1
|
Vilgalys TP, Fogel AS, Anderson JA, Mututua RS, Warutere JK, Siodi IL, Kim SY, Voyles TN, Robinson JA, Wall JD, Archie EA, Alberts SC, Tung J. Selection against admixture and gene regulatory divergence in a long-term primate field study. Science 2022; 377:635-641. [PMID: 35926022 PMCID: PMC9682493 DOI: 10.1126/science.abm4917] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetic admixture is central to primate evolution. We combined 50 years of field observations of immigration and group demography with genomic data from ~9 generations of hybrid baboons to investigate the consequences of admixture in the wild. Despite no obvious fitness costs to hybrids, we found signatures of selection against admixture similar to those described for archaic hominins. These patterns were concentrated near genes where ancestry is strongly associated with gene expression. Our analyses also show that introgression is partially predictable across the genome. This study demonstrates the value of integrating genomic and field data for revealing how "genomic signatures of selection" (e.g., reduced introgression in low-recombination regions) manifest in nature; moreover, it underscores the importance of other primates as living models for human evolution.
Collapse
Affiliation(s)
- Tauras P. Vilgalys
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA,Section of Genetic Medicine, University of Chicago, Chicago, IL, USA
| | - Arielle S. Fogel
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA,University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Jordan A. Anderson
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | | | | | | | - Sang Yoon Kim
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Tawni N. Voyles
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | | | - Jeffrey D. Wall
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Elizabeth A. Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Susan C. Alberts
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA,Department of Biology, Duke University, Durham, NC, USA,Duke University Population Research Institute, Duke University, Durham, NC, USA
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA,Department of Biology, Duke University, Durham, NC, USA,Duke University Population Research Institute, Duke University, Durham, NC, USA,Canadian Institute for Advanced Research, Toronto, Canada,Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany,Corresponding author
| |
Collapse
|
2
|
Popadin K, Gunbin K, Peshkin L, Annis S, Fleischmann Z, Franco M, Kraytsberg Y, Markuzon N, Ackermann RR, Khrapko K. Mitochondrial Pseudogenes Suggest Repeated Inter-Species Hybridization among Direct Human Ancestors. Genes (Basel) 2022; 13:810. [PMID: 35627195 PMCID: PMC9140377 DOI: 10.3390/genes13050810] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/12/2022] [Accepted: 04/16/2022] [Indexed: 12/02/2022] Open
Abstract
The hypothesis that the evolution of humans involves hybridization between diverged species has been actively debated in recent years. We present the following novel evidence in support of this hypothesis: the analysis of nuclear pseudogenes of mtDNA ("NUMTs"). NUMTs are considered "mtDNA fossils" as they preserve sequences of ancient mtDNA and thus carry unique information about ancestral populations. Our comparison of a NUMT sequence shared by humans, chimpanzees, and gorillas with their mtDNAs implies that, around the time of divergence between humans and chimpanzees, our evolutionary history involved the interbreeding of individuals whose mtDNA had diverged as much as ~4.5 Myr prior. This large divergence suggests a distant interspecies hybridization. Additionally, analysis of two other NUMTs suggests that such events occur repeatedly. Our findings suggest a complex pattern of speciation in primate/human ancestors and provide one potential explanation for the mosaic nature of fossil morphology found at the emergence of the hominin lineage. A preliminary version of this manuscript was uploaded to the preprint server BioRxiv in 2017 (10.1101/134502).
Collapse
Affiliation(s)
- Konstantin Popadin
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
- Center for Mitochondrial Functional Genomics, Institute of Living Systems, Immanuel Kant Baltic Federal University, 236040 Kaliningrad, Russia
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | | | - Leonid Peshkin
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA;
| | - Sofia Annis
- Department of Biology, Northeastern University, Boston, MA 02115, USA; (S.A.); (Z.F.); (M.F.)
| | - Zoe Fleischmann
- Department of Biology, Northeastern University, Boston, MA 02115, USA; (S.A.); (Z.F.); (M.F.)
| | - Melissa Franco
- Department of Biology, Northeastern University, Boston, MA 02115, USA; (S.A.); (Z.F.); (M.F.)
| | | | | | - Rebecca R. Ackermann
- Human Evolution Research Institute, Department of Archaeology, University of Cape Town, Cape Town 7700, South Africa;
| | - Konstantin Khrapko
- Department of Biology, Northeastern University, Boston, MA 02115, USA; (S.A.); (Z.F.); (M.F.)
| |
Collapse
|
3
|
Bredemeyer KR, Seabury CM, Stickney MJ, McCarrey JR, vonHoldt BM, Murphy WJ. Rapid Macrosatellite Evolution Promotes X-Linked Hybrid Male Sterility in a Feline Interspecies Cross. Mol Biol Evol 2021; 38:5588-5609. [PMID: 34519828 PMCID: PMC8662614 DOI: 10.1093/molbev/msab274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The sterility or inviability of hybrid offspring produced from an interspecific mating result from incompatibilities between parental genotypes that are thought to result from divergence of loci involved in epistatic interactions. However, attributes contributing to the rapid evolution of these regions also complicates their assembly, thus discovery of candidate hybrid sterility loci is difficult and has been restricted to a small number of model systems. Here we reported rapid interspecific divergence at the DXZ4 macrosatellite locus in an interspecific cross between two closely related mammalian species: the domestic cat (Felis silvestris catus) and the Jungle cat (Felis chaus). DXZ4 is an interesting candidate due to its structural complexity, copy number variability, and described role in the critical yet complex biological process of X-chromosome inactivation. However, the full structure of DXZ4 was absent or incomplete in nearly every available mammalian genome assembly given its repetitive complexity. We compared highly continuous genomes for three cat species, each containing a complete DXZ4 locus, and discovered that the felid DXZ4 locus differs substantially from the human ortholog, and that it varies in copy number between cat species. Additionally, we reported expression, methylation, and structural conformation profiles of DXZ4 and the X chromosome during stages of spermatogenesis that have been previously associated with hybrid male sterility. Collectively, these findings suggest a new role for DXZ4 in male meiosis and a mechanism for feline interspecific incompatibility through rapid satellite divergence.
Collapse
Affiliation(s)
- Kevin R Bredemeyer
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA
| | | | - Mark J Stickney
- Veterinary Medical Teaching Hospital, Texas A&M University, College Station, TX, USA
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | | | - William J Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA
| |
Collapse
|
4
|
Allen R, Ryan H, Davis BW, King C, Frantz L, Irving-Pease E, Barnett R, Linderholm A, Loog L, Haile J, Lebrasseur O, White M, Kitchener AC, Murphy WJ, Larson G. A mitochondrial genetic divergence proxy predicts the reproductive compatibility of mammalian hybrids. Proc Biol Sci 2020; 287:20200690. [PMID: 32486979 PMCID: PMC7341909 DOI: 10.1098/rspb.2020.0690] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Numerous pairs of evolutionarily divergent mammalian species have been shown to produce hybrid offspring. In some cases, F1 hybrids are able to produce F2s through matings with F1s. In other instances, the hybrids are only able to produce offspring themselves through backcrosses with a parent species owing to unisexual sterility (Haldane's Rule). Here, we explicitly tested whether genetic distance, computed from mitochondrial and nuclear genes, can be used as a proxy to predict the relative fertility of the hybrid offspring resulting from matings between species of terrestrial mammals. We assessed the proxy's predictive power using a well-characterized felid hybrid system, and applied it to modern and ancient hominins. Our results revealed a small overlap in mitochondrial genetic distance values that distinguish species pairs whose calculated distances fall within two categories: those whose hybrid offspring follow Haldane's Rule, and those whose hybrid F1 offspring can produce F2s. The strong correlation between genetic distance and hybrid fertility demonstrated here suggests that this proxy can be employed to predict whether the hybrid offspring of two mammalian species will follow Haldane's Rule.
Collapse
Affiliation(s)
- Richard Allen
- Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QY, UK
| | - Hannah Ryan
- Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QY, UK
| | - Brian W. Davis
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Charlotte King
- Department of Archaeology, Durham University, Science Site, Durham DH1 3LE, UK
- Department of Anatomy, University of Otago, Great King Street, Dunedin 9016, New Zealand
| | - Laurent Frantz
- Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QY, UK
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Evan Irving-Pease
- Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QY, UK
- Lundbeck GeoGenetics Centre, The Globe Institute, University of Copenhagen, 1350 Copenhagen, Denmark
| | - Ross Barnett
- Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QY, UK
| | - Anna Linderholm
- Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QY, UK
- Department of Anthropology, Texas A&M University, College Station, TX 77843-4352, USA
| | - Liisa Loog
- Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QY, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - James Haile
- Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QY, UK
| | - Ophélie Lebrasseur
- Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QY, UK
- Department of Archaeology, Classics and Egyptology, University of Liverpool, 12-14 Abercromby Square, Liverpool L69 7WZ, UK
| | - Mark White
- Department of Archaeology, Durham University, Science Site, Durham DH1 3LE, UK
| | - Andrew C. Kitchener
- Department of Natural Sciences, National Museums Scotland, Chambers Street, Edinburgh EH1 IJF, UK
- Institute of Geography, School of Geosciences, University of Edinburgh, Drummond Street, Edinburgh EH9 3PX, UK
| | - William J. Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Greger Larson
- Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QY, UK
| |
Collapse
|
5
|
Tolomeo D, Capozzi O, Chiatante G, Sineo L, Ishida T, Archidiacono N, Rocchi M, Stanyon R. Eight million years of maintained heterozygosity in chromosome homologs of cercopithecine monkeys. Chromosoma 2020; 129:57-67. [PMID: 31925526 DOI: 10.1007/s00412-020-00731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/13/2019] [Accepted: 01/02/2020] [Indexed: 10/25/2022]
Abstract
In the Cercopithecini ancestor two chromosomes, homologous to human chromosomes 20 and 21, fused to form the Cercopithecini specific 20/21 association. In some individuals from the genus Cercopithecus, this association was shown to be polymorphic for the position of the centromere, suggesting centromere repositioning events. We set out to test this hypothesis by defining the evolutionary history of the 20/21 association in four Cercopithecini species from three different genera. The marker order of the various 20/21 associations was established using molecular cytogenetic techniques, including an array of more than 100 BACs. We discovered that five different forms of the 20/21 association were present in the four studied Cercopithecini species. Remarkably, in the two Cercopithecus species, we found individuals in which one homolog conserved the ancestral condition, but the other homolog was highly rearranged. The phylogenetic analysis showed that the heterozygosity in these two species originated about 8 million years ago and was maintained for this entire arc of time, surviving multiple speciation events. Our report is a remarkable extension of Dobzhansky's pioneering observation in Drosophila concerning the maintenance of chromosomal heterozygosity due to selective advantage. Dobzhansky's hypothesis recently received strong support in a series of detailed reports on the fruit fly genome. Our findings are first extension to primates, indeed to Old World monkeys phylogenetically close to humans of an analogous situation. Our results have important implications for hypotheses on how chromosome rearrangements, selection, and speciation are related.
Collapse
Affiliation(s)
- Doron Tolomeo
- Department of Biology, University of Florence, Florence, Italy
| | | | | | - Luca Sineo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo, Italy
| | - Takafumi Ishida
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | | | | | - Roscoe Stanyon
- Department of Biology, University of Florence, Florence, Italy.
| |
Collapse
|
6
|
Rodriguez-Polo I, Stauske M, Becker A, Bartels I, Dressel R, Behr R. Baboon induced pluripotent stem cell generation by piggyBac transposition of reprogramming factors. Primate Biol 2019; 6:75-86. [PMID: 32110718 PMCID: PMC7041535 DOI: 10.5194/pb-6-75-2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022] Open
Abstract
Clinical application of regenerative therapies using embryonic or induced pluripotent stem cells is within reach. Progress made during recent years has encouraged researchers to address remaining open questions in order to finally translate experimental cell replacement therapies into application in patients. To achieve this, studies in translationally relevant animal models are required to make the final step to the clinic. In this context, the baboon (Papio anubis) may represent a valuable nonhuman primate (NHP) model to test cell replacement therapies because of its close evolutionary relationship to humans and its large body size. In this study, we describe the reprogramming of adult baboon skin fibroblasts using the piggyBac transposon system. Via transposon-mediated overexpression of six reprogramming factors, we generated five baboon induced pluripotent stem cell (iPSC) lines. The iPSC lines were characterized with respect to alkaline phosphatase activity, pluripotency factor expression analysis, teratoma formation potential, and karyotype. Furthermore, after initial cocultivation with mouse embryonic fibroblasts, we were able to adapt iPSC lines to feeder-free conditions. In conclusion, we established a robust and efficient protocol for iPSC generation from adult baboon fibroblasts.
Collapse
Affiliation(s)
- Ignacio Rodriguez-Polo
- Research Platform Degenerative Diseases, German Primate Center –
Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen,
Germany
- German Center for Cardiovascular Research (DZHK), Partner site,
Göttingen, Germany
| | - Michael Stauske
- Research Platform Degenerative Diseases, German Primate Center –
Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen,
Germany
- German Center for Cardiovascular Research (DZHK), Partner site,
Göttingen, Germany
- current address: BlueRock Therapeutics, 101 College St, PMCRT 14-301,
Toronto, ON M5G 1L7, Canada
| | - Alexander Becker
- Research Platform Degenerative Diseases, German Primate Center –
Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen,
Germany
| | - Iris Bartels
- Institute of Human Genetics, University Medical Center Göttingen,
Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Ralf Dressel
- German Center for Cardiovascular Research (DZHK), Partner site,
Göttingen, Germany
- Institute of Cellular and Molecular Immunology, University Medical
Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Rüdiger Behr
- Research Platform Degenerative Diseases, German Primate Center –
Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen,
Germany
- German Center for Cardiovascular Research (DZHK), Partner site,
Göttingen, Germany
| |
Collapse
|
7
|
Boel C, Curnoe D, Hamada Y. Craniofacial Shape and Nonmetric Trait Variation in Hybrids of the Japanese Macaque (Macaca fuscata) and the Taiwanese Macaque (Macaca cyclopis). INT J PRIMATOL 2019. [DOI: 10.1007/s10764-019-00081-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Rogers J, Raveendran M, Harris RA, Mailund T, Leppälä K, Athanasiadis G, Schierup MH, Cheng J, Munch K, Walker JA, Konkel MK, Jordan V, Steely CJ, Beckstrom TO, Bergey C, Burrell A, Schrempf D, Noll A, Kothe M, Kopp GH, Liu Y, Murali S, Billis K, Martin FJ, Muffato M, Cox L, Else J, Disotell T, Muzny DM, Phillips-Conroy J, Aken B, Eichler EE, Marques-Bonet T, Kosiol C, Batzer MA, Hahn MW, Tung J, Zinner D, Roos C, Jolly CJ, Gibbs RA, Worley KC. The comparative genomics and complex population history of Papio baboons. SCIENCE ADVANCES 2019; 5:eaau6947. [PMID: 30854422 PMCID: PMC6401983 DOI: 10.1126/sciadv.aau6947] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/06/2018] [Indexed: 05/26/2023]
Abstract
Recent studies suggest that closely related species can accumulate substantial genetic and phenotypic differences despite ongoing gene flow, thus challenging traditional ideas regarding the genetics of speciation. Baboons (genus Papio) are Old World monkeys consisting of six readily distinguishable species. Baboon species hybridize in the wild, and prior data imply a complex history of differentiation and introgression. We produced a reference genome assembly for the olive baboon (Papio anubis) and whole-genome sequence data for all six extant species. We document multiple episodes of admixture and introgression during the radiation of Papio baboons, thus demonstrating their value as a model of complex evolutionary divergence, hybridization, and reticulation. These results help inform our understanding of similar cases, including modern humans, Neanderthals, Denisovans, and other ancient hominins.
Collapse
Affiliation(s)
- Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - R. Alan Harris
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Thomas Mailund
- Bioinformatics Research Centre, Aarhus University, CF Møllers Alle 8, DK-8000 Aarhus, Denmark
| | - Kalle Leppälä
- Bioinformatics Research Centre, Aarhus University, CF Møllers Alle 8, DK-8000 Aarhus, Denmark
| | - Georgios Athanasiadis
- Bioinformatics Research Centre, Aarhus University, CF Møllers Alle 8, DK-8000 Aarhus, Denmark
| | - Mikkel Heide Schierup
- Bioinformatics Research Centre, Aarhus University, CF Møllers Alle 8, DK-8000 Aarhus, Denmark
| | - Jade Cheng
- Bioinformatics Research Centre, Aarhus University, CF Møllers Alle 8, DK-8000 Aarhus, Denmark
| | - Kasper Munch
- Bioinformatics Research Centre, Aarhus University, CF Møllers Alle 8, DK-8000 Aarhus, Denmark
| | - Jerilyn A. Walker
- Department of Biological Sciences, 202 Life Sciences Building, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Miriam K. Konkel
- Department of Genetics and Biochemistry, 105 Collings Street, Clemson University, Clemson, SC 29634, USA
| | - Vallmer Jordan
- Department of Biological Sciences, 202 Life Sciences Building, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Cody J. Steely
- Department of Biological Sciences, 202 Life Sciences Building, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Thomas O. Beckstrom
- Department of Biological Sciences, 202 Life Sciences Building, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Christina Bergey
- Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA
- Departments of Anthropology and Biology, Pennsylvania State University, 514 Carpenter Building, University Park, PA 16802, USA
| | - Andrew Burrell
- Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA
| | - Dominik Schrempf
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 11210 Vienna, Austria
| | - Angela Noll
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Maximillian Kothe
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Gisela H. Kopp
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
- Department of Biology, University of Konstanz, Universitätsstr. 10, 78467 Konstanz, Germany
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Am Obstberg 1, 78315 Radolfzell, Germany
| | - Yue Liu
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Shwetha Murali
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Genome Sciences, University of Washington, 3720 15th Avenue NE, S413C, Box 355065, Seattle, WA 98195-5065, USA
- Howard Hughes Medical Institute, University of Washington, 3720 15th Avenue NE, S413C, Box 355065, Seattle, WA 98195-5065, USA
| | - Konstantinos Billis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Fergal J. Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Matthieu Muffato
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Laura Cox
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
- Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, 475 Vine Street, Winston-Salem, NC 27101, USA
| | - James Else
- Department of Pathology and Laboratory Medicine and Yerkes Primate Research Center, 954 Gatewood Road, Emory University, Atlanta, GA 30322, USA
| | - Todd Disotell
- Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA
| | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jane Phillips-Conroy
- Department of Neuroscience, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
- Department of Anthropology, Washington University, McMillan Hall, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Bronwen Aken
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington, 3720 15th Avenue NE, S413C, Box 355065, Seattle, WA 98195-5065, USA
- Howard Hughes Medical Institute, University of Washington, 3720 15th Avenue NE, S413C, Box 355065, Seattle, WA 98195-5065, USA
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader, 88. 08003, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Baldiri Reixac, 4, 08028, Barcelona, Spain
- Institut Catala de Paleontologia Miquel Crusafont, Universitat Autonoma de Barcelona, c/de les Columnes, s/n. Campus de la UAB. 08193–Cerdanyola del Vallès, Barcelona, Spain
| | - Carolin Kosiol
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 11210 Vienna, Austria
- Centre for Biological Diversity, School of Biology, University of St. Andrews, Dyers Brae House, Greenside Place, St Andrews, Fife, KY16 9TH, UK
| | - Mark A. Batzer
- Department of Biological Sciences, 202 Life Sciences Building, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Matthew W. Hahn
- Department of Biology and Department of Computer Science, Indiana University, 1001 E. 3rd Street, Bloomington, IN 47405, USA
| | - Jenny Tung
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
- Duke Population Research Institute, Duke University, Box 90989, Durham, NC 27708, USA
- Institute of Primate Research, P.O. Box 24481, Nairobi, Kenya
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Clifford J. Jolly
- Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Kim C. Worley
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
9
|
Sangpakdee W, Tanomtong A, Chaveerach A, Pinthong K, Trifonov V, Loth K, Hensel C, Liehr T, Weise A, Fan X. Molecular Cytogenetic Analysis of One African and Five Asian Macaque Species Reveals Identical Karyotypes as in Mandrill. Curr Genomics 2018; 19:207-215. [PMID: 29606908 PMCID: PMC5850509 DOI: 10.2174/1389202918666170721115047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/17/2016] [Accepted: 01/20/2017] [Indexed: 11/22/2022] Open
Abstract
Background The question how evolution and speciation work is one of the major interests of biology. Especially, genetic including karyotypic evolution within primates is of special interest due to the close phylogenetic position of Macaca and Homo sapiens and the role as in vivo models in medical research, neuroscience, behavior, pharmacology, reproduction and Acquired Immune Deficiency Syndrome (AIDS). Materials & Methods Karyotypes of five macaque species from South East Asia and of one macaque species as well as mandrill from Africa were analyzed by high resolution molecular cytogenetics to obtain new insights into karyotypic evolution of old world monkeys. Molecular cytogenetics applying human probes and probe sets was applied in chromosomes of Macaca arctoides, M. fascicularis, M. nemestrina, M. assamensis, M. sylvanus, M. mulatta and Mandrillus sphinx. Established two- to multicolor-fluorescence in situ hybridization (FISH) approaches were applied. Locus-specific probes, whole and partial chromosome paint probes were hybridized. Especially the FISH-banding approach multicolor-banding (MCB) as well as probes oriented towards heterochromatin turned out to be highly efficient for interspecies comparison. Conclusion Karyotypes of all seven studied species could be characterized in detail. Surprisingly, no evolutionary conserved differences were found among macaques, including mandrill. Between the seven here studied and phenotypically so different species we expected several via FISH detectable karyoypic and submicroscopic changes and were surprised to find none of them on a molecular cytogenetic level. Spatial separation, may explain the speciation and different evolution for some of them, like African M. sylvanus, Mandrillus sphinx and the South Asian macaques. However, for the partially or completely overlapping habitats of the five studied South Asian macaques the species separation process can also not be deduced to karyotypic separation.
Collapse
Affiliation(s)
- Wiwat Sangpakdee
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747Jena, Germany.,Department of Biology, Faculty of Science, Khon Kaen University, 123 Moo 16 Mittapap Rd., Muang District, Khon Kaen40002, Thailand
| | - Alongkoad Tanomtong
- Department of Biology, Faculty of Science, Khon Kaen University, 123 Moo 16 Mittapap Rd., Muang District, Khon Kaen40002, Thailand
| | - Arunrat Chaveerach
- Department of Biology, Faculty of Science, Khon Kaen University, 123 Moo 16 Mittapap Rd., Muang District, Khon Kaen40002, Thailand
| | - Krit Pinthong
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747Jena, Germany.,Department of Biology, Faculty of Science, Khon Kaen University, 123 Moo 16 Mittapap Rd., Muang District, Khon Kaen40002, Thailand.,Faculty of Science and Technology, Surindra Rajabhat University, 186 Moo 1, Maung District, Surin 32000, Thailand
| | - Vladimir Trifonov
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747Jena, Germany.,Institute of Molecular and Cellular Biology, Lavrentev Str. 8/2, Novosibirsk630090, Russian Federation
| | - Kristina Loth
- Serengeti-Park Hodenhagen, Am Safaripark 1, D-29693 Hodenhagen, Germany
| | | | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747Jena, Germany
| | - Anja Weise
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747Jena, Germany
| | - Xiaobo Fan
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747Jena, Germany
| |
Collapse
|
10
|
Li JX, Said A, Ge XG, Wang W, Zhang Y, Jin T. Development and validation of immortalized bovine mammary epithelial cell line as an in vitro model for the study of mammary gland functions. Cytotechnology 2018; 70:67-82. [PMID: 28918563 PMCID: PMC5809642 DOI: 10.1007/s10616-017-0114-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/04/2016] [Indexed: 01/17/2023] Open
Abstract
This study aimed to develop a bovine mammary epithelial (BME) cell line model, which provides a possibility to determine functional properties of the bovine mammary gland. The primary cell culture was derived from bovine mammary gland tissues and processed enzymatically to obtain cell colonies with epithelial-like morphology. The cultures of BME cells were purified and optimally cultured at 37 °C in DMEM/F12 medium supplemented with 10% fetal bovine serum. The BME cells were identified as epithelial cell line by the evaluating the expression of keratin-18 using immunofluorescence staining. A novel gene expression system strongly enhances the expression of telomerase, has been used to immortalize BME cell line termed hTBME cell line. Interestingly, telomerase remained active even after over 60 passages of hTBME cell line, required for immortalization of BME cells. In addition, the hTBME cell line was continuously subcultured with a spontaneous epithelial-like morphology, with a great proliferation activity, and without evidence of apoptotic and necrotic effects. Further characterization showed that hTBME cell line can be continuously propagated in culture with constant chromosomal features and without tumorigenic properties. Finally, established hTBME cell line was evaluated for mammary gland specific functions. Our results demonstrated that the hTBME cell line was able to retain functional-morphological structure, and functional differentiation by expression of beta (β)-casein as in the bovine mammary gland in vivo. Taken together, our findings suggest that the established hTBME cell line can serve as a valuable tool for the study of bovine mammary gland functions.
Collapse
Affiliation(s)
- Ji-Xia Li
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Abdelrahman Said
- Parasitology and Animal Diseases Department, National Research Center, Dokki, Giza, Egypt
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada
| | - Xiu-Guo Ge
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Wenxiu Wang
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, 256600, Shandong, China
| | - Yong Zhang
- Institute of Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Tianming Jin
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China.
| |
Collapse
|
11
|
Tung J, Barreiro LB. The contribution of admixture to primate evolution. Curr Opin Genet Dev 2017; 47:61-68. [PMID: 28923540 DOI: 10.1016/j.gde.2017.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/08/2017] [Accepted: 08/31/2017] [Indexed: 12/16/2022]
Abstract
Genome-wide data on genetic variation are now available for multiple primate species and populations, facilitating analyses of evolutionary history within and across taxa. One emerging theme from these studies involves the central role of admixture. Genomic data sets indicate that both ancient gene flow following initial taxonomic divergence and ongoing gene flow at current species boundaries are common. These findings are of particular interest given evidence for a complex history of admixture in our own lineage, including examples of ecologically driven adaptive introgression. Like other aspects of human biology, studies of nonhuman primates thus provide both comparative context and a living model for understanding admixture dynamics in hominins. We highlight several open questions that could be addressed in future work.
Collapse
Affiliation(s)
- Jenny Tung
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA; Duke University Population Research Institute, Duke University, Durham, NC 27708, USA; Institute of Primate Research, National Museums of Kenya, Karen, Nairobi, Kenya.
| | - Luis B Barreiro
- Department of Pediatrics, Sainte-Justine Hospital Research Centre, University of Montreal, Montreal, Canada
| |
Collapse
|
12
|
Moore CM, Dick EJ, Hubbard GB, Gardner SM, Dunn BG, Brothman AR, Williams V, Prajapati SI, Keller C, Davis MD. Craniorachischisis and omphalocele in a stillborn cynomolgus monkey (Macaca fascicularis). Am J Med Genet A 2011; 155A:1367-73. [PMID: 21567905 DOI: 10.1002/ajmg.a.33627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 07/01/2010] [Indexed: 01/13/2023]
Abstract
Nonhuman primates have been a common animal model to evaluate experimentally induced malformations. Reports on spontaneous malformations are important in determining the background incidence of congenital anomalies in specific species and in evaluating experimental results. Here we report on a stillborn cynomolgus monkey (Macaca fascicularis) with multiple congenital anomalies from the colony maintained at the Southwest National Primate Research Center at the Texas Biomedical Research Institute, San Antonio, Texas. Physical findings included low birth weight, craniorachischisis, facial abnormalities, omphalocele, malrotation of the gut with areas of atresia and intussusception, a Meckel diverticulum, arthrogryposis, patent ductus arteriosus, and patent foramen ovale. The macaque had normal male external genitalia, but undescended testes. Gestational age was unknown but was estimated from measurements of the limbs and other developmental criteria. Although cytogenetic analysis was not possible due to the tissues being in an advanced state of decomposition, array Comparative Genomic Hybridization analysis using human bacterial artificial chromosome clones was successful in effectively eliminating aneuploidy or any copy number changes greater than approximately 3-5 Mb as a cause of the malformations. Further evaluation of the animal included extensive imaging of the skeletal and neural tissue defects. The animal's congenital anomalies are discussed in relation to the current hypotheses attempting to explain the frequent association of neural tube defects with other abnormalities.
Collapse
Affiliation(s)
- Charleen M Moore
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
A Phylogenetic Analysis of Human Syntenies Revealed by Chromosome Painting in Euarchontoglires Orders. J MAMM EVOL 2010. [DOI: 10.1007/s10914-010-9150-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Dupont C, Segars J, DeCherney A, Bavister BD, Armant DR, Brenner CA. Incidence of chromosomal mosaicism in morphologically normal nonhuman primate preimplantation embryos. Fertil Steril 2009; 93:2545-50. [PMID: 19732891 DOI: 10.1016/j.fertnstert.2009.06.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 04/28/2009] [Accepted: 06/19/2009] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To establish the exact rates of chromosomal mosaicism in morphologically normal rhesus macaque embryos by determining the chromosomal complement of all blastomeres. DESIGN Retrospective rhesus monkey IVF study. SETTING Academic laboratory and primate research center. PATIENT(S) Young fertile rhesus macaque females. INTERVENTION(S) Morphologically normal in vitro-produced rhesus macaque embryos were dissociated and cytogenetically assessed using a five-color fluorescent in situ hybridization assay developed for rhesus macaque chromosomes homologous to human chromosomes 13, 16, 18, X, and Y. MAIN OUTCOME MEASURE(S) The incidence and extent of chromosomal mosaicism in rhesus macaque preimplantation embryos. RESULT(S) Seventy-seven preimplantation embryos, displaying normal morphology and development, from 17 young rhesus macaque females were analyzed. Overall, 39 embryos (50.6%) were normal, 14 embryos (18.2%) were completely abnormal, and 24 embryos (31.2%) were mosaic. Of the 226 blastomeres analyzed in the mosaic group, 110 blastomeres (48.7%) were normal. CONCLUSION(S) The observed rate of mosaicism in good-quality rhesus embryos resembles previously documented frequencies in poor-quality human preimplantation embryos. A high incidence of mosaicism may limit the diagnostic accuracy of preimplantation genetic diagnosis.
Collapse
Affiliation(s)
- Cathérine Dupont
- Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Refinement of macaque synteny arrangement with respect to the official rheMac2 macaque sequence assembly. Chromosome Res 2008; 16:977-85. [PMID: 18841486 DOI: 10.1007/s10577-008-1255-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 07/11/2008] [Accepted: 07/11/2008] [Indexed: 10/21/2022]
Abstract
We have compared the synteny block organization of the official macaque genome sequence assembly (Jan. 2006; rheMac2) with an independent assembly that used a molecular cytogenetic approach. The mapping of four synteny segments, ranging in size from 4 Mb to 24 Mb, was found to be inconsistent between the two datasets. We specifically investigated these discrepancies by appropriate co-hybridization FISH experiments with validated reference probes located outside the area under study. We found that in the macaque rheMac2 release three synteny segments were wrongly mapped and one segment was incorrectly oriented.
Collapse
|
17
|
Gao K, Lu YR, Wei LL, Lu XF, Li SF, Wan L, Li YP, Cheng JQ. Immortalization of mesenchymal stem cells from bone marrow of rhesus monkey by transfection with human telomerase reverse transcriptase gene. Transplant Proc 2008; 40:634-7. [PMID: 18374149 DOI: 10.1016/j.transproceed.2008.01.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Our previous experiments indicated that bone marrow mesenchymal stem cells of rhesus monkey (RhBMSCs) have a low proliferative ability with a finite life span, which will hamper their application in biomedical research. Establishing an immortalized RhBMSC lineage might solve the problem. METHODS RhBMSCs isolated from the bone marrow of rhesus monkeys using density gradient centrifugation were purified using adherence separation. Then, the cells were steadily transfected by plasmid containing human telomerase reverse transcriptase gene (pCI-neo-hTERT). We analyzed expression of hTERT, proliferation, phenotype (SH-2, SH-3, SB-10, CD29, CD34, CD45, and HLA-DR), differentiation toward osteogenic lineage, karyotype, and tumorigenesis of transfected cells. RESULTS After transfection, the RhBMSCs proliferated vigorously, undergoing more than 50 population doublings (PDs). Apoptotic rate of transfected RhBMSCs at PD40 was only 4.5%, versus untransfected RhBMSCs at PD15, which was more than 33.5%. Compared with normal RhBMSC, the life span of transfected RhBMSCs was prolonged, retaining similar morphology, karyotype, and potential to differentiate into an osteogenic lineage. More than 99% of transfected RhBMSCs were positive for stem cell markers, including SH-2, SH-3, SB-10, and CD29, and negative for CD34, CD45, and HLA-DR. Furthermore, the transfected cell line was benign in nude mice tumor formation. CONCLUSION Our results demonstrated that hTERT gene had been transfected into RhBMSCs. The transfected RhBMSCs proliferated vigorously. Phenotype, differentiation, and karyotype of transfected RhBMSC showed no significant difference from untransfected cells. The transfected RhBMSCs are a potential cell source for transplantation as well as tissue engineering.
Collapse
Affiliation(s)
- K Gao
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Petibone D, Morris S, Hotchkiss C, Mattison D, Tucker J. Technique for culturing Macaca mulatta peripheral blood lymphocytes for fluorescence in situ hybridization of whole chromosome paints. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2008; 653:76-81. [DOI: 10.1016/j.mrgentox.2008.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 03/25/2008] [Accepted: 03/26/2008] [Indexed: 11/28/2022]
|
19
|
Dupont C, Froenicke L, Lyons LA, Bavister BD, Brenner CA. Chromosomal instability in rhesus macaque preimplantation embryos. Fertil Steril 2008; 91:1230-7. [PMID: 18440514 DOI: 10.1016/j.fertnstert.2008.01.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2007] [Revised: 01/06/2008] [Accepted: 01/21/2008] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To establish a relevant animal model to systematically investigate chromosomal instability in human oocytes and preimplantation embryos. DESIGN Prospective rhesus monkey IVF study. SETTING Academic laboratory, Oregon National Primate Research Center and Caribbean Primate Research Center. ANIMAL(S) Young rhesus macaque females. INTERVENTION(S) In vitro produced entire rhesus macaque preimplantation embryos were cytogenetically assessed using a five-color fluorescent in situ hybridization assay developed for rhesus macaque chromosomes homologous to human chromosomes 13, 16, 18, X, and Y, using human bacterial artificial chromosome probes. MAIN OUTCOME MEASURE(S) Chromosomal abnormality rates in preimplantation embryos from young rhesus macaque females were established. RESULT(S) Fifty preimplantation embryos, displaying good morphology and normal development, were analyzed from 11 young rhesus macaque females. Overall, 27 embryos (54%) were normal, 11 embryos (22%) mosaic, 3 embryos (6%) chaotic, 2 embryos (4%) aneuploid, 3 embryos (6%) haploid, and 4 embryos (8%) triploid. CONCLUSION(S) These data indicate that in vitro produced rhesus macaque and human preimplantation embryos exhibit similar numerical chromosomal aberrations. Rhesus macaques appear to be a suitable animal model for investigating the origin of chromosomal instability observed in human preimplantation embryos.
Collapse
Affiliation(s)
- Cathérine Dupont
- Departments of Obstetrics & Gynecology and Physiology, CS Mott Center for Human Growth and Development, Wayne State University, School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | | | |
Collapse
|
20
|
Jolly CJ. A proper study for mankind: Analogies from the Papionin monkeys and their implications for human evolution. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2008; Suppl 33:177-204. [PMID: 11786995 DOI: 10.1002/ajpa.10021] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This paper's theme is that analogies drawn from the cercopithecine tribe Papionini, especially the African subtribe Papionina (baboons, mangabeys, and mandrills), can be a valuable source of insights about the evolution of the human tribe, Hominini, to complement homologies found in extant humans and/or African apes. Analogies, involving a "likeness of relations" of the form "A is to B, as X is to Y," can be usefully derived from nonhomologous (homoplastic) resemblances in morphology, behavior, ecology, or population structure. Pragmatically, the papionins are a fruitful source of analogies for hominins because they are phylogenetically close enough to share many basic attributes by homology, yet far enough that homoplastic modifications of these features are easily recognized as such. In "The Seedeaters," an analogy between Theropithecus among baboons and Australopithecus africanus among hominines was the source of a widely discussed (and often misrepresented) diet-based scenario of hominin origins that explained previously unassociated hominin apomorphies, interpreted basal hominins as nonhuman rather than prehuman primates, and accommodated a basal hominin adaptive radiation of at least two lines. Current usage recognizes an even more extensive evolutionary radiation among the basal hominins, originating no earlier than about 7 ma, with multiple lineages documented or inferred by 2.5 ma. Although multilineage clades (especially the Paranthropus clade) within this complex are widely recognized, and emerge from sophisticated, parsimony-based analyses, it is suspected that in many cases, developmental or functional homoplasies are overwhelming the phylogenetic signal in the data. The papionin analogy (specifically the splitting of the traditional, morphology-based genera Cercocebus and Papio mandated by molecular evidence) illustrates the power of these factors to produce erroneous cladograms. Moreover, the rapid deployment of basal hominins across varied African habitats was an ideal scenario for producing morphologically undetectable homoplasy. There seems to be no foolproof way to distinguish, a priori, homologous from homoplastic resemblances in morphology, but one pragmatic strategy is to severely censor the datset, retaining only resemblances or differences (often apparently trivial ones) that cannot be reasonably explained on the basis of functional resemblance or difference, respectively. This strategy may eliminate most morpological data, and leave many fossil taxa incertae sedis, but this is preferable to unwarranted phylogenetic confidence. Another source of phylogenetic uncertainty is the possibility of gene-flow by occasional hybridization between hominins belonging to ecologically and adaptively distinct species or even genera. Although the evidence is unsatisfactorily sparse, it suggests that among catarrhines generally, regardless of major chromosomal rearrangements, intersterility is roughly proportional to time since cladogenetic separation. On a papionin analogy, especially the crossability of Papio hamadryas with Macaca mulatta and Theropithecus gelada, crossing between extant hominine genera is unlikely to produce viable and fertile offspring, but any hominine species whose ancestries diverged less than 4 ma previously may well have been able to produce hybrid offspring that could, by backcrossing, introduce alien genes with the potential of spreading if advantageous. Selection against maladaptive traits would maintain adaptive complexes against occasional genetic infiltration, and the latter does not justify reducing the hybridizing forms to a conspecific or congeneric rank. Whether reticulation could explain apparent parallels in hominin dentition and brain size is uncertain, pending genetic investigation of these apparently complex traits. Widespread papionin taxa (such as Papio baboons and species-groups of the genus Macaca), like many such organisms, are distributed as a "patchwork" of nonoverlapping but often parapatric forms (allotaxa). Morphologically diagnosable, yet not reproductively isolated, most allotaxa would be designated species by the phylogenetic species concept, but subspecies by the biological species concept, and use of the term "allotaxa" avoids this inconsistency. A line of contact between allotaxa typically coincides with an ecotone, with neighboring allotaxa occupying similar econiches in slightly different habitats, and often exhibiting subtle, adaptive, morphological differences as well as their defining differences of pelage. "Hybrid zones," with a wide variety of internal genetic structures and dynamics, typically separate parapatric allotaxa. Current models attribute the formation and maintenance of allotaxa to rapid pulses of population expansion and contraction to and from refugia, driven by late Neogene climatic fluctuations. An overall similarity in depth of genetic diversity suggests that papionin taxa such as Papio baboons, rather than extant humans, may present the better analogy for human population structure of the "prereplacement" era. Neandertals and Afro-Arabian "premodern" populations may have been analogous to extant baboon (and macaque) allotaxa: "phylogenetic" species, but "biological" subspecies. "Replacement," in Europe, probably involved a rapidly sweeping hybrid zone, driven by differential population pressure from the "modern" side. Since the genetic outcome of hybridization at allotaxon boundaries is so variable, the problem of whether any Neandertal genes survived the sweep, and subsequent genetic upheavals, is a purely empirical one; if any genes passed "upstream" across the moving zone, they are likely to be those conferring local adaptive advantage, and markers linked to these. In general, extant papionin analogies suggest that the dynamics and interrelationships among hominin populations now known only from fossils are likely to have been more complex than we are likely to be able to discern from the evidence available, and also more complex than can be easily expressed in conventional taxonomic terminology.
Collapse
Affiliation(s)
- C J Jolly
- Department of Anthropology, New York University, New York, New York 10003, USA
| |
Collapse
|
21
|
Luth JA, Hubbard GB, Dick EJ, Frazier SR, Barrier BF. Characterization of spontaneous mammary gland carcinomas in female baboons. J Med Primatol 2008; 37:55-61. [DOI: 10.1111/j.1600-0684.2007.00273.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Moore CM, Hubbard GB, Dick E, Dunn BG, Raveendran M, Rogers J, Williams V, Gomez JJ, Butler SD, Leland MM, Schlabritz-Loutsevitch NE. Trisomy 17 in a baboon (Papio hamadryas) with polydactyly, patent foramen ovale and pyelectasis. Am J Primatol 2007; 69:1105-18. [PMID: 17330307 DOI: 10.1002/ajp.20424] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Trisomy 13 in humans is the third most common autosomal abnormality at birth, after trisomy 21 and trisomy 18. It has a reported incidence of between 1:5,000 and 1:30,000 live births. It is associated with multiple abnormalities, many of which shorten lifespan. We describe here the first reported case of a baboon (Papio hamadryas) with trisomy of chromosome 17, which is homologous to human chromosome 13. The trisomic infant was born to a consanguineous pair of baboons and had morphological characteristics similar to those observed in human trisomy 13, including bilateral polydactyly in the upper limbs, a patent foramen ovale, and pyelectasis. Molecular DNA analysis using human chromosome 13 markers was consistent with the affected infant inheriting two copies of chromosome 17 derived from the same parental chromosome. This trisomy was, therefore, due to either an error in meiosis II or the result of postzygotic nondisjunction. The parental origin, however, could not be determined.
Collapse
Affiliation(s)
- Charleen M Moore
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hirai H, Hirai Y, Domae H, Kirihara Y. A most distant intergeneric hybrid offspring (Larcon) of lesser apes, Nomascus leucogenys and Hylobates lar. Hum Genet 2007; 122:477-83. [PMID: 17717705 DOI: 10.1007/s00439-007-0425-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 08/15/2007] [Indexed: 12/29/2022]
Abstract
Unlike humans, which are the sole remaining representatives of a once larger group of bipedal apes (hominins), the "lesser apes" (hylobatids) are a diverse radiation with numerous extant species. Consequently, the lesser apes can provide a valuable evolutionary window onto the possible interactions (e.g., interbreeding) of hominin lineages coexisting in the same time and place. In the present work, we employ chromosomal analyses to verify the hybrid ancestry of an individual (Larcon) produced by two of the most distant genera of lesser apes, Hylobates (lar-group gibbons) and Nomascus (concolor-group gibbons). In addition to a mixed pelage pattern, the hybrid animal carries a 48-chromosome karyotype that consists of the haploid complements of each parental species: Hylobates lar (n = 22) and Nomascus leucogenys leucogenys (n = 26). Studies of this animal's karyotype shed light onto the processes of speciation and genus-level divergence in the lesser apes and, by extension, across the Hominoidea.
Collapse
Affiliation(s)
- Hirohisa Hirai
- Primate Research Institute, Kyoto University, Inuyama Aichi, 484-8506, Japan.
| | | | | | | |
Collapse
|
24
|
Froenicke L, Hung PH, VandeVoort CA, Lyons LA. Development of a non-human primate sperm aneuploidy assay tested in the rhesus macaque (Macaca mulatta). Mol Hum Reprod 2007; 13:455-60. [PMID: 17483087 DOI: 10.1093/molehr/gam024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Numerical chromosome aberrations in germ cells are important factors contributing to abnormal reproductive outcomes. Fluorescence in situ hybridization onto spermatozoa (sperm-FISH) has allowed the study of the influence of a wide range of biological factors and chemical exposure on aneuploidy incidences in human sperm as well as in mouse and rat animal models. The assay presented here extends the applicability of the sperm-FISH method to non-human primates and was tested in the prevalent model species, the rhesus macaque. The assay provides probes for macaque chromosomes 17, 18, 19, 20, X and Y, the homologues of human chromosomes 13, 18, 19, 16, X and Y, respectively. The analysis of 11 000 spermatozoa each from five individuals revealed spontaneous sex chromosomal disomy frequencies (X: 0.08%; Y: 0.09%) and an average autosomal disomy frequency (0.03%) coinciding with some of the lowest incidences scored in human studies. The non-human primate sperm-FISH assay provides a fast and efficient tool complementing the available analysis methods in non-human primate exposure studies. Since the assay employs large locus-specific FISH probes representing evolutionary conserved DNA sequences, it can be expected that the assay is also applicable to other cercopithecoid and hominoid non-human primate species.
Collapse
Affiliation(s)
- Lutz Froenicke
- School of Veterinary Medicine, Department of Population Health and Reproduction, University of California Davis, One Shields Avenue, Davis, CA, USA
| | | | | | | |
Collapse
|
25
|
Moore CM, Dunn BG, McMahan CA, Lane MA, Roth GS, Ingram DK, Mattison JA. Effects of calorie restriction on chromosomal stability in rhesus monkeys (Macaca mulatta). AGE (DORDRECHT, NETHERLANDS) 2007; 29:15-28. [PMID: 19424827 PMCID: PMC2267682 DOI: 10.1007/s11357-006-9016-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 08/24/2006] [Accepted: 09/14/2006] [Indexed: 05/27/2023]
Abstract
The basic tenet of several theories on aging is increasing genomic instability resulting from interactions with the environment. Chromosomal aberrations have been used as classic examples of increasing genomic instability since they demonstrate an increase in numerical and structural abnormalities with age in many species including humans. This accumulating damage may augment many aging processes and initiate age-related diseases, such as neoplasias. Calorie restriction (CR) is one of the most robust interventions for reducing the frequency of age-related diseases and for extending life span in many short-lived organisms. However, the mechanisms for the anti-aging effects of CR are not yet well understood. A study of rhesus monkeys was begun in 1987 to determine if CR is also effective in reducing the frequency of age-related diseases and retarding aging in a long-lived mammal. Male monkeys were begun on the diet in 1987, and females were added in 1992 to examine a possible difference in response to CR by sex. The CR monkeys have been maintained for over 10 years on a low-fat nutritional diet that provides a 30% calorie reduction compared to a control (CON) group. Because of the greater similarity of nonhuman primates to humans in life span and environmental responses to diet compared with those of rodents, the rhesus monkey provides an excellent model for the effects of CR in humans. This study examined the effects of CR on chromosomal instability with aging. Significant age effects were found in both CR and CON groups for the number of cells with aneuploidy: old animals had a higher loss and a higher gain than young animals. However, there was no effect of age on chromosomal breakage or structural aberrations in either diet group. Diet had only one significant effect: the CR group had a higher frequency of chromatid gaps than did the CON group. CR, implemented in adult rhesus monkeys, does not have a major effect on the reduction of numerical or structural aberrations related to aging.
Collapse
Affiliation(s)
- Charleen M Moore
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Comparative analysis of primate genomes suggests that the divergence between human and chimpanzee lineages around 6 million years ago was initially not a clean split. A recent analysis of the human and chimpanzee genomes compared with portions of other primate genomes suggests that the divergence of the human and chimpanzee lineages beginning around 6 million years ago was not a simple clean split.
Collapse
Affiliation(s)
- Todd R Disotell
- Center for the Study of Human Origins, Department of Anthropology, New York University, Waverly Place, New York, NY 10003, USA.
| |
Collapse
|
27
|
Raveendran M, Harris RA, Milosavljevic A, Johnson Z, Shelledy W, Cameron J, Rogers J. Designing new microsatellite markers for linkage and population genetic analyses in rhesus macaques and other nonhuman primates. Genomics 2006; 88:706-710. [PMID: 17010566 DOI: 10.1016/j.ygeno.2006.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 08/21/2006] [Accepted: 08/21/2006] [Indexed: 10/24/2022]
Abstract
Identification of polymorphic microsatellite loci in nonhuman primates is useful for various biomedical and evolutionary studies of these species. Prior methods for identifying microsatellites in nonhuman primates are inefficient. We describe a new strategy for marker development that uses the available whole genome sequence for rhesus macaques. Fifty-four novel rhesus-derived microsatellites were genotyped in large pedigrees of rhesus monkeys. Linkage analysis was used to place 51 of these loci into the existing rhesus linkage map. In addition, we find that microsatellites identified this way are polymorphic in other Old World monkeys such as baboons. This approach to marker development is more efficient than previous methods and produces polymorphisms with known locations in the rhesus genome assembly. Finally, we propose a nomenclature system that can be used for rhesus-derived microsatellites genotyped in any species or for novel loci derived from the genome sequence of any nonhuman primate.
Collapse
Affiliation(s)
- Muthuswamy Raveendran
- Department of Genetics, Southwest Foundation for Biomedical Research, P.O. Box 760549, San Antonio, TX 78227, USA
| | | | | | - Zach Johnson
- Department of Genetics, Southwest Foundation for Biomedical Research, P.O. Box 760549, San Antonio, TX 78227, USA
| | - Wendy Shelledy
- Department of Genetics, Southwest Foundation for Biomedical Research, P.O. Box 760549, San Antonio, TX 78227, USA
| | - Judy Cameron
- Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Jeffrey Rogers
- Department of Genetics, Southwest Foundation for Biomedical Research, P.O. Box 760549, San Antonio, TX 78227, USA; Southwest National Primate Research Center, San Antonio, TX 78227, USA.
| |
Collapse
|
28
|
Schrock E, Zschieschang P, O'Brien P, Helmrich A, Hardt T, Matthaei A, Stout-Weider K. Spectral karyotyping of human, mouse, rat and ape chromosomes--applications for genetic diagnostics and research. Cytogenet Genome Res 2006; 114:199-221. [PMID: 16954656 DOI: 10.1159/000094203] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 05/19/2006] [Indexed: 01/30/2023] Open
Abstract
Spectral karyotyping (SKY) is a widely used methodology to identify genetic aberrations. Multicolor fluorescence in situ hybridization using chromosome painting probes in individual colors for all metaphase chromosomes at once is combined with a unique spectral measurement and analysis system to automatically classify normal and aberrant chromosomes. Based on countless studies and investigations in many laboratories worldwide, numerous new chromosome translocations and other aberrations have been identified in clinical and tumor cytogenetics. Thus, gene identification studies have been facilitated resulting in the dissection of tumor development and progression. For example, different translocation partners of the TEL/ETV6 transcription factor that is specially required for hematopoiesis within the bone marrow were identified. Also, the correct classification of complex karyotypes of solid tumors supports the prognostication of cancer patients. Important accomplishments for patients with genetic diseases, leukemias and lymphomas, mesenchymal tumors and solid cancers are summarized and exemplified. Furthermore, studies of disease mechanisms such as centromeric DNA breakage, DNA double strand break repair, telomere shortening and radiation-induced neoplastic transformation have been accompanied by SKY analyses. Besides the hybridization of human chromosomes, mouse karyotyping has also contributed to the comprehensive characterization of mouse models of human disease and for gene therapy studies.
Collapse
Affiliation(s)
- E Schrock
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | | | | | | | | | | | | |
Collapse
|
29
|
Murphy WJ, Agarwala R, Schäffer AA, Stephens R, Smith C, Crumpler NJ, David VA, O'Brien SJ. A rhesus macaque radiation hybrid map and comparative analysis with the human genome. Genomics 2006; 86:383-95. [PMID: 16039092 DOI: 10.1016/j.ygeno.2005.05.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 05/11/2005] [Accepted: 05/25/2005] [Indexed: 10/25/2022]
Abstract
The genomes of nonhuman primates are powerful references for better understanding the recent evolution of the human genome. Here we compare the order of 802 genomic markers mapped in a rhesus macaque (Macaca mulatta) radiation hybrid panel with the human genome, allowing for nearly complete cross-reference to the human genome at an average resolution of 3.5 Mb. At least 23 large-scale chromosomal rearrangements, mostly inversions, are needed to explain the changes in marker order between human and macaque. Analysis of the breakpoints flanking inverted chromosomal segments and estimation of their duplication divergence dates provide additional evidence implicating segmental duplications as a major mechanism of chromosomal rearrangement in recent primate evolution.
Collapse
Affiliation(s)
- William J Murphy
- Basic Research Laboratory, SAIC-Frederick, Inc., Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Rogers J, Garcia R, Shelledy W, Kaplan J, Arya A, Johnson Z, Bergstrom M, Novakowski L, Nair P, Vinson A, Newman D, Heckman G, Cameron J. An initial genetic linkage map of the rhesus macaque (Macaca mulatta) genome using human microsatellite loci. Genomics 2006; 87:30-8. [PMID: 16321502 DOI: 10.1016/j.ygeno.2005.10.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2005] [Revised: 09/25/2005] [Accepted: 10/14/2005] [Indexed: 10/25/2022]
Abstract
Rhesus macaques (Macaca mulatta) are the most widely used nonhuman primate species in biomedical research. To create new opportunities for genetic and genomic studies using rhesus monkeys, we constructed a genetic linkage map of the rhesus genome. This map consists of 241 microsatellite loci, all previously mapped in the human genome. These polymorphisms were genotyped in five pedigrees of rhesus monkeys totaling 865 animals. The resulting linkage map covers 2048 cM including all 20 rhesus autosomes, with average spacing between markers of 9.3 cM. Average heterozygosity among those markers is 0.73. This linkage map provides new comparative information concerning locus order and interlocus distances in humans and rhesus monkeys. The map will facilitate whole-genome linkage screens to locate quantitative trait loci (QTLs) that influence individual variation in phenotypic traits related to basic primate anatomy, physiology, and behavior, as well as QTLs relevant to risk factors for human disease.
Collapse
Affiliation(s)
- Jeffrey Rogers
- Department of Genetics, Southwest Foundation for Biomedical Research, 7620 N.W., Loop 410, San Antonio, TX 78227, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Izadpanah R, Joswig T, Tsien F, Dufour J, Kirijan JC, Bunnell BA. Characterization of multipotent mesenchymal stem cells from the bone marrow of rhesus macaques. Stem Cells Dev 2005; 14:440-51. [PMID: 16137233 DOI: 10.1089/scd.2005.14.440] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The isolation and characterization of embryonic and adult stem cells from higher-order mammalian species will enhance the understanding of the biology and therapeutic application of stem cells. The aim of this study was to purify rhesus mesenchymal stem cells (MSCs) from adult bone marrow and to characterize functionally their abilities to differentiate along diverse lineages. Adherent cells from adult rhesus macaque bone marrow were characterized for their growth characteristics, lineage differentiation, cell-surface antigen expression, telomere length, chromosome content, and transcription factor gene expression. Rhesus bone marrow MSCs (BMSCs) are very heterogeneous, composed of primarily long, thin cells and some smaller, round cells. The cells are capable of differentiating along osteogenic, chondrogenic, and adipogenic lineages in vitro. The cell morphology and multipotential differentiation capabilities are maintained throughout extended culture. They express CD59, CD90 (Thy-1), CD105, and HLA-1 and were negative for hematopoietic markers such as CD3, CD4, CD8, CD11b, CD13, CD34, and platelet endothelial cell adhesion molecule-1 (CD31). BMSCs were also demonstrated to express the mRNA for important stem cell-related transcription factors such as Oct-4, Sox-2, Rex-1, and Nanog. Rhesus BMSCs have a normal chromosome content, and the shortening of telomeres is minimal during early passages. These data demonstrate that BMSCs isolated from rhesus macaques have a high degree of commonality with MSCs isolated from other species. Therefore, isolation of these cells provides an effective and convenient method for rapid expansion of pluripotent rhesus MSCs.
Collapse
Affiliation(s)
- Reza Izadpanah
- Division of Gene Therapy, Tulane National Primate Center, Tulane University Health Sciences Center, Tulane University, New Orleans, LA 70433, USA
| | | | | | | | | | | |
Collapse
|
32
|
Goens SD, Moore CM, Brasky KM, Frost PA, Leland MM, Hubbard GB. Nephroblastomatosis and nephroblastoma in nonhuman primates. J Med Primatol 2005; 34:165-70. [PMID: 16053493 DOI: 10.1111/j.1600-0684.2005.00113.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Wilms' tumors, or nephroblastomas, are renal embryonal malignancies with a high incidence in humans. Nephroblastomas are uncommon in nonhuman primates. This report describes three cases of spontaneous proliferative renal tumors in young monkeys: two cases of unilateral kidney nephroblastomas in baboons and a nephroblastomatosis in a cynomolgus macaque. Histologically, both baboon tumors were typical of Wilms' tumors found in humans, with proliferative epithelial cells forming tubules and aborted glomeruli, nephrogenic rests and proliferative fibrovascular tissue. The left kidney of the macaque was markedly enlarged and histologically similar to the baboon tumors, although normal kidney architecture was completely effaced by primitive tubules and occasional glomeruli surrounded by edematous stromal tissue. Cytogenetic analysis did not detect any macaque or baboon equivalents to human Wilms' tumor chromosomal abnormalities. By human pathology classification, the diffuse nature of the macaque tumor is more consistent with nephroblastomatosis than nephroblastoma. This differentiation is the first to be reported in a species other than human. The nephroblastomas described here are the first nephroblastomas to be reported in baboons. Our observations indicate that nonhuman primate nephroblastomatosis and nephroblastomas develop in a similar way to Wilms' tumors in humans, although no genetic marker has been associated with nephroblastomas of nonhuman primates thus far.
Collapse
Affiliation(s)
- S Denise Goens
- Department of Comparative Medicine, Southwest Foundation for Biomedical Research, San Antonio, TX 78245-0549, USA
| | | | | | | | | | | |
Collapse
|
33
|
Rao VK, Knutsen T, Ried T, Wangsa D, Flynn BM, Langham G, Egorin MJ, Cole D, Balis F, Steinberg SM, Bates S, Fojo T. The extent of chromosomal aberrations induced by chemotherapy in non-human primates depends on the schedule of administration. Mutat Res 2005; 583:105-19. [PMID: 15927870 DOI: 10.1016/j.mrgentox.2005.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 12/10/2004] [Accepted: 01/26/2005] [Indexed: 05/02/2023]
Abstract
We utilized a non-human primate model, the rhesus monkey (Macaca mulatta), to quantitate the extent of chromosomal damage in bone marrow cells following chemotherapy. Thiotepa, etoposide, and paclitaxel were chosen as the chemotherapy agents due to their distinct mechanisms of action. Chromosomal aberrations were quantitated using traditional Giemsa stain. We sought to evaluate the extent to which genotoxicity was dependent on the schedule of administration by giving chemotherapy as either a bolus or a 96 h continuous infusion. Neutropenia and areas under the concentration curve (AUCs) were monitored to ensure comparable cytotoxicity and dose administered. At least 100 metaphases were scored in each marrow sample by an investigator unaware of the treatment history of the animals. All three drugs produced a statistically significant higher percentage of abnormal metaphases following bolus chemotherapy (p<0.0001, p=0.0015 and p<0.0001 for thiotepa, etoposide and paclitaxel, respectively). We conclude that infusional administration of thiotepa, etoposide and paclitaxel is less genotoxic to normal bone marrow cells than is bolus administration. These results suggest infusional regimens may be considered where there are concerns about long-term genotoxic sequelae, including secondary cancer, teratogenicity, or possibly the development of drug resistance. We believe this approach provides a reproducible model in which drugs and eventually, regimens can be compared.
Collapse
Affiliation(s)
- V Koneti Rao
- Center for Cancer Research, National Cancer Institute, NIH, Building 10, Rm 12N226, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Misceo D, Ventura M, Eder V, Rocchi M, Archidiacono N. Human chromosome 16 conservation in primates. Chromosome Res 2004; 11:323-6. [PMID: 12906128 DOI: 10.1023/a:1024087823030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A study was made of the organization of the chromosome orthologous to HSA16 in primates using a panel of 8 BAC probes spanning human chromosome 16. The probes were used in FISH experiments on great apes and on representatives of the Old World monkeys, New World monkeys, and lemurs. The domestic cat was used as an outgroup. The results indicate that 16p and 16q were separate chromosomes in a primate ancestor. They fused in a Catarrhini ancestor giving rise to the present day form found in HSA, great apes, and Old World monkeys. Several rearrangements were found in New World monkeys.
Collapse
Affiliation(s)
- Doriana Misceo
- Sezione di Genetica, DAPEG, Via Amendola 165/A 70126 Bari, Italy
| | | | | | | | | |
Collapse
|
35
|
Abstract
Clinical and cancer cytogenetics is a rapidly evolving discipline. The past decade has seen a dramatic change in molecular biology and fluorescence microscopy. The use of fluorescence in situ hybridization (FISH) technologies has enabled the rapid analysis of cytogenetic specimens as an adjunct to classical cytogenetic analysis. Spectral karyotyping (SKY) is a 24-color, multi-chromosomal painting assay that allows the visualization of all human chromosomes in one experiment. The ability for SKY analysis to detect equivocal or complex chromosomal rearrangements, as well as to identify the chromosomal origins of marker chromosomes and other extra-chromosomal structures, makes this a highly sensitive and valuable tool for identifying recurrent chromosomal aberrations. The SKY has been applied to various tumor groups including hematological malignancies, sarcomas, carcinomas and brain tumors, with the intent of identifying specific chromosomal abnormalities that may provide insight to the genes involved in the disease process as well as identifying recurrent cytogenetic markers for clinical diagnosis and prognostic assessment. The SKY has also been applied for the mouse genome, enabling investigators to extrapolate information from mouse models of cancer to their human counterparts. This review will address the advances that SKY has facilitated in the field of cancer cytogenetics, as well as its variety of application in the cancer research laboratories.
Collapse
Affiliation(s)
- Jane M Bayani
- Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Ontario, Toronto, Canada M5G 2M9
| | | |
Collapse
|
36
|
Murphy WJ, Page JE, Smith C, Desrosiers RC, O'Brien SJ. A radiation hybrid mapping panel for the rhesus macaque. J Hered 2001; 92:516-9. [PMID: 11948222 DOI: 10.1093/jhered/92.6.516] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The genomes of nonhuman primates have recently become highly visible candidates for full genome analysis, as they provide powerful models of human disease and a better understanding of the evolution of the human genome. We describe the creation of a 5000 rad radiation hybrid (RH) mapping panel for the rhesus macaque. Duplicate genotypes of 84 microsatellite and coding gene sequence tagged sites from six macaque chromosomes produced an estimated whole genome retention frequency of 0.33. To test the mapping ability of the panel, we constructed RH maps for macaque chromosomes 7 and 9 and compared them to orthologous locus orders in existing human and baboon maps derived from different methodologies. Concordant marker order between all three species maps suggests that the current panel represents a powerful mapping resource for generating high-density comparative maps of the rhesus macaque and other species genomes.
Collapse
Affiliation(s)
- W J Murphy
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702, USA.
| | | | | | | | | |
Collapse
|
37
|
Rogers J, Mahaney MC, Witte SM, Nair S, Newman D, Wedel S, Rodriguez LA, Rice KS, Slifer SH, Perelygin A, Slifer M, Palladino-Negro P, Newman T, Chambers K, Joslyn G, Parry P, Morin PA. A genetic linkage map of the baboon (Papio hamadryas) genome based on human microsatellite polymorphisms. Genomics 2000; 67:237-47. [PMID: 10936045 DOI: 10.1006/geno.2000.6245] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A first-generation genetic linkage map of the baboon (Papio hamadryas) genome was developed for use in biomedical and evolutionary genetics. Pedigreed baboons (n = 694) were selected from the breeding colony maintained by the Southwest Foundation for Biomedical Research. To facilitate comparison with the human genome, the baboon linkage map consists primarily of human microsatellite loci amplified using published human PCR primers. Genotypes for 325 human microsatellites and 6 novel baboon microsatellites were used in linkage analyses performed with the MultiMap expert system. The resulting sex-averaged meiotic recombination map covers all 20 baboon autosomes, with average spacing among loci of 7.2 cM. Direct comparison among homologous (orthologous) loci reveals that, for 7 human autosomes, locus order is conserved between humans and baboons. For the other 15 autosomes, one or more rearrangements distinguish the two genomes. The total centimorgan distances among homologous markers are 28.0% longer in the human genome than in the baboon, suggesting that rates of recombination may be higher in humans. This baboon linkage map is the first reported for any nonhuman primate species and creates opportunities for mapping quantitative trait loci in baboons, as well as for comparative evolutionary analyses of genome structure.
Collapse
Affiliation(s)
- J Rogers
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, Texas 78245, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|