1
|
Agarwal S, Venkatesan C, Vollmer B, Scelsa B, Lemmon ME, Pardo AC, Mulkey SB, Tarui T, Dadhwal V, Scher M, Hart AR, Gano D. Fetal Cerebral Ventriculomegaly: A Narrative Review and Practical Recommendations for Pediatric Neurologists. Pediatr Neurol 2024; 156:119-127. [PMID: 38761643 DOI: 10.1016/j.pediatrneurol.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/19/2024] [Indexed: 05/20/2024]
Abstract
Fetal cerebral ventriculomegaly is one of the most common fetal neurological disorders identified prenatally by neuroimaging. The challenges in the evolving landscape of conditions like fetal cerebral ventriculomegaly involve accurate diagnosis and how best to provide prenatal counseling regarding prognosis as well as postnatal management and care of the infant. The purpose of this narrative review is to discuss the literature on fetal ventriculomegaly, including postnatal management and neurodevelopmental outcome, and to provide practice recommendations for pediatric neurologists.
Collapse
Affiliation(s)
- Sonika Agarwal
- Division of Neurology & Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Division of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Charu Venkatesan
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Brigitte Vollmer
- Faculty of Medicine, Clinical Neurosciences, Clinical and Experimental Sciences, University of Southampton, Southampton, UK; Paediatric and Neonatal Neurology, Southampton Children's Hospital, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Barbara Scelsa
- Department of Pediatric Neurology, Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Monica E Lemmon
- Department of Pediatrics and Population Health Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Andrea C Pardo
- Division of Neurology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Sarah B Mulkey
- Zickler Family Prenatal Pediatrics Institute, Children's National Hospital, Washington, District of Columbia; Departments of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia; Division of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Tomo Tarui
- Division of Pediatric Neurology, Hasbro Children's Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Vatsla Dadhwal
- Professor, Maternal Fetal Medicine, Department of Obstetrics & Gynecology, All India Institute of Medical Sciences, New Delhi, India
| | - Mark Scher
- Emeritus Full Professor Pediatrics and Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Anthony R Hart
- Department of Paediatric Neurology, King's College Hospital NHS Foundation Trust, London, UK
| | - Dawn Gano
- Department of Neurology & Pediatrics, University of California San Francisco, San Francisco, California
| |
Collapse
|
2
|
Sabzeghabaiean M, Maleknia M, Mohammadi-Asl J, Kazemi H, Golab F, Zargar Z, Naseroleslami M. The homozygous pathogenic variant of the POMGNT1 gene identified using whole-exome sequencing in Iranian family with congenital hydrocephalus. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:38. [DOI: 10.1186/s43042-024-00513-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/14/2024] [Indexed: 01/05/2025] Open
Abstract
Abstract
Background
Hydrocephalus is one of the most common pathophysiological disabilities with a high mortality rate, which occurs both congenitally and acquired. It is estimated that genetic components are the etiology for up to 40% of hydrocephalus cases; however, causal mutations identified until now could only explain approximately 20% of congenital hydrocephalus (CH) patients, and most potential hydrocephalus-associated genes have yet to be determined. This study sought to find causal variations in a consanguineous family with four affected children diagnosed with hydrocephalus.
Material and methods
In this study, we evaluated twenty-five members of an extended family consisting of a nuclear family with four affected children resulting from a consanguineous couple and eighteen of their relatives, including one hydrocephalus case. The mother of this family was experiencing her 15th week of pregnancy, and cytogenetic evaluation was performed using amniocentesis to identify fetal chromosomal abnormalities. We conducted whole-exome sequencing (WES) on the genomic DNA of the proband to detect the CH-causing variants, followed by confirmation and segregation analysis of the detected variant in the proband, fetus, and family members through Sanger sequencing.
Results
Following the bioinformatic analysis and data filtering, we found a homozygous variant [NM_001243766.2:c.74G>A:p.W25X] within the protein O-mannose beta-1,2-N-acetylglucosaminyltransferase 1 (POMGNT1) gene confirmed by Sanger sequencing in the proband and segregated with the hydrocephalus in the family. The variant was described as pathogenic and regarded as a nonsense-mediated mRNA decay (NMD) due to the premature stop codon, which results in a truncated protein.
Conclusion
The results of the current study broadened the mutational gene spectrum of CH and our knowledge of the hydrocephalus etiology by introducing a novel homozygous variant within the POMGNT1 gene, which had never been previously reported solitary in these patients.
Collapse
|
3
|
Hale AT, Boudreau H, Devulapalli R, Duy PQ, Atchley TJ, Dewan MC, Goolam M, Fieggen G, Spader HL, Smith AA, Blount JP, Johnston JM, Rocque BG, Rozzelle CJ, Chong Z, Strahle JM, Schiff SJ, Kahle KT. The genetic basis of hydrocephalus: genes, pathways, mechanisms, and global impact. Fluids Barriers CNS 2024; 21:24. [PMID: 38439105 PMCID: PMC10913327 DOI: 10.1186/s12987-024-00513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/25/2024] [Indexed: 03/06/2024] Open
Abstract
Hydrocephalus (HC) is a heterogenous disease characterized by alterations in cerebrospinal fluid (CSF) dynamics that may cause increased intracranial pressure. HC is a component of a wide array of genetic syndromes as well as a secondary consequence of brain injury (intraventricular hemorrhage (IVH), infection, etc.) that can present across the age spectrum, highlighting the phenotypic heterogeneity of the disease. Surgical treatments include ventricular shunting and endoscopic third ventriculostomy with or without choroid plexus cauterization, both of which are prone to failure, and no effective pharmacologic treatments for HC have been developed. Thus, there is an urgent need to understand the genetic architecture and molecular pathogenesis of HC. Without this knowledge, the development of preventive, diagnostic, and therapeutic measures is impeded. However, the genetics of HC is extraordinarily complex, based on studies of varying size, scope, and rigor. This review serves to provide a comprehensive overview of genes, pathways, mechanisms, and global impact of genetics contributing to all etiologies of HC in humans.
Collapse
Affiliation(s)
- Andrew T Hale
- Department of Neurosurgery, University of Alabama at Birmingham, FOT Suite 1060, 1720 2ndAve, Birmingham, AL, 35294, UK.
| | - Hunter Boudreau
- Department of Neurosurgery, University of Alabama at Birmingham, FOT Suite 1060, 1720 2ndAve, Birmingham, AL, 35294, UK
| | - Rishi Devulapalli
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Phan Q Duy
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Travis J Atchley
- Department of Neurosurgery, University of Alabama at Birmingham, FOT Suite 1060, 1720 2ndAve, Birmingham, AL, 35294, UK
| | - Michael C Dewan
- Division of Pediatric Neurosurgery, Monroe Carell Jr. Children's Hospital, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mubeen Goolam
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Graham Fieggen
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Division of Pediatric Neurosurgery, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Heather L Spader
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Anastasia A Smith
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Jeffrey P Blount
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - James M Johnston
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Brandon G Rocque
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Curtis J Rozzelle
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Zechen Chong
- Heflin Center for Genomics, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Jennifer M Strahle
- Division of Pediatric Neurosurgery, St. Louis Children's Hospital, Washington University in St. Louis, St. Louis, MO, USA
| | - Steven J Schiff
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Greenberg ABW, Mehta NH, Allington G, Jin SC, Moreno-De-Luca A, Kahle KT. Molecular Diagnostic Yield of Exome Sequencing in Patients With Congenital Hydrocephalus: A Systematic Review and Meta-Analysis. JAMA Netw Open 2023; 6:e2343384. [PMID: 37991765 PMCID: PMC10665979 DOI: 10.1001/jamanetworkopen.2023.43384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/29/2023] [Indexed: 11/23/2023] Open
Abstract
Importance Exome sequencing (ES) has been established as the preferred first line of diagnostic testing for certain neurodevelopmental disorders, such as global developmental delay and autism spectrum disorder; however, current recommendations are not specific to or inclusive of congenital hydrocephalus (CH). Objective To determine the diagnostic yield of ES in CH and whether ES should be considered as a first line diagnostic test for CH. Data Sources PubMed, Cochrane Library, and Google Scholar were used to identify studies published in English between January 1, 2010, and April 10, 2023. The following search terms were used to identify studies: congenital hydrocephalus, ventriculomegaly, cerebral ventriculomegaly, primary ventriculomegaly, fetal ventriculomegaly, prenatal ventriculomegaly, molecular analysis, genetic cause, genetic etiology, genetic testing, exome sequencing, whole exome sequencing, genome sequencing, microarray, microarray analysis, and copy number variants. Study Selection Eligible studies included those with at least 10 probands with the defining feature of CH and/or severe cerebral ventriculomegaly that had undergone ES. Studies with fewer than 10 probands, studies of mild or moderate ventriculomegaly, and studies using genetic tests other than ES were excluded. A full-text review of 68 studies was conducted by 2 reviewers. Discrepancies were resolved by consensus. Data Extraction and Synthesis Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and Meta-Analysis of Observational Studies in Epidemiology guidelines were used by 2 reviewers to extract data. Data were synthesized using a random-effects model of single proportions. Data analysis occurred in April 2023. Main Outcomes and Measures The primary outcome was pooled diagnostic yield. Additional diagnostic yields were estimated for specific subgroups on the basis of clinical features, syndromic presentation, and parental consanguinity. For each outcome, a 95% CI and estimate of interstudy heterogeneity (I2 statistic) was reported. Results From 498 deduplicated and screened records, 9 studies with a total of 538 CH probands were selected for final inclusion. The overall diagnostic yield was 37.9% (95% CI, 20.0%-57.4%; I2 = 90.1). The yield was lower for isolated and/or nonsyndromic cases (21.3%; 95% CI, 12.8%-31.0%; I2 = 55.7). The yield was higher for probands with reported consanguinity (76.3%; 95% CI, 65.1%-86.1%; I2 = 0) than those without (16.2%; 95% CI, 12.2%-20.5%; I2 = 0). Conclusions and Relevance In this systematic review and meta-analysis of the diagnostic yield of ES in CH, the diagnostic yield was concordant with that of previous recommendations for other neurodevelopmental disorders, suggesting that ES should also be recommended as a routine diagnostic adjunct for patients with CH.
Collapse
Affiliation(s)
| | - Neel H. Mehta
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Garrett Allington
- Department of Neurosurgery, Massachusetts General Hospital, Boston
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri
| | - Andrés Moreno-De-Luca
- Department of Radiology, Neuroradiology Section, Kingston Health Sciences Centre, Queen’s University Faculty of Health Sciences, Kingston, Ontario, Canada
| | - Kristopher T. Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Boston
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Harvard Center for Hydrocephalus and Neurodevelopmental Disorders, Massachusetts General Hospital, Boston
| |
Collapse
|
5
|
Duy PQ, Rakic P, Alper SL, Robert SM, Kundishora AJ, Butler WE, Walsh CA, Sestan N, Geschwind DH, Jin SC, Kahle KT. A neural stem cell paradigm of pediatric hydrocephalus. Cereb Cortex 2023; 33:4262-4279. [PMID: 36097331 PMCID: PMC10110448 DOI: 10.1093/cercor/bhac341] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/12/2022] [Accepted: 08/02/2022] [Indexed: 12/25/2022] Open
Abstract
Pediatric hydrocephalus, the leading reason for brain surgery in children, is characterized by enlargement of the cerebral ventricles classically attributed to cerebrospinal fluid (CSF) overaccumulation. Neurosurgical shunting to reduce CSF volume is the default treatment that intends to reinstate normal CSF homeostasis, yet neurodevelopmental disability often persists in hydrocephalic children despite optimal surgical management. Here, we discuss recent human genetic and animal model studies that are shifting the view of pediatric hydrocephalus from an impaired fluid plumbing model to a new paradigm of dysregulated neural stem cell (NSC) fate. NSCs are neuroprogenitor cells that comprise the germinal neuroepithelium lining the prenatal brain ventricles. We propose that heterogenous defects in the development of these cells converge to disrupt cerebrocortical morphogenesis, leading to abnormal brain-CSF biomechanical interactions that facilitate passive pooling of CSF and secondary ventricular distention. A significant subset of pediatric hydrocephalus may thus in fact be due to a developmental brain malformation leading to secondary enlargement of the ventricles rather than a primary defect of CSF circulation. If hydrocephalus is indeed a neuroradiographic presentation of an inborn brain defect, it suggests the need to focus on optimizing neurodevelopment, rather than CSF diversion, as the primary treatment strategy for these children.
Collapse
Affiliation(s)
- Phan Q Duy
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Pasko Rakic
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Seth L Alper
- Division of Nephrology and Vascular Biology Research Center, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Stephanie M Robert
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Adam J Kundishora
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - William E Butler
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Daniel H Geschwind
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Center for Hydrocephalus and Neurodevelopmental Disorders, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
6
|
Duy PQ, Timberlake AT, Lifton RP, Kahle KT. Molecular genetics of human developmental neurocranial anomalies: towards "precision surgery". Cereb Cortex 2023; 33:2912-2918. [PMID: 35739418 PMCID: PMC10016031 DOI: 10.1093/cercor/bhac249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/14/2022] Open
Abstract
Recent trio-based whole-exome sequencing studies of congenital hydrocephalus and nonsyndromic craniosynostosis have identified multiple novel disease genes that have illuminated the pathogenesis of these disorders and shed new insight into the genetic regulation of human brain and skull development. Continued study of these and other historically understudied developmental anomalies has the potential to replace the current antiquated, anatomically based disease classification systems with a molecular nomenclature that may increase precision for genetic counseling, prognostication, and surgical treatment stratification-including when not to operate. Data will also inform future clinical trials, catalyze the development of targeted therapies, and generate infrastructure and publicly available data sets relevant for other related nonsurgical neurodevelopmental and neuropsychiatric diseases.
Collapse
Affiliation(s)
| | | | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Kristopher T Kahle
- Corresponding author: Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Naz N, Moshkdanian G, Miyan S, Eljabri S, James C, Miyan J. A Paternal Methylation Error in the Congenital Hydrocephalic Texas (H-Tx) Rat Is Partially Rescued with Natural Folate Supplements. Int J Mol Sci 2023; 24:1638. [PMID: 36675153 PMCID: PMC9860872 DOI: 10.3390/ijms24021638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Folate deficiencies, folate imbalance and associated abnormal methylation are associated with birth defects, developmental delays, neurological conditions and diseases. In the hydrocephalic Texas (H-Tx) rat, 10-formyl tetrahydrofolate dehydrogenase (FDH) is reduced or absent from the CSF and the nuclei of cells in the brain and liver and this is correlated with decreased DNA methylation. In the present study, we tested whether impaired folate metabolism or methylation exists in sexually mature, unaffected H-Tx rats, which may explain the propagation of hydrocephalus in their offspring. We compared normal Sprague Dawley (SD, n = 6) rats with untreated H-Tx (uH-Tx, n = 6 and folate-treated H-Tx (TrH-Tx, n = 4). Structural abnormalities were observed in the testis of uH-Tx rats, with decreased methylation, increased demethylation, and cell death, particularly of sperm. FDH and FRα protein expression was increased in uH-Tx males but not in folate-treated males but tissue folate levels were unchanged. 5-Methylcytosine was significantly reduced in untreated and partially restored in treated individuals, while 5-hydroxymethylcytosine was not significantly changed. Similarly, a decrease in DNA-methyltransferase-1 expression in uH-Tx rats was partially reversed with treatment. The data expose a significant germline methylation error in unaffected adult male H-Tx rats from which hydrocephalic offspring are obtained. Reduced methylation in the testis and sperm was partially recovered by treatment with folate supplements leading us to conclude that this neurological disorder may not be completely eradicated by maternal supplementation alone.
Collapse
Affiliation(s)
| | | | | | | | | | - Jaleel Miyan
- Division of Neuroscience, Faculty of Biology, Medicine and Health, The University of Manchester, 3.540 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
8
|
Rethinking the cilia hypothesis of hydrocephalus. Neurobiol Dis 2022; 175:105913. [DOI: 10.1016/j.nbd.2022.105913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
|
9
|
Duy PQ, Weise SC, Marini C, Li XJ, Liang D, Dahl PJ, Ma S, Spajic A, Dong W, Juusola J, Kiziltug E, Kundishora AJ, Koundal S, Pedram MZ, Torres-Fernández LA, Händler K, De Domenico E, Becker M, Ulas T, Juranek SA, Cuevas E, Hao LT, Jux B, Sousa AMM, Liu F, Kim SK, Li M, Yang Y, Takeo Y, Duque A, Nelson-Williams C, Ha Y, Selvaganesan K, Robert SM, Singh AK, Allington G, Furey CG, Timberlake AT, Reeves BC, Smith H, Dunbar A, DeSpenza T, Goto J, Marlier A, Moreno-De-Luca A, Yu X, Butler WE, Carter BS, Lake EMR, Constable RT, Rakic P, Lin H, Deniz E, Benveniste H, Malvankar NS, Estrada-Veras JI, Walsh CA, Alper SL, Schultze JL, Paeschke K, Doetzlhofer A, Wulczyn FG, Jin SC, Lifton RP, Sestan N, Kolanus W, Kahle KT. Impaired neurogenesis alters brain biomechanics in a neuroprogenitor-based genetic subtype of congenital hydrocephalus. Nat Neurosci 2022; 25:458-473. [PMID: 35379995 PMCID: PMC9664907 DOI: 10.1038/s41593-022-01043-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/28/2022] [Indexed: 01/16/2023]
Abstract
Hydrocephalus, characterized by cerebral ventricular dilatation, is routinely attributed to primary defects in cerebrospinal fluid (CSF) homeostasis. This fosters CSF shunting as the leading reason for brain surgery in children despite considerable disease heterogeneity. In this study, by integrating human brain transcriptomics with whole-exome sequencing of 483 patients with congenital hydrocephalus (CH), we found convergence of CH risk genes in embryonic neuroepithelial stem cells. Of all CH risk genes, TRIM71/lin-41 harbors the most de novo mutations and is most specifically expressed in neuroepithelial cells. Mice harboring neuroepithelial cell-specific Trim71 deletion or CH-specific Trim71 mutation exhibit prenatal hydrocephalus. CH mutations disrupt TRIM71 binding to its RNA targets, causing premature neuroepithelial cell differentiation and reduced neurogenesis. Cortical hypoplasia leads to a hypercompliant cortex and secondary ventricular enlargement without primary defects in CSF circulation. These data highlight the importance of precisely regulated neuroepithelial cell fate for normal brain-CSF biomechanics and support a clinically relevant neuroprogenitor-based paradigm of CH.
Collapse
Affiliation(s)
- Phan Q Duy
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA.,Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.,Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, USA
| | - Stefan C Weise
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Claudia Marini
- Institute for Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Xiao-Jun Li
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dan Liang
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Peter J Dahl
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Shaojie Ma
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Ana Spajic
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Weilai Dong
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | | | - Emre Kiziltug
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Adam J Kundishora
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Sunil Koundal
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Maysam Z Pedram
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Lucia A Torres-Fernández
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Kristian Händler
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.,Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE). PRECISE Platform for Genomics and Epigenomics at DZNE and University of Bonn, Bonn, Germany
| | - Elena De Domenico
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.,Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE). PRECISE Platform for Genomics and Epigenomics at DZNE and University of Bonn, Bonn, Germany
| | - Matthias Becker
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.,Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE). PRECISE Platform for Genomics and Epigenomics at DZNE and University of Bonn, Bonn, Germany
| | - Thomas Ulas
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.,Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE). PRECISE Platform for Genomics and Epigenomics at DZNE and University of Bonn, Bonn, Germany
| | - Stefan A Juranek
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Elisa Cuevas
- Stem Cells and Regenerative Medicine Section, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Le Thi Hao
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Bettina Jux
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - André M M Sousa
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Fuchen Liu
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Suel-Kee Kim
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Mingfeng Li
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Yiying Yang
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Yutaka Takeo
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Alvaro Duque
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | | | - Yonghyun Ha
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Kartiga Selvaganesan
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Stephanie M Robert
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Amrita K Singh
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Garrett Allington
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Charuta G Furey
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew T Timberlake
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Benjamin C Reeves
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Hannah Smith
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Ashley Dunbar
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Tyrone DeSpenza
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - June Goto
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Arnaud Marlier
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Andres Moreno-De-Luca
- Department of Radiology, Autism & Developmental Medicine Institute, Genomic Medicine Institute, Geisinger, Danville, PA, USA
| | - Xin Yu
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - William E Butler
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Evelyn M R Lake
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - R Todd Constable
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Pasko Rakic
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Haifan Lin
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Engin Deniz
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Nikhil S Malvankar
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Juvianee I Estrada-Veras
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.,Pediatric Subspecialty Genetics Walter Reed National Military Medical Center, Bethesda, MD, USA.,Murtha Cancer Center/Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Seth L Alper
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Division of Nephrology and Vascular Biology Research Center, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Joachim L Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.,Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE). PRECISE Platform for Genomics and Epigenomics at DZNE and University of Bonn, Bonn, Germany
| | - Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Angelika Doetzlhofer
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - F Gregory Wulczyn
- Institute for Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Waldemar Kolanus
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Harvard Center for Hydrocephalus and Neurodevelopmental Disorders, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
10
|
Kundishora AJ, Singh AK, Allington G, Duy PQ, Ryou J, Alper SL, Jin SC, Kahle KT. Genomics of human congenital hydrocephalus. Childs Nerv Syst 2021; 37:3325-3340. [PMID: 34232380 DOI: 10.1007/s00381-021-05230-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022]
Abstract
Congenital hydrocephalus (CH), characterized by enlarged brain ventricles, is considered a disease of pathological cerebrospinal fluid (CSF) accumulation and, therefore, treated largely by neurosurgical CSF diversion. The persistence of ventriculomegaly and poor neurodevelopmental outcomes in some post-surgical patients highlights our limited knowledge of disease mechanisms. Recent whole-exome sequencing (WES) studies have shown that rare, damaging de novo and inherited mutations with large effect contribute to ~ 25% of sporadic CH. Interestingly, multiple CH genes are key regulators of neural stem cell growth and differentiation and converge in human transcriptional networks and cell types pertinent to fetal neurogliogenesis. These data implicate genetic disruption of early brain development as the primary pathomechanism in a substantial minority of patients with sporadic CH, shedding new light on human brain development and the pathogenesis of hydrocephalus. These data further suggest WES as a clinical tool with potential to re-classify CH according to a molecular nomenclature of increased precision and utility for genetic counseling, outcome prognostication, and treatment stratification.
Collapse
Affiliation(s)
- Adam J Kundishora
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Amrita K Singh
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Garrett Allington
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Phan Q Duy
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Jian Ryou
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Seth L Alper
- Division of Nephrology and Center for Vascular Biology Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
11
|
Hale AT, Riva-Cambrin J, Wellons JC, Jackson EM, Kestle JRW, Naftel RP, Hankinson TC, Shannon CN. Machine learning predicts risk of cerebrospinal fluid shunt failure in children: a study from the hydrocephalus clinical research network. Childs Nerv Syst 2021; 37:1485-1494. [PMID: 33515058 DOI: 10.1007/s00381-021-05061-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/22/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE While conventional statistical approaches have been used to identify risk factors for cerebrospinal fluid (CSF) shunt failure, these methods may not fully capture the complex contribution of clinical, radiologic, surgical, and shunt-specific variables influencing this outcome. Using prospectively collected data from the Hydrocephalus Clinical Research Network (HCRN) patient registry, we applied machine learning (ML) approaches to create a predictive model of CSF shunt failure. METHODS Pediatric patients (age < 19 years) undergoing first-time CSF shunt placement at six HCRN centers were included. CSF shunt failure was defined as a composite outcome including requirement for shunt revision, endoscopic third ventriculostomy, or shunt infection within 5 years of initial surgery. Performance of conventional statistical and 4 ML models were compared. RESULTS Our cohort consisted of 1036 children undergoing CSF shunt placement, of whom 344 (33.2%) experienced shunt failure. Thirty-eight clinical, radiologic, surgical, and shunt-design variables were included in the ML analyses. Of all ML algorithms tested, the artificial neural network (ANN) had the strongest performance with an area under the receiver operator curve (AUC) of 0.71. The ANN had a specificity of 90% and a sensitivity of 68%, meaning that the ANN can effectively rule-in patients most likely to experience CSF shunt failure (i.e., high specificity) and moderately effective as a tool to rule-out patients at high risk of CSF shunt failure (i.e., moderately sensitive). The ANN was independently validated in 155 patients (prospectively collected, retrospectively analyzed). CONCLUSION These data suggest that the ANN, or future iterations thereof, can provide an evidence-based tool to assist in prognostication and patient-counseling immediately after CSF shunt placement.
Collapse
Affiliation(s)
- Andrew T Hale
- Medical Scientist Training Program, Vanderbilt University School of Medicine, 2200 Pierce Ave., Light Hall 514, Nashville, TN, 37232, USA. .,Surgical Outcomes Center for Kids, Monroe Carell Jr. Children's Hospital of Vanderbilt University, Nashville, TN, USA.
| | - Jay Riva-Cambrin
- Department of Clinical Neurosciences, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - John C Wellons
- Surgical Outcomes Center for Kids, Monroe Carell Jr. Children's Hospital of Vanderbilt University, Nashville, TN, USA.,Division of Pediatric Neurosurgery, Monroe Carell Jr. Children's Hospital of Vanderbilt University, Nashville, TN, USA
| | - Eric M Jackson
- Department of Neurosurgery, Johns Hopkins Children's Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John R W Kestle
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Robert P Naftel
- Surgical Outcomes Center for Kids, Monroe Carell Jr. Children's Hospital of Vanderbilt University, Nashville, TN, USA.,Division of Pediatric Neurosurgery, Monroe Carell Jr. Children's Hospital of Vanderbilt University, Nashville, TN, USA
| | - Todd C Hankinson
- Division of Pediatric Neurosurgery, Children's Hospital Colorado, Aurora, CO, USA
| | - Chevis N Shannon
- Surgical Outcomes Center for Kids, Monroe Carell Jr. Children's Hospital of Vanderbilt University, Nashville, TN, USA.,Division of Pediatric Neurosurgery, Monroe Carell Jr. Children's Hospital of Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|