1
|
Zhang L, Wang HX, Li WX, Zhu YY, Ma RR, Wang YH, Zhang Y, Zhu DM, Zhu P. Association of Maternal Short Sleep Duration With Neurodevelopmental Delay in Offspring: A Prospective Cohort Study. J Clin Endocrinol Metab 2024:dgae569. [PMID: 39324789 DOI: 10.1210/clinem/dgae569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Indexed: 09/27/2024]
Abstract
CONTEXT To investigate how short sleep duration (SSD) during pregnancy is related to neurodevelopmental delays in offspring, we aimed to inform pregnancy sleep guidelines and promote maternal health and child development. OBJECTIVE To identify the associations between SSD during pregnancy and offspring neurodevelopmental delay and to determine whether fetal glucose metabolism plays a role in SSD and neurodevelopmental delays. METHODS This cohort study followed 7059 mother-child pairs from the Maternal & Infants Health in Hefei cohort, and collected sleep data during pregnancy via the Pittsburgh Sleep Quality Index at weeks 24 to 28 and 32 to 36. Neurodevelopmental outcomes from 6 to 36 months postpartum were assessed via the Denver Developmental Screening Test-II and the Gesell Development Diagnosis Scale. Cox proportional hazard regression was used to analyze the link between maternal SSD and neurodevelopmental delay risk. Mediation analysis was used to evaluate the role of cord blood serum C-peptide levels. Three hospitals and children's health centers in Hefei were involved. RESULTS The stratified analysis revealed a significant association between mothers with SSD during midpregnancy and neurodevelopmental delay in boys (adjusted HR 2.05, 95% CI 1.29, 3.25). Cord blood marker analysis revealed a positive relationship between cord blood serum C-peptide levels and neurodevelopmental delay in offspring (RR 0.04, 95% CI 0.00, 0.08). The proportion of the association between SSD and neurodevelopmental delay mediated by cord blood C-peptide was 11.05%. CONCLUSION Maternal SSD during pregnancy was continuously associated with an increased incidence of neurodevelopmental delay with sex differences among offspring. This association may be mediated in part by increased higher levels of cord C-peptide.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, Anhui 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui 230032, China
| | - Hai-Xia Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, Anhui 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui 230032, China
| | - Wen-Xiang Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yuan-Yuan Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, Anhui 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui 230032, China
| | - Rui-Rui Ma
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, Anhui 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yu-Hong Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, Anhui 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yu Zhang
- Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui 230032, China
- Hefei Fourth People's Hospital, Hefei, Anhui 230022, China
- Anhui Mental Health Center, Hefei, Anhui 230022, China
| | - Dao-Min Zhu
- Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui 230032, China
- Hefei Fourth People's Hospital, Hefei, Anhui 230022, China
- Anhui Mental Health Center, Hefei, Anhui 230022, China
| | - Peng Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, Anhui 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|
2
|
Cajachagua-Torres KN, Quezada-Pinedo HG, Wu T, Trasande L, Ghassabian A. Exposure to Endocrine Disruptors in Early life and Neuroimaging Findings in Childhood and Adolescence: a Scoping Review. Curr Environ Health Rep 2024; 11:416-442. [PMID: 39078539 PMCID: PMC11324673 DOI: 10.1007/s40572-024-00457-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 07/31/2024]
Abstract
PURPOSE OF REVIEW: Evidence suggests neurotoxicity of endocrine disrupting chemicals (EDCs) during sensitive periods of development. We present an overview of pediatric population neuroimaging studies that examined brain influences of EDC exposure during prenatal period and childhood. RECENT FINDINGS: We found 46 studies that used magnetic resonance imaging (MRI) to examine brain influences of EDCs. These studies showed associations of prenatal exposure to phthalates, organophosphate pesticides (OPs), polyaromatic hydrocarbons and persistent organic pollutants with global and regional brain structural alterations. Few studies suggested alteration in functional MRI associated with prenatal OP exposure. However, studies on other groups of EDCs, such as bisphenols, and those that examined childhood exposure were less conclusive. These findings underscore the potential profound and lasting effects of prenatal EDC exposure on brain development, emphasizing the need for better regulation and strategies to reduce exposure and mitigate impacts. More studies are needed to examine the influence of postnatal exposure to EDC on brain imaging.
Collapse
Affiliation(s)
- Kim N Cajachagua-Torres
- Department of Pediatrics, NYU Grossman School of Medicine, 555 First Avenue, New York, NY, 10016, USA.
- Department of Pediatrics, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| | - Hugo G Quezada-Pinedo
- Department of Pediatrics, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Tong Wu
- Department of Radiology and Nuclear Medicine, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Leonardo Trasande
- Department of Pediatrics, NYU Grossman School of Medicine, 555 First Avenue, New York, NY, 10016, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Akhgar Ghassabian
- Department of Pediatrics, NYU Grossman School of Medicine, 555 First Avenue, New York, NY, 10016, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
3
|
Wu Y, Gao H, Zhang C, Ma X, Zhu X, Wu S, Lin L. Machine Learning and Deep Learning Approaches in Lifespan Brain Age Prediction: A Comprehensive Review. Tomography 2024; 10:1238-1262. [PMID: 39195728 PMCID: PMC11359833 DOI: 10.3390/tomography10080093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
The concept of 'brain age', derived from neuroimaging data, serves as a crucial biomarker reflecting cognitive vitality and neurodegenerative trajectories. In the past decade, machine learning (ML) and deep learning (DL) integration has transformed the field, providing advanced models for brain age estimation. However, achieving precise brain age prediction across all ages remains a significant analytical challenge. This comprehensive review scrutinizes advancements in ML- and DL-based brain age prediction, analyzing 52 peer-reviewed studies from 2020 to 2024. It assesses various model architectures, highlighting their effectiveness and nuances in lifespan brain age studies. By comparing ML and DL, strengths in forecasting and methodological limitations are revealed. Finally, key findings from the reviewed articles are summarized and a number of major issues related to ML/DL-based lifespan brain age prediction are discussed. Through this study, we aim at the synthesis of the current state of brain age prediction, emphasizing both advancements and persistent challenges, guiding future research, technological advancements, and improving early intervention strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lan Lin
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; (Y.W.); (H.G.); (C.Z.); (X.M.); (X.Z.); (S.W.)
| |
Collapse
|
4
|
Zhou ZR, Guo Y. Growth Status of Full-Term Infants with Different Sizes for Gestational Age During the First Year of Life. Pediatric Health Med Ther 2024; 15:265-272. [PMID: 39135906 PMCID: PMC11318594 DOI: 10.2147/phmt.s468778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/04/2024] [Indexed: 08/15/2024] Open
Abstract
Objective This study aimed to assess the growth of full-term infants with different sizes at birth and examine catch-up and catch-down growth in their first year. Methods This retrospective population-based cohort study was based on the Guangdong Provincial Women and Children Health Information System. 194797 full-term singleton live births were extracted. Measurements for weight and length were taken at birth, 6 months, and 12 months. The size-for-gestational age was categorized as small (SGA, <10th centile), appropriate (AGA, 10th-90th centiles), or large (LGA, >90th centile) based on the international newborn size for gestational age and sex INTERGROWTH-21st standards. Catch-up and catch- down growth were defined as a change in standard deviation in z-score greater than 0.67 in the growth curves. Results Of the 194797 full-term singletons, the average gestational age was 39.28 ± 1.03 weeks, and the average weight of the newborns was 3205 ± 383 grams. 15632 infants were identified as SGA (8.0%) and 12756 were LGA (6.5%). At 1 year of age, catch-up growth in weight was observed in 63.0% of SGA infants, 29.5% of AGA infants, and 5.4% of LGA infants. Conversely, catch-down growth occurred in 3.3% of SGA infants, 17.8% of AGA infants, and 54.7% of LGA infants. The proportions of catch-up growth in length for SGA, AGA, and LGA infants within the first year were 31.4%, 22.5%, and 17.1%, respectively. Catch-up or catch-down growth predominantly occurred before 6 months of age. However, from 6 to 12 months, there was no significant variation in WAZ among children with different birth sizes. Conclusion In their first year of life, full-term singleton live births tend towards regression to the mean in their postnatal weight and length. The average delay in the growth of LGA is compensated by an increase in it of the SGA. Early monitoring and intervention are crucial for optimizing growth in infants with different birth sizes.
Collapse
Affiliation(s)
- Zhuo-Ren Zhou
- Department of Health Care, Guangdong Women and Children Hospital, Guangzhou, 511400, People’s Republic of China
| | - Yong Guo
- Department of Health Care, Guangdong Women and Children Hospital, Guangzhou, 511400, People’s Republic of China
| |
Collapse
|
5
|
Zuo J, Zhang H, Gang H, Mai Q, Jia Z, Liu H, Xia W, Xu S, Li Y. Associations of intrauterine exposure to manganese with fetal and early-childhood growth: a prospective prenatal cohort study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14303-14317. [PMID: 38273082 DOI: 10.1007/s11356-023-31773-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024]
Abstract
Prenatal manganese (Mn) exposure may be related to poor birth outcomes; however, there are few relevant epidemiological reports on the effects of intrauterine Mn levels on intrauterine fetal and early childhood growth. From 2013 to 2016, 2082 pairs of mothers and infants were recruited in Wuhan, China, who provided an entire set of urine samples during their first, second, and third trimesters. Fetal head circumference (HC), abdominal circumference (AC), femoral length (FL), and estimated fetal weight (EFW) were obtained by ultrasound at the 16, 24, and 31 weeks of pregnancy. When the children were born, 6 months old, 12 months old, and 24 months old, their weight, height, weight-for-height, and BMI were measured. We used generalized linear models, generalized estimated equations, and restricted cubic spline curves (RCS) to investigate the linear and nonlinear relationships between antenatal Mn levels and fetal and early childhood growth. In all fetuses, Mn exposure during the 1st and 2nd gestation was associated with decreased fetal AC, FL, and EFW at 24 weeks (e.g., for each doubling of urinary Mn concentrations during the 1st and 2nd gestation, the SD score of EFW at 24 weeks decreased by - 4.16% (95% CI, - 6.22%, - 2.10%) and - 3.78% (95% CI, - 5.86%, - 1.70%)). Mn concentrations in the highest tertile group of the 1st and 2nd gestation were related to decreased fetus growth parameters compared to the lowest tertile group. For each doubling of the average Mn concentrations during pregnancy, the z-scores of weight, weight-for-height, and BMI at 12 months decreased, with percentage changes of - 2.93% (95% CI, - 5.08%, - 0.79%), - 3.25% (95% CI, - 5.56%, - 0.94%), and - 3.09% (95% CI, - 5.44%, - 0.73%). In the RCS model, we found a reverse U-shaped association between 1st trimester Mn concentration and fetal FL at 16 weeks and HC at 31 weeks in male fetuses and a non-linear association between mean Mn concentration during pregnancy and girls' weight-for-height and BMI at 6 months. Intrauterine exposure to Mn may be related to restricted growth in the fetus and early childhood, especially in fetuses at 24 weeks of gestation and children at 12 months of age. Also, meaningful curvilinear relationships were found in the sex stratification.
Collapse
Affiliation(s)
- Jingwen Zuo
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hongling Zhang
- Wuchang University of Technology, Wuhan, 430023, People's Republic of China
| | - Huiqing Gang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qi Mai
- Center for Public Health Laboratory Service, Wuhan Centers for Disease Control & Prevention, Institute of Environmental Health, Wuhan, Hubei, 430024, People's Republic of China
| | - Zhenxian Jia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
6
|
Lourenço BH, Castro MC, de Morais Sato P, Neves PAR, Vivanco E, Lima DL, Cardoso MA. Exposure to ultra-processed foods during pregnancy and ultrasound fetal growth parameters. Br J Nutr 2023; 130:2136-2145. [PMID: 37190988 DOI: 10.1017/s0007114523001204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Periconceptional maternal ultra-processed food (UPF) consumption impairs embryonic growth. Impacts of exposure to UPF on distinct components of fetal growth in late pregnancy are unknown. We investigated the influence of frequency of UPF consumption during pregnancy on fetal head circumference (HC), abdominal circumference (AC) and femur length (FL). This study included 417 live-born singleton pregnancies prospectively followed-up since the antenatal period in the MINA-Brazil Study, with an available ultrasound scan at >24 gestational weeks. Frequency of food groups consumption in the previous month was categorised as no/monthly, weekly or daily. Ultrasound scans were conducted at 27·8 (sd: 1·7) gestational weeks. HC, AC and FL z-scores were calculated for gestational age using the INTERGROWTH-21st Project standards. Simultaneous-quantile regression models were fitted at the 10th, 50th and 90th percentiles of the distribution of each ultrasound parameter according to UPF consumption, with adjustment for potential confounders. Participants were aged on average 24·7 (sd: 6·5) years, 44·8 % were primiparous, and 26·9 % and 24·9 %, respectively, had weekly and daily UPF consumption. Compared with no/monthly intake, daily UPF consumption impaired HC across its distribution, with significant effect sizes varying from -0·24 to -0·40 z-score. Weekly UPF consumption decreased HC at the 90th percentile by -0·39 z-score (95 % CI: -0·78, -0·01) and FL at the 50th percentile by -0·32 z-score (95 % CI: -0·60, -0·04). No association was noted with AC. Frequency of UPF consumption was negatively associated with skeletal components of fetal growth in late pregnancy. Infant body composition may benefit from healthy food practices since pregnancy.
Collapse
Affiliation(s)
- Bárbara Hatzlhoffer Lourenço
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, SP, Brazil
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marcia C Castro
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Priscila de Morais Sato
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, SP, Brazil
- School of Nutrition, Federal University of Bahia, Salvador, BA, Brazil
| | | | - Edwin Vivanco
- Juruá Women's and Children's Hospital, Cruzeiro do Sul, AC, Brazil
| | - Daniel Leal Lima
- Juruá Women's and Children's Hospital, Cruzeiro do Sul, AC, Brazil
| | - Marly Augusto Cardoso
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
7
|
Fu TT, Barnes-Davis ME, Fujiwara H, Folger AT, Merhar SL, Kadis DS, Poindexter BB, Parikh NA. Correlation of NICU anthropometry in extremely preterm infants with brain development and language scores at early school age. Sci Rep 2023; 13:15273. [PMID: 37714903 PMCID: PMC10504298 DOI: 10.1038/s41598-023-42281-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
Growth in preterm infants in the neonatal intensive care unit (NICU) is associated with increased global and regional brain volumes at term, and increased postnatal linear growth is associated with higher language scores at age 2. It is unknown whether these relationships persist to school age or if an association between growth and cortical metrics exists. Using regression analyses, we investigated relationships between the growth of 42 children born extremely preterm (< 28 weeks gestation) from their NICU hospitalization, standardized neurodevelopmental/language assessments at 2 and 4-6 years, and multiple neuroimaging biomarkers obtained from T1-weighted images at 4-6 years. We found length at birth and 36 weeks post-menstrual age had positive associations with language scores at 2 years in multivariable linear regression. No growth metric correlated with 4-6 year assessments. Weight and head circumference at 36 weeks post-menstrual age positively correlated with total brain volume and negatively with global cortical thickness at 4-6 years of age. Head circumference relationships remained significant after adjusting for age, sex, and socioeconomic status. Right temporal cortical thickness was related to receptive language at 4-6 years in the multivariable model. Results suggest growth in the NICU may have lasting effects on brain development in extremely preterm children.
Collapse
Affiliation(s)
- Ting Ting Fu
- Division of Neonatology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7009, Cincinnati, OH, 45229-3026, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Maria E Barnes-Davis
- Division of Neonatology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7009, Cincinnati, OH, 45229-3026, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hisako Fujiwara
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Alonzo T Folger
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Stephanie L Merhar
- Division of Neonatology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7009, Cincinnati, OH, 45229-3026, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Darren S Kadis
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Brenda B Poindexter
- Division of Neonatology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Nehal A Parikh
- Division of Neonatology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7009, Cincinnati, OH, 45229-3026, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
8
|
Kinkade CW, Rivera-Núñez Z, Thurston SW, Kannan K, Miller RK, Brunner J, Wong E, Groth S, O'Connor TG, Barrett ES. Per- and polyfluoroalkyl substances, gestational weight gain, postpartum weight retention and body composition in the UPSIDE cohort. Environ Health 2023; 22:61. [PMID: 37658449 PMCID: PMC10474772 DOI: 10.1186/s12940-023-01009-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals found in drinking water and consumer products, resulting in ubiquitous human exposure. PFAS have been linked to endocrine disruption and altered weight gain across the lifespan. A limited and inconsistent body of research suggests PFAS may impact gestational weight gain (GWG) and postpartum body mass index (BMI), which are important predictors of overall infant and maternal health, respectively. METHODS In the Understanding Pregnancy Signals and Infant Development (UPSIDE/UPSIDE-MOMs) study (n = 243; Rochester, NY), we examined second trimester serum PFAS (PFOS: perfluorooctanesulfonic acid, PFOA: perfluorooctanoic acid, PFNA: perfluorononanoic acid, PFHxS: perfluorohexanesulfonic acid, PFDA: perfluorodecanoic acid) in relation to GWG (kg, and weekly rate of gain) and in the postpartum, weight retention (PPWR (kg) and total body fat percentage (measured by bioelectrical impedance)). We fit multivariable linear regression models examining these outcomes in relation to log-transformed PFAS in the whole cohort as well as stratified by maternal pre-pregnancy BMI (< 25 vs. = > 25 kg/m2), adjusting for demographics and lifestyle factors. We used weighted quantile sum regression to find the combined influence of the 5 PFAS on GWG, PPWR, and body fat percentage. RESULTS PFOA and PFHxS were inversely associated with total GWG (PFOA: ß = -1.54 kg, 95%CI: -2.79, -0.30; rate ß = -0.05 kg/week, 95%CI: -0.09, -0.01; PFHxS: ß = -1.59 kg, 95%CI: -3.39, 0.21; rate ß = -0.05 kg/week, 95%CI: -0.11, 0.01) and PPWR at 6 and 12 months (PFOA 6 months: ß = -2.39 kg, 95%CI: -4.17, -0.61; 12 months: ß = -4.02 kg, 95%CI: -6.58, -1.46; PFHxS 6 months: ß = -2.94 kg, 95%CI: -5.52, -0.35; 12 months: ß = -5.13 kg, 95%CI: -8.34, -1.93). PFOA was additionally associated with lower body fat percentage at 6 and 12 months (ß = -1.75, 95%CI: -3.17, -0.32; ß = -1.64, 95%CI: -3.43, 0.16, respectively) with stronger associations observed in participants with higher pre-pregnancy BMI. The PFAS mixture was inversely associated with weight retention at 12 months (ß = -2.030, 95%CI: -3.486, -0.573) amongst all participants. CONCLUSION PFAS, in particular PFOA and PFHxS, in pregnancy are associated with altered patterns of GWG and postpartum adiposity with potential implications for fetal development and long-term maternal cardiometabolic health.
Collapse
Affiliation(s)
- Carolyn W Kinkade
- Environmental and Occupational Sciences Institute, Rutgers University, Piscataway, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
| | - Zorimar Rivera-Núñez
- Environmental and Occupational Sciences Institute, Rutgers University, Piscataway, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Sally W Thurston
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Kurunthachalam Kannan
- Department of Environmental Medicine, Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Richard K Miller
- Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jessica Brunner
- Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Psychiatry, University of Rochester, Rochester, NY, USA
| | - Eunyoung Wong
- School of Nursing, University of Rochester, Rochester, NY, USA
| | - Susan Groth
- School of Nursing, University of Rochester, Rochester, NY, USA
| | - Thomas G O'Connor
- Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Psychiatry, University of Rochester, Rochester, NY, USA
| | - Emily S Barrett
- Environmental and Occupational Sciences Institute, Rutgers University, Piscataway, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
- Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
9
|
Stevens DR, Rosen EM, Van Wickle K, McNell EE, Bommarito PA, Calafat AM, Botelho JC, Sinkovskaya E, Przybylska A, Saade G, Abuhamad A, Ferguson KK. Early pregnancy phthalates and replacements in relation to fetal growth: The human placenta and phthalates study. ENVIRONMENTAL RESEARCH 2023; 229:115975. [PMID: 37094650 PMCID: PMC10201455 DOI: 10.1016/j.envres.2023.115975] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Pregnant persons are exposed ubiquitously to phthalates and increasingly to chemicals introduced to replace phthalates. In early pregnancy, exposure to these chemicals may disrupt fetal formation and development, manifesting adverse fetal growth. Previous studies examining the consequences of early pregnancy exposure relied on single spot urine measures and did not investigate replacement chemicals. OBJECTIVE Characterize associations between urinary phthalate and replacement biomarkers in early pregnancy and fetal growth outcomes. METHODS Analyses were conducted among 254 pregnancies in the Human Placenta and Phthalates Study, a prospective cohort with recruitment 2017-2020. Exposures were geometric mean concentrations of phthalate and replacement biomarkers quantified in two spot urine samples collected around 12- and 14-weeks of gestation. Outcomes were fetal ultrasound biometry (head and abdominal circumferences, femur length, estimated fetal weight) collected in each trimester and converted to z-scores. Adjusted linear mixed effects (single-pollutant) and quantile g-computation (mixture) models with participant-specific random effects estimated the difference, on average, in longitudinal fetal growth for a one-interquartile range (IQR) increase in individual (single-pollutant) or all (mixture) early pregnancy phthalate and replacement biomarkers. RESULTS Mono carboxyisononyl phthalate and the sums of metabolites of di-n-butyl, di-iso-butyl, and di-2-ethylhexyl phthalate were inversely associated with fetal head and abdominal circumference z-scores. A one-IQR increase in the phthalate and replacement biomarker mixture was inversely associated with fetal head circumference (β: -0.36 [95% confidence interval: -0.56, -0.15]) and abdominal circumference (-0.31 [-0.49, -0.12]) z-scores. This association was mainly driven by phthalate biomarkers. CONCLUSIONS Urine concentrations of phthalate biomarkers, but not replacement biomarkers, in early pregnancy were associated with reductions in fetal growth. Though the clinical implications of these differences are unclear, reduced fetal growth contributes to excess morbidity and mortality across the lifecourse. Given widespread global exposure to phthalates, findings suggest a substantial population health burden resulting from early pregnancy phthalate exposure.
Collapse
Affiliation(s)
- Danielle R Stevens
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Emma M Rosen
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA; Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Kimi Van Wickle
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA; Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Erin E McNell
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA; Curriculum in Toxicology and Environmental Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Paige A Bommarito
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Julianne C Botelho
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Elena Sinkovskaya
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Ann Przybylska
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - George Saade
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alfred Abuhamad
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA.
| |
Collapse
|
10
|
Diggikar S, Gurumoorthy P, Trif P, Mudura D, Nagesh NK, Galis R, Vinekar A, Kramer BW. Retinopathy of prematurity and neurodevelopmental outcomes in preterm infants: A systematic review and meta-analysis. Front Pediatr 2023; 11:1055813. [PMID: 37009271 PMCID: PMC10050340 DOI: 10.3389/fped.2023.1055813] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/16/2023] [Indexed: 04/04/2023] Open
Abstract
Background Retinopathy of prematurity (ROP) and abnormal brain development share similar risk factors and mechanisms. There has been contrasting evidence on the association of ROP with adverse neurodevelopmental outcomes. Objective We analysed the association between ROP at levels of severity and treatment with all neurodevelopmental outcomes until adolescence. Data source We followed PRISMA guidelines and searched Medline and Embase between 1 August 1990 and 31 March 2022. Study selection and participants Randomised or quasi-randomised clinical trials and observational studies on preterm infants (<37 weeks) with ROP [type 1 or severe ROP, type 2 or milder ROP, laser or anti-vascular endothelial growth factor (VEGF) treated] were included. Data extraction and synthesis We included studies on ROP and any neurocognitive or neuropsychiatric outcomes. Outcomes The primary outcomes were as follows: cognitive composite scores evaluated between the ages of 18 and 48 months by the Bayley Scales of Infant and Toddler Development (BSID) or equivalent; neurodevelopmental impairment (NDI; moderate to severe NDI or severe NDI), cerebral palsy, cognitive impairment; and neuropsychiatric or behavioural problems. The secondary outcomes were as follows: motor and language composite scores evaluated between the ages of 18 and 48 months by BSID or equivalent; motor/language impairment; and moderate/severe NDI as defined by the authors. Results In preterm infants, "any ROP" was associated with an increased risk of cognitive impairment or intellectual disability [n = 83,506; odds ratio (OR): 2.56; 95% CI: 1.40-4.69; p = 0.002], cerebral palsy (n = 3,706; OR: 2.26; 95% CI: 1.72-2.96; p < 0.001), behavioural problems (n = 81,439; OR: 2.45; 95% CI: 1.03-5.83; p = 0.04), or NDI as defined by authors (n = 1,930; OR: 3.83; 95% CI: 1.61-9.12; p = 0.002). Type 1 or severe ROP increased the risk of cerebral palsy (OR: 2.19; 95% CI: 1.23-3.88; p = 0.07), cognitive impairment or intellectual disability (n = 5,167; OR: 3.56; 95% CI: 2.6-4.86; p < 0.001), and behavioural problems (n = 5,500; OR: 2.76; 95% CI: 2.11-3.60; p < 0.001) more than type 2 ROP at 18-24 months. Infants treated with anti-VEGF had higher odds of moderate cognitive impairment than the laser surgery group if adjusted data (gestational age, sex severe intraventricular haemorrhage, bronchopulmonary dysplasia, sepsis, surgical necrotising enterocolitis, and maternal education) were analysed [adjusted OR (aOR): 1.93; 95% CI: 1.23-3.03; p = 0.04], but not for cerebral palsy (aOR: 1.29; 95% CI: 0.65-2.56; p = 0.45). All outcomes were adjudged with a "very low" certainty of evidence. Conclusion and relevance Infants with "any ROP" had higher risks of cognitive impairment or intellectual disability, cerebral palsy, and behavioural problems. Anti-VEGF treatment increased the risk of moderate cognitive impairment. These results support the association of ROP and anti-VEGF treatment with adverse neurodevelopmental outcomes. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier: CRD42022326009.
Collapse
Affiliation(s)
- Shivashankar Diggikar
- Department of Paediatrics, Oyster Woman and Child Hospital, Bengaluru, India
- Correspondence: Shivashankar Diggikar
| | - Puvaneswari Gurumoorthy
- Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Bengaluru, India
| | - Paula Trif
- Department of Neonatology, Emergency County Hospital of Bihor, Oradea, Romania
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Diana Mudura
- Department of Neonatology, Emergency County Hospital of Bihor, Oradea, Romania
| | | | - Radu Galis
- Department of Paediatric Retina, Narayana Nethralaya Eye Institute, Bengaluru, India
| | - Anand Vinekar
- Department of Paediatric Retina, Narayana Nethralaya Eye Institute, Bengaluru, India
| | - Boris W. Kramer
- Department of Paediatrics, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
- School of Women’s and Infants’ Health, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
11
|
Ma Q, Wang H, Rolls ET, Xiang S, Li J, Li Y, Zhou Q, Cheng W, Li F. Lower gestational age is associated with lower cortical volume and cognitive and educational performance in adolescence. BMC Med 2022; 20:424. [PMID: 36329481 PMCID: PMC9635194 DOI: 10.1186/s12916-022-02627-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Gestational age (GA) is associated with later cognition and behavior. However, it is unclear how specific cognitive domains and brain structural development varies with the stepwise change of gestational duration. METHODS This large-scale longitudinal cohort study analyzed 11,878 early adolescents' brain volume maps at 9-10 years (baseline) and 5685 at 11-12 years (a 2-year follow-up) from the Adolescent Brain Cognitive Development (ABCD) study. According to gestational age, adolescents were divided into five categorical groups: ≤ 33 weeks, 34-35 weeks, 36 weeks, 37-39 weeks, and ≥ 40 weeks. The NIH Toolbox was used to estimate neurocognitive performance, including crystallized and fluid intelligence, which was measured for 11,878 adolescents at baseline with crystallized intelligence and relevant subscales obtained at 2-year follow-up (with participant numbers ranging from 6185 to 6310 depending on the cognitive domain). An additional large population-based cohort of 618,070 middle adolescents at ninth-grade (15-16 years) from the Danish national register was utilized to validate the association between gestational age and academic achievements. A linear mixed model was used to examine the group differences between gestational age and neurocognitive performance, school achievements, and grey matter volume. A mediation analysis was performed to examine whether brain structural volumes mediated the association between GA and neurocognition, followed with a longitudinal analysis to track the changes. RESULTS Significant group differences were found in all neurocognitive scores, school achievements, and twenty-five cortical regional volumes (P < 0.05, Bonferroni corrected). Specifically, lower gestational ages were associated with graded lower cognition and school achievements and with smaller brain volumes of the fronto-parieto-temporal, fusiform, cingulate, insula, postcentral, hippocampal, thalamic, and pallidal regions. These lower brain volumes mediated the association between gestational age and cognitive function (P = 1 × 10-8, β = 0.017, 95% CI: 0.007-0.028). Longitudinal analysis showed that compared to full term adolescents, preterm adolescents still had smaller brain volumes and crystallized intelligence scores at 11-12 years. CONCLUSIONS These results emphasize the relationships between gestational age at birth and adolescents' lower brain volume, and lower cognitive and educational performance, measured many years later when 9-10 and 11-12 years old. The study indicates the importance of early screening and close follow-up for neurocognitive and behavioral development for children and adolescents born with gestational ages that are even a little lower than full term.
Collapse
Affiliation(s)
- Qing Ma
- Department of Neurology, Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, 200433, China
| | - Hui Wang
- Department of Developmental and Behavioral Pediatric & Child Primary Care/MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200082, China
| | - Edmund T Rolls
- Department of Neurology, Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.,Department of Computer Science, University of Warwick, Coventry CV4 7AL, Conventry, UK.,Oxford Centre for Computational Neuroscience, Oxford, UK
| | - Shitong Xiang
- Department of Neurology, Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, 200433, China
| | - Jiong Li
- Department of Clinical Medicine, Aarhus University, Aarhus, 8000, Denmark
| | - Yuzhu Li
- Department of Neurology, Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, 200433, China
| | - Qiongjie Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, 200011, China
| | - Wei Cheng
- Department of Neurology, Huashan Hospital, Institute of Science and Technology for Brain-Inspired Intelligence, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China. .,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, 200433, China. .,Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, 321004, China. .,Shanghai Medical College and Zhongshan Hospital Immunotherapy Technology Transfer Center, Shanghai, 200032, China.
| | - Fei Li
- Department of Developmental and Behavioral Pediatric & Child Primary Care/MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200082, China.
| |
Collapse
|
12
|
Dmitrichenko O, Mou Y, Voortman T, White T, Jansen PW. Food-Approach Eating Behaviors and Brain Morphology: The Generation R Study. Front Nutr 2022; 9:846148. [PMID: 35445055 PMCID: PMC9014090 DOI: 10.3389/fnut.2022.846148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Food-approach eating behaviors are associated with an increased risk of developing overweight/obesity and binge-eating disorder, while obesity and binge-eating disorder have also been linked with altered brain morphology in adults. To understand these associations, we examined the association of food-approach eating behaviors during childhood with adolescents' brain morphology. The sample included 1,781 adolescents with assessments of eating behaviors at ages 4 and 10 years and brain imaging data at 13 years from a large, population-based cohort. Food approach eating behaviors (enjoyment of food, emotional overeating, and food responsiveness) were assessed using the Child Eating Behavior Questionnaire. Additionally, we assessed binge eating symptoms using two items from the Development and Well-Being Assessment at 13 years of age. Adolescents participated in an MRI procedure and measures of brain morphology, including cerebral white, cerebral gray and subcortical gray matter volumes, were extracted from T1-weighted images processed using FreeSurfer. Enjoyment of food and food responsiveness at the age of 4 and 10 years were positively associated with cerebral white matter and subcortical gray matter volumes at age 13 years (e.g., enjoyment of food at 4 years and cerebral white matter: β = 2.73, 95% CI 0.51, 4.91). Enjoyment of food and food responsiveness at 4 years of age, but not at 10 years, were associated with a larger cerebral gray matter volume at 13 years of age (e.g., enjoyment of food at 4 years: β = 0.24, 95% CI 0.03, 0.45). No statistically significant associations were found for emotional overeating at both ages and brain measurements at 13 years of age. post-hoc analyses showed no associations of food-approach eating behaviors with amygdala or hippocampus. Lastly, we did not observe significant associations of binge-eating symptoms with global brain measurements and a priori-defined regions of interest, including the right frontal operculum, insular and orbitofrontal cortex. Our findings support an association between food-approach eating behaviors, especially enjoyment of food and food responsiveness, and brain morphology in adolescence. Our findings add important knowledge to previous studies that were mostly conducted in adults, by suggesting that the eating behavior-brain link may be visible earlier in life. Further research is needed to determine causality.
Collapse
Affiliation(s)
- Olga Dmitrichenko
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands.,The Generation R Study Group, Erasmus University Medical Center, Rotterdam, Netherlands.,Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany.,Pettenkofer School of Public Health, Munich, Germany
| | - Yuchan Mou
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands.,The Generation R Study Group, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands.,Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, Netherlands
| | - Tonya White
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Pauline W Jansen
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, Netherlands
| |
Collapse
|