1
|
Shao Z, Gao X, Cen S, Tang X, Gong J, Ding W. Unveiling the link between glymphatic function and cortical microstructures in post-traumatic stress disorder. J Affect Disord 2024; 365:341-350. [PMID: 39178958 DOI: 10.1016/j.jad.2024.08.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024]
Abstract
PURPOSE The discovery of the glymphatic system, crucial for cerebrospinal and interstitial fluid exchange, has enhanced our grasp of brain protein balance and its potential role in neurodegenerative disease prevention and therapy. Detecting early neurodegenerative shifts via noninvasive biomarkers could be key in identifying at-risk individuals for Alzheimer's disease (AD). Our research explores a diffusion tensor imaging (DTI) method that measures cortical mean diffusivity (cMD), potentially a more sensitive indicator of neurodegeneration than traditional macrostructural methods. MATERIALS AND METHODS We analyzed 67 post-traumatic stress disorder (PTSD)-diagnosed veterans from the Alzheimer's Disease Neuroimaging Initiative database. Participants underwent structural MRI, DTI, Aβ PET imaging, and cognitive testing. We focused on the DTI-ALPS technique to assess glymphatic function and its relation to cMD, cortical Aβ accumulation, and thickness, accounting for age and APOE ε4 allele variations. RESULTS The cohort, all male with an average age of 68.1 (SD 3.4), showed a strong inverse correlation between DTI-ALPS and cMD in AD-affected regions, especially in the entorhinal, parahippocampal, and fusiform areas. Higher DTI-ALPS readings were consistently linked with greater cortical thickness, independent of Aβ deposits and genetic risk factors. Age and cMD emerged as inversely proportional predictors of DTI-ALPS, indicating a complex interaction with age. CONCLUSION The study confirms a meaningful association between glymphatic efficiency and cMD in AD-sensitive zones, accentuating cortical microstructural alterations in PTSD. It positions DTI-ALPS as a viable biomarker for assessing glymphatic function in PTSD, implicating changes in DTI-ALPS as indicative of glymphatic impairment.
Collapse
Affiliation(s)
- Zhiding Shao
- Department of Neurology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Xue Gao
- Department of Neurology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Si Cen
- Department of Neurology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Xiaolei Tang
- Translational Medicine Center, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Juanyu Gong
- Department of Neurology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China.
| | - Wencai Ding
- Department of Neurology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China.
| |
Collapse
|
2
|
Farrell ME, Thibault EG, Becker JA, Price JC, Healy BC, Hanseeuw BJ, Buckley RF, Jacobs HIL, Schultz AP, Chen CD, Sperling RA, Johnson KA. Spatial extent as a sensitive amyloid-PET metric in preclinical Alzheimer's disease. Alzheimers Dement 2024; 20:5434-5449. [PMID: 38988055 PMCID: PMC11350060 DOI: 10.1002/alz.14036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 07/12/2024]
Abstract
INTRODUCTION Spatial extent-based measures of how far amyloid beta (Aβ) has spread throughout the neocortex may be more sensitive than traditional Aβ-positron emission tomography (PET) measures of Aβ level for detecting early Aβ deposits in preclinical Alzheimer's disease (AD) and improve understanding of Aβ's association with tau proliferation and cognitive decline. METHODS Pittsburgh Compound-B (PIB)-PET scans from 261 cognitively unimpaired older adults from the Harvard Aging Brain Study were used to measure Aβ level (LVL; neocortical PIB DVR) and spatial extent (EXT), calculated as the proportion of the neocortex that is PIB+. RESULTS EXT enabled earlier detection of Aβ deposits longitudinally confirmed to reach a traditional LVL-based threshold for Aβ+ within 5 years. EXT improved prediction of cognitive decline (Preclinical Alzheimer Cognitive Composite) and tau proliferation (flortaucipir-PET) over LVL. DISCUSSION These findings indicate EXT may be more sensitive to Aβ's role in preclinical AD than level and improve targeting of individuals for AD prevention trials. HIGHLIGHTS Aβ spatial extent (EXT) was measured as the percentage of the neocortex with elevated Pittsburgh Compound-B. Aβ EXT improved detection of Aβ below traditional PET thresholds. Early regional Aβ deposits were spatially heterogeneous. Cognition and tau were more closely tied to Aβ EXT than Aβ level. Neocortical tau onset aligned with reaching widespread neocortical Aβ.
Collapse
Affiliation(s)
- Michelle E. Farrell
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Emma G. Thibault
- Department of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - J. Alex Becker
- Department of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Julie C. Price
- Department of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Brian C. Healy
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Biostatistics CenterMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Bernard J. Hanseeuw
- Department of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyCliniques Universitaires Saint‐LucUniversité Catholique de LouvainBruxellesBelgium
| | - Rachel F. Buckley
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Melbourne School of Psychological SciencesUniversity of MelbourneMelbourneVictoriaAustralia
- Center for Alzheimer Research and TreatmentDepartment of NeurologyBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Heidi I. L. Jacobs
- Department of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Aaron P. Schultz
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Charles D. Chen
- Department of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Reisa A. Sperling
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Alzheimer Research and TreatmentDepartment of NeurologyBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Keith A. Johnson
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Alzheimer Research and TreatmentDepartment of NeurologyBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
3
|
Wang W, Huang J, Qian S, Zheng Y, Yu X, Jiang T, Ai R, Hou J, Ma E, Cai J, He H, Wang X, Xie C. Amyloid-β but not tau accumulation is strongly associated with longitudinal cognitive decline. CNS Neurosci Ther 2024; 30:e14860. [PMID: 39014268 PMCID: PMC11251873 DOI: 10.1111/cns.14860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/11/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
OBJECTIVE Alzheimer's disease (AD) pathology is featured by the extracellular accumulation of amyloid-β (Aβ) plaques and intracellular tau neurofibrillary tangles in the brain. We studied whether Aβ and tau accumulation are independently associated with future cognitive decline in the AD continuum. METHODS Data were acquired from the Alzheimer's Disease Neuroimaging Initiative (ADNI) public database. A total of 1272 participants were selected based on the availability of Aβ-PET and CSF tau at baseline and of those 777 participants with follow-up visits. RESULTS We found that Aβ-PET and CSF tau pathology were related to cognitive decline across the AD clinical spectrum, both as potential predictors for dementia progression. Among them, Aβ-PET (A + T- subjects) is an independent reliable predictor of longitudinal cognitive decline in terms of ADAS-13, ADNI-MEM, and MMSE scores rather than tau pathology (A - T+ subjects), indicating tau accumulation is not closely correlated with future cognitive impairment without being driven by Aβ deposition. Of note, a high percentage of APOE ε4 carriers with Aβ pathology (A+) develop poor memory and learning capacity. Interestingly, this condition is not recurrence in terms of the ADNI-MEM domain when adding APOE ε4 status. Finally, the levels of Aβ-PET SUVR related to glucose hypometabolism more strongly in subjects with A + T- than A - T+ both happen at baseline and longitudinal changes. CONCLUSIONS In conclusion, Aβ-PET alone without tau pathology (A + T-) measure is an independent reliable predictor of longitudinal cognitive decline but may nonetheless forecast different status of dementia progression. However, tau accumulation alone without Aβ pathology background (A - T+) was not enough to be an independent predictor of cognitive worsening.
Collapse
Affiliation(s)
- Wenwen Wang
- The Center of Traditional Chinese Medicine, The Second Affiliated HospitalYuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jiani Huang
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Shuangjie Qian
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yi Zheng
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xinyue Yu
- Alberta InstituteWenzhou Medical UniversityWenzhouZhejiangChina
| | - Tao Jiang
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Ruixue Ai
- Department of Clinical Molecular Biology, Akershus University HospitalUniversity of OsloLørenskogNorway
| | - Jialong Hou
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Enzi Ma
- Department of NeurologyTraditional Chinese and Western Medicine Hospital of WenzhouWenzhouZhejiangChina
| | - Jinlai Cai
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Haijun He
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - XinShi Wang
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Chenglong Xie
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Oujiang LaboratoryWenzhouZhejiangChina
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
- Department of Geriatrics, Geriatric Medical CenterThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| |
Collapse
|
4
|
Zaborszky L, Varsanyi P, Alloway K, Chavez C, Gielow M, Gombkoto P, Kondo H, Nadasdy Z. Functional architecture of the forebrain cholinergic system in rodents. RESEARCH SQUARE 2024:rs.3.rs-4504727. [PMID: 38947053 PMCID: PMC11213185 DOI: 10.21203/rs.3.rs-4504727/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The basal forebrain cholinergic system (BFCS) participates in functions that are global across the brain, such as sleep-wake cycles, but also participates in capacities that are more behaviorally and anatomically specific, including sensory perception. To better understand the underlying organization principles of the BFCS, more and higher quality anatomical data and analysis is needed. Here, we created a "virtual Basal Forebrain", combining data from numerous rats with cortical retrograde tracer injections into a common 3D reference coordinate space and developed a "spatial density correlation" methodology to analyze patterns in BFCS cortical projection targets, revealing that the BFCS is organized into three principal networks: somatosensory-motor, auditory, and visual. Within each network, clusters of cholinergic cells with increasing complexity innervate cortical targets. These networks represent hierarchically organized building blocks that may enable the BFCS to coordinate spatially selective signaling, including parallel modulation of multiple functionally interconnected yet diverse groups of cortical areas.
Collapse
Affiliation(s)
| | | | | | | | | | - Peter Gombkoto
- Swiss Federal Institute of Technology in Zurich (ETH Zurich)
| | | | | |
Collapse
|
5
|
Earnest T, Bani A, Ha SM, Hobbs DA, Kothapalli D, Yang B, Lee JJ, Benzinger TLS, Gordon BA, Sotiras A. Data-driven decomposition and staging of flortaucipir uptake in Alzheimer's disease. Alzheimers Dement 2024; 20:4002-4019. [PMID: 38683905 PMCID: PMC11180875 DOI: 10.1002/alz.13769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Previous approaches pursuing in vivo staging of tau pathology in Alzheimer's disease (AD) have typically relied on neuropathologically defined criteria. In using predefined systems, these studies may miss spatial deposition patterns which are informative of disease progression. METHODS We selected discovery (n = 418) and replication (n = 132) cohorts with flortaucipir imaging. Non-negative matrix factorization (NMF) was applied to learn tau covariance patterns and develop a tau staging system. Flortaucipir components were also validated by comparison with amyloid burden, gray matter loss, and the expression of AD-related genes. RESULTS We found eight flortaucipir covariance patterns which were reproducible and overlapped with relevant gene expression maps. Tau stages were associated with AD severity as indexed by dementia status and neuropsychological performance. Comparisons of flortaucipir uptake with amyloid and atrophy also supported our model of tau progression. DISCUSSION Data-driven decomposition of flortaucipir uptake provides a novel framework for tau staging which complements existing systems. HIGHLIGHTS NMF reveals patterns of tau deposition in AD. Data-driven staging of flortaucipir tracks AD severity. Learned flortaucipir patterns overlap with AD-related gene expression.
Collapse
Affiliation(s)
- Tom Earnest
- Mallinckrodt Institute of RadiologyWashington University School of Medicine in St LouisSaint LouisMissouriUSA
| | - Abdalla Bani
- Mallinckrodt Institute of RadiologyWashington University School of Medicine in St LouisSaint LouisMissouriUSA
| | - Sung Min Ha
- Mallinckrodt Institute of RadiologyWashington University School of Medicine in St LouisSaint LouisMissouriUSA
| | - Diana A. Hobbs
- Mallinckrodt Institute of RadiologyWashington University School of Medicine in St LouisSaint LouisMissouriUSA
| | - Deydeep Kothapalli
- Mallinckrodt Institute of RadiologyWashington University School of Medicine in St LouisSaint LouisMissouriUSA
| | - Braden Yang
- Mallinckrodt Institute of RadiologyWashington University School of Medicine in St LouisSaint LouisMissouriUSA
| | - John J. Lee
- Mallinckrodt Institute of RadiologyWashington University School of Medicine in St LouisSaint LouisMissouriUSA
| | - Tammie L. S. Benzinger
- Mallinckrodt Institute of RadiologyWashington University School of Medicine in St LouisSaint LouisMissouriUSA
| | - Brian A. Gordon
- Mallinckrodt Institute of RadiologyWashington University School of Medicine in St LouisSaint LouisMissouriUSA
| | - Aristeidis Sotiras
- Mallinckrodt Institute of RadiologyWashington University School of Medicine in St LouisSaint LouisMissouriUSA
- Institute for Informatics, Data Science & BiostatisticsWashington University School of Medicine in St LouisSaint LouisMissouriUSA
| | | |
Collapse
|
6
|
Yu Y, Yu S, Battaglia G, Tian X. Amyloid-β in Alzheimer's disease: Structure, toxicity, distribution, treatment, and prospects. IBRAIN 2024; 10:266-289. [PMID: 39346788 PMCID: PMC11427815 DOI: 10.1002/ibra.12155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 10/01/2024]
Abstract
Amyloid-β (Aβ) is a pivotal biomarker in Alzheimer's disease (AD), attracting considerable attention from numerous researchers. There is uncertainty regarding whether clearing Aβ is beneficial or harmful to cognitive function. This question has been a central topic of research, especially given the lack of success in developing Aβ-targeted drugs for AD. However, with the Food and Drug Administration's approval of Lecanemab as the first anti-Aβ medication in July 2023, there is a significant shift in perspective on the potential of Aβ as a therapeutic target for AD. In light of this advancement, this review aims to illustrate and consolidate the molecular structural attributes and pathological ramifications of Aβ. Furthermore, it elucidates the determinants influencing its expression levels while delineating the gamut of extant Aβ-targeted pharmacotherapies that have been subjected to clinical or preclinical evaluation. Subsequently, a comprehensive analysis is presented, dissecting the research landscape of Aβ across the domains above, culminating in the presentation of informed perspectives. Concluding reflections contemplate the supplementary advantages conferred by nanoparticle constructs, conceptualized within the framework of multivalent theory, within the milieu of AD diagnosis and therapeutic intervention, supplementing conventional modalities.
Collapse
Affiliation(s)
- Yifan Yu
- Institute for Bioengineering of Catalunya (IBEC)The Barcelona Institute of Science and Technology (BIST), Barcelona (Spain), Carrer Baldiri I ReixacBarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
| | - Shilong Yu
- Institute for Bioengineering of Catalunya (IBEC)The Barcelona Institute of Science and Technology (BIST), Barcelona (Spain), Carrer Baldiri I ReixacBarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
| | - Giuseppe Battaglia
- Institute for Bioengineering of Catalunya (IBEC)The Barcelona Institute of Science and Technology (BIST), Barcelona (Spain), Carrer Baldiri I ReixacBarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
| | - Xiaohe Tian
- Institute for Bioengineering of Catalunya (IBEC)The Barcelona Institute of Science and Technology (BIST), Barcelona (Spain), Carrer Baldiri I ReixacBarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
7
|
Kim J, Kim S, Um YH, Wang SM, Kim REY, Choe YS, Lee J, Kim D, Lim HK, Lee CU, Kang DW. Associations between Education Years and Resting-state Functional Connectivity Modulated by APOE ε4 Carrier Status in Cognitively Normal Older Adults. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2024; 22:169-181. [PMID: 38247423 PMCID: PMC10811405 DOI: 10.9758/cpn.23.1113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 01/23/2024]
Abstract
Objective : Cognitive reserve has emerged as a concept to explain the variable expression of clinical symptoms in the pathology of Alzheimer's disease (AD). The association between years of education, a proxy of cognitive reserve, and resting-state functional connectivity (rFC), a representative intermediate phenotype, has not been explored in the preclinical phase, considering risk factors for AD. We aimed to evaluate whether the relationship between years of education and rFC in cognitively preserved older adults differs depending on amyloid-beta deposition and APOE ε4 carrier status as effect modifiers. Methods : A total of 121 participants underwent functional magnetic resonance imaging, [18F] flutemetamol positron emission tomography-computed tomography, APOE genotyping, and a neuropsychological battery. Potential interactions between years of education and AD risk factors for rFC of AD-vulnerable neural networks were assessed with whole-brain voxel-wise analysis. Results : We found a significant education years-by-APOE ε4 carrier status interaction for the rFC from the seed region of the central executive (CEN) and dorsal attention networks. Moreover, there was a significant interaction of rFC between right superior occipital gyrus and the CEN seed region by APOE ε4 carrier status for memory performances and overall cognitive function. Conclusion : In preclinical APOE ε4 carriers, higher years of education were associated with higher rFC of the AD vulnerable network, but this contributed to lower cognitive function. These results contribute to a deeper understanding of the impact of cognitive reserve on sensitive functional intermediate phenotypic markers in the preclinical phase of AD.
Collapse
Affiliation(s)
- Jiwon Kim
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sunghwan Kim
- Department of Psychiatry, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoo Hyun Um
- Department of Psychiatry, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Sheng-Min Wang
- Department of Psychiatry, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | - Jiyeon Lee
- Research Institute, NEUROPHET Inc., Seoul, Korea
| | | | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Research Institute, NEUROPHET Inc., Seoul, Korea
| | - Chang Uk Lee
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dong Woo Kang
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
8
|
Burnham SC, Iaccarino L, Pontecorvo MJ, Fleisher AS, Lu M, Collins EC, Devous MD. A review of the flortaucipir literature for positron emission tomography imaging of tau neurofibrillary tangles. Brain Commun 2023; 6:fcad305. [PMID: 38187878 PMCID: PMC10768888 DOI: 10.1093/braincomms/fcad305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024] Open
Abstract
Alzheimer's disease is defined by the presence of β-amyloid plaques and neurofibrillary tau tangles potentially preceding clinical symptoms by many years. Previously only detectable post-mortem, these pathological hallmarks are now identifiable using biomarkers, permitting an in vivo definitive diagnosis of Alzheimer's disease. 18F-flortaucipir (previously known as 18F-T807; 18F-AV-1451) was the first tau positron emission tomography tracer to be introduced and is the only Food and Drug Administration-approved tau positron emission tomography tracer (Tauvid™). It has been widely adopted and validated in a number of independent research and clinical settings. In this review, we present an overview of the published literature on flortaucipir for positron emission tomography imaging of neurofibrillary tau tangles. We considered all accessible peer-reviewed literature pertaining to flortaucipir through 30 April 2022. We found 474 relevant peer-reviewed publications, which were organized into the following categories based on their primary focus: typical Alzheimer's disease, mild cognitive impairment and pre-symptomatic populations; atypical Alzheimer's disease; non-Alzheimer's disease neurodegenerative conditions; head-to-head comparisons with other Tau positron emission tomography tracers; and technical considerations. The available flortaucipir literature provides substantial evidence for the use of this positron emission tomography tracer in assessing neurofibrillary tau tangles in Alzheimer's disease and limited support for its use in other neurodegenerative disorders. Visual interpretation and quantitation approaches, although heterogeneous, mostly converge and demonstrate the high diagnostic and prognostic value of flortaucipir in Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Ming Lu
- Avid, Eli Lilly and Company, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
9
|
Carbonell F, McNicoll C, Zijdenbos AP, Bedell BJ. Spatial association between distributed β-amyloid and tau varies with cognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559737. [PMID: 37808643 PMCID: PMC10557646 DOI: 10.1101/2023.09.27.559737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Several PET studies have explored the relationship between β-amyloid load and tau uptake at the early stages of Alzheimer's disease (AD) progression. Most of these studies have focused on the linear relationship between β-amyloid and tau at the local level and their synergistic effect on different AD biomarkers. We hypothesize that patterns of spatial association between β-amyloid and tau might be uncovered using alternative association metrics that account for linear as well as more complex, possible nonlinear dependencies. In the present study, we propose a new Canonical Distance Correlation Analysis (CDCA) to generate distinctive spatial patterns of the cross-correlation structure between tau, as measured by [18F]flortaucipir PET, and β-amyloid, as measured by [18F]florbetapir PET, from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. We found that the CDCA-based β-amyloid scores were not only maximally distance-correlated to tau in cognitively normal (CN) controls and mild cognitive impairment (MCI), but also differentiated between low and high levels of β-amyloid uptake. The most distinctive spatial association pattern was characterized by a spread of β-amyloid covering large areas of the cortex and localized tau in the entorhinal cortex. More importantly, this spatial dependency varies according to cognition, which cannot be explained by the uptake differences in β-amyloid or tau between CN and MCI subjects. Hence, the CDCA-based scores might be more accurate than the amyloid or tau SUVR for the enrollment in clinical trials of those individuals on the path of cognitive deterioration.
Collapse
|
10
|
Han F, Lee J, Chen X, Ziontz J, Ward T, Landau SM, Baker SL, Harrison TM, Jagust WJ. Global brain activity and its coupling with cerebrospinal fluid flow is related to tau pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557492. [PMID: 37745434 PMCID: PMC10515801 DOI: 10.1101/2023.09.12.557492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Amyloid-β (Aβ) and tau deposition constitute Alzheimer's disease (AD) neuropathology. Cortical tau deposits first in the entorhinal cortex and hippocampus and then propagates to neocortex in an Aβ-dependent manner. Tau also tends to accumulate earlier in higher-order association cortex than in lower-order primary sensory-motor cortex. While previous research has examined the production and spread of tau, little attention has been paid to its clearance. Low-frequency (<0.1 Hz) global brain activity during the resting state is coupled with cerebrospinal fluid (CSF) flow and potentially reflects glymphatic clearance. Here we report that tau deposition in subjects with evaluated Aβ, accompanied by cortical thinning and cognitive decline, is strongly associated with decreased coupling between CSF flow and global brain activity. Substantial modulation of global brain activity is also manifested as propagating waves of brain activation between higher- and lower-order regions, resembling tau spreading. Together, the findings suggest an important role of resting-state global brain activity in AD tau pathology.
Collapse
Affiliation(s)
- Feng Han
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - JiaQie Lee
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Xi Chen
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jacob Ziontz
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Tyler Ward
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Susan M Landau
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | | | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
11
|
Türker F, Bharadwaj RA, Kleinman JE, Weinberger DR, Hyde TM, White CJ, Williams DW, Margolis SS. Orthogonal approaches required to measure proteasome composition and activity in mammalian brain tissue. J Biol Chem 2023:104811. [PMID: 37172721 DOI: 10.1016/j.jbc.2023.104811] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Proteasomes are large macromolecular complexes with multiple distinct catalytic activities that are each vital to human brain health and disease. Despite their importance, standardized approaches to investigate proteasomes have not been universally adapted. Here, we describe pitfalls and define straightforward orthogonal biochemical approaches essential to measure and understand changes in proteasome composition and activity in the mammalian central nervous system. Through our experimentation in the mammalian brain, we determined an abundance of catalytically active proteasomes exist with and without a 19S cap(s), the regulatory particle essential for ubiquitin-dependent degradation. Moreover, we learned that in-cell measurements using activity-based probes (ABPs) are more sensitive in determining the available activity of the 20S proteasome without the 19S cap and in measuring individual catalytic subunit activities of each β subunit within all neuronal proteasomes. Subsequently, applying these tools to human brain samples, we were surprised to find that post-mortem tissue retained little to no 19S-capped proteasome, regardless of age, sex, or disease state. Comparing brain tissues (parahippocampal gyrus) from human Alzheimer's disease (AD) patients and unaffected subjects, available 20S proteasome activity was significantly elevated in severe cases of AD, an observation not previously noted. Taken together, our study establishes standardized approaches for comprehensive investigation of proteasomes in mammalian brain tissue, and we reveal new insight into brain proteasome biology.
Collapse
Affiliation(s)
- Fulya Türker
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rahul A Bharadwaj
- The Lieber Institute for Brain Development, Baltimore, MD 21205, USA
| | - Joel E Kleinman
- The Lieber Institute for Brain Development, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel R Weinberger
- The Lieber Institute for Brain Development, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas M Hyde
- The Lieber Institute for Brain Development, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Cory J White
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dionna W Williams
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA; Department of Molecular Microbiology & Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland 21205, USA; Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seth S Margolis
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
12
|
Marciante AB, Howard J, Kelly MN, Santiago Moreno J, Allen LL, Gonzalez-Rothi EJ, Mitchell GS. Dose-dependent phosphorylation of endogenous Tau by intermittent hypoxia in rat brain. J Appl Physiol (1985) 2022; 133:561-571. [PMID: 35861520 PMCID: PMC9448341 DOI: 10.1152/japplphysiol.00332.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/22/2022] Open
Abstract
Intermittent hypoxia, or intermittent low oxygen interspersed with normal oxygen levels, has differential effects that depend on the "dose" of hypoxic episodes (duration, severity, number per day, and number of days). Whereas "low dose" daily acute intermittent hypoxia (dAIH) elicits neuroprotection and neuroplasticity, "high dose" chronic intermittent hypoxia (CIH) similar to that experienced during sleep apnea elicits neuropathology. Sleep apnea is comorbid in >50% of patients with Alzheimer's disease-a progressive, neurodegenerative disease associated with brain amyloid and chronic Tau dysregulation (pathology). Although patients with sleep apnea present with higher Tau levels, it is unknown if sleep apnea through attendant CIH contributes to onset of Tau pathology. We hypothesized CIH characteristic of moderate sleep apnea would increase dysregulation of phosphorylated Tau (phospho-Tau) species in Sprague-Dawley rat hippocampus and prefrontal cortex. Conversely, we hypothesized that dAIH, a promising neurotherapeutic, has minimal impact on Tau phosphorylation. We report a dose-dependent intermittent hypoxia effect, with region-specific increases in 1) phospho-Tau species associated with human Tauopathies in the soluble form and 2) accumulated phospho-Tau in the insoluble fraction. The latter observation was particularly evident with higher CIH intensities. This important and novel finding is consistent with the idea that sleep apnea and attendant CIH have the potential to accelerate the progression of Alzheimer's disease and/or other Tauopathies.NEW & NOTEWORTHY Sleep apnea is highly prevalent in people with Alzheimer's disease, suggesting the potential to accelerate disease onset and/or progression. These studies demonstrate that intermittent hypoxia (IH) induces dose-dependent, region-specific Tau phosphorylation, and are the first to indicate that higher IH "doses" elicit both endogenous, (rat) Tau hyperphosphorylation and accumulation in the hippocampus. These findings are essential for development and implementation of new treatment strategies that minimize sleep apnea and its adverse impact on neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexandria B Marciante
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - John Howard
- Department of Neuroscience, University of Florida, Gainesville, Florida
- Center for Translational Research in Neurodegenerative Diseases, University of Florida, Gainesville, Florida
| | - Mia N Kelly
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Juan Santiago Moreno
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Latoya L Allen
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Elisa J Gonzalez-Rothi
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
13
|
Vlegels N, Ossenkoppele R, van der Flier WM, Koek HL, Reijmer YD, Wisse LEM, Biessels GJ. Does Loss of Integrity of the Cingulum Bundle Link Amyloid-β Accumulation and Neurodegeneration in Alzheimer’s Disease? J Alzheimers Dis 2022; 89:39-49. [DOI: 10.3233/jad-220024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Alzheimer’s disease is characterized by the accumulation of amyloid-β (Aβ) into plaques, aggregation of tau into neurofibrillary tangles, and neurodegenerative processes including atrophy. However, there is a poorly understood spatial discordance between initial Aβ deposition and local neurodegeneration. Objective: Here, we test the hypothesis that the cingulum bundle links Aβ deposition in the cingulate cortex to medial temporal lobe (MTL) atrophy. Methods: 21 participants with mild cognitive impairment (MCI) from the UMC Utrecht memory clinic (UMCU, discovery sample) and 37 participants with MCI from Alzheimer’s Disease Neuroimaging Initiative (ADNI, replication sample) with available Aβ-PET scan, T1-weighted and diffusion-weighted MRI were included. Aβ load of the cingulate cortex was measured by the standardized uptake value ratio (SUVR), white matter integrity of the cingulum bundle was assessed by mean diffusivity and atrophy of the MTL by normalized MTL volume. Relationships were tested with linear mixed models, to accommodate multiple measures for each participant. Results: We found at most a weak association between cingulate Aβ and MTL volume (added R2 <0.06), primarily for the posterior hippocampus. In neither sample, white matter integrity of the cingulum bundle was associated with cingulate Aβ or MTL volume (added R2 <0.01). Various sensitivity analyses (Aβ-positive individuals only, posterior cingulate SUVR, MTL sub region volume) provided similar results. Conclusion: These findings, consistent in two independent cohorts, do not support our hypothesis that loss of white matter integrity of the cingulum is a connecting factor between cingulate gyrus Aβ deposition and MTL atrophy.
Collapse
Affiliation(s)
- Naomi Vlegels
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Wiesje M. van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Epidemiology and Data Science, VU University Medical Center, Amsterdam, The Netherlands
| | - Huiberdina L. Koek
- Department of Geriatrics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yael D. Reijmer
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Laura EM Wisse
- Department of Diagnostic Radiology, Lund University, Lund, Sweden
| | - Geert Jan Biessels
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
14
|
Zhou DA, Xu K, Zhao X, Chen Q, Sang F, Fan D, Su L, Zhang Z, Ai L, Chen Y. Spatial Distribution and Hierarchical Clustering of β-Amyloid and Glucose Metabolism in Alzheimer’s Disease. Front Aging Neurosci 2022; 14:788567. [PMID: 35734543 PMCID: PMC9207533 DOI: 10.3389/fnagi.2022.788567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 05/09/2022] [Indexed: 11/24/2022] Open
Abstract
Increased amyloid burden and decreased glucose metabolism are important characteristics of Alzheimer’s disease (AD), but their spatial distribution and hierarchical clustering organization are still poorly understood. In this study, we explored the distribution and clustering organization of amyloid and glucose metabolism based on 18F-florbetapir and 18F-fluorodeoxyglucose PET data from 68 AD patients and 20 cognitively normal individuals. We found that: (i) cortical regions with highest florbetapir binding were the regions with high glucose metabolism; (ii) the percentage changes of amyloid deposition were greatest in the frontal and temporal areas, and the hypometabolism was greatest in the parietal and temporal areas; (iii) brain areas can be divided into three hierarchical clusters by amyloid and into five clusters by metabolism using a hierarchical clustering approach, indicating that adjacent regions are more likely to be grouped into one sub-network; and (iv) there was a significant positive correlation in any pair of amyloid-amyloid and metabolism-metabolism sub-networks, and a significant negative correlation in amyloid-metabolism sub-networks. This may suggest that the influence forms and brain regions of AD on different pathological markers may not be synchronous, but they are closely related.
Collapse
Affiliation(s)
- Da-An Zhou
- Department of Rehabilitation, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Kai Xu
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
| | - Xiaobin Zhao
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qian Chen
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Feng Sang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Di Fan
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Li Su
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Lin Ai
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Lin Ai,
| | - Yaojing Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Yaojing Chen,
| |
Collapse
|
15
|
Qiao Z, Wang G, Zhao X, Wang K, Fan D, Chen Q, Ai L. Neuropsychological Performance Is Correlated With Tau Protein Deposition and Glucose Metabolism in Patients With Alzheimer’s Disease. Front Aging Neurosci 2022; 14:841942. [PMID: 35663582 PMCID: PMC9158435 DOI: 10.3389/fnagi.2022.841942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Objective This study characterizes glucose metabolism and tau protein deposition distribution in patients with Alzheimer’s disease (AD) and to evaluate the relationships between neuropsychological performance and tau protein deposition or glucose metabolism using 18F-FDG and 18F-AV1451 positron emission tomography/computed tomography (PET/CT). Methods Sixty-four patients with β-amyloid-positive (Aβ+) AD and twenty-five healthy participants were enrolled in this study. All participants underwent 18F-FDG and 18F-AV1451 PET/CT. Clinical data and neuropsychological scores were collected. Patients with AD were divided into mild, moderate, and severe groups according to mini-mental state examination (MMSE) scores. The standardized uptake value ratios (SUVRs) for both FDG and AV1451 PET images were calculated using the cerebellar vermis as reference. The SUVRs of the whole cerebral cortex and each brain region were calculated. The volume of interest (VOI) was obtained using automated anatomical atlas (AAL) and Brodmann regions. Student’s t-test was used to perform intergroup comparisons of SUVR. The partial correlation coefficient between SUVR and neuropsychological scores was computed in an inter-subject manner using age and education as covariates. Results The mild subgroup showed a reduction in glucose metabolism and aggregation of tau protein in the temporoparietal cortex. With a decline in neuropsychiatric performance, the SUVR on FDG PET decreased and SUVR on tau PET increased gradually. The areas of glucose metabolism reduction and tau protein deposition appeared first in the parietal cortex, followed by the temporal and frontal cortex, successively. Both FDG and tau SUVRs significantly correlated with MMSE, Montreal cognitive assessment (MOCA), auditory verbal learning test (AVLT), Boston naming test (BNT), clock drawing task (CDT), and verbal fluency test (VFT) (p < 0.05). The SUVR on FDG PET significantly correlated with activities of daily living (ADL) and the Hamilton depression scale (HAMD). There was no significant correlation between the tau SUVRs and ADL or HAMD. Conclusion The extension of tau protein deposition was similar but not exactly consistent with the area of glucose metabolism reduction. Both tau and FDG SUVRs correlated with cognitive function in domain-specific patterns, and the results of FDG PET more closely correlated with neuropsychological function than tau PET results did.
Collapse
Affiliation(s)
- Zhen Qiao
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guihong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Guihong Wang,
| | - Xiaobin Zhao
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kai Wang
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Di Fan
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qian Chen
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lin Ai
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Lin Ai,
| |
Collapse
|
16
|
Duong MT, Das SR, Lyu X, Xie L, Richardson H, Xie SX, Yushkevich PA, Wolk DA, Nasrallah IM. Dissociation of tau pathology and neuronal hypometabolism within the ATN framework of Alzheimer's disease. Nat Commun 2022; 13:1495. [PMID: 35314672 PMCID: PMC8938426 DOI: 10.1038/s41467-022-28941-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/11/2022] [Indexed: 11/08/2022] Open
Abstract
Alzheimer's disease (AD) is defined by amyloid (A) and tau (T) pathologies, with T better correlated to neurodegeneration (N). However, T and N have complex regional relationships in part related to non-AD factors that influence N. With machine learning, we assessed heterogeneity in 18F-flortaucipir vs. 18F-fluorodeoxyglucose positron emission tomography as markers of T and neuronal hypometabolism (NM) in 289 symptomatic patients from the Alzheimer's Disease Neuroimaging Initiative. We identified six T/NM clusters with differing limbic and cortical patterns. The canonical group was defined as the T/NM pattern with lowest regression residuals. Groups resilient to T had less hypometabolism than expected relative to T and displayed better cognition than the canonical group. Groups susceptible to T had more hypometabolism than expected given T and exhibited worse cognitive decline, with imaging and clinical measures concordant with non-AD copathologies. Together, T/NM mismatch reveals distinct imaging signatures with pathobiological and prognostic implications for AD.
Collapse
Affiliation(s)
- Michael Tran Duong
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Sandhitsu R Das
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Alzheimer's Disease Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xueying Lyu
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Long Xie
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hayley Richardson
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sharon X Xie
- Alzheimer's Disease Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul A Yushkevich
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Alzheimer's Disease Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Alzheimer's Disease Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Ilya M Nasrallah
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA.
- Alzheimer's Disease Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Louros N, Ramakers M, Michiels E, Konstantoulea K, Morelli C, Garcia T, Moonen N, D'Haeyer S, Goossens V, Thal DR, Audenaert D, Rousseau F, Schymkowitz J. Mapping the sequence specificity of heterotypic amyloid interactions enables the identification of aggregation modifiers. Nat Commun 2022; 13:1351. [PMID: 35292653 PMCID: PMC8924238 DOI: 10.1038/s41467-022-28955-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Heterotypic amyloid interactions between related protein sequences have been observed in functional and disease amyloids. While sequence homology seems to favour heterotypic amyloid interactions, we have no systematic understanding of the structural rules determining such interactions nor whether they inhibit or facilitate amyloid assembly. Using structure-based thermodynamic calculations and extensive experimental validation, we performed a comprehensive exploration of the defining role of sequence promiscuity in amyloid interactions. Using tau as a model system we demonstrate that proteins with local sequence homology to tau amyloid nucleating regions can modify fibril nucleation, morphology, assembly and spreading of aggregates in cultured cells. Depending on the type of mutation such interactions inhibit or promote aggregation in a manner that can be predicted from structure. We find that these heterotypic amyloid interactions can result in the subcellular mis-localisation of these proteins. Moreover, equilibrium studies indicate that the critical concentration of aggregation is altered by heterotypic interactions. Our findings suggest a structural mechanism by which the proteomic background can modulate the aggregation propensity of amyloidogenic proteins and we discuss how such sequence-specific proteostatic perturbations could contribute to the selective cellular susceptibility of amyloid disease progression. In this work, Louros et al. uncover a rule book for interactions of amyloids with other proteins. This grammar was shown to promote cellular spreading of tau aggregates in cells, but can also be harvested to develop structure-based aggregation blockers.
Collapse
Affiliation(s)
- Nikolaos Louros
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Meine Ramakers
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Emiel Michiels
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Katerina Konstantoulea
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Chiara Morelli
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Teresa Garcia
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Nele Moonen
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Sam D'Haeyer
- VIB Screening Core, Ghent, Belgium.,Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - Vera Goossens
- VIB Screening Core, Ghent, Belgium.,Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - Dietmar Rudolf Thal
- KU Leuven, Leuven Brain Institute, 3000, Leuven, Belgium.,Laboratory for Neuropathology, KU Leuven, and Department of Pathology, UZ Leuven, 3000, Leuven, Belgium
| | - Dominique Audenaert
- VIB Screening Core, Ghent, Belgium.,Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium. .,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium. .,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
18
|
Machine learning techniques for diagnosis of alzheimer disease, mild cognitive disorder, and other types of dementia. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103293] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Ni R, Nitsch RM. Recent Developments in Positron Emission Tomography Tracers for Proteinopathies Imaging in Dementia. Front Aging Neurosci 2022; 13:751897. [PMID: 35046791 PMCID: PMC8761855 DOI: 10.3389/fnagi.2021.751897] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
An early detection and intervention for dementia represent tremendous unmet clinical needs and priorities in society. A shared feature of neurodegenerative diseases causing dementia is the abnormal accumulation and spreading of pathological protein aggregates, which affect the selective vulnerable circuit in a disease-specific pattern. The advancement in positron emission tomography (PET) biomarkers has accelerated the understanding of the disease mechanism and development of therapeutics for Alzheimer's disease and Parkinson's disease. The clinical utility of amyloid-β PET and the clinical validity of tau PET as diagnostic biomarker for Alzheimer's disease continuum have been demonstrated. The inclusion of biomarkers in the diagnostic criteria has introduced a paradigm shift that facilitated the early and differential disease diagnosis and impacted on the clinical management. Application of disease-modifying therapy likely requires screening of patients with molecular evidence of pathological accumulation and monitoring of treatment effect assisted with biomarkers. There is currently still a gap in specific 4-repeat tau imaging probes for 4-repeat tauopathies and α-synuclein imaging probes for Parkinson's disease and dementia with Lewy body. In this review, we focused on recent development in molecular imaging biomarkers for assisting the early diagnosis of proteinopathies (i.e., amyloid-β, tau, and α-synuclein) in dementia and discussed future perspectives.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland
| | - Roger M. Nitsch
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Knopman DS, Amieva H, Petersen RC, Chételat G, Holtzman DM, Hyman BT, Nixon RA, Jones DT. Alzheimer disease. Nat Rev Dis Primers 2021; 7:33. [PMID: 33986301 PMCID: PMC8574196 DOI: 10.1038/s41572-021-00269-y] [Citation(s) in RCA: 992] [Impact Index Per Article: 248.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 12/21/2022]
Abstract
Alzheimer disease (AD) is biologically defined by the presence of β-amyloid-containing plaques and tau-containing neurofibrillary tangles. AD is a genetic and sporadic neurodegenerative disease that causes an amnestic cognitive impairment in its prototypical presentation and non-amnestic cognitive impairment in its less common variants. AD is a common cause of cognitive impairment acquired in midlife and late-life but its clinical impact is modified by other neurodegenerative and cerebrovascular conditions. This Primer conceives of AD biology as the brain disorder that results from a complex interplay of loss of synaptic homeostasis and dysfunction in the highly interrelated endosomal/lysosomal clearance pathways in which the precursors, aggregated species and post-translationally modified products of Aβ and tau play important roles. Therapeutic endeavours are still struggling to find targets within this framework that substantially change the clinical course in persons with AD.
Collapse
Affiliation(s)
| | - Helene Amieva
- Inserm U1219 Bordeaux Population Health Center, University of Bordeaux, Bordeaux, France
| | | | - Gäel Chételat
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Ralph A Nixon
- Departments of Psychiatry and Cell Biology, New York University Langone Medical Center, New York University, New York, NY, USA
- NYU Neuroscience Institute, New York University Langone Medical Center, New York University, New York, NY, USA
| | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
21
|
Yang F, Chowdhury SR, Jacobs HIL, Sepulcre J, Wedeen VJ, Johnson KA, Dutta J. Longitudinal predictive modeling of tau progression along the structural connectome. Neuroimage 2021; 237:118126. [PMID: 33957234 DOI: 10.1016/j.neuroimage.2021.118126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 01/03/2023] Open
Abstract
Tau neurofibrillary tangles, a pathophysiological hallmark of Alzheimer's disease (AD), exhibit a stereotypical spatiotemporal trajectory that is strongly correlated with disease progression and cognitive decline. Personalized prediction of tau progression is, therefore, vital for the early diagnosis and prognosis of AD. Evidence from both animal and human studies is suggestive of tau transmission along the brains preexisting neural connectivity conduits. We present here an analytic graph diffusion framework for individualized predictive modeling of tau progression along the structural connectome. To account for physiological processes that lead to active generation and clearance of tau alongside passive diffusion, our model uses an inhomogenous graph diffusion equation with a source term and provides closed-form solutions to this equation for linear and exponential source functionals. Longitudinal imaging data from two cohorts, the Harvard Aging Brain Study (HABS) and the Alzheimer's Disease Neuroimaging Initiative (ADNI), were used to validate the model. The clinical data used for developing and validating the model include regional tau measures extracted from longitudinal positron emission tomography (PET) scans based on the 18F-Flortaucipir radiotracer and individual structural connectivity maps computed from diffusion tensor imaging (DTI) by means of tractography and streamline counting. Two-timepoint tau PET scans were used to assess the goodness of model fit. Three-timepoint tau PET scans were used to assess predictive accuracy via comparison of predicted and observed tau measures at the third timepoint. Our results show high consistency between predicted and observed tau and differential tau from region-based analysis. While the prognostic value of this approach needs to be validated in a larger cohort, our preliminary results suggest that our longitudinal predictive model, which offers an in vivo macroscopic perspective on tau progression in the brain, is potentially promising as a personalizable predictive framework for AD.
Collapse
Affiliation(s)
- Fan Yang
- University of Massachusetts Lowell, Lowell, MA, United States
| | | | - Heidi I L Jacobs
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Jorge Sepulcre
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Van J Wedeen
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Keith A Johnson
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Joyita Dutta
- University of Massachusetts Lowell, Lowell, MA, United States; Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
22
|
Amyloid-β: A double agent in Alzheimer's disease? Biomed Pharmacother 2021; 139:111575. [PMID: 33845371 DOI: 10.1016/j.biopha.2021.111575] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 01/23/2023] Open
Abstract
Amyloid-β (Aβ) accumulation is one of the cardinal pathological hallmarks of Alzheimer's disease and plays an important role in its pathogenesis. Although the neurotoxic effects of Aβ has been extensively studied, recent studies have revealed that it may also have protective effects. Here, we review novel findings that have shifted our understanding of the role of Aβ in the pathogenesis of Alzheimer's disease. An in-depth and comprehensive understanding of Aβ will provide us with a broader perspective on the treatment of Alzheimer's disease.
Collapse
|
23
|
Buckley RF. Recent Advances in Imaging of Preclinical, Sporadic, and Autosomal Dominant Alzheimer's Disease. Neurotherapeutics 2021; 18:709-727. [PMID: 33782864 PMCID: PMC8423933 DOI: 10.1007/s13311-021-01026-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
Observing Alzheimer's disease (AD) pathological changes in vivo with neuroimaging provides invaluable opportunities to understand and predict the course of disease. Neuroimaging AD biomarkers also allow for real-time tracking of disease-modifying treatment in clinical trials. With recent neuroimaging advances, along with the burgeoning availability of longitudinal neuroimaging data and big-data harmonization approaches, a more comprehensive evaluation of the disease has shed light on the topographical staging and temporal sequencing of the disease. Multimodal imaging approaches have also promoted the development of data-driven models of AD-associated pathological propagation of tau proteinopathies. Studies of autosomal dominant, early sporadic, and late sporadic courses of the disease have shed unique insights into the AD pathological cascade, particularly with regard to genetic vulnerabilities and the identification of potential drug targets. Further, neuroimaging markers of b-amyloid, tau, and neurodegeneration have provided a powerful tool for validation of novel fluid cerebrospinal and plasma markers. This review highlights some of the latest advances in the field of human neuroimaging in AD across these topics, particularly with respect to positron emission tomography and structural and functional magnetic resonance imaging.
Collapse
Affiliation(s)
- Rachel F Buckley
- Department of Neurology, Massachusetts General Hospital & Brigham and Women's, Harvard Medical School, Boston, MA, USA.
- Melbourne School of Psychological Sciences and Florey Institutes, University of Melbourne, Melbourne, VIC, Australia.
- Department of Neurology, Massachusetts General Hospital, 149 13th St, Charlestown, MA, 02129, USA.
| |
Collapse
|
24
|
Konstantoulea K, Louros N, Rousseau F, Schymkowitz J. Heterotypic interactions in amyloid function and disease. FEBS J 2021; 289:2025-2046. [PMID: 33460517 DOI: 10.1111/febs.15719] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 11/27/2022]
Abstract
Amyloid aggregation results from the self-assembly of identical aggregation-prone sequences into cross-beta-sheet structures. The process is best known for its association with a wide range of human pathologies but also as a functional mechanism in all kingdoms of life. Less well elucidated is the role of heterotypic interactions between amyloids and other proteins and macromolecules and how this contributes to disease. We here review current data with a focus on neurodegenerative amyloid-associated diseases. Evidence indicates that heterotypic interactions occur in a wide range of amyloid processes and that these interactions modify fundamental aspects of amyloid aggregation including seeding, aggregation rates and toxicity. More work is required to understand the mechanistic origin of these interactions, but current understanding suggests that both supersaturation and sequence-specific binding can contribute to heterotypic amyloid interactions. Further unravelling these mechanisms may help to answer outstanding questions in the field including the selective vulnerability of cells types and tissues and the stereotypical spreading patterns of amyloids in disease.
Collapse
Affiliation(s)
- Katerina Konstantoulea
- VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Nikolaos Louros
- VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Rodriguez-Vieitez E, Montal V, Sepulcre J, Lois C, Hanseeuw B, Vilaplana E, Schultz AP, Properzi MJ, Scott MR, Amariglio R, Papp KV, Marshall GA, Fortea J, Johnson KA, Sperling RA, Vannini P. Association of cortical microstructure with amyloid-β and tau: impact on cognitive decline, neurodegeneration, and clinical progression in older adults. Mol Psychiatry 2021; 26:7813-7822. [PMID: 34588623 PMCID: PMC8873001 DOI: 10.1038/s41380-021-01290-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/16/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023]
Abstract
Noninvasive biomarkers of early neuronal injury may help identify cognitively normal individuals at risk of developing Alzheimer's disease (AD). A recent diffusion-weighted imaging (DWI) method allows assessing cortical microstructure via cortical mean diffusivity (cMD), suggested to be more sensitive than macrostructural neurodegeneration. Here, we aimed to investigate the association of cMD with amyloid-β and tau pathology in older adults, and whether cMD predicts longitudinal cognitive decline, neurodegeneration and clinical progression. The study sample comprised n = 196 cognitively normal older adults (mean[SD] 72.5 [9.4] years; 114 women [58.2%]) from the Harvard Aging Brain Study. At baseline, all participants underwent structural MRI, DWI, 11C-Pittsburgh compound-B-PET, 18F-flortaucipir-PET imaging, and cognitive assessments. Longitudinal measures of Preclinical Alzheimer Cognitive Composite-5 were available for n = 186 individuals over 3.72 (1.96)-year follow-up. Prospective clinical follow-up was available for n = 163 individuals over 3.2 (1.7) years. Surface-based image analysis assessed vertex-wise relationships between cMD, global amyloid-β, and entorhinal and inferior-temporal tau. Multivariable regression, mixed effects models and Cox proportional hazards regression assessed longitudinal cognition, brain structural changes and clinical progression. Tau, but not amyloid-β, was positively associated with cMD in AD-vulnerable regions. Correcting for baseline demographics and cognition, increased cMD predicted steeper cognitive decline, which remained significant after correcting for amyloid-β, thickness, and entorhinal tau; there was a synergistic interaction between cMD and both amyloid-β and tau on cognitive slope. Regional cMD predicted hippocampal atrophy rate, independently from amyloid-β, tau, and thickness. Elevated cMD predicted progression to mild cognitive impairment. Cortical microstructure is a noninvasive biomarker that independently predicts subsequent cognitive decline, neurodegeneration and clinical progression, suggesting utility in clinical trials.
Collapse
Affiliation(s)
- Elena Rodriguez-Vieitez
- grid.38142.3c000000041936754XMassachusetts General Hospital, Harvard Medical School, Boston, MA USA ,grid.509504.d0000 0004 0475 2664Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA USA ,grid.4714.60000 0004 1937 0626Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Victor Montal
- grid.7080.f0000 0001 2296 0625Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain ,grid.418264.d0000 0004 1762 4012Centre of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jorge Sepulcre
- grid.38142.3c000000041936754XMassachusetts General Hospital, Harvard Medical School, Boston, MA USA ,grid.512020.4Gordon Center for Medical Imaging, Boston, MA USA
| | - Cristina Lois
- grid.38142.3c000000041936754XMassachusetts General Hospital, Harvard Medical School, Boston, MA USA ,grid.512020.4Gordon Center for Medical Imaging, Boston, MA USA
| | - Bernard Hanseeuw
- grid.38142.3c000000041936754XMassachusetts General Hospital, Harvard Medical School, Boston, MA USA ,grid.512020.4Gordon Center for Medical Imaging, Boston, MA USA ,grid.7942.80000 0001 2294 713XSaint Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - Eduard Vilaplana
- grid.7080.f0000 0001 2296 0625Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain ,grid.418264.d0000 0004 1762 4012Centre of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Aaron P. Schultz
- grid.38142.3c000000041936754XMassachusetts General Hospital, Harvard Medical School, Boston, MA USA ,grid.509504.d0000 0004 0475 2664Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA USA
| | - Michael J. Properzi
- grid.38142.3c000000041936754XMassachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Matthew R. Scott
- grid.38142.3c000000041936754XMassachusetts General Hospital, Harvard Medical School, Boston, MA USA ,grid.509504.d0000 0004 0475 2664Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA USA
| | - Rebecca Amariglio
- grid.38142.3c000000041936754XMassachusetts General Hospital, Harvard Medical School, Boston, MA USA ,grid.38142.3c000000041936754XBrigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Kathryn V. Papp
- grid.38142.3c000000041936754XMassachusetts General Hospital, Harvard Medical School, Boston, MA USA ,grid.509504.d0000 0004 0475 2664Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA USA ,grid.38142.3c000000041936754XBrigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Gad A. Marshall
- grid.38142.3c000000041936754XMassachusetts General Hospital, Harvard Medical School, Boston, MA USA ,grid.509504.d0000 0004 0475 2664Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA USA ,grid.38142.3c000000041936754XBrigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Juan Fortea
- grid.7080.f0000 0001 2296 0625Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain ,grid.418264.d0000 0004 1762 4012Centre of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Keith A. Johnson
- grid.38142.3c000000041936754XMassachusetts General Hospital, Harvard Medical School, Boston, MA USA ,grid.512020.4Gordon Center for Medical Imaging, Boston, MA USA
| | - Reisa A. Sperling
- grid.38142.3c000000041936754XMassachusetts General Hospital, Harvard Medical School, Boston, MA USA ,grid.509504.d0000 0004 0475 2664Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA USA ,grid.38142.3c000000041936754XBrigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Patrizia Vannini
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA. .,Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Yasuno F, Nakamura A, Kato T, Iwata K, Sakurai T, Arahata Y, Washimi Y, Hattori H, Ito K. An evaluation of the amyloid cascade model using in vivo positron emission tomographic imaging. Psychogeriatrics 2021; 21:14-23. [PMID: 32783314 DOI: 10.1111/psyg.12589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/03/2020] [Accepted: 06/14/2020] [Indexed: 12/14/2022]
Abstract
AIM The amyloid cascade hypothesis posits that the accumulation of amyloid β (Aβ) is the triggering factor for Alzheimer's disease, which consecutively induces aggregation of tau, synaptic loss, and cell death. Most experimental and clinical evidence supports this model, but the available data are largely qualitative. Here, we tested the amyloid cascade hypothesis by using in vivo evaluation of positron emission tomography and magnetic resonance imaging. METHODS Path analysis was used to estimate the relationships among Aβ accumulation (PiB standardized uptake value ratio (SUVR)), tau aggregation and its related neuroinflammation (THK5351 SUVR), grey matter atrophy in the medial temporal region, and memory function in Aβ-positive subjects. We also performed additional regression analyses to evaluate the effect of Aβ on the toxicity of tau aggregation/neuroinflammation. RESULTS Path analysis supported our hypothesized model: Aβ accumulation affected tau aggregation/neuroinflammation in the medial temporal region, and these pathological changes caused of the grey matter atrophy and memory dysfunction. In separate regression analyses, THK5351 SUVR had a significant effect on grey matter atrophy only in PiB-positive subjects. The analysis of the interaction effect showed that the effects of THK5351 SUVR on grey matter atrophy were significantly different between PiB-positive and PiB-negative groups. When we included the effect of being an apolipoprotein E ε4 carrier as a covariate, the interaction effect remained significant. CONCLUSION Our in vivo evaluation of positron emission tomographic and magnetic resonance imaging data supported the amyloid cascade hypothesis. In addition, it indicated that Aβ not only accelerates tau aggregation/neuroinflammation but promotes its toxicity. Our findings showed the importance of understanding the role and therapeutic potential of the interaction between amyloid and tau aggregation/neuroinflammation in Alzheimer's disease.
Collapse
Affiliation(s)
- Fumihiko Yasuno
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan.,National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Akinori Nakamura
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Takashi Kato
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan.,National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Kaori Iwata
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Takashi Sakurai
- National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Yutaka Arahata
- National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Yukihiko Washimi
- National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hideyuki Hattori
- National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Kengo Ito
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan.,National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Japan
| |
Collapse
|
27
|
Brain structural correlates of insomnia severity in 1053 individuals with major depressive disorder: results from the ENIGMA MDD Working Group. Transl Psychiatry 2020; 10:425. [PMID: 33293520 PMCID: PMC7723989 DOI: 10.1038/s41398-020-01109-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
It has been difficult to find robust brain structural correlates of the overall severity of major depressive disorder (MDD). We hypothesized that specific symptoms may better reveal correlates and investigated this for the severity of insomnia, both a key symptom and a modifiable major risk factor of MDD. Cortical thickness, surface area and subcortical volumes were assessed from T1-weighted brain magnetic resonance imaging (MRI) scans of 1053 MDD patients (age range 13-79 years) from 15 cohorts within the ENIGMA MDD Working Group. Insomnia severity was measured by summing the insomnia items of the Hamilton Depression Rating Scale (HDRS). Symptom specificity was evaluated with correlates of overall depression severity. Disease specificity was evaluated in two independent samples comprising 2108 healthy controls, and in 260 clinical controls with bipolar disorder. Results showed that MDD patients with more severe insomnia had a smaller cortical surface area, mostly driven by the right insula, left inferior frontal gyrus pars triangularis, left frontal pole, right superior parietal cortex, right medial orbitofrontal cortex, and right supramarginal gyrus. Associations were specific for insomnia severity, and were not found for overall depression severity. Associations were also specific to MDD; healthy controls and clinical controls showed differential insomnia severity association profiles. The findings indicate that MDD patients with more severe insomnia show smaller surfaces in several frontoparietal cortical areas. While explained variance remains small, symptom-specific associations could bring us closer to clues on underlying biological phenomena of MDD.
Collapse
|
28
|
Hayden EY, Huang JM, Charreton M, Nunez SM, Putman JN, Teter B, Lee JT, Welch A, Frautschy S, Cole G, Teng E, Hinman JD. Modeling Mixed Vascular and Alzheimer's Dementia Using Focal Subcortical Ischemic Stroke in Human ApoE4-TR:5XFAD Transgenic Mice. Transl Stroke Res 2020; 11:1064-1076. [PMID: 32086779 PMCID: PMC10075511 DOI: 10.1007/s12975-020-00786-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/14/2020] [Accepted: 02/03/2020] [Indexed: 10/25/2022]
Abstract
Subcortical white matter ischemic lesions are increasingly recognized to have pathologic overlap in individuals with Alzheimer's disease (AD). The interaction of white matter ischemic lesions with amyloid pathology seen in AD is poorly characterized. We designed a novel mouse model of subcortical white matter ischemic stroke and AD that can inform our understanding of the cellular and molecular mechanisms of mixed vascular and AD dementia. Subcortical white matter ischemic stroke underlying forelimb motor cortex was induced by local stereotactic injection of an irreversible eNOS inhibitor. Subcortical white matter ischemic stroke or sham procedures were performed on human ApoE4-targeted-replacement (TR):5XFAD mice at 8 weeks of age. Behavioral tests were done at 7, 10, 15, and 20 weeks. A subset of animals underwent 18FDG-PET/CT. At 20 weeks of age, brain tissue was examined for amyloid plaque accumulation and cellular changes. Compared with sham E4-TR:5XFAD mice, those with an early subcortical ischemic stroke showed a significant reduction in amyloid plaque burden in the region of cortex overlying the subcortical stroke. Cognitive performance was improved in E4-TR:5XFAD mice with stroke compared with sham E4-TR:5XFAD animals. Iba-1+ microglial cells in the region of cortex overlying the subcortical stroke were increased in number and morphologic complexity compared with sham E4-TR:5XFAD mice, suggesting that amyloid clearance may be promoted by an interaction between activated microglia and cortical neurons in response to subcortical stroke. This novel approach to modeling mixed vascular and AD dementia provides a valuable tool for dissecting the molecular interactions between these two common pathologies.
Collapse
Affiliation(s)
- Eric Y Hayden
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 635 Charles E. Young Dr. South, Neuroscience Research Building, Rm 415, Los Angeles, CA, 90095, USA
| | - Julia M Huang
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 635 Charles E. Young Dr. South, Neuroscience Research Building, Rm 415, Los Angeles, CA, 90095, USA
| | - Malena Charreton
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 635 Charles E. Young Dr. South, Neuroscience Research Building, Rm 415, Los Angeles, CA, 90095, USA
| | - Stefanie M Nunez
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 635 Charles E. Young Dr. South, Neuroscience Research Building, Rm 415, Los Angeles, CA, 90095, USA
| | - Jennifer N Putman
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 635 Charles E. Young Dr. South, Neuroscience Research Building, Rm 415, Los Angeles, CA, 90095, USA
| | - Bruce Teter
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 635 Charles E. Young Dr. South, Neuroscience Research Building, Rm 415, Los Angeles, CA, 90095, USA
| | - Jason T Lee
- Crump Institute for Molecular Imaging, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Andrew Welch
- The Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Sally Frautschy
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 635 Charles E. Young Dr. South, Neuroscience Research Building, Rm 415, Los Angeles, CA, 90095, USA
| | - Gregory Cole
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 635 Charles E. Young Dr. South, Neuroscience Research Building, Rm 415, Los Angeles, CA, 90095, USA
| | - Edmond Teng
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 635 Charles E. Young Dr. South, Neuroscience Research Building, Rm 415, Los Angeles, CA, 90095, USA
| | - Jason D Hinman
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 635 Charles E. Young Dr. South, Neuroscience Research Building, Rm 415, Los Angeles, CA, 90095, USA.
| |
Collapse
|
29
|
Lauretani F, Ruffini L, Scarlattei M, Maggio M. Relationship between comprehensive geriatric assessment and amyloid PET in older persons with MCI. BMC Geriatr 2020; 20:337. [PMID: 32907545 PMCID: PMC7487621 DOI: 10.1186/s12877-020-01746-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 08/30/2020] [Indexed: 01/23/2023] Open
Abstract
Background The association between amyloid deposition and cognitive, behavioral and physical performance in mild cognitive impairment (MCI) due to Alzheimer’s disease (AD) has been poorly investigated, especially in older persons. Methods We studied the in vivo correlation between the amyloid deposition at Positron Emission Tomography (amyloid-PET) and the presence of memory loss, reduced executive function, neuropsychiatric symptoms and physical performance in older persons with MCI. Amyloid-PET was performed with 18F-flutemetamol and quantitatively analyzed. Results We evaluated 48 subjects, 21 men and 27 women. We performed in each patient a comprehensive geriatric assessment (CGA) including Mini Mental State Examination (MMSE), Clock Drawing Test (CDT), Activity Daily Living (ADL), Instrumental Activity of Daily Living (IADL), Neuropsychiatric inventory (NPI) questionnaire, 15 Geriatric Depression Scale (GDS), Short Physical Performance Battery (SPPB) and Hand Grip strength. Then, each patient underwent amyloid-PET. Mean age of the enrolled subjects was 74.6 ± 7.8 years. All of these subjects showed preserved cognitive function at MMSE > 24, while 29 of 48 subjects (61.0%) had altered CDT. Mean NPI score was 6.9 ± 5.9. The mean value of SPPB score was 9.0 ± 2.6, while the average muscle strength of the upper extremities measured by hand grip was 25.6 ± 7.7 Kg. CT/MRI images showed cortical atrophic changes in 26 of the 48 examined subjects (54.0%), while cerebrovascular modifications were present in 31 subjects (64.5%). Pathological burden of amyloid deposits was detected in 25 of 48 (52.0%) patients with a mean value of global z-score of 2.8 (subjects defined as MCI due to AD). After stratifying subjects in subclasses of clinical alterations, more probability of pathological amyloid deposition was found in subjects with impaired CDT and higher NPI score (O.R. = 3.45 [1.01–11.2], p = 0.04), with both impaired CDT and low physical performance (O.R. = 5.80 [1.04–32.2], p = 0.04), with altered CDT and high NPI score (O.R. = 7.98 [1.38–46.0], p = 0.02), and finally in those subjects with altered CDT, high NPI and low physical performance (O.R. = 5.80 [1.05–32.2], p = 0.04). Conclusion Our findings support the recent hypothesis that amyloid deposition could be associated with multiple cerebral dysfunction, mainly affecting executive, behavioral and motor abilities.
Collapse
Affiliation(s)
- Fulvio Lauretani
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43100, Parma, Italy. .,Cognitive and Motoric Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126, Parma, Italy.
| | - Livia Ruffini
- Nuclear Medicine Unit, University Hospital of Parma, Parma, Italy
| | - Maura Scarlattei
- Nuclear Medicine Unit, University Hospital of Parma, Parma, Italy
| | - Marcello Maggio
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43100, Parma, Italy.,Cognitive and Motoric Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126, Parma, Italy
| |
Collapse
|
30
|
Xu G, Zheng S, Zhu Z, Yu X, Jiang J, Jiang J, Chu Z. Association of tau accumulation and atrophy in mild cognitive impairment: a longitudinal study. Ann Nucl Med 2020; 34:815-823. [DOI: 10.1007/s12149-020-01506-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/28/2020] [Indexed: 01/16/2023]
|
31
|
Selective Neuronal Vulnerability in Alzheimer's Disease: A Network-Based Analysis. Neuron 2020; 107:821-835.e12. [PMID: 32603655 DOI: 10.1016/j.neuron.2020.06.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 04/23/2020] [Accepted: 06/05/2020] [Indexed: 12/17/2022]
Abstract
A major obstacle to treating Alzheimer's disease (AD) is our lack of understanding of the molecular mechanisms underlying selective neuronal vulnerability, a key characteristic of the disease. Here, we present a framework integrating high-quality neuron-type-specific molecular profiles across the lifetime of the healthy mouse, which we generated using bacTRAP, with postmortem human functional genomics and quantitative genetics data. We demonstrate human-mouse conservation of cellular taxonomy at the molecular level for neurons vulnerable and resistant in AD, identify specific genes and pathways associated with AD neuropathology, and pinpoint a specific functional gene module underlying selective vulnerability, enriched in processes associated with axonal remodeling, and affected by amyloid accumulation and aging. We have made all cell-type-specific profiles and functional networks available at http://alz.princeton.edu. Overall, our study provides a molecular framework for understanding the complex interplay between Aβ, aging, and neurodegeneration within the most vulnerable neurons in AD.
Collapse
|
32
|
Costumero V, d'Oleire Uquillas F, Diez I, Andorrà M, Basaia S, Bueichekú E, Ortiz-Terán L, Belloch V, Escudero J, Ávila C, Sepulcre J. Distance disintegration delineates the brain connectivity failure of Alzheimer's disease. Neurobiol Aging 2020; 88:51-60. [PMID: 31941578 PMCID: PMC7085436 DOI: 10.1016/j.neurobiolaging.2019.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is associated with brain network dysfunction. Network-based investigations of brain connectivity have mainly focused on alterations in the strength of connectivity; however, the network breakdown in AD spectrum is a complex scenario in which multiple pathways of connectivity are affected. To integrate connectivity changes that occur under AD-related conditions, here we developed a novel metric that computes the connectivity distance between cortical regions at the voxel level (or nodes). We studied 114 individuals with mild cognitive impairment, 24 with AD, and 27 healthy controls. Results showed that areas of the default mode network, salience network, and frontoparietal network display a remarkable network separation, or greater connectivity distances, from the rest of the brain. Furthermore, this greater connectivity distance was associated with lower global cognition. Overall, the investigation of AD-related changes in paths and distances of connectivity provides a novel framework for characterizing subjects with cognitive impairment; a framework that integrates the overall network topology changes of the brain and avoids biases toward unreferenced connectivity effects.
Collapse
Affiliation(s)
- Víctor Costumero
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Center for Brain and Cognition, University Pompeu Fabra, Barcelona, Catalonia, Spain; Neuropsychology and Functional Neuroimaging Group, Department of basic Psychology, University Jaume I, Castellón, Valencian Community, Spain
| | | | - Ibai Diez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Neurotechnology Laboratory, Tecnalia Health Department, Basque Country, Spain
| | - Magi Andorrà
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Center of Neuroimmunology, Department of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Catalonia, Spain
| | - Silvia Basaia
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Neuroimaging Research Unit Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Elisenda Bueichekú
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Neuropsychology and Functional Neuroimaging Group, Department of basic Psychology, University Jaume I, Castellón, Valencian Community, Spain
| | - Laura Ortiz-Terán
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Joaquin Escudero
- Department of Neurology, General Hospital of Valencia, Valencia, Valencian Community, Spain
| | - César Ávila
- Neuropsychology and Functional Neuroimaging Group, Department of basic Psychology, University Jaume I, Castellón, Valencian Community, Spain
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
33
|
Pereira JB, Harrison TM, La Joie R, Baker SL, Jagust WJ. Spatial patterns of tau deposition are associated with amyloid, ApoE, sex, and cognitive decline in older adults. Eur J Nucl Med Mol Imaging 2020; 47:2155-2164. [PMID: 31915896 PMCID: PMC7338820 DOI: 10.1007/s00259-019-04669-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/23/2019] [Indexed: 12/22/2022]
Abstract
Purpose The abnormal deposition of tau begins before the onset of clinical symptoms and seems to target specific brain networks. The aim of this study is to identify the spatial patterns of tau deposition in cognitively normal older adults and assess whether they are related to amyloid-β (Aβ), APOE, sex, and longitudinal cognitive decline. Methods We included 114 older adults with cross-sectional flortaucipir (FTP) and Pittsburgh Compound-B PET in addition to longitudinal cognitive testing. A voxel-wise independent component analysis was applied to FTP images to identify the spatial patterns of tau deposition. We then assessed whether tau within these patterns differed by Aβ status, APOE genotype, and sex. Linear mixed effects models were built to test whether tau in each component predicted cognitive decline. Finally, we ordered the spatial components based on the frequency of high tau deposition to model tau spread. Results We found 10 biologically plausible tau patterns in the whole sample. There was greater tau in medial temporal, occipital, and orbitofrontal components in Aβ-positive compared with Aβ-negative individuals; in the parahippocampal component in ε3ε3 compared with ε2ε3 carriers; and in temporo-parietal and anterior frontal components in women compared with men. Higher tau in temporal and frontal components predicted longitudinal cognitive decline in memory and executive functions, respectively. Tau deposition was most frequently observed in medial temporal and ventral cortical areas, followed by lateral and primary areas. Conclusions These findings suggest that the spatial patterns of tau in asymptomatic individuals are clinically meaningful and are associated with Aβ, APOE ε2ε3, sex and cognitive decline. These patterns could be used to predict the regional spread of tau and perform in vivo tau staging in older adults. Electronic supplementary material The online version of this article (10.1007/s00259-019-04669-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joana B Pereira
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden. .,Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Renaud La Joie
- Memory and Aging Center, University of California, Oakland, CA, USA
| | - Suzanne L Baker
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA.,Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
34
|
SPECT and PET of the Brain. Clin Nucl Med 2020. [DOI: 10.1007/978-3-030-39457-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Pereira JB, Ossenkoppele R, Palmqvist S, Strandberg TO, Smith R, Westman E, Hansson O. Amyloid and tau accumulate across distinct spatial networks and are differentially associated with brain connectivity. eLife 2019; 8:50830. [PMID: 31815669 PMCID: PMC6938400 DOI: 10.7554/elife.50830] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022] Open
Abstract
The abnormal accumulation of amyloid-β and tau targets specific spatial networks in Alzheimer's disease. However, the relationship between these networks across different disease stages and their association with brain connectivity has not been explored. In this study, we applied a joint independent component analysis to 18F- Flutemetamol (amyloid-β) and 18F-Flortaucipir (tau) PET images to identify amyloid-β and tau networks across different stages of Alzheimer's disease. We then assessed whether these patterns were associated with resting-state functional networks and white matter tracts. Our analyses revealed nine patterns that were linked across tau and amyloid-β data. The amyloid-β and tau patterns showed a fair to moderate overlap with distinct functional networks but only tau was associated with white matter integrity loss and multiple cognitive functions. These findings show that amyloid-β and tau have different spatial affinities, which can be used to understand how they accumulate in the brain and potentially damage the brain's connections.
Collapse
Affiliation(s)
- Joana B Pereira
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden.,Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Neurology, Alzheimer Center, VU University Medical Center, Amsterdam, Netherlands
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Tor Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Ruben Smith
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
36
|
Hachinski V, Einhäupl K, Ganten D, Alladi S, Brayne C, Stephan BCM, Sweeney MD, Zlokovic B, Iturria-Medina Y, Iadecola C, Nishimura N, Schaffer CB, Whitehead SN, Black SE, Østergaard L, Wardlaw J, Greenberg S, Friberg L, Norrving B, Rowe B, Joanette Y, Hacke W, Kuller L, Dichgans M, Endres M, Khachaturian ZS. Special topic section: linkages among cerebrovascular, cardiovascular, and cognitive disorders: Preventing dementia by preventing stroke: The Berlin Manifesto. Int J Stroke 2019:1747493019871915. [PMID: 31543058 DOI: 10.1177/1747493019871915] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The incidence of stroke and dementia are diverging across the world, rising for those in low-and middle-income countries and falling in those in high-income countries. This suggests that whatever factors cause these trends are potentially modifiable. At the population level, neurological disorders as a group account for the largest proportion of disability-adjusted life years globally (10%). Among neurological disorders, stroke (42%) and dementia (10%) dominate. Stroke and dementia confer risks for each other and share some of the same, largely modifiable, risk and protective factors. In principle, 90% of strokes and 35% of dementias have been estimated to be preventable. Because a stroke doubles the chance of developing dementia and stroke is more common than dementia, more than a third of dementias could be prevented by preventing stroke. Developments at the pathological, pathophysiological, and clinical level also point to new directions. Growing understanding of brain pathophysiology has unveiled the reciprocal interaction of cerebrovascular disease and neurodegeneration identifying new therapeutic targets to include protection of the endothelium, the blood-brain barrier, and other components of the neurovascular unit. In addition, targeting amyloid angiopathy aspects of inflammation and genetic manipulation hold new testable promise. In the meantime, accumulating evidence suggests that whole populations experiencing improved education, and lower vascular risk factor profiles (e.g., reduced prevalence of smoking) and vascular disease, including stroke, have better cognitive function and lower dementia rates. At the individual levels, trials have demonstrated that anticoagulation of atrial fibrillation can reduce the risk of dementia by 48% and that systolic blood pressure lower than 140 mmHg may be better for the brain. Based on these considerations, the World Stroke Organization has issued a proclamation, endorsed by all the major international organizations focused on global brain and cardiovascular health, calling for the joint prevention of stroke and dementia. This article summarizes the evidence for translation into action. © 2019 the Alzheimer's Association and the World Stroke Organisation. Published by Elsevier Inc. All rights reserved.
Collapse
Affiliation(s)
- Vladimir Hachinski
- Department of Clinical Neurological Sciences, Western University, Ontario, Canada
| | - Karl Einhäupl
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Detlev Ganten
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Suvarna Alladi
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Carol Brayne
- Department of Public Health and Primary Care in the University of Cambridge, Cambridge, UK
| | - Blossom C M Stephan
- Institute of Mental Health, Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Melanie D Sweeney
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Berislav Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Nozomi Nishimura
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Chris B Schaffer
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, Western University, Ontario, Canada
| | - Sandra E Black
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Leif Østergaard
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
- Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark
| | - Joanna Wardlaw
- Centre for Clinical Brain Sciences, Edinburgh Imaging, UK Dementia Research Institute, University of Edinburgh, Scotland, UK
| | - Steven Greenberg
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Leif Friberg
- Department of Clinical Sciences, Karolinska Institute, Stockholm, Sweden
| | - Bo Norrving
- Department of Clinical Sciences, Neurology, Lund University, Lund, Sweden
| | - Brian Rowe
- Department of Emergency Medicine and School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Yves Joanette
- Canadian Institute of Health and Research, Ottawa, Canada
| | - Werner Hacke
- Department of Neurology, Heidelberg University, Heidelberg, Germany
| | - Lewis Kuller
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-Universität LMU, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany
| | - Matthias Endres
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- ExcellenceCluster NeuroCure, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), partner site Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | | |
Collapse
|
37
|
Hanseeuw BJ, Betensky RA, Jacobs HIL, Schultz AP, Sepulcre J, Becker JA, Cosio DMO, Farrell M, Quiroz YT, Mormino EC, Buckley RF, Papp KV, Amariglio RA, Dewachter I, Ivanoiu A, Huijbers W, Hedden T, Marshall GA, Chhatwal JP, Rentz DM, Sperling RA, Johnson K. Association of Amyloid and Tau With Cognition in Preclinical Alzheimer Disease: A Longitudinal Study. JAMA Neurol 2019; 76:915-924. [PMID: 31157827 PMCID: PMC6547132 DOI: 10.1001/jamaneurol.2019.1424] [Citation(s) in RCA: 503] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Importance Positron emission tomography (PET) imaging now allows in vivo visualization of both neuropathologic hallmarks of Alzheimer disease (AD): amyloid-β (Aβ) plaques and tau neurofibrillary tangles. Observing their progressive accumulation in the brains of clinically normal older adults is critically important to understand the pathophysiologic cascade leading to AD and to inform the choice of outcome measures in prevention trials. Objective To assess the associations among Aβ, tau, and cognition, measured during different observation periods for 7 years. Design, Setting, and Participants Prospective cohort study conducted between 2010 and 2017 at the Harvard Aging Brain Study, Boston, Massachusetts. The study enrolled 279 clinically normal participants. An additional 90 individuals were approached but declined the study or did not meet the inclusion criteria. In this report, we analyzed data from 60 participants who had multiple Aβ and tau PET observations available on October 31, 2017. Main Outcomes and Measures A median of 3 Pittsburgh compound B-PET (Aβ, 2010-2017) and 2 flortaucipir-PET (tau, 2013-2017) images were collected. We used initial PET and slope data, assessing the rates of change in Aβ and tau, to measure cognitive changes. Cognition was evaluated annually using the Preclinical Alzheimer Cognitive Composite (2010-2017). Annual consensus meetings evaluated progression to mild cognitive impairment. Results Of the 60 participants, 35 were women (58%) and 25 were men (42%); median age at inclusion was 73 years (range, 65-85 years). Seventeen participants (28%) exhibited an initial high Aβ burden. An antecedent rise in Aβ was associated with subsequent changes in tau (1.07 flortaucipir standardized uptake value ratios [SUVr]/PiB-SUVr; 95% CI, 0.13-3.46; P = .02). Tau changes were associated with cognitive changes (-3.28 z scores/SUVR; 95% CI, -6.67 to -0.91; P = .001), covarying baseline Aβ and tau. Tau changes were greater in the participants who progressed to mild cognitive impairment (n = 6) than in those who did not (n = 11; 0.05 SUVr per year; 95% CI, 0.03-0.07; P = .001). A serial mediation model demonstrated that the association between initial Aβ and final cognition, measured 7 years later, was mediated by successive changes in Aβ and tau. Conclusions and Relevance We identified sequential changes in normal older adults, from Aβ to tau to cognition, after which the participants with high Aβ with greater tau increase met clinical criteria for mild cognitive impairment. These findings highlight the importance of repeated tau-PET observations to track disease progression and the importance of repeated amyloid-PET observations to detect the earliest AD pathologic changes.
Collapse
Affiliation(s)
- Bernard J Hanseeuw
- Department of Radiology, Massachusetts General Hospital, the Gordon Center for Medical Imaging and the Athinoula A. Martinos Center for Biomedical Imaging, Boston.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Rebecca A Betensky
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Heidi I L Jacobs
- Department of Radiology, Massachusetts General Hospital, the Gordon Center for Medical Imaging and the Athinoula A. Martinos Center for Biomedical Imaging, Boston.,Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands
| | - Aaron P Schultz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jorge Sepulcre
- Department of Radiology, Massachusetts General Hospital, the Gordon Center for Medical Imaging and the Athinoula A. Martinos Center for Biomedical Imaging, Boston
| | - J Alex Becker
- Department of Radiology, Massachusetts General Hospital, the Gordon Center for Medical Imaging and the Athinoula A. Martinos Center for Biomedical Imaging, Boston
| | - Danielle M Orozco Cosio
- Department of Radiology, Massachusetts General Hospital, the Gordon Center for Medical Imaging and the Athinoula A. Martinos Center for Biomedical Imaging, Boston
| | - Michelle Farrell
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Yakeel T Quiroz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Elizabeth C Mormino
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Neurology and Neurological Sciences, Stanford University, California
| | - Rachel F Buckley
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,The Florey Institute, The University of Melbourne, Victoria, Australia; Melbourne School of Psychological Science, University of Melbourne, Victoria, Australia
| | - Kathryn V Papp
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rebecca A Amariglio
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ilse Dewachter
- Dementia Research Group, BioMedical Research Institute, Hasselt University, Hasselt, Belgium.,Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Adrian Ivanoiu
- Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, Belgium.,Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Willem Huijbers
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Cognitive Science and Artificial Intelligence, Tilburg University, Tilburg, the Netherlands
| | - Trey Hedden
- Department of Radiology, Massachusetts General Hospital, the Gordon Center for Medical Imaging and the Athinoula A. Martinos Center for Biomedical Imaging, Boston
| | - Gad A Marshall
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jasmeer P Chhatwal
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Dorene M Rentz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Keith Johnson
- Department of Radiology, Massachusetts General Hospital, the Gordon Center for Medical Imaging and the Athinoula A. Martinos Center for Biomedical Imaging, Boston.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
38
|
Jack CR, Wiste HJ, Schwarz CG, Lowe VJ, Senjem ML, Vemuri P, Weigand SD, Therneau TM, Knopman DS, Gunter JL, Jones DT, Graff-Radford J, Kantarci K, Roberts RO, Mielke MM, Machulda MM, Petersen RC. Longitudinal tau PET in ageing and Alzheimer's disease. Brain 2019. [PMID: 29538647 PMCID: PMC5917767 DOI: 10.1093/brain/awy059] [Citation(s) in RCA: 298] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
See Hansson and Mormino (doi:10.1093/brain/awy065) for a scientific commentary on this article.Our objective was to compare different whole-brain and region-specific measurements of within-person change on serial tau PET and evaluate its utility for clinical trials. We studied 126 individuals: 59 cognitively unimpaired with normal amyloid, 37 cognitively unimpaired with abnormal amyloid, and 30 cognitively impaired with an amnestic phenotype and abnormal amyloid. All had baseline amyloid PET and two tau PET, MRI, and clinical assessments. We compared the topography across all cortical regions of interest of tau PET accumulation rates and the rates of four different whole-brain or region-specific meta-regions of interest among the three clinical groups. We computed sample size estimates for change in tau PET, cortical volume, and memory/mental status indices for use as outcome measures in clinical trials. The cognitively unimpaired normal amyloid group had no observable tau accumulation throughout the brain. Tau accumulation rates in cognitively unimpaired abnormal amyloid were low [0.006 standardized uptake value ratio (SUVR), 0.5%, per year] but greater than rates in the cognitively unimpaired normal amyloid group in the basal and mid-temporal, retrosplenial, posterior cingulate, and entorhinal regions of interest. Thus, the earliest elevation in accumulation rates was widespread and not confined to the entorhinal cortex. Tau accumulation rates in the cognitively impaired abnormal amyloid group were 0.053 SUVR (3%) per year and greater than rates in cognitively unimpaired abnormal amyloid in all cortical areas except medial temporal. Rates of accumulation in the four meta-regions of interest differed but only slightly from one another. Among all tau PET meta-regions of interest, sample size estimates were smallest for a temporal lobe composite within cognitively unimpaired abnormal amyloid and for the late Alzheimer's disease meta-region of interest within cognitively impaired abnormal amyloid. The ordering of the sample size estimates by outcome measure was MRI < tau PET < cognitive measures. At a group-wise level, observable rates of short-term serial tau accumulation were only seen in the presence of abnormal amyloid. As disease progressed to clinically symptomatic stages (cognitively impaired abnormal amyloid), observable rates of tau accumulation were seen uniformly throughout the brain providing evidence that tau does not accumulate in one area at a time or in start-stop, stepwise sequence. The information captured by rate measures in different meta-regions of interest, even those with little topographic overlap, was similar. The implication is that rate measurements from simple meta-regions of interest, without the need for Braak-like staging, may be sufficient to capture progressive within-person accumulation of pathologic tau. Tau PET SUVR measures should be an efficient outcome measure in disease-modifying clinical trials.
Collapse
Affiliation(s)
- Clifford R Jack
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Heather J Wiste
- Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | - Val J Lowe
- Department of Nuclear Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Matthew L Senjem
- Department of Information Technology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Prashanthi Vemuri
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Stephen D Weigand
- Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Terry M Therneau
- Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Dave S Knopman
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Jeffrey L Gunter
- Department of Information Technology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - David T Jones
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Rosebud O Roberts
- Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Michelle M Mielke
- Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Ronald C Petersen
- Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.,Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
39
|
Hachinski V, Einhäupl K, Ganten D, Alladi S, Brayne C, Stephan BCM, Sweeney MD, Zlokovic B, Iturria-Medina Y, Iadecola C, Nishimura N, Schaffer CB, Whitehead SN, Black SE, Østergaard L, Wardlaw J, Greenberg S, Friberg L, Norrving B, Rowe B, Joanette Y, Hacke W, Kuller L, Dichgans M, Endres M, Khachaturian ZS. Preventing dementia by preventing stroke: The Berlin Manifesto. Alzheimers Dement 2019; 15:961-984. [PMID: 31327392 PMCID: PMC7001744 DOI: 10.1016/j.jalz.2019.06.001] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The incidence of stroke and dementia are diverging across the world, rising for those in low- and middle-income countries and falling in those in high-income countries. This suggests that whatever factors cause these trends are potentially modifiable. At the population level, neurological disorders as a group account for the largest proportion of disability-adjusted life years globally (10%). Among neurological disorders, stroke (42%) and dementia (10%) dominate. Stroke and dementia confer risks for each other and share some of the same, largely modifiable, risk and protective factors. In principle, 90% of strokes and 35% of dementias have been estimated to be preventable. Because a stroke doubles the chance of developing dementia and stroke is more common than dementia, more than a third of dementias could be prevented by preventing stroke. Developments at the pathological, pathophysiological, and clinical level also point to new directions. Growing understanding of brain pathophysiology has unveiled the reciprocal interaction of cerebrovascular disease and neurodegeneration identifying new therapeutic targets to include protection of the endothelium, the blood-brain barrier, and other components of the neurovascular unit. In addition, targeting amyloid angiopathy aspects of inflammation and genetic manipulation hold new testable promise. In the meantime, accumulating evidence suggests that whole populations experiencing improved education, and lower vascular risk factor profiles (e.g., reduced prevalence of smoking) and vascular disease, including stroke, have better cognitive function and lower dementia rates. At the individual levels, trials have demonstrated that anticoagulation of atrial fibrillation can reduce the risk of dementia by 48% and that systolic blood pressure lower than 140 mmHg may be better for the brain. Based on these considerations, the World Stroke Organization has issued a proclamation, endorsed by all the major international organizations focused on global brain and cardiovascular health, calling for the joint prevention of stroke and dementia. This article summarizes the evidence for translation into action.
Collapse
Affiliation(s)
- Vladimir Hachinski
- Department of Clinical Neurological Sciences, Western University, Ontario, Canada.
| | - Karl Einhäupl
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Detlev Ganten
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Suvarna Alladi
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Carol Brayne
- Department of Public Health and Primary Care in the University of Cambridge, Cambridge, UK
| | - Blossom C M Stephan
- Institute of Mental Health, Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Melanie D Sweeney
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Berislav Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Nozomi Nishimura
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Chris B Schaffer
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, Western University, Ontario, Canada
| | - Sandra E Black
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Leif Østergaard
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark; Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark
| | - Joanna Wardlaw
- Centre for Clinical Brain Sciences, Edinburgh Imaging, UK Dementia Research Institute, University of Edinburgh, Scotland, UK
| | - Steven Greenberg
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Leif Friberg
- Department of Clinical Sciences, Karolinska Institute, Stockholm, Sweden
| | - Bo Norrving
- Department of Clinical Sciences, Neurology, Lund University, Lund, Sweden
| | - Brian Rowe
- Department of Emergency Medicine and School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Yves Joanette
- Canadian Institute of Health and Research, Ottawa, Canada
| | - Werner Hacke
- Department of Neurology, Heidelberg University, Heidelberg, Germany
| | - Lewis Kuller
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-Universität LMU, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany
| | - Matthias Endres
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany; ExcellenceCluster NeuroCure, Charité-Universitätsmedizin Berlin, Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE), partner site Berlin, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| | | |
Collapse
|
40
|
Franzmeier N, Rubinski A, Neitzel J, Kim Y, Damm A, Na DL, Kim HJ, Lyoo CH, Cho H, Finsterwalder S, Duering M, Seo SW, Ewers M. Functional connectivity associated with tau levels in ageing, Alzheimer's, and small vessel disease. Brain 2019; 142:1093-1107. [PMID: 30770704 PMCID: PMC6439332 DOI: 10.1093/brain/awz026] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/27/2018] [Accepted: 12/21/2018] [Indexed: 12/14/2022] Open
Abstract
In Alzheimer's disease, tau pathology spreads hierarchically from the inferior temporal lobe throughout the cortex, ensuing cognitive decline and dementia. Similarly, circumscribed patterns of pathological tau have been observed in normal ageing and small vessel disease, suggesting a spatially ordered distribution of tau pathology across normal ageing and different diseases. In vitro findings suggest that pathological tau may spread 'prion-like' across neuronal connections in an activity-dependent manner. Supporting this notion, functional brain networks show a spatial correspondence to tau deposition patterns. However, it remains unclear whether higher network-connectivity facilitates tau propagation. To address this, we included 55 normal aged elderly (i.e. cognitively normal, amyloid-negative), 50 Alzheimer's disease patients (i.e. amyloid-positive) covering the preclinical to dementia spectrum, as well as 36 patients with pure (i.e. amyloid-negative) vascular cognitive impairment due to small vessel disease. All subjects were assessed with AV1451 tau-PET and resting-state functional MRI. Within each group, we computed atlas-based resting-state functional MRI functional connectivity across 400 regions of interest covering the entire neocortex. Using the same atlas, we also assessed within each group the covariance of tau-PET levels among the 400 regions of interest. We found that higher resting-state functional MRI assessed functional connectivity between any given region of interest pair was associated with higher covariance in tau-PET binding in corresponding regions of interest. This result was consistently found in normal ageing, Alzheimer's disease and vascular cognitive impairment. In particular, inferior temporal tau-hotspots, as defined by highest tau-PET uptake, showed high predictive value of tau-PET levels in functionally closely connected regions of interest. These associations between functional connectivity and tau-PET uptake were detected regardless of presence of dementia symptoms (mild cognitive impairment or dementia), amyloid deposition (as assessed by amyloid-PET) or small vessel disease. Our findings suggest that higher functional connectivity between brain regions is associated with shared tau-levels, supporting the view of prion-like tau spreading facilitated by neural activity.
Collapse
Affiliation(s)
- Nicolai Franzmeier
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Feodor-Lynen Straße 17, Munich, Germany
| | - Anna Rubinski
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Feodor-Lynen Straße 17, Munich, Germany
| | - Julia Neitzel
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Feodor-Lynen Straße 17, Munich, Germany
| | - Yeshin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Neurology, Kangwon National University Hospital, Kangwon National University College of Medicine, Chuncheon, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Alexander Damm
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Feodor-Lynen Straße 17, Munich, Germany
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Chul Hyoung Lyoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hana Cho
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sofia Finsterwalder
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Feodor-Lynen Straße 17, Munich, Germany
| | - Marco Duering
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Feodor-Lynen Straße 17, Munich, Germany
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
- Center for Imaging of Neurodegenerative Diseases, University of California, San Francisco
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Feodor-Lynen Straße 17, Munich, Germany
| | | |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW The aim of this study was to discuss the contribution of neuroimaging studies to our understanding of Alzheimer's disease. We now have the capability of measuring both tau and beta-amyloid (Aβ) proteins in the brain, which together with more traditional neuroimaging modalities, has led the field to focus on using neuroimaging to better characterize disease mechanisms underlying Alzheimer's disease. RECENT FINDINGS Studies have utilized tau and Aβ PET, as well as [18F]fluorodeoxyglucose PET, and structural and functional MRI, to investigate the following topics: phenotypic variability in Alzheimer's disease , including how neuroimaging findings are related to clinical phenotype and age; multimodality analyses to investigate the relationships between different neuroimaging modalities and what that teaches us about disease mechanisms; disease staging by assessing neuroimaging changes in the very earliest phases of the disease in cognitively normal individuals and individuals carrying an autosomal dominant Alzheimer's disease mutation; and influence of other comorbidities and proteins to the disease process. SUMMARY The findings shed light on the role of tau and Aβ, as well as age and other comorbidities, in the neurodegenerative process in Alzheimer's disease. This knowledge will be crucial in the development of better disease biomarkers and targeted therapeutic approaches.
Collapse
|
42
|
Jadhav S, Avila J, Schöll M, Kovacs GG, Kövari E, Skrabana R, Evans LD, Kontsekova E, Malawska B, de Silva R, Buee L, Zilka N. A walk through tau therapeutic strategies. Acta Neuropathol Commun 2019; 7:22. [PMID: 30767766 PMCID: PMC6376692 DOI: 10.1186/s40478-019-0664-z] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/21/2019] [Indexed: 12/18/2022] Open
Abstract
Tau neuronal and glial pathologies drive the clinical presentation of Alzheimer's disease and related human tauopathies. There is a growing body of evidence indicating that pathological tau species can travel from cell to cell and spread the pathology through the brain. Throughout the last decade, physiological and pathological tau have become attractive targets for AD therapies. Several therapeutic approaches have been proposed, including the inhibition of protein kinases or protein-3-O-(N-acetyl-beta-D-glucosaminyl)-L-serine/threonine Nacetylglucosaminyl hydrolase, the inhibition of tau aggregation, active and passive immunotherapies, and tau silencing by antisense oligonucleotides. New tau therapeutics, across the board, have demonstrated the ability to prevent or reduce tau lesions and improve either cognitive or motor impairment in a variety of animal models developing neurofibrillary pathology. The most advanced strategy for the treatment of human tauopathies remains immunotherapy, which has already reached the clinical stage of drug development. Tau vaccines or humanised antibodies target a variety of tau species either in the intracellular or extracellular spaces. Some of them recognise the amino-terminus or carboxy-terminus, while others display binding abilities to the proline-rich area or microtubule binding domains. The main therapeutic foci in existing clinical trials are on Alzheimer's disease, progressive supranuclear palsy and non-fluent primary progressive aphasia. Tau therapy offers a new hope for the treatment of many fatal brain disorders. First efficacy data from clinical trials will be available by the end of this decade.
Collapse
Affiliation(s)
- Santosh Jadhav
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska 9, 845 10, Bratislava, Slovakia
- AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, 811 02, Bratislava, Slovakia
| | - Jesus Avila
- Centro de Biologia Molecular "Severo Ochoa", Consejo Superior de Investigaciones, Cientificas, Universidad Autonoma de Madrid, C/ Nicolas Cabrera, 1. Campus de Cantoblanco, 28049, Madrid, Spain
- Networking Research Center on Neurodegenerative, Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of, Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Dementia Research Centre, University College London, London, UK
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, AKH 4J, Währinger Gürtel 18-20, 1097, Vienna, Austria
| | - Enikö Kövari
- Department of Mental Health and Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Rostislav Skrabana
- AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, 811 02, Bratislava, Slovakia
| | - Lewis D Evans
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Eva Kontsekova
- AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, 811 02, Bratislava, Slovakia
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Cracow, Poland
| | - Rohan de Silva
- Reta Lila Weston Institute and Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ, UK
| | - Luc Buee
- Universite of Lille, Inserm, CHU-Lille, UMRS1172, Alzheimer & Tauopathies, Place de Verdun, 59045, Lille cedex, France.
| | - Norbert Zilka
- AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, 811 02, Bratislava, Slovakia.
| |
Collapse
|
43
|
Schöll M, Maass A, Mattsson N, Ashton NJ, Blennow K, Zetterberg H, Jagust W. Biomarkers for tau pathology. Mol Cell Neurosci 2018; 97:18-33. [PMID: 30529601 PMCID: PMC6584358 DOI: 10.1016/j.mcn.2018.12.001] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/01/2018] [Indexed: 12/14/2022] Open
Abstract
The aggregation of fibrils of hyperphosphorylated and C-terminally truncated microtubule-associated tau protein characterizes 80% of all dementia disorders, the most common neurodegenerative disorders. These so-called tauopathies are hitherto not curable and their diagnosis, especially at early disease stages, has traditionally proven difficult. A keystone in the diagnosis of tauopathies was the development of methods to assess levels of tau protein in vivo in cerebrospinal fluid, which has significantly improved our knowledge about these conditions. Tau proteins have also been measured in blood, but the importance of tau-related changes in blood is still unclear. The recent addition of positron emission tomography ligands to visualize, map and quantify tau pathology has further contributed with information about the temporal and spatial characteristics of tau accumulation in the living brain. Together, the measurement of tau with fluid biomarkers and positron emission tomography constitutes the basis for a highly active field of research. This review describes the current state of biomarkers for tau biomarkers derived from neuroimaging and from the analysis of bodily fluids and their roles in the detection, diagnosis and prognosis of tau-associated neurodegenerative disorders, as well as their associations with neuropathological findings, and aims to provide a perspective on how these biomarkers might be employed prospectively in research and clinical settings. Biomarkers for tau pathology are now essential to the research framework in the diagnosis of Alzheimer's disease (AD) Measurement of t- and p-tau has been possible in cerebrospinal fluid (CSF) for some time, the recent development of positron emission tomography (PET) ligands binding to tau has added the possibility to map and quantify tau in the living brain First-generation tau PET ligands bind predominantly to AD-typical 3R/4R tau isoforms and exhibit off-target binding that can limit accurate ligand uptake quantification Second-generation tau PET ligands appear to bind to comparable binding sites but exhibit fewer issues with brain off-target binding Biomarkers for tau derived from CSF analysis and PET could provide complementary information about disease state and stage At this time, T-tau, but not p-tau, can be reliably measured in plasma using ultra-sensitive immunoassays.
Collapse
Affiliation(s)
- Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine and the Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden; Clinical Memory Research Unit, Lund University, Malmö, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.
| | - Anne Maass
- German Center for Neurodegenerative Diseases, Magdeburg, Germany; Helen Wills Neuroscience Institute, University of California, Berkeley, USA
| | - Niklas Mattsson
- Clinical Memory Research Unit, Lund University, Malmö, Sweden; Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Nicholas J Ashton
- Wallenberg Centre for Molecular and Translational Medicine and the Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden; King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; Department of Psychiatry and Neurochemistry, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; UK Dementia Research Institute at UCL, London, UK
| | - William Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
44
|
Neurogenetic contributions to amyloid beta and tau spreading in the human cortex. Nat Med 2018; 24:1910-1918. [PMID: 30374196 DOI: 10.1038/s41591-018-0206-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/29/2018] [Indexed: 01/09/2023]
Abstract
Tau and amyloid beta (Aβ) proteins accumulate along neuronal circuits in Alzheimer's disease. Unraveling the genetic background for the regional vulnerability of these proteinopathies can help in understanding the mechanisms of pathology progression. To that end, we developed a novel graph theory approach and used it to investigate the intersection of longitudinal Aβ and tau positron emission tomography imaging of healthy adult individuals and the genetic transcriptome of the Allen Human Brain Atlas. We identified distinctive pathways for tau and Aβ accumulation, of which the tau pathways correlated with cognitive levels. We found that tau propagation and Aβ propagation patterns were associated with a common genetic profile related to lipid metabolism, in which APOE played a central role, whereas the tau-specific genetic profile was classified as 'axon related' and the Aβ profile as 'dendrite related'. This study reveals distinct genetic profiles that may confer vulnerability to tau and Aβ in vivo propagation in the human brain.
Collapse
|
45
|
Vogel JW, Mattsson N, Iturria-Medina Y, Strandberg OT, Schöll M, Dansereau C, Villeneuve S, van der Flier WM, Scheltens P, Bellec P, Evans AC, Hansson O, Ossenkoppele R. Data-driven approaches for tau-PET imaging biomarkers in Alzheimer's disease. Hum Brain Mapp 2018; 40:638-651. [PMID: 30368979 DOI: 10.1002/hbm.24401] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/09/2018] [Accepted: 09/04/2018] [Indexed: 12/14/2022] Open
Abstract
Previous positron emission tomography (PET) studies have quantified filamentous tau pathology using regions-of-interest (ROIs) based on observations of the topographical distribution of neurofibrillary tangles in post-mortem tissue. However, such approaches may not take full advantage of information contained in neuroimaging data. The present study employs an unsupervised data-driven method to identify spatial patterns of tau-PET distribution, and to compare these patterns to previously published "pathology-driven" ROIs. Tau-PET patterns were identified from a discovery sample comprised of 123 normal controls and patients with mild cognitive impairment or Alzheimer's disease (AD) dementia from the Swedish BioFINDER cohort, who underwent [18 F]AV1451 PET scanning. Associations with cognition were tested in a separate sample of 90 individuals from ADNI. BioFINDER [18 F]AV1451 images were entered into a robust voxelwise stable clustering algorithm, which resulted in five clusters. Mean [18 F]AV1451 uptake in the data-driven clusters, and in 35 previously published pathology-driven ROIs, was extracted from ADNI [18 F]AV1451 scans. We performed linear models comparing [18 F]AV1451 signal across all 40 ROIs to tests of global cognition and episodic memory, adjusting for age, sex, and education. Two data-driven ROIs consistently demonstrated the strongest or near-strongest effect sizes across all cognitive tests. Inputting all regions plus demographics into a feature selection routine resulted in selection of two ROIs (one data-driven, one pathology-driven) and education, which together explained 28% of the variance of a global cognitive composite score. Our findings suggest that [18 F]AV1451-PET data naturally clusters into spatial patterns that are biologically meaningful and that may offer advantages as clinical tools.
Collapse
Affiliation(s)
- Jacob W Vogel
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,Alzheimer Center and Department of Neurology, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Niklas Mattsson
- Clinical Memory Research Unit, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden
| | | | | | - Michael Schöll
- Clinical Memory Research Unit, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Christian Dansereau
- Department of Computer Science and Operations Research, Université de Montréal, Montreal, Quebec, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, University of Montreal, Montreal, Quebec, Canada
| | - Sylvia Villeneuve
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Wiesje M van der Flier
- Alzheimer Center and Department of Neurology, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands.,Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, Netherlands
| | - Philip Scheltens
- Alzheimer Center and Department of Neurology, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Pierre Bellec
- Department of Computer Science and Operations Research, Université de Montréal, Montreal, Quebec, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, University of Montreal, Montreal, Quebec, Canada
| | - Alan C Evans
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Oskar Hansson
- Clinical Memory Research Unit, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Lund, Sweden
| | - Rik Ossenkoppele
- Alzheimer Center and Department of Neurology, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands.,Clinical Memory Research Unit, Lund University, Lund, Sweden
| | | | | |
Collapse
|
46
|
Grothe MJ, Sepulcre J, Gonzalez-Escamilla G, Jelistratova I, Schöll M, Hansson O, Teipel SJ. Molecular properties underlying regional vulnerability to Alzheimer's disease pathology. Brain 2018; 141:2755-2771. [PMID: 30016411 PMCID: PMC6113636 DOI: 10.1093/brain/awy189] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/13/2018] [Accepted: 06/03/2018] [Indexed: 01/04/2023] Open
Abstract
Amyloid deposition and neurofibrillary degeneration in Alzheimer's disease specifically affect discrete neuronal systems, but the underlying mechanisms that render some brain regions more vulnerable to Alzheimer's disease pathology than others remain largely unknown. Here we studied molecular properties underlying these distinct regional vulnerabilities by analysing Alzheimer's disease-typical neuroimaging patterns of amyloid deposition and neurodegeneration in relation to regional gene expression profiles of the human brain. Graded patterns of brain-wide vulnerability to amyloid deposition and neurodegeneration in Alzheimer's disease were estimated by contrasting multimodal amyloid-sensitive PET and structural MRI data between patients with Alzheimer's disease dementia (n = 76) and healthy controls (n = 126) enrolled in the Alzheimer's Disease Neuroimaging Initiative (ADNI). Regional gene expression profiles were derived from brain-wide microarray measurements provided by the Allen brain atlas of the adult human brain transcriptome. In a hypothesis-driven analysis focusing on the genes coding for the amyloid precursor (APP) and tau proteins (MAPT), regional expression levels of APP were positively correlated with the severity of regional amyloid deposition (r = 0.44, P = 0.009), but not neurodegeneration (r = 0.01, P = 0.96), whereas the opposite pattern was observed for MAPT (neurodegeneration: r = 0.46, P = 0.006; amyloid: r = 0.08, P = 0.65). Using explorative gene set enrichment analysis, amyloid-vulnerable regions were found to be characterized by relatively low expression levels of gene sets implicated in protein synthesis and mitochondrial respiration. By contrast, neurodegeneration-vulnerable regions were characterized by relatively high expression levels of gene sets broadly implicated in neural plasticity, with biological functions ranging from neurite outgrowth and synaptic contact over intracellular signalling cascades to proteoglycan metabolism. At the individual gene level this data-driven analysis further corroborated the association between neurodegeneration and MAPT expression, and additionally identified associations with known tau kinases (CDK5, MAPK1/ERK2) alongside components of their intracellular (Ras-ERK) activation pathways. Sensitivity analyses showed that these pathology-specific imaging-genetic associations were largely robust against changes in some of the methodological parameters, including variation in the brain donor sample used for estimating regional gene expression profiles, and local variations in the Alzheimer's disease-typical imaging patterns when these were derived from an independent patient cohort (BioFINDER study). These findings highlight that the regionally selective vulnerability to Alzheimer's disease pathology relates to specific molecular-functional properties of the affected neural systems, and that the implicated biochemical pathways largely differ for amyloid accumulation versus neurodegeneration. The data provide novel insights into the complex pathophysiological mechanisms of Alzheimer's disease and point to pathology-specific treatment targets that warrant further exploration in independent studies.
Collapse
Affiliation(s)
- Michel J Grothe
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Gabriel Gonzalez-Escamilla
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | | | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine and the Department of Psychiatry and Neurochemistry, University of Gothenburg, Sweden
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden
- Memory Clinic, Skåne University Hospital, Sweden
| | - Stefan J Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | | |
Collapse
|
47
|
Kamourieh S, Braga RM, Leech R, Mehta A, Wise RJS. Speech Registration in Symptomatic Memory Impairment. Front Aging Neurosci 2018; 10:201. [PMID: 30038566 PMCID: PMC6046456 DOI: 10.3389/fnagi.2018.00201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 06/13/2018] [Indexed: 11/20/2022] Open
Abstract
Background: An inability to recall recent conversations often indicates impaired episodic memory retrieval. It may also reflect a failure of attentive registration of spoken sentences which leads to unsuccessful memory encoding. The hypothesis was that patients complaining of impaired memory would demonstrate impaired function of “multiple demand” (MD) brain regions, whose activation profile generalizes across cognitive domains, during speech registration in naturalistic listening conditions. Methods: Using functional MRI, brain activity was measured in 22 normal participants and 31 patients complaining of memory impairment, 21 of whom had possible or probable Alzheimer’s disease (AD). Participants heard a target speaker, either speaking alone or in the presence of distracting background speech, followed by a question to determine if the target speech had been registered. Results: Patients performed poorly at registering verbal information, which correlated with their scores on a screening test of cognitive impairment. Speech registration was associated with widely distributed activity in both auditory cortex and in MD cortex. Additional regions were most active when the target speech had to be separated from background speech. Activity in midline and lateral frontal MD cortex was reduced in the patients. A central cholinesterase inhibitor to increase brain acetylcholine levels in half the patients was not observed to alter brain activity or improve task performance at a second fMRI scan performed 6–11 weeks later. However, individual performances spontaneously fluctuated between the two scanning sessions, and these performance differences correlated with activity within a right hemisphere fronto-temporal system previously associated with sustained auditory attention. Conclusions: Midline and lateralized frontal regions that are engaged in task-dependent attention to, and registration of, verbal information are potential targets for transcranial brain stimulation to improve speech registration in neurodegenerative conditions.
Collapse
Affiliation(s)
- Salwa Kamourieh
- Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Rodrigo M Braga
- Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom.,Center for Brain Science, Harvard University, Cambridge, MA, United States
| | - Robert Leech
- Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Amrish Mehta
- Department of Neuroradiology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Richard J S Wise
- Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| |
Collapse
|
48
|
Molecular imaging in dementia: Past, present, and future. Alzheimers Dement 2018; 14:1522-1552. [DOI: 10.1016/j.jalz.2018.06.2855] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 06/02/2018] [Accepted: 06/03/2018] [Indexed: 12/14/2022]
|
49
|
Sun BL, Li WW, Zhu C, Jin WS, Zeng F, Liu YH, Bu XL, Zhu J, Yao XQ, Wang YJ. Clinical Research on Alzheimer's Disease: Progress and Perspectives. Neurosci Bull 2018; 34:1111-1118. [PMID: 29956105 DOI: 10.1007/s12264-018-0249-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/27/2018] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD), the most common type of dementia, is becoming a major challenge for global health and social care. However, the current understanding of AD pathogenesis is limited, and no early diagnosis and disease-modifying therapy are currently available. During the past year, significant progress has been made in clinical research on the diagnosis, prevention, and treatment of AD. In this review, we summarize the latest achievements, including diagnostic biomarkers, polygenic hazard score, amyloid and tau PET imaging, clinical trials targeting amyloid-beta (Aβ), tau, and neurotransmitters, early intervention, and primary prevention and systemic intervention approaches, and provide novel perspectives for further efforts to understand and cure the disease.
Collapse
Affiliation(s)
- Bin-Lu Sun
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Wei-Wei Li
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Chi Zhu
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Wang-Sheng Jin
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Fan Zeng
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yu-Hui Liu
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Xian-Le Bu
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Jie Zhu
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Xiu-Qing Yao
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| |
Collapse
|
50
|
Freudenberg-Hua Y, Li W, Davies P. The Role of Genetics in Advancing Precision Medicine for Alzheimer's Disease-A Narrative Review. Front Med (Lausanne) 2018; 5:108. [PMID: 29740579 PMCID: PMC5928202 DOI: 10.3389/fmed.2018.00108] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia, which has a substantial genetic component. AD affects predominantly older people. Accordingly, the prevalence of dementia has been rising as the population ages. To date, there are no effective interventions that can cure or halt the progression of AD. The only available treatments are the management of certain symptoms and consequences of dementia. The current state-of-the-art medical care for AD comprises three simple principles: prevent the preventable, achieve early diagnosis, and manage the manageable symptoms. This review provides a summary of the current state of knowledge of risk factors for AD, biological diagnostic testing, and prospects for treatment. Special emphasis is given to recent advances in genetics of AD and the way genomic data may support prevention, early intervention, and development of effective pharmacological treatments. Mutations in the APP, PSEN1, and PSEN2 genes cause early onset Alzheimer's disease (EOAD) that follows a Mendelian inheritance pattern. For late onset Alzheimer's disease (LOAD), APOE4 was identified as a major risk allele more than two decades ago. Population-based genome-wide association studies of late onset AD have now additionally identified common variants at roughly 30 genetic loci. Furthermore, rare variants (allele frequency <1%) that influence the risk for LOAD have been identified in several genes. These genetic advances have broadened our insights into the biological underpinnings of AD. Moreover, the known genetic risk variants could be used to identify presymptomatic individuals at risk for AD and support diagnostic assessment of symptomatic subjects. Genetic knowledge may also facilitate precision medicine. The goal of precision medicine is to use biological knowledge and other health information to predict individual disease risk, understand disease etiology, identify disease subcategories, improve diagnosis, and provide personalized treatment strategies. We discuss the potential role of genetics in advancing precision medicine for AD along with its ethical challenges. We outline strategies to implement genomics into translational clinical research that will not only improve accuracy of dementia diagnosis, thus enabling more personalized treatment strategies, but may also speed up the discovery of novel drugs and interventions.
Collapse
Affiliation(s)
- Yun Freudenberg-Hua
- Litwin-Zucker Center for the study of Alzheimer’s Disease, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Division of Geriatric Psychiatry, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, United States
| | - Wentian Li
- Robert S Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Peter Davies
- Litwin-Zucker Center for the study of Alzheimer’s Disease, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| |
Collapse
|