Marie Lemm
- Department of Infectious Disease, Imperial College London, London, UK
| | - Max P Kristiansen
- Department of Vaccine Development, Statens Serum Institut, Copenhagen, Denmark
| | - Peter L Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation, Hellerup, Denmark
| | - Jes Dietrich
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.
| | - Robin J Shattock
- Department of Infectious Disease, Imperial College London, London, UK
| | - Frank Follmann
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
4
|
Gromer DJ, Plikaytis BD, McCullough MP, Wimalasena ST, Rouphael N. The Relationship between Immunogenicity and Reactogenicity of Seasonal Influenza Vaccine Using Different Delivery Methods. Vaccines (Basel) 2024; 12:809. [PMID: 39066447 PMCID: PMC11281354 DOI: 10.3390/vaccines12070809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/13/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Vaccine immunogenicity and reactogenicity depend on recipient and vaccine characteristics. We hypothesized that healthy adults reporting higher reactogenicity from seasonal inactivated influenza vaccine (IIV) developed higher antibody titers compared with those reporting lower reactogenicity. We performed a secondary analysis of a randomized phase 1 trial of a trivalent IIV delivered by microneedle patch (MNP) or intramuscular (IM) injection. We created composite reactogenicity scores as exposure variables and used hemagglutination inhibition (HAI) titers as outcome variables. We used mixed-model analysis of variance to estimate geometric mean titers (GMTs) and titer fold change and modified Poisson generalized estimating equations to estimate risk ratios of seroprotection and seroconversion. Estimates of H3N2 GMTs were associated with the Systemic and Local scores among the IM group. Within the IM group, those with high reaction scores had lower baseline H3N2 GMTs and twice the titer fold change by day 28. Those with high Local scores had a greater probability of seroconversion. These results suggest that heightened reactogenicity to IM IIV is related to low baseline humoral immunity to an included antigen. Participants with greater reactogenicity developed greater titer fold change after 4 weeks, although the response magnitude was similar or lower compared with low-reactogenicity participants.
Collapse
Affiliation(s)
- Daniel J. Gromer
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University, Decatur, GA 30030, USA; (M.P.M.); (S.T.W.); (N.R.)
- Laney Graduate School, Emory University, Atlanta, GA 30307, USA
| | | | - Michele P. McCullough
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University, Decatur, GA 30030, USA; (M.P.M.); (S.T.W.); (N.R.)
| | - Sonia Tandon Wimalasena
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University, Decatur, GA 30030, USA; (M.P.M.); (S.T.W.); (N.R.)
| | - Nadine Rouphael
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University, Decatur, GA 30030, USA; (M.P.M.); (S.T.W.); (N.R.)
| |
Collapse
|
5
|
Garg N, Tellier G, Vale N, Kluge J, Portman JL, Markowska A, Tussey L. Phase 1, randomized, rater and participant blinded placebo-controlled study of the safety, reactogenicity, tolerability and immunogenicity of H1N1 influenza vaccine delivered by VX-103 (a MIMIX microneedle patch [MAP] system) in healthy adults. PLoS One 2024; 19:e0303450. [PMID: 38843267 PMCID: PMC11156369 DOI: 10.1371/journal.pone.0303450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/19/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The MIMIX platform is a novel microneedle array patch (MAP) characterized by slowly dissolving microneedle tips that deploy into the dermis following patch application. We describe safety, reactogenicity, tolerability and immunogenicity for MIMIX MAP vaccination against influenza. METHODOLOGY The trial was a Phase 1, exploratory, first-in-human, parallel randomized, rater, participant, study analyst-blinded, placebo-controlled study in Canada. Forty-five healthy participants (18 to 39 years of age, inclusive) were randomized in a 1:1:1 ratio to receive either 15 μg or 7.5 μg of an H1N1 influenza vaccine, or placebo delivered via MIMIX MAP to the volar forearm. A statistician used a computer program to create a randomization scheme with a block size of 3. Post-treatment follow-up was approximately 180 days. Primary safety outcomes included the incidence of study product related serious adverse events and unsolicited events within 180 days, solicited application site and systemic reactogenicity through 7 days after administration and solicited application site erythema and/or pigmentation 14, 28, 56 and 180 days after administration. Immunogenicity outcomes included antibody titers and percentage of seroconversion (SCR) and seroprotection (SPR) rates determined by the hemagglutination inhibition (HAI) assay. Exploratory outcomes included virus microneutralization (MN) titers, durability and breadth of the immune response. The trial was registered with ClinicalTrials.gov, number NCT06125717. FINDINGS Between July 7, 2022 and March 13, 2023 45 participants were randomized to a treatment group. One participant was lost to follow up in the 15 μg group and 1 participant withdrew from the 7.5 μg dose group. Safety analyses included n = 15 per group, immunogenicity analyses included n = 14 for the 15 μg and 7.5 μg treatment groups and n = 15 for the placebo group. No SAEs were reported in any of the treatment groups. All treatment groups reported solicited local events within 7 days after vaccination, with mild (Grade 1) erythema being the most frequent symptom reported. Other local symptoms reported included mostly mild (Grade 1) induration/swelling, itching, pigmentation, skin flaking, and tenderness. Within 7 days after vaccination, 2 participants (4.4%) reported moderate (Grade 2) erythema, 1 participant (2.2%) reported moderate (Grade 2) induration/swelling, and 1 participant (2.2%) reported moderate (Grade 2) itching. There was an overall reduction in erythema and pigmentation reported on Days 15, 29, 57, and 180 among all treatment groups. Systemic symptoms reported within 7 days after vaccination, included mild (Grade 1) fatigue reported among all treatment groups, and mild (Grade 1) headache reported by 1 participant in the 7.5 μg treatment group. No study drug related severe symptoms were reported in the study. Group mean fold rises in HAI titers ranged between 8.7 and 12-fold, SCRs were >76% and SPRs were >92% for both VX-103 dose groups thereby fulfilling serological criteria established by the EMA and FDA for seasonal influenza vaccines. Longitudinal assessments demonstrate persistence of the immune response through at least Day 180. CONCLUSIONS The MIMIX MAP platform is safe, well tolerated and elicits robust antibody responses.
Collapse
Affiliation(s)
- Naveen Garg
- Centricity Research-Montreal, Point-Claire, Québec, Canada
| | - Guy Tellier
- Centricity Research-Mirabel, Mirabel, Québec, Canada
| | - Noah Vale
- Centricity Research-Toronto, Toronto, Ontario, Canada
| | - Jon Kluge
- Research and Development, Vaxess Technologies, Cambridge, Massachusetts, United States of America
| | - Jonathan L. Portman
- Research and Development, Vaxess Technologies, Cambridge, Massachusetts, United States of America
| | - Anna Markowska
- Research and Development, Vaxess Technologies, Cambridge, Massachusetts, United States of America
| | - Lynda Tussey
- Development and MAP Production, Vaxess Technologies, Woburn, Massachusetts, United States of America
| |
Collapse
|
6
|
Rosa Duque JS, Cheng SMS, Cohen CA, Leung D, Wang X, Mu X, Chung Y, Lau TM, Wang M, Zhang W, Zhang Y, Wong HHW, Tsang LCH, Chaothai S, Kwan TC, Li JKC, Chan KCK, Luk LLH, Ho JCH, Li WY, Lee AMT, Lam JHY, Chan SM, Wong WHS, Tam IYS, Mori M, Valkenburg SA, Peiris M, Tu W, Lau YL. Superior antibody and membrane protein-specific T-cell responses to CoronaVac by intradermal versus intramuscular routes in adolescents. World J Pediatr 2024; 20:353-370. [PMID: 38085470 PMCID: PMC11052846 DOI: 10.1007/s12519-023-00764-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/18/2023] [Indexed: 04/29/2024]
Abstract
BACKGROUND Optimising the immunogenicity of COVID-19 vaccines to improve their protection against disease is necessary. Fractional dosing by intradermal (ID) administration has been shown to be equally immunogenic as intramuscular (IM) administration for several vaccines, but the immunogenicity of ID inactivated whole severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the full dose is unknown. This study (NCT04800133) investigated the superiority of antibody and T-cell responses of full-dose CoronaVac by ID over IM administration in adolescents. METHODS Participants aged 11-17 years received two doses of IM or ID vaccine, followed by the 3rd dose 13-42 days later. Humoral and cellular immunogenicity outcomes were measured post-dose 2 (IM-CC versus ID-CC) and post-dose 3 (IM-CCC versus ID-CCC). Doses 2 and 3 were administered to 173 and 104 adolescents, respectively. RESULTS Spike protein (S) immunoglobulin G (IgG), S-receptor-binding domain (RBD) IgG, S IgG Fcγ receptor IIIa (FcγRIIIa)-binding, SNM [sum of individual (S), nucleocapsid protein (N), and membrane protein (M) peptide pool]-specific interleukin-2 (IL-2)+CD4+, SNM-specific IL-2+CD8+, S-specific IL-2+CD8+, N-specific IL-2+CD4+, N-specific IL-2+CD8+ and M-specific IL-2+CD4+ responses fulfilled the superior and non-inferior criteria for ID-CC compared to IM-CC, whereas IgG avidity was inferior. For ID-CCC, S-RBD IgG, surrogate virus neutralisation test, 90% plaque reduction neutralisation titre (PRNT90), PRNT50, S IgG avidity, S IgG FcγRIIIa-binding, M-specific IL-2+CD4+, interferon-γ+CD8+ and IL-2+CD8+ responses were superior and non-inferior to IM-CCC. The estimated vaccine efficacies were 49%, 52%, 66% and 79% for IM-CC, ID-CC, IM-CCC and ID-CCC, respectively. The ID groups reported more local, mild adverse reactions. CONCLUSION This is the first study to demonstrate superior antibody and M-specific T-cell responses by ID inactivated SARS-CoV-2 vaccination and serves as the basis for future research to improve the immunogenicity of inactivated vaccines.
Collapse
Affiliation(s)
- Jaime S Rosa Duque
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Samuel M S Cheng
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Carolyn A Cohen
- School of Public Health, The University of Hong Kong, Hong Kong, China
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Daniel Leung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiwei Wang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaofeng Mu
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuet Chung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Tsun Ming Lau
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Manni Wang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Wenyue Zhang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Yanmei Zhang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Howard H W Wong
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Leo C H Tsang
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Sara Chaothai
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Tsz Chun Kwan
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - John K C Li
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Karl C K Chan
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Leo L H Luk
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Jenson C H Ho
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Wing Yan Li
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Amos M T Lee
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Jennifer H Y Lam
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Sau Man Chan
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Wilfred H S Wong
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Issan Y S Tam
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Masashi Mori
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Japan
| | - Sophie A Valkenburg
- School of Public Health, The University of Hong Kong, Hong Kong, China.
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China.
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection, and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| | - Malik Peiris
- School of Public Health, The University of Hong Kong, Hong Kong, China.
- Center for Immunology and Infection C2i, Hong Kong, China.
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China.
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
Pullen RH, Sassano E, Agrawal P, Escobar J, Chehtane M, Schanen B, Drake DR, Luna E, Brennan RJ. A Predictive Model of Vaccine Reactogenicity Using Data from an In Vitro Human Innate Immunity Assay System. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:904-916. [PMID: 38276072 DOI: 10.4049/jimmunol.2300185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024]
Abstract
A primary concern in vaccine development is safety, particularly avoiding an excessive immune reaction in an otherwise healthy individual. An accurate prediction of vaccine reactogenicity using in vitro assays and computational models would facilitate screening and prioritization of novel candidates early in the vaccine development process. Using the modular in vitro immune construct model of human innate immunity, PBMCs from 40 healthy donors were treated with 10 different vaccines of varying reactogenicity profiles and then cell culture supernatants were analyzed via flow cytometry and a multichemokine/cytokine assay. Differential response profiles of innate activity and cell viability were observed in the system. In parallel, an extensive adverse event (AE) dataset for the vaccines was assembled from clinical trial data. A novel reactogenicity scoring framework accounting for the frequency and severity of local and systemic AEs was applied to the clinical data, and a machine learning approach was employed to predict the incidence of clinical AEs from the in vitro assay data. Biomarker analysis suggested that the relative levels of IL-1B, IL-6, IL-10, and CCL4 have higher predictive importance for AE risk. Predictive models were developed for local reactogenicity, systemic reactogenicity, and specific individual AEs. A forward-validation study was performed with a vaccine not used in model development, Trumenba (meningococcal group B vaccine). The clinically observed Trumenba local and systemic reactogenicity fell on the 26th and 93rd percentiles of the ranges predicted by the respective models. Models predicting specific AEs were less accurate. Our study presents a useful framework for the further development of vaccine reactogenicity predictive models.
Collapse
|
8
|
Lee J, Neustrup MA, Slütter B, O'Mahony C, Bouwstra JA, van der Maaden K. Intradermal Vaccination with PLGA Nanoparticles via Dissolving Microneedles and Classical Injection Needles. Pharm Res 2024; 41:305-319. [PMID: 38332390 PMCID: PMC10879229 DOI: 10.1007/s11095-024-03665-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/19/2024] [Indexed: 02/10/2024]
Abstract
PURPOSE A dissolving microneedle array (dMNA) is a vaccine delivery device with several advantages over conventional needles. By incorporating particulate adjuvants in the form of poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) into the dMNA, the immune response against the antigen might be enhanced. This study aimed to prepare PLGA-NP-loaded dMNA and to compare T-cell responses induced by either intradermally injected aqueous-PLGA-NP formulation or PLGA-NP-loaded dMNA in mice. METHODS PLGA NPs were prepared with microfluidics, and their physicochemical characteristics with regard to encapsulation efficiencies of ovalbumin (OVA) and CpG oligonucleotide (CpG), zeta potentials, polydispersity indexes, and sizes were analysed. PLGA NPs incorporated dMNA was produced with three different dMNA formulations by using the centrifugation method, and the integrity of PLGA NPs in dMNAs was evaluated. The immunogenicity was evaluated in mice by comparing the T-cell responses induced by dMNA and aqueous formulations containing ovalbumin and CpG (OVA/CpG) with and without PLGA NP. RESULTS Prepared PLGA NPs had a size of around 100 nm. The dMNA formulations affected the particle integrity, and the dMNA with poly(vinyl alcohol) (PVA) showed almost no aggregation of PLGA NPs. The PLGA:PVA weight ratio of 1:9 resulted in 100% of penetration efficiency and the fastest dissolution in ex-vivo human skin (< 30 min). The aqueous formulation with soluble OVA/CpG and the aqueous-PLGA-NP formulation with OVA/CpG induced the highest CD4 + T-cell responses in blood and spleen cells. CONCLUSIONS PLGA NPs incorporated dMNA was successfully fabricated and the aqueous formulation containing PLGA NPs induce superior CD4+ and CD8+ T-cell responses.
Collapse
Affiliation(s)
- Jihui Lee
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333CC, Leiden, the Netherlands
| | - Malene A Neustrup
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333CC, Leiden, the Netherlands
| | - Bram Slütter
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333CC, Leiden, the Netherlands
| | - Conor O'Mahony
- Tyndall National Institute, Lee Maltings, Prospect Row, Cork, Ireland
| | - Joke A Bouwstra
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333CC, Leiden, the Netherlands
| | - Koen van der Maaden
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333CC, Leiden, the Netherlands.
- Department of Immunology, Leiden University Medical Center, 2300RC, Leiden, the Netherlands.
| |
Collapse
|
9
|
Generotti A, Contreras R, Zounes B, Schade E, Kemme A, Rane Y, Liu X, Elwood D, Schultheis K, Marston J, McCoy J, Broderick K, Fisher P. Intradermal DNA vaccine delivery using vacuum-controlled, needle-free electroporation. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102070. [PMID: 38034030 PMCID: PMC10682253 DOI: 10.1016/j.omtn.2023.102070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
Intradermal delivery of DNA vaccines via electroporation (ID-EP) has shown clinical promise, but the use of needle electrodes is typically required to achieve consistent results. Here, delivery of a DNA vaccine targeting the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is achieved using noninvasive intradermal vacuum-EP (ID-VEP), which functions by pulling a small volume of skin tissue into a vacuum chamber containing noninvasive electrodes to perform EP at the injection site. Gene expression and immunogenicity correlated with EP parameters and vacuum chamber geometry in guinea pigs. ID-VEP generated potent humoral and cellular immune responses across multiple studies, while vacuum (without EP) greatly enhanced localized transfection but did not improve immunogenicity. Because EP was performed noninvasively, the only treatment site reaction observed was transient redness, and ID-VEP immune responses were comparable to a clinical needle-based ID-EP device. The ID-VEP delivery procedure is straightforward and highly repeatable, without any dependence on operator technique. This work demonstrates a novel, reliable, and needle-free delivery method for DNA vaccines.
Collapse
Affiliation(s)
| | | | | | - Eric Schade
- Inovio Pharmaceuticals, Inc., San Diego, CA 92121, USA
| | - Andrea Kemme
- Inovio Pharmaceuticals, Inc., San Diego, CA 92121, USA
| | - Yatish Rane
- Texas Tech University, Department of Chemical Engineering, Lubbock, TX 79409, USA
| | - Xinggang Liu
- Inovio Pharmaceuticals, Inc., San Diego, CA 92121, USA
| | - Dustin Elwood
- Inovio Pharmaceuticals, Inc., San Diego, CA 92121, USA
| | | | - Jeremy Marston
- Texas Tech University, Department of Chemical Engineering, Lubbock, TX 79409, USA
| | - Jay McCoy
- Inovio Pharmaceuticals, Inc., San Diego, CA 92121, USA
| | | | - Paul Fisher
- Inovio Pharmaceuticals, Inc., San Diego, CA 92121, USA
| |
Collapse
|
10
|
Edwards C, Shah SA, Gebhardt T, Jewell CM. Exploiting Unique Features of Microneedles to Modulate Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302410. [PMID: 37380199 PMCID: PMC10753036 DOI: 10.1002/adma.202302410] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/01/2023] [Indexed: 06/30/2023]
Abstract
Microneedle arrays (MNAs) are small patches containing hundreds of short projections that deliver signals directly to dermal layers without causing pain. These technologies are of special interest for immunotherapy and vaccine delivery because they directly target immune cells concentrated in the skin. The targeting abilities of MNAs result in efficient immune responses-often more protective or therapeutic-compared to conventional needle delivery. MNAs also offer logistical benefits, such as self-administration and transportation without refrigeration. Thus, numerous preclinical and clinical studies are exploring these technologies. Here the unique advantages of MNA, as well as critical challenges-such as manufacturing and sterility issues-the field faces to enable widespread deployment are discussed. How MNA design parameters can be exploited for controlled release of vaccines and immunotherapies, and the application to preclinical models of infection, cancer, autoimmunity, and allergies are explained. Specific strategies are also discussed to reduce off-target effects compared to conventional vaccine delivery routes, and novel chemical and manufacturing controls that enable cargo stability in MNAs across flexible intervals and temperatures. Clinical research using MNAs is then examined. Drawbacks of MNAs and the implications, and emerging opportunities to exploit MNAs for immune engineering and clinical use are concluded.
Collapse
Affiliation(s)
- Camilla Edwards
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Shrey A Shah
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Thomas Gebhardt
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, VIC, 3000, Australia
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- US Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, 21201, USA
- Robert E. Fischell Institute for Biomedical Devices, College Park, MD, 20742, USA
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, 21201, USA
| |
Collapse
|
11
|
Hall CA, Skelly C, Marc N, Risko J. Intramuscular versus intradermal administration for influenza vaccination in college students: A pilot study. JOURNAL OF AMERICAN COLLEGE HEALTH : J OF ACH 2023; 71:2639-2642. [PMID: 34871129 DOI: 10.1080/07448481.2021.1996371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 07/19/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE College student populations are considered at greater risk of contracting influenza due to their close living conditions. Despite this increased risk, college students are reluctant to obtain annual vaccination. This pilot study sought to determine perceptions of students on a college campus who received the annual influenza vaccination via an intradermal route. Participants and methods: Forty-nine college students participated in the IRB approved study. After receiving the intradermal influenza vaccination, participants completed a demographic survey and vaccination perceptions questionnaire. Results: Participants were more likely to want to have an intradermal injection in the future and reported less pain with the intradermal injection. Additionally, individuals who reported greater pain with the intramuscular injection in the past were significantly more likely to want to receive an intradermal injection in the future (p < 0.019). Conclusions: Results suggest that intradermal route of vaccination may be more appealing to the college population.
Collapse
Affiliation(s)
- Carrie Ann Hall
- School of Nursing and Health Sciences, Florida Southern College, Lakeland, Florida, USA
| | - Christy Skelly
- School of Nursing and Health Sciences, Florida Southern College, Lakeland, Florida, USA
| | - Nancy Marc
- School of Nursing and Health Sciences, Florida Southern College, Lakeland, Florida, USA
| | - Judy Risko
- School of Nursing and Health Sciences, Florida Southern College, Lakeland, Florida, USA
| |
Collapse
|
12
|
Rikhi N, Sei CJ, Rao M, Schuman RF, Kroscher KA, Matyas GR, Muema K, Lange C, Assiaw-Dufu A, Hussin E, Jobe O, Alving CR, Fischer GW. Unconjugated Multi-Epitope Peptides Adjuvanted with ALFQ Induce Durable and Broadly Reactive Antibodies to Human and Avian Influenza Viruses. Vaccines (Basel) 2023; 11:1468. [PMID: 37766144 PMCID: PMC10537791 DOI: 10.3390/vaccines11091468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
An unconjugated composite peptide vaccine targeting multiple conserved influenza epitopes from hemagglutinin, neuraminidase, and matrix protein and formulated with a safe and highly potent adjuvant, Army Liposome formulation (ALFQ), generated broad and durable immune responses in outbred mice. The antibodies recognized specific epitopes in influenza peptides and several human, avian, and swine influenza viruses. Comparable antibody responses to influenza viruses were observed with intramuscular and intradermal routes of vaccine administration. The peptide vaccine induced cross-reactive antibodies that recognized influenza virus subtypes A/H1N1, A/H3N2, A/H5N1, B/Victoria, and B/Yamagata. In addition, immune sera neutralized seasonal and pandemic influenza strains (Group 1 and Group 2). This composite multi-epitope peptide vaccine, formulated with ALFQ and administered via intramuscular and intradermal routes, provides a high-performance supra-seasonal vaccine that would be cost-effective and easily scalable, thus moving us closer to a viable strategy for a universal influenza vaccine and pandemic preparedness.
Collapse
Affiliation(s)
- Nimisha Rikhi
- Longhorn Vaccines and Diagnostics, Gaithersburg, MD 20878, USA; (N.R.); (K.A.K.); (K.M.); (A.A.-D.); (G.W.F.)
| | - Clara J. Sei
- Longhorn Vaccines and Diagnostics, Gaithersburg, MD 20878, USA; (N.R.); (K.A.K.); (K.M.); (A.A.-D.); (G.W.F.)
| | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.R.); (G.R.M.); (C.L.); (E.H.); (O.J.); (C.R.A.)
| | | | - Kellie A. Kroscher
- Longhorn Vaccines and Diagnostics, Gaithersburg, MD 20878, USA; (N.R.); (K.A.K.); (K.M.); (A.A.-D.); (G.W.F.)
| | - Gary R. Matyas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.R.); (G.R.M.); (C.L.); (E.H.); (O.J.); (C.R.A.)
| | - Kevin Muema
- Longhorn Vaccines and Diagnostics, Gaithersburg, MD 20878, USA; (N.R.); (K.A.K.); (K.M.); (A.A.-D.); (G.W.F.)
| | - Camille Lange
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.R.); (G.R.M.); (C.L.); (E.H.); (O.J.); (C.R.A.)
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Aba Assiaw-Dufu
- Longhorn Vaccines and Diagnostics, Gaithersburg, MD 20878, USA; (N.R.); (K.A.K.); (K.M.); (A.A.-D.); (G.W.F.)
| | - Elizabeth Hussin
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.R.); (G.R.M.); (C.L.); (E.H.); (O.J.); (C.R.A.)
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Ousman Jobe
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.R.); (G.R.M.); (C.L.); (E.H.); (O.J.); (C.R.A.)
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Carl R. Alving
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.R.); (G.R.M.); (C.L.); (E.H.); (O.J.); (C.R.A.)
| | - Gerald W. Fischer
- Longhorn Vaccines and Diagnostics, Gaithersburg, MD 20878, USA; (N.R.); (K.A.K.); (K.M.); (A.A.-D.); (G.W.F.)
| |
Collapse
|
13
|
Tanaka R, Hiramitsu M, Shimizu S, Kawashima S, Sato A, Iwase Y. Efficient drug delivery to lymph nodes by intradermal administration and enhancement of anti-tumor effects of immune checkpoint inhibitors. Cancer Treat Res Commun 2023; 36:100740. [PMID: 37437382 DOI: 10.1016/j.ctarc.2023.100740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/26/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023]
Abstract
Immune checkpoint inhibitors are novel immunotherapy drugs that have improved cancer treatments. Yet only a small percentage of patients experience durable responses to immune checkpoint inhibitors. Recently, it has been suggested that lymph nodes are important for the efficacy of immunotherapy. However, it is still unclear whether the efficient anti-PD-L1 antibody delivery to tumor-draining lymph nodes improves drug efficacy. In this study, we first characterized lymphatic drug delivery by intradermal administration compared with conventional subcutaneous and systemic administration in rodents and non-human primates. The results confirmed that intradermal administration of immune checkpoint inhibitors is suitable for efficient delivery to the tumor-draining lymph node. In FM3A and EMT6 tumor mice models with different PD-L1 expressions in tumor, efficient delivery of anti-PD-L1 antibody to tumor-draining lymph node by intradermal administration resulted in efficient inhibition of tumor growth in both models. The intradermal administration of low-dose anti-PD-L1 antibody also significantly suppressed tumor growth compared to intraperitoneal administration. It also suppressed tumor growth regardless of PD-L1 expression in tumors, suggesting the importance of blocking PD-L1 in tumor-draining lymph nodes. Hence, efficient delivery by intradermal administration of anti-PD-L1 antibody to tumor-draining lymph node might to be helpful to enhance drug efficacy and potentially reduce adverse events.
Collapse
Affiliation(s)
- Ryo Tanaka
- R&D, Pharmaceutical Solutions Division, Medical Care Solutions Company, TERUMO CORPORATION, Japan
| | - Masaki Hiramitsu
- Bioresearch Center, Technology Coordination Office, TERUMO CORPORATION, Japan
| | - Sakiko Shimizu
- R&D, Pharmaceutical Solutions Division, Medical Care Solutions Company, TERUMO CORPORATION, Japan
| | - Shiori Kawashima
- Bioresearch Center, Technology Coordination Office, TERUMO CORPORATION, Japan
| | - Akiko Sato
- Bioresearch Center, Technology Coordination Office, TERUMO CORPORATION, Japan
| | - Yoichiro Iwase
- R&D, Pharmaceutical Solutions Division, Medical Care Solutions Company, TERUMO CORPORATION, Japan.
| |
Collapse
|
14
|
Morici LA, McLachlan JB. Non-mucosal vaccination strategies to enhance mucosal immunity. VACCINE INSIGHTS 2023; 2:229-236. [PMID: 37881504 PMCID: PMC10599649 DOI: 10.18609/vac.2023.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The SARS-CoV-2 pandemic has highlighted the need for improved vaccines that can elicit long-lasting mucosal immunity. Although mucosal delivery of vaccines represents a plausible method to enhance mucosal immunity, recent studies utilizing intradermal vaccine delivery or incorporation of unique adjuvants suggest that mucosal immunity may be achieved by vaccination via non-mucosal routes. In this expert insight, we highlight emerging evidence from pre-clinical studies that warrant further mechanistic investigation to improve next-generation vaccines against mucosal pathogens, especially those with pandemic potential.
Collapse
Affiliation(s)
- Lisa A Morici
- Tulane University School of Medicine, Department of Microbiology and Immunology, 1430 Tulane Avenue, New Orleans, LA, USA
| | - James B McLachlan
- Tulane University School of Medicine, Department of Microbiology and Immunology, 1430 Tulane Avenue, New Orleans, LA, USA
| |
Collapse
|
15
|
Prior JT, Limbert VM, Horowitz RM, D'Souza SJ, Bachnak L, Godwin MS, Bauer DL, Harrell JE, Morici LA, Taylor JJ, McLachlan JB. Establishment of isotype-switched, antigen-specific B cells in multiple mucosal tissues using non-mucosal immunization. NPJ Vaccines 2023; 8:80. [PMID: 37258506 PMCID: PMC10231862 DOI: 10.1038/s41541-023-00677-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 05/18/2023] [Indexed: 06/02/2023] Open
Abstract
Although most pathogens infect the human body via mucosal surfaces, very few injectable vaccines can specifically target immune cells to these tissues where their effector functions would be most desirable. We have previously shown that certain adjuvants can program vaccine-specific helper T cells to migrate to the gut, even when the vaccine is delivered non-mucosally. It is not known whether this is true for antigen-specific B cell responses. Here we show that a single intradermal vaccination with the adjuvant double mutant heat-labile toxin (dmLT) induces a robust endogenous, vaccine-specific, isotype-switched B cell response. When the vaccine was intradermally boosted, we detected non-circulating vaccine-specific B cell responses in the lamina propria of the large intestines, Peyer's patches, and lungs. When compared to the TLR9 ligand adjuvant CpG, only dmLT was able to drive the establishment of isotype-switched resident B cells in these mucosal tissues, even when the dmLT-adjuvanted vaccine was administered non-mucosally. Further, we found that the transcription factor Batf3 was important for the full germinal center reaction, isotype switching, and Peyer's patch migration of these B cells. Collectively, these data indicate that specific adjuvants can promote mucosal homing and the establishment of activated, antigen-specific B cells in mucosal tissues, even when these adjuvants are delivered by a non-mucosal route. These findings could fundamentally change the way future vaccines are formulated and delivered.
Collapse
Affiliation(s)
- John T Prior
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Vanessa M Limbert
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Rebecca M Horowitz
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Shaina J D'Souza
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Louay Bachnak
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Matthew S Godwin
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - David L Bauer
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Jaikin E Harrell
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Lisa A Morici
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Justin J Taylor
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - James B McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA.
| |
Collapse
|
16
|
Sonoda J, Mizoguchi I, Inoue S, Watanabe A, Sekine A, Yamagishi M, Miyakawa S, Yamaguchi N, Horio E, Katahira Y, Hasegawa H, Hasegawa T, Yamashita K, Yoshimoto T. A Promising Needle-Free Pyro-Drive Jet Injector for Augmentation of Immunity by Intradermal Injection as a Physical Adjuvant. Int J Mol Sci 2023; 24:ijms24109094. [PMID: 37240448 DOI: 10.3390/ijms24109094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Current worldwide mRNA vaccination against SARS-CoV-2 by intramuscular injection using a needled syringe has greatly protected numerous people from COVID-19. An intramuscular injection is generally well tolerated, safer and easier to perform on a large scale, whereas the skin has the benefit of the presence of numerous immune cells, such as professional antigen-presenting dendritic cells. Therefore, intradermal injection is considered superior to intramuscular injection for the induction of protective immunity, but more proficiency is required for the injection. To improve these issues, several different types of more versatile jet injectors have been developed to deliver DNAs, proteins or drugs by high jet velocity through the skin without a needle. Among them, a new needle-free pyro-drive jet injector has a unique characteristic that utilizes gunpower as a mechanical driving force, in particular, bi-phasic pyrotechnics to provoke high jet velocity and consequently the wide dispersion of the injected DNA solution in the skin. A significant amount of evidence has revealed that it is highly effective as a vaccinating tool to induce potent protective cellular and humoral immunity against cancers and infectious diseases. This is presumably explained by the fact that shear stress generated by the high jet velocity facilitates the uptake of DNA in the cells and, consequently, its protein expression. The shear stress also possibly elicits danger signals which, together with the plasmid DNA, subsequently induces the activation of innate immunity including dendritic cell maturation, leading to the establishment of adaptive immunity. This review summarizes the recent advances in needle-free jet injectors to augment the cellular and humoral immunity by intradermal injection and the possible mechanism of action.
Collapse
Affiliation(s)
- Jukito Sonoda
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Shinya Inoue
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Aruma Watanabe
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Ami Sekine
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Miu Yamagishi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Satomi Miyakawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Natsuki Yamaguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Eri Horio
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Yasuhiro Katahira
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Hideaki Hasegawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Takashi Hasegawa
- Department of Device Application for Molecular Therapeutics, Graduate School of Medicine, Osaka University, CoMIT 0603, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kunihiko Yamashita
- Department of Device Application for Molecular Therapeutics, Graduate School of Medicine, Osaka University, CoMIT 0603, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| |
Collapse
|
17
|
Beaujean M, Uijen RF, Langereis JD, Boccara D, Dam D, Soria A, Veldhuis G, Adam L, Bonduelle O, van der Wel NN, Luirink J, Pedruzzi E, Wissink J, de Jonge MI, Combadière B. The immunological effects of intradermal particle-based vaccine delivery using a novel microinjection needle studied in a human skin explant model. Vaccine 2023; 41:2270-2279. [PMID: 36870875 DOI: 10.1016/j.vaccine.2023.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 03/06/2023]
Abstract
For intradermal (ID) immunisation, novel needle-based delivery systems have been proposed as a better alternative to the Mantoux method. However, the penetration depth of needles in the human skin and its effect on immune cells residing in the different layers of the skin has not been analyzed. A novel and user-friendly silicon microinjection needle (Bella-muTM) has been developed, which allows for a perpendicular injection due to its short needle length (1.4-1.8 mm) and ultrashort bevel. We aimed to characterize the performance of this microinjection needle in the context of the delivery of a particle-based outer membrane vesicle (OMV) vaccine using an ex vivo human skin explant model. We compared the needles of 1.4 and 1.8 mm with the conventional Mantoux method to investigate the depth of vaccine injection and the capacity of the skin antigen-presenting cell (APC) to phagocytose the OMVs. The 1.4 mm needle deposited the antigen closer to the epidermis than the 1.8 mm needle or the Mantoux method. Consequently, activation of epidermal Langerhans cells was significantly higher as determined by dendrite shortening. We found that five different subsets of dermal APCs are able to phagocytose the OMV vaccine, irrespective of the device or injection method. ID delivery using the 1.4 mm needle of a OMV-based vaccine allowed epidermal and dermal APC targeting, with superior activation of Langerhans cells. This study indicates that the use of a microinjection needle improves the delivery of vaccines in the human skin.
Collapse
Affiliation(s)
- Manon Beaujean
- Sorbonne Université, Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi), Paris, France
| | - Rienke F Uijen
- Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jeroen D Langereis
- Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - David Boccara
- Sorbonne Université, Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi), Paris, France; Hôpital Saint Louis, Reconstructive and Cosmetic and Burn, Paris, France
| | - Denise Dam
- U-Needle B.V., Enschede, the Netherlands
| | - Angèle Soria
- Sorbonne Université, Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi), Paris, France; Service de Dermatologie et d'Allergologie, Hôpital Tenon, Paris HUEP, APHP, Paris, France
| | | | - Lucille Adam
- Sorbonne Université, Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi), Paris, France
| | - Olivia Bonduelle
- Sorbonne Université, Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi), Paris, France
| | - Nicole N van der Wel
- Department of Medical Biology, Electron Microscopy Center Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Joen Luirink
- Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit, De Boelelaan, 1085, 1081 HV Amsterdam, the Netherlands
| | - Eric Pedruzzi
- Sorbonne Université, Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi), Paris, France
| | | | - Marien I de Jonge
- Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Behazine Combadière
- Sorbonne Université, Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi), Paris, France
| |
Collapse
|
18
|
Skin-Based Vaccination: A Systematic Mapping Review of the Types of Vaccines and Methods Used and Immunity and Protection Elicited in Pigs. Vaccines (Basel) 2023; 11:vaccines11020450. [PMID: 36851328 PMCID: PMC9962282 DOI: 10.3390/vaccines11020450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The advantages of skin-based vaccination include induction of strong immunity, dose-sparing, and ease of administration. Several technologies for skin-based immunisation in humans are being developed to maximise these key advantages. This route is more conventionally used in veterinary medicine. Skin-based vaccination of pigs is of high relevance due to their anatomical, physiological, and immunological similarities to humans, as well as being a source of zoonotic diseases and their livestock value. We conducted a systematic mapping review, focusing on vaccine-induced immunity and safety after the skin immunisation of pigs. Veterinary vaccines, specifically anti-viral vaccines, predominated in the literature. The safe and potent skin administration to pigs of adjuvanted vaccines, particularly emulsions, are frequently documented. Multiple methods of skin immunisation exist; however, there is a lack of consistent terminology and accurate descriptions of the route and device. Antibody responses, compared to other immune correlates, are most frequently reported. There is a lack of research on the underlying mechanisms of action and breadth of responses. Nevertheless, encouraging results, both in safety and immunogenicity, were observed after skin vaccination that were often comparable to or superior the intramuscular route. Further research in this area will underlie the development of enhanced skin vaccine strategies for pigs, other animals and humans.
Collapse
|
19
|
Niyomnaitham S, Atakulreka S, Wongprompitak P, Copeland KK, Toh ZQ, Licciardi PV, Srisutthisamphan K, Jansarikit L, Chokephaibulkit K. Immunogenicity and reactogenicity of accelerated regimens of fractional intradermal COVID-19 vaccinations. Front Immunol 2023; 13:1080791. [PMID: 36733395 PMCID: PMC9886662 DOI: 10.3389/fimmu.2022.1080791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Introduction This phase I study explored the immunogenicity and reactogenicity of accelerated, Q7 fractional, intradermal vaccination regimens for COVID-19. Methods Participants (n = 60) aged 18-60 years, naïve to SARS-CoV-2 infection or vaccination, were randomly allocated into one of four homologous or heterologous accelerated two-dose, two-injection intradermal regimens seven days apart:(1) BNT162b2-BNT162b2(n= 20),(2) ChAdOx1- BNT162b2 (n = 20), (3) CoronaVac-ChAdOx1 (n = 10), and (4) ChAdOx1-ChAdOx1 (n = 10). CoronaVac and ChAdOx1 were 20%, and BNT162b2 17%, of their standard intramuscular doses (0.1 mL and 0.05 mL per injection, respectively). Humoral immune responses were measured through IgG response towards receptor binding domains (RBD-IgG) of ancestral SARS-CoV-2 spike protein and pseudovirus neutralization tests (PVNT50). Cellular immune responses were measured using ELISpot for ancestral protein pools. Results Immunogenicity was highest in regimen (2), followed by (1), (4), and (3) 2 weeks after the second dose (P < 0.001 for anti-RBD-IgG and P= 0.01 for PVNT50). Each group had significantly lower anti-RBD IgG (by factors of 5.4, 3.6, 11.6, and 2.0 for regimens (1) to (4), respectively) compared to their respective standard intramuscular regimens (P < 0.001 for each). Seroconversion rates for PVNT50 against the ancestral strain were 75%, 90%, 57% and 37% for regimens (1) to (4), respectively. All participants elicited ELISpot response to S-protein after vaccination. Adverse events were reportedly mild or moderate across cohorts. Discussion We concluded that accelerated, fractional, heterologous or homologous intradermal vaccination regimens of BNT162b2 and ChAdOx1 were well tolerated, provided rapid immune priming against SARS-CoV-2, and may prove useful for containing future outbreaks.
Collapse
Affiliation(s)
- Suvimol Niyomnaitham
- Siriraj Institute of Clinical Research, Bangkok, Thailand
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Patimaporn Wongprompitak
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Katherine Kradangna Copeland
- Department of Biological Sciences, Faculty of Science, Mahidol University International College, Nakhon Pathom, Thailand
| | - Zheng Quan Toh
- Infection and Immunology, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Department of Pediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Paul V. Licciardi
- Infection and Immunology, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Department of Pediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Kanjana Srisutthisamphan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science Development Agency (NSTDA), Pathumthani, Thailand
| | - Laddawan Jansarikit
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kulkanya Chokephaibulkit
- Siriraj Institute of Clinical Research, Bangkok, Thailand
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
20
|
Massaro MG, Caldarelli M, Franza L, Candelli M, Gasbarrini A, Gambassi G, Cianci R, Rigante D. Current Evidence on Vaccinations in Pediatric and Adult Patients with Systemic Autoinflammatory Diseases. Vaccines (Basel) 2023; 11:vaccines11010151. [PMID: 36679996 PMCID: PMC9860706 DOI: 10.3390/vaccines11010151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Systemic autoinflammatory diseases (SAIDs) are defined by recurrent febrile attacks associated with protean manifestations involving joints, the gastrointestinal tract, skin, and the central nervous system, combined with elevated inflammatory markers, and are caused by a dysregulation of the innate immune system. From a clinical standpoint, the most known SAIDs are familial Mediterranean fever (FMF); cryopyrin-associated periodic syndrome (CAPS); mevalonate kinase deficiency (MKD); and periodic fever, aphthosis, pharyngitis, and adenitis (PFAPA) syndrome. Current guidelines recommend the regular sequential administration of vaccines for all individuals with SAIDs. However, these patients have a much lower vaccination coverage rates in 'real-world' epidemiological studies than the general population. The main purpose of this review was to evaluate the scientific evidence available on both the efficacy and safety of vaccines in patients with SAIDs. From this analysis, neither serious adverse effects nor poorer antibody responses have been observed after vaccination in patients with SAIDs on treatment with biologic agents. More specifically, no new-onset immune-mediated complications have been observed following immunizations. Post-vaccination acute flares were significantly less frequent in FMF patients treated with colchicine alone than in those treated with both colchicine and canakinumab. Conversely, a decreased risk of SARS-CoV-2 infection has been proved for patients with FMF after vaccination with the mRNA-based BNT162b2 vaccine. Canakinumab did not appear to affect the ability to produce antibodies against non-live vaccines in patients with CAPS, especially if administered with a time lag from the vaccination. On the other hand, our analysis has shown that immunization against Streptococcus pneumoniae, specifically with the pneumococcal polysaccharide vaccine, was associated with a higher incidence of adverse reactions in CAPS patients. In addition, disease flares might be elicited by vaccinations in children with MKD, though no adverse events have been noted despite concurrent treatment with either anakinra or canakinumab. PFAPA patients seem to be less responsive to measles, mumps, and rubella-vaccine, but have shown higher antibody response than healthy controls following vaccination against hepatitis A. In consideration of the clinical frailty of both children and adults with SAIDs, all vaccinations remain 'highly' recommended in this category of patients despite the paucity of data available.
Collapse
Affiliation(s)
- Maria Grazia Massaro
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Mario Caldarelli
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Laura Franza
- Emergency Medicine Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Marcello Candelli
- Emergency Medicine Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Correspondence:
| | - Donato Rigante
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
21
|
Lago-Deibe FI, Valladares-Cabaleiro M, Fernández-Domínguez MJ, Fernández-Fernández I, Clavería A, Rodríguez-Pastoriza S, Roca-Pardinas J, Martín-Miguel MV. Effectiveness and safety of tetanus vaccine administration by intramuscular vs. subcutaneous route in anticoagulated patients: Randomized clinical trial in primary care. Front Med (Lausanne) 2022; 9:1054988. [PMID: 36619617 PMCID: PMC9813590 DOI: 10.3389/fmed.2022.1054988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Design Prospective, double-blind clinical trial comparing tetanus-diphtheria vaccine administration routes, intramuscular (IM) vs. subcutaneous (SC) injection, in patients with oral anticoagulants. ISRCTN69942081. Study population Patients treated with oral anticoagulants, 15 health centers, Vigo (Spain). Sample size, 117 in each group. Outcome variables Safety analysis: systemic reactions and, at the vaccine administration site, erythematic, swelling, hematoma, granuloma, pain.Effectiveness analysis: differences in tetanus toxoid antibody titers.Independent variables: route, sex, age, baseline serology, number of doses administered. Analysis Following the CONSORT guidelines, we performed an intention-to-treat analysis. We conducted a descriptive study of the variables included in both groups (117 in each group) and a bivariate analysis. Fewer than 5% of missing values. Imputation in baseline and final serology with the median was performed. Lost values were assumed to be values missing at random. We conducted a descriptive study of the variables and compared routes. For safety, multivariate logistic regression was applied, with each safety criterion as outcome and the independent variables. Odds ratios (ORs) were calculated. For effectiveness, a generalized additive mixed model, with the difference between final and initial antibody titers as outcome. Due to the bimodal distribution of the outcome, the normal mixture fitting with gamlssMX was used. All statistical analyses were performed with the gamlss.mx and texreg packages of the R free software environment. Results A previously published protocol was used across the 6-year study period. The breakdown by sex and route showed: 102 women and 132 men; and 117 IM and 117 SC, with one dose administered in over 80% of participants. There were no differences between groups in any independent variable. The second and third doses administered were not analyzed, due to the low number of cases. In terms of safety, there were no severe general reactions. Locally, significant adjusted differences were observed: in pain, by sex (male, OR: 0.39) and route (SC, OR: 0.55); in erythema, by sex (male, OR: 0.34) and route (SC, OR: 5.21); and in swelling, by sex (male, OR: 0.37) and route (SC, OR: 2.75). In terms of effectiveness, the model selected was the one adjusted for baseline serology.
Collapse
Affiliation(s)
- Fernando Isidro Lago-Deibe
- Sárdoma Health Center, Vigo Health Area, Galician Health Service, Vigo, Spain
- South Galicia Health Research Institute (Instituto de Investigación Sanitaria Galicia Sur), Vigo Health Area, Galician Health Service, Vigo, Spain
- Network for Research on Chronicity, Primary Care and Health Promotion (Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud/RICAPPS), Vigo, Spain
| | - Mercedes Valladares-Cabaleiro
- Moaña Primary Care Emergency Center (Punto de Atención Continuada), Vigo Health Area, Galician Health Service, Moaña, Spain
| | - María José Fernández-Domínguez
- South Galicia Health Research Institute (Instituto de Investigación Sanitaria Galicia Sur), Vigo Health Area, Galician Health Service, Vigo, Spain
- Network for Research on Chronicity, Primary Care and Health Promotion (Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud/RICAPPS), Vigo, Spain
- Leiro Health Center, Ourense Health Area, Galician Health Service, Ourense, Spain
| | | | - Ana Clavería
- South Galicia Health Research Institute (Instituto de Investigación Sanitaria Galicia Sur), Vigo Health Area, Galician Health Service, Vigo, Spain
- Network for Research on Chronicity, Primary Care and Health Promotion (Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud/RICAPPS), Vigo, Spain
| | - Sara Rodríguez-Pastoriza
- South Galicia Health Research Institute (Instituto de Investigación Sanitaria Galicia Sur), Vigo Health Area, Galician Health Service, Vigo, Spain
| | - Javier Roca-Pardinas
- Network for Research on Chronicity, Primary Care and Health Promotion (Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud/RICAPPS), Vigo, Spain
- Department of Statistics and Operations Research, University of Vigo, Vigo, Spain
- Galician Research and Mathematical Technology Center (Centro de Investigación e Tecnoloxía Matemática de Galicia/CITMAga), Santiago de Compostela, Spain
| | - María Victoria Martín-Miguel
- South Galicia Health Research Institute (Instituto de Investigación Sanitaria Galicia Sur), Vigo Health Area, Galician Health Service, Vigo, Spain
- Network for Research on Chronicity, Primary Care and Health Promotion (Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud/RICAPPS), Vigo, Spain
- Vigo Family and Community Medicine and Nursing Teaching Unit, Vigo Health Area, Galician Health Service, Vigo, Spain
| |
Collapse
|
22
|
Hayashi H, Sun J, Yanagida Y, Otera T, Sasai M, Chang CY, Tai JA, Nishikawa T, Yamashita K, Sakaguchi N, Yoshida S, Baba S, Shimamura M, Okamoto S, Amaishi Y, Chono H, Mineno J, Rakugi H, Morishita R, Yamamoto M, Nakagami H. Modified DNA vaccine confers improved humoral immune response and effective virus protection against SARS-CoV-2 delta variant. Sci Rep 2022; 12:20923. [PMID: 36463322 PMCID: PMC9719526 DOI: 10.1038/s41598-022-24519-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/16/2022] [Indexed: 12/07/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to a global pandemic. New technologies have been utilized to develop several types of vaccines to prevent the spread of SARS-CoV-2 infection, including mRNA vaccines. Our group previously developed an effective DNA-based vaccine. However, emerging SARS-CoV-2 variants of concern (VOCs), such as the delta variant, have escaped mutations against vaccine-induced neutralizing antibodies. This suggests that modified vaccines accommodating VOCs need to be developed promptly. Here, we first modified the current DNA vaccine to enhance antigenicity. Compared with the parental DNA vaccine, the modified version (GP∆-DNA vaccine) induced rapid antibody production. Next, we updated the GP∆-DNA vaccine to spike glycoprotein of the delta variant (GP∆-delta DNA vaccine) and compared the efficacy of different injection routes, namely intramuscular injection using a needle and syringe and intradermal injection using a pyro-drive jet injector (PJI). We found that the levels of neutralizing antibodies induced by the intradermal PJI injection were higher than intramuscular injection. Furthermore, the PJI-injected GP∆-delta DNA vaccine effectively protected human angiotensin-converting enzyme 2 (hACE2) knock-in mice from delta-variant infection. These results indicate that the improved DNA vaccine was effective against emerging VOCs and was a potential DNA vaccine platform for future VOCs or global pandemics.
Collapse
Affiliation(s)
- Hiroki Hayashi
- grid.136593.b0000 0004 0373 3971Department of Health Development and Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871 Japan
| | - Jiao Sun
- grid.136593.b0000 0004 0373 3971Department of Health Development and Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871 Japan
| | - Yuka Yanagida
- grid.136593.b0000 0004 0373 3971Department of Health Development and Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871 Japan
| | - Takako Otera
- grid.136593.b0000 0004 0373 3971Department of Health Development and Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871 Japan ,grid.508925.3Anges Inc., Tokyo, Japan
| | - Miwa Sasai
- grid.136593.b0000 0004 0373 3971Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan ,grid.136593.b0000 0004 0373 3971Division of Microbiology and Immunology, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Chin Yang Chang
- grid.136593.b0000 0004 0373 3971Department of Device Application for Molecular Therapeutics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jiayu A. Tai
- grid.136593.b0000 0004 0373 3971Department of Device Application for Molecular Therapeutics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoyuki Nishikawa
- grid.136593.b0000 0004 0373 3971Department of Device Application for Molecular Therapeutics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kunihiko Yamashita
- grid.136593.b0000 0004 0373 3971Department of Device Application for Molecular Therapeutics, Osaka University Graduate School of Medicine, Osaka, Japan ,grid.480124.b0000 0001 0425 4575Daicel Co., Osaka, Japan
| | | | - Shota Yoshida
- grid.136593.b0000 0004 0373 3971Department of Health Development and Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Baba
- grid.136593.b0000 0004 0373 3971Department of Health Development and Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Munehisa Shimamura
- grid.136593.b0000 0004 0373 3971Department of Health Development and Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | - Hiromi Rakugi
- grid.136593.b0000 0004 0373 3971Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryuichi Morishita
- grid.136593.b0000 0004 0373 3971Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masahiro Yamamoto
- grid.136593.b0000 0004 0373 3971Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan ,grid.136593.b0000 0004 0373 3971Division of Microbiology and Immunology, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Hironori Nakagami
- grid.136593.b0000 0004 0373 3971Department of Health Development and Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Division of Microbiology and Immunology, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| |
Collapse
|
23
|
Inoue S, Mizoguchi I, Sonoda J, Sakamoto E, Katahira Y, Hasegawa H, Watanabe A, Furusaka Y, Xu M, Yoneto T, Sakaguchi N, Terai K, Yamashita K, Yoshimoto T. Induction of potent antitumor immunity by intradermal DNA injection using a novel needle-free pyro-drive jet injector. Cancer Sci 2022; 114:34-47. [PMID: 36000926 PMCID: PMC9807518 DOI: 10.1111/cas.15542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 01/07/2023] Open
Abstract
The current success of mRNA vaccines against COVID-19 has highlighted the effectiveness of mRNA and DNA vaccinations. Recently, we demonstrated that a novel needle-free pyro-drive jet injector (PJI) effectively delivers plasmid DNA into the skin, resulting in protein expression higher than that achieved with a needle syringe. Here, we used ovalbumin (OVA) as a model antigen to investigate the potential of the PJI for vaccination against cancers. Intradermal injection of OVA-expression plasmid DNA into mice using the PJI, but not a needle syringe, rapidly and greatly augmented OVA-specific CD8+ T-cell expansion in lymph node cells. Increased mRNA expression of both interferon-γ and interleukin-4 and an enhanced proliferative response of OVA-specific CD8+ T cells, with fewer CD4+ T cells, were also observed. OVA-specific in vivo killing of the target cells and OVA-specific antibody production of both the IgG2a and IgG1 antibody subclasses were greatly augmented. Intradermal injection of OVA-expression plasmid DNA using the PJI showed stronger prophylactic and therapeutic effects against the progression of transplantable OVA-expressing E.G7-OVA tumor cells. Even compared with the most frequently used adjuvants, complete Freund's adjuvant and aluminum hydroxide with OVA protein, intradermal injection of OVA-expression plasmid DNA using the PJI showed a stronger CTL-dependent prophylactic effect. These results suggest that the novel needle-free PJI is a promising tool for DNA vaccination, inducing both a prophylactic and a therapeutic effect against cancers, because of prompt and strong generation of OVA-specific CTLs and subsequently enhanced production of both the IgG2a and IgG1 antibody subclasses.
Collapse
Affiliation(s)
- Shinya Inoue
- Department of Immunoregulation, Institute of Medical ScienceTokyo Medical UniversityTokyoJapan
| | - Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical ScienceTokyo Medical UniversityTokyoJapan
| | - Jukito Sonoda
- Department of Immunoregulation, Institute of Medical ScienceTokyo Medical UniversityTokyoJapan
| | - Eri Sakamoto
- Department of Immunoregulation, Institute of Medical ScienceTokyo Medical UniversityTokyoJapan
| | - Yasuhiro Katahira
- Department of Immunoregulation, Institute of Medical ScienceTokyo Medical UniversityTokyoJapan
| | - Hideaki Hasegawa
- Department of Immunoregulation, Institute of Medical ScienceTokyo Medical UniversityTokyoJapan
| | - Aruma Watanabe
- Department of Immunoregulation, Institute of Medical ScienceTokyo Medical UniversityTokyoJapan
| | - Yuma Furusaka
- Department of Immunoregulation, Institute of Medical ScienceTokyo Medical UniversityTokyoJapan
| | - Mingli Xu
- Department of Immunoregulation, Institute of Medical ScienceTokyo Medical UniversityTokyoJapan
| | - Toshihiko Yoneto
- Department of Immunoregulation, Institute of Medical ScienceTokyo Medical UniversityTokyoJapan
| | - Naoki Sakaguchi
- Department of Device Application for Molecular Therapeutics, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Kazuhiro Terai
- Department of Device Application for Molecular Therapeutics, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Kunihiko Yamashita
- Department of Device Application for Molecular Therapeutics, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical ScienceTokyo Medical UniversityTokyoJapan
| |
Collapse
|
24
|
Shchelkunov SN, Sergeev AA, Titova KA, Pyankov SA, Starostina E, Borgoyakova MB, Kisakova LA, Kisakov DN, Karpenko LI, Yakubitskiy SN. Comparison of the Effectiveness of Transepidemal and Intradermal Immunization of Mice with the Vacinia Virus. Acta Naturae 2022; 14:111-118. [PMID: 36694907 PMCID: PMC9844093 DOI: 10.32607/actanaturae.11857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/30/2022] [Indexed: 01/22/2023] Open
Abstract
The spread of the monkeypox virus infection among humans in many countries outside of Africa, which started in 2022, is now drawing the attention of the medical and scientific communities to the fact that immunization against this infection is sorely needed. According to current guidelines, immunization of people with the first-generation smallpox vaccine based on the vaccinia virus (VACV) LIVP strain, which is licensed in Russia, should be performed via transepidermal inoculation (skin scarification, s.s.). However, the long past experience of using this vaccination technique suggests that it does not ensure virus inoculation into patients' skin with enough reliability. The procedure of intradermal (i.d.) injection of a vaccine can be an alternative to s.s. inoculation. The effectiveness of i.d. vaccination can depend on the virus injection site on the body. Therefore, the aim of this study was to compare the development of the humoral and cellular immune responses in BALB/c mice immunized with the LIVP VACV strain, which was administered either by s.s. inoculation or i.d. injection into the same tail region of the animal. A virus dose of 105 pfu was used in both cases. ELISA of serum samples revealed no significant difference in the dynamics and level of production of VACV-specific IgM and IgG after i.d. or s.s. vaccination. A ELISpot analysis of splenocytes from the vaccinated mice showed that i.d. administration of VACV LIVP to mice induces a significantly greater T-cell immune response compared to s.s. inoculation. In order to assess the protective potency, on day 45 post immunization, mice were intranasally infected with lethal doses of either the cowpox virus (CPXV) or the ectromelia virus (ECTV), which is evolutionarily distant from the VACV and CPXV. Both vaccination techniques ensured complete protection of mice against infection with the CPXV. However, when mice were infected with a highly virulent strain of ECTV, 50% survived in the i.d. immunized group, whereas only 17% survived in the s.s. immunized group. It appears, therefore, that i.d. injection of the VACV can elicit a more potent protective immunity against orthopoxviruses compared to the conventional s.s. technique.
Collapse
Affiliation(s)
- S. N. Shchelkunov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russia
| | - A. A. Sergeev
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russia
| | - K. A. Titova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russia
| | - S. A. Pyankov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russia
| | - E.V. Starostina
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russia
| | - M. B. Borgoyakova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russia
| | - L. A. Kisakova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russia
| | - D. N. Kisakov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russia
| | - L. I. Karpenko
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russia
| | - S. N. Yakubitskiy
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk region, 630559 Russia
| |
Collapse
|
25
|
Leung D, Mu X, Duque JSR, Cheng SMS, Wang M, Zhang W, Zhang Y, Tam IYS, Lee TSS, Lam JHY, Chan SM, Cheang CH, Chung Y, Wong HHW, Lee AMT, Li WY, Chaothai S, Tsang LCH, Chua GT, Cheong KN, Au EYL, Kwok JSY, Chan KW, Chong PCY, Lee PPW, Ho MHK, Lee TL, Tu W, Peiris M, Lau YL. Safety and immunogenicity of 3 doses of BNT162b2 and CoronaVac in children and adults with inborn errors of immunity. Front Immunol 2022; 13:982155. [PMID: 36203563 PMCID: PMC9530261 DOI: 10.3389/fimmu.2022.982155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Our study (NCT04800133) aimed to determine the safety and immunogenicity in patients with IEIs receiving a 3-dose primary series of mRNA vaccine BNT162b2 (age 12+) or inactivated whole-virion vaccine CoronaVac (age 3+) in Hong Kong, including Omicron BA.1 neutralization, in a nonrandomized manner. Intradermal vaccination was also studied. Thirty-nine patients were vaccinated, including 16 with homologous intramuscular 0.3ml BNT162b2 and 17 with homologous intramuscular 0.5ml CoronaVac. Two patients received 3 doses of intradermal 0.5ml CoronaVac, and 4 patients received 2 doses of intramuscular BNT162b2 and the third dose with intradermal BNT162b2. No safety concerns were identified. Inadequate S-RBD IgG and surrogate virus neutralization responses were found after 2 doses in patients with humoral immunodeficiencies and especially so against BA.1. Dose 3 of either vaccine increased S-RBD IgG response. T cell responses against SARS-CoV-2 antigens were detected in vaccinated IEI patients by intracellular cytokine staining on flow cytometry. Intradermal third dose vaccine led to high antibody response in 4 patients. The primary vaccination series of BNT162b2 and CoronaVac in adults and children with IEIs should include 3 doses for optimal immunogenicity.
Collapse
Affiliation(s)
- Daniel Leung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xiaofeng Mu
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jaime S. Rosa Duque
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Samuel M. S. Cheng
- School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Manni Wang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wenyue Zhang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yanmei Zhang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Issan Y. S. Tam
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Toby S. S. Lee
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jennifer H. Y. Lam
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sau Man Chan
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Cheuk Hei Cheang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yuet Chung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Howard H. W. Wong
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Amos M. T. Lee
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wing Yan Li
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sara Chaothai
- School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Leo C. H. Tsang
- School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Gilbert T. Chua
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Kai-Ning Cheong
- Hong Kong Children’s Hospital, Hong Kong, Hong Kong SAR, China
| | - Elaine Y. L. Au
- Division of Clinical Immunology, Department of Pathology, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Janette S. Y. Kwok
- Division of Transplantation and Immunogenetics, Department of Pathology, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Koon Wing Chan
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | | | - Pamela P. W. Lee
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | | | - Tsz Leung Lee
- Hong Kong Children’s Hospital, Hong Kong, Hong Kong SAR, China
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- *Correspondence: Wenwei Tu, ; Malik Peiris, ; Yu Lung Lau,
| | - Malik Peiris
- School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Centre for Immunology and Infection C2i, Hong Kong, Hong Kong SAR, China
- *Correspondence: Wenwei Tu, ; Malik Peiris, ; Yu Lung Lau,
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- *Correspondence: Wenwei Tu, ; Malik Peiris, ; Yu Lung Lau,
| |
Collapse
|
26
|
Niyomnaitham S, Chatsiricharoenkul S, Toh ZQ, Senawong S, Pheerapanyawaranun C, Phumiamorn S, Licciardi PV, Chokephaibulkit K. Evaluation of the Safety and Immunogenicity of Fractional Intradermal COVID-19 Vaccines as a Booster: A Pilot Study. Vaccines (Basel) 2022; 10:1497. [PMID: 36146575 PMCID: PMC9505744 DOI: 10.3390/vaccines10091497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
Intradermal vaccination using fractional dosages of the standard vaccine dose is one strategy to improve access to COVID-19 immunization. We conducted a pilot study in healthy adults in Thailand to evaluate the safety and immunogenicity of intradermal administration of fractional doses of ChAdOx1 (1/5th of standard dosage) or BNT162b2 (1/6th of standard dosage) to individuals previously vaccinated (prime) with two-dose intramuscular CoronaVac, ChAdOx1 or BNT162b2. Following an initial immunogenicity exploratory phase for each vaccine combination group (n = 10), a total of 135 participants (n = 45 per group) were recruited to 3 groups (CoronaVac prime-intradermal BNT162b2 boost, CoronaVac prime-intradermal ChAdOx1 boost and ChAdOx1 prime-intradermal BNT162b2 boost) and their immunogenicity data were compared to a previous cohort who received the same vaccine intramuscularly. Two weeks following booster vaccination, neutralizing antibodies against the delta variant were similar between the participants who received intradermal and intramuscular vaccination. However, neutralizing antibodies against the omicron variant in the intradermal BNT162b2 boost groups were ~6-fold lower, while the levels in the ChAdOx1 boost group were similar compared to their respective vaccine regimen given intramuscularly. The intradermal booster significantly increased spike-specific T cell responses in all three groups from pre-booster levels. Local and systemic adverse reactions were milder in intradermal compared to intramuscular injections. Further studies are needed to evaluate the clinical relevance of these findings and the feasibility of administration of intradermal COVID-19 vaccines.
Collapse
Affiliation(s)
- Suvimol Niyomnaitham
- Siriraj Institute of Clinical Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Somruedee Chatsiricharoenkul
- Siriraj Institute of Clinical Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Zheng Quan Toh
- Murdoch Children’s Research Institute, Parkville, Melbourne, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Sansnee Senawong
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chatkamol Pheerapanyawaranun
- Siriraj Institute of Clinical Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Supaporn Phumiamorn
- Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Paul V. Licciardi
- Murdoch Children’s Research Institute, Parkville, Melbourne, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Kulkanya Chokephaibulkit
- Siriraj Institute of Clinical Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
27
|
Zhang Z, Zhao Z, Wang Y, Wu S, Wang B, Zhang J, Song X, Chen Y, Lv P, Hou L. Comparative immunogenicity analysis of intradermal versus intramuscular immunization with a recombinant human adenovirus type 5 vaccine against Ebola virus. Front Immunol 2022; 13:963049. [PMID: 36119119 PMCID: PMC9472118 DOI: 10.3389/fimmu.2022.963049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
The proper route for vaccine delivery plays an important role in activating a robust immune response. Several viral vector-based vaccines against Ebola disease administered intramuscularly have been found to have excellent immunogenicity and protectiveness. In this study, we evaluated different vaccine routes for Ad5-EBOV delivery by comparing humoral and cellular responses, germinal center reactions, dendritic cell activation and antigen expression. Mice injected intramuscularly with the vaccine exhibited an advantage in antigen expression, leading to more robust germinal center and humoral responses, while intradermal injection recruited more migrating DCs and induced a more polyfunctional cellular response. Our study provides more data for future use of viral vector-based vaccines.
Collapse
|
28
|
Gill M, Majumdar A. Editorial: optimising hepatitis B vaccine response in inflammatory bowel disease-time to get some skin in the game. Aliment Pharmacol Ther 2022; 56:353-354. [PMID: 35748830 DOI: 10.1111/apt.17044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Madeleine Gill
- AW Morrow Gastroenterology and Liver Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.,Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, New South Wales, Australia
| | - Avik Majumdar
- AW Morrow Gastroenterology and Liver Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.,Liver Transplant Unit, Austin Health, Heidelberg, Victoria, Australia.,The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
29
|
Rosa Duque JS, Wang X, Leung D, Cheng SMS, Cohen CA, Mu X, Hachim A, Zhang Y, Chan SM, Chaothai S, Kwan KKH, Chan KCK, Li JKC, Luk LLH, Tsang LCH, Wong WHS, Cheang CH, Hung TK, Lam JHY, Chua GT, Tso WWY, Ip P, Mori M, Kavian N, Leung WH, Valkenburg S, Peiris M, Tu W, Lau YL. Immunogenicity and reactogenicity of SARS-CoV-2 vaccines BNT162b2 and CoronaVac in healthy adolescents. Nat Commun 2022; 13:3700. [PMID: 35764637 PMCID: PMC9240007 DOI: 10.1038/s41467-022-31485-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/17/2022] [Indexed: 12/25/2022] Open
Abstract
We present an interim analysis of a registered clinical study (NCT04800133) to establish immunobridging with various antibody and cellular immunity markers and to compare the immunogenicity and reactogenicity of 2-dose BNT162b2 and CoronaVac in healthy adolescents as primary objectives. One-dose BNT162b2, recommended in some localities for risk reduction of myocarditis, is also assessed. Antibodies and T cell immune responses are non-inferior or similar in adolescents receiving 2 doses of BNT162b2 (BB, N = 116) and CoronaVac (CC, N = 123) versus adults after 2 doses of the same vaccine (BB, N = 147; CC, N = 141) but not in adolescents after 1-dose BNT162b2 (B, N = 116). CC induces SARS-CoV-2 N and N C-terminal domain seropositivity in a higher proportion of adolescents than adults. Adverse reactions are mostly mild for both vaccines and more frequent for BNT162b2. We find higher S, neutralising, avidity and Fc receptor-binding antibody responses in adolescents receiving BB than CC, and a similar induction of strong S-specific T cells by the 2 vaccines, in addition to N- and M-specific T cells induced by CoronaVac but not BNT162b2, possibly implying differential durability and cross-variant protection by BNT162b2 and CoronaVac, the 2 most used SARS-CoV-2 vaccines worldwide. Our results support the use of both vaccines in adolescents.
Collapse
Affiliation(s)
- Jaime S Rosa Duque
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiwei Wang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Daniel Leung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Samuel M S Cheng
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Carolyn A Cohen
- School of Public Health, The University of Hong Kong, Hong Kong, China
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Xiaofeng Mu
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Asmaa Hachim
- School of Public Health, The University of Hong Kong, Hong Kong, China
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Yanmei Zhang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Sau Man Chan
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Sara Chaothai
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Kelvin K H Kwan
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Karl C K Chan
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - John K C Li
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Leo L H Luk
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Leo C H Tsang
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Wilfred H S Wong
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Cheuk Hei Cheang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Timothy K Hung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Jennifer H Y Lam
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Gilbert T Chua
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Winnie W Y Tso
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Patrick Ip
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Masashi Mori
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Japan
| | - Niloufar Kavian
- School of Public Health, The University of Hong Kong, Hong Kong, China
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China
- IRCCS, Humanitas Research Hospital, Milan, Italy
| | - Wing Hang Leung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Sophie Valkenburg
- School of Public Health, The University of Hong Kong, Hong Kong, China.
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China.
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.
| | - Malik Peiris
- School of Public Health, The University of Hong Kong, Hong Kong, China.
- Centre for Immunology and Infection, Hong Kong, China.
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China.
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
30
|
Nantanee R, Aikphaibul P, Jaru-Ampornpan P, Sodsai P, Himananto O, Theerawit T, Sophonphan J, Tovichayathamrong P, Manothummetha K, Laohasereekul T, Hiransuthikul N, Hirankarn N, Puthanakit T. Immunogenicity and reactogenicity after booster dose with AZD1222 via intradermal route among adult who had received CoronaVac. Vaccine 2022; 40:3320-3329. [PMID: 35513961 PMCID: PMC9058819 DOI: 10.1016/j.vaccine.2022.04.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/09/2022] [Accepted: 04/20/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Currently, booster dose is needed after 2 doses of non-live COVID-19 vaccine. With limited resources and shortage of COVID-19 vaccines, intradermal(ID) administration might be a potential dose-sparing strategy. OBJECTIVE To determine immunologic response and reactogenicity of ID ChAdOx1 nCoV-19 vaccine (AZD1222,Oxford/AstraZeneca) as a booster dose after completion of 2-dose CoronaVac(SV) in healthy adult. METHODS This is a prospective cohort study of adult aged 18-59 years who received 2-dose SV at 14-35 days apart for more than 2 months. Participants received ID AZD1222 at fractional low dose(1×1010 viral particles,0.1 ml). Antibody responses were evaluated by surrogate virus neutralization test(sVNT) against delta variant and wild type, and anti-spike-receptor-binding-domain immunoglobulin G(anti-S-RBD IgG) at prior, day14, 28, 90, and 180 post booster. Solicited reactogenicity was collected for 7 days post-booster. Primary endpoint was the differences of sVNT against delta strain ≥ 80% inhibition at day14 and 90 compared with the parallel cohort study of 0.5-ml intramuscular(IM) route. RESULTS From August2021, 100 adults with median age of 46 years(IQR 41-52) participated. Prior to booster, geometric mean(GM) of sVNT against delta strain was 22.4% inhibition(95 %CI 18.7-26.9) and of anti-S-RBD IgG was 109.3 BAU/ml(95.4-125.1). Post ID booster, GMs of sVNT against delta strain were 95.5% inhibition (95%CI 94.2-96.8) at day14, 73.1% inhibition (66.7-80.2) at day90, and 22.7% inhibition (14.9-34.6) at day180. The differences of proportion of participants achieving sVNT against delta strain ≥ 80% inhibition in ID recipients versus IM were + 4.2% (95 %CI -2.0to10.5) at day14, and -37.3%(-54.2to-20.3) at day90. Anti-S-RBD IgG GMs were 2037.1 BAU/ml (95%CI 1770.9-2343.2) at day14 and 744.6 BAU/ml(650.1-852.9) at day90, respectively. Geometric mean ratios(GMRs) of anti-S-RBD IgG were 0.99(0.83-1.20) at day14, and 0.82(0.66-1.02) at day90. Only 18% reported feverish, compared with 37% of IM (p = 0.003). Common reactogenicity was erythema at injection site(53%) while 7% reported blister. CONCLUSION Low-dose ID AZD1222 booster enhanced lower neutralizing antibodies at 3 months compared with IM route. Less systemic reactogenicity occurred, but higher local reactogenicity.
Collapse
Affiliation(s)
- Rapisa Nantanee
- Center of Excellence in Pediatric Infectious Diseases and Vaccines, Chulalongkorn University, 1873, Rama IV Rd, Pathumwan, Bangkok 10330, Thailand,Pediatric Allergy and Clinical Immunology Research Unit, Division of Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, 1873, Rama IV Rd, Pathumwan, Bangkok 10330, Thailand
| | - Puneyavee Aikphaibul
- Center of Excellence in Pediatric Infectious Diseases and Vaccines, Chulalongkorn University, 1873, Rama IV Rd, Pathumwan, Bangkok 10330, Thailand,Division of Pediatric Dermatology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, 1873, Rama IV Rd, Pathumwan, Bangkok 10330, Thailand
| | - Peera Jaru-Ampornpan
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| | - Pimpayao Sodsai
- Center of Excellence in Immunology and Immune-mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, 1873, Rama IV Rd, Pathumwan, Bangkok 10330, Thailand
| | - Orawan Himananto
- Monoclonal Antibody Production and Application Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| | - Tuangtip Theerawit
- Center of Excellence in Pediatric Infectious Diseases and Vaccines, Chulalongkorn University, 1873, Rama IV Rd, Pathumwan, Bangkok 10330, Thailand
| | - Jiratchaya Sophonphan
- The HIV Netherlands Australia Thailand Research Collaboration (HIV-NAT), The Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Punyot Tovichayathamrong
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, 1873, Rama IV Rd, Pathumwan, Bangkok 10330, Thailand
| | - Kasama Manothummetha
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, 1873, Rama IV Rd, Pathumwan, Bangkok 10330, Thailand
| | - Tysdi Laohasereekul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, 1873, Rama IV Rd, Pathumwan, Bangkok 10330, Thailand
| | - Narin Hiransuthikul
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, 1873, Rama IV Rd, Pathumwan, Bangkok 10330, Thailand
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune-mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, 1873, Rama IV Rd, Pathumwan, Bangkok 10330, Thailand
| | - Thanyawee Puthanakit
- Center of Excellence in Pediatric Infectious Diseases and Vaccines, Chulalongkorn University, 1873, Rama IV Rd, Pathumwan, Bangkok 10330, Thailand,Corresponding author at: Center of Excellence in Pediatric Infectious Diseases and Vaccines, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, 1873, Rama IV Rd., Pathumwan, Bangkok 10330, Thailand
| | | |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Influenza vaccines are the most useful strategy for preventing influenza illness, especially in the setting of the COVID-19 pandemic. For the coming year (2021/2022) all vaccines will be quadrivalent and contain two influenza A strains [(H1N1)pdm09-like and (H3N2)-like viruses] and two influenza B strains (Victoria lineage-like and Yamagata lineage-like viruses). However, the currently licensed have suboptimal efficacy due to the emergence of new strains and vaccine production limitations. In this review, we summarize the current recommendations as well as new advancements in influenza vaccinations. RECENT FINDINGS Recent advances have been aimed at moving away from egg-based vaccines and toward cell culture and recombinant vaccines. This removes egg adaptations that decrease vaccine efficacy, removes the reliance on egg availability and decreases the time necessary to manufacture vaccines. However, even more radical changes are needed if we are to reach the ultimate goal of a universal vaccine capable of providing long-lasting protection against all or at least most influenza strains. We discuss various strategies, including using more stable influenza antigens such as the hemagglutinin stalk and internal proteins as well as new adjuvants, new vaccine formulations, and DNA/RNA-based vaccines that are currently being developed. SUMMARY The currently available vaccines have suboptimal efficacy and do not provide adequate protection against drifted and shifted strains. Thus, the development of a universal influenza vaccine that induces long-lasing immunity and protects against a broad range of strains is crucial.
Collapse
Affiliation(s)
- Nadim Khalil
- Division of Pediatric Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Infectious Diseases, Department Pediatrics, London Health Sciences Centre, London, Ontario, Canada
| | - David I Bernstein
- Division of Pediatric Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
32
|
Tawinprai K, Siripongboonsitti T, Porntharukchareon T, Wittayasak K, Thonwirak N, Soonklang K, Sornsamdang G, Auewarakul C, Mahanonda N. Immunogenicity and safety of an intradermal fractional third dose of ChAdOx1 nCoV-19/AZD1222 vaccine compared with those of a standard intramuscular third dose in volunteers who previously received two doses of CoronaVac: A randomized controlled trial. Vaccine 2022; 40:1761-1767. [PMID: 35210118 PMCID: PMC8860330 DOI: 10.1016/j.vaccine.2022.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Kriangkrai Tawinprai
- Department of Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Thailand.
| | | | | | - Kasiruck Wittayasak
- Center of Learning and Research in Celebration of HRH Princess Chulabhorn's 60(th) Birthday Anniversary, Chulabhorn Royal Academy, Thailand
| | - Nawarat Thonwirak
- Center of Learning and Research in Celebration of HRH Princess Chulabhorn's 60(th) Birthday Anniversary, Chulabhorn Royal Academy, Thailand
| | - Kamonwan Soonklang
- Center of Learning and Research in Celebration of HRH Princess Chulabhorn's 60(th) Birthday Anniversary, Chulabhorn Royal Academy, Thailand
| | | | - Chirayu Auewarakul
- Center of Learning and Research in Celebration of HRH Princess Chulabhorn's 60(th) Birthday Anniversary, Chulabhorn Royal Academy, Thailand; Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Thailand
| | - Nithi Mahanonda
- Department of Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Thailand
| |
Collapse
|
33
|
Singhatiraj E, Pongpirul K, Jongkaewwattana A, Hirankarn N. Intradermal ChAdOx1 Vaccine Following Two CoronaVac Shots: A Case Report. Vaccines (Basel) 2021; 9:990. [PMID: 34579227 PMCID: PMC8472992 DOI: 10.3390/vaccines9090990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
Inactivated SARS-CoV-2 vaccines are used in many countries with uncertain immunogenicity. Intradermal ChAdOx1 has been proposed as a resource-efficient heterologous third booster shot. A 52-year-old healthy male healthcare professional had received two intramuscular CoronaVac shots on 21 April and 23 May 2021, and volunteered to take a 0.1 mL ChAdOx1 vaccine intradermally on 29 June 2021, with minimal local reactions. The declining IgG levels against spike protein from the two CoronaVac shots increased to higher than 10,000 AU/mL two weeks after the intradermal ChAdOx1. Moreover, the neutralizing antibody increased from 66.77% to almost 100%. A ratio of 6.6:9.7 of IgA:IgG was observed. The 50% pseudovirus neutralization titer (PVNT50) against lentiviral pseudovirus bearing a codon-optimized spike gene (wild type, alpha, beta, and delta) were 1812.42, 822.99, 1025.42, 1347.13, respectively. The SARS-CoV-2-specific T cells to spike protein-peptide pools (532-788 SFU/106 PBMCs) were detected. In conclusion, the antibody and cellular responses to the intradermal ChAdOx1, as a third booster dose in a healthy volunteer who received two intramuscular CoronaVac shots, revealed a dramatic increase in the total antibodies, including IgG, IgA, as well as T cell responses against spike protein. The immune response from intradermal ChAdOx1 should be further investigated in a larger population.
Collapse
Affiliation(s)
- Ekachai Singhatiraj
- Department of Medicine, Bumrungrad International Hospital, Bangkok 10110, Thailand;
| | - Krit Pongpirul
- Department of Medicine, Bumrungrad International Hospital, Bangkok 10110, Thailand;
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Anan Jongkaewwattana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand;
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
34
|
Migliore A, Gigliucci G, Di Marzo R, Russo D, Mammucari M. Intradermal Vaccination: A Potential Tool in the Battle Against the COVID-19 Pandemic? Risk Manag Healthc Policy 2021; 14:2079-2087. [PMID: 34045909 PMCID: PMC8144901 DOI: 10.2147/rmhp.s309707] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
This narrative review is the final output of an initiative of the SIM (Italian Society of Mesotherapy). A narrative review of scientific literature on the efficacy of fractional intradermal vaccination in comparison with full doses has been conducted for the following pathogens: influenza virus, rabies virus, poliovirus (PV), hepatitis B virus (HBV), hepatitis A virus (HAV), diphtheria-tetanus-pertussis bacterias (DTP), human papillomavirus (HPV), Japanese encephalitis virus (JE), meningococcus, varicella zoster virus (VZV) and yellow fever virus. The findings suggest that the use of the intradermal route represents a valid strategy in terms of efficacy and efficiency for influenza, rabies and HBV vaccines. Some systematic reviews on influenza vaccines suggest the absence of a substantial difference between immunogenicity induced by a fractional ID dose of up to 20% and the IM dose in healthy adults, elderly, immunocompromised patients and children. Clinical studies of remaining vaccines against other pathogens (HAV, DTP bacterias, JE, meningococcal disease, VZV, and yellow fever virus) are scarce, but promising. In the context of a COVID-19 vaccine shortage, countries should investigate if a fractional dosing scheme may help to save doses and achieve herd immunity quickly. SIM urges the scientific community and health authorities to investigate the potentiality of fractionate intradermal administration in anti-COVID-19 vaccination. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/xyVoP0mH6sQ
Collapse
Affiliation(s)
- Alberto Migliore
- Department of Internal Medicine, Unit of Rheumatology, San Pietro Fatebenefratelli Hospital, Rome, Italy
| | - Gianfranco Gigliucci
- Department of Internal Medicine, Unit of Rheumatology, San Pietro Fatebenefratelli Hospital, Rome, Italy
| | | | | | | |
Collapse
|