1
|
Cody CR, de la Villarmois EA, Fernandez AM, Lardizabal J, McKnight C, Tseng K, Brenhouse HC. Effects of early life adversity and adolescent basolateral amygdala activity on corticolimbic connectivity and anxiety behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586708. [PMID: 38853948 PMCID: PMC11160567 DOI: 10.1101/2024.03.26.586708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Early postnatal development of corticolimbic circuitry is shaped by the environment and is vulnerable to early life challenges. Prior work has shown that early life adversity (ELA) leads to hyperinnervation of glutamatergic basolateral amygdala (BLA) projections to the prefrontal cortex (PFC) in adolescence. While hyperinnervation is associated with later-life anxiety behaviors, the physiological changes underpinning corticolimbic and behavioral impacts of ELA are not understood. We tested whether postsynaptic BLA-driven PFC activity is enhanced in ELA-exposed animals, using the maternal separation (MS) model of ELA. PFC local-field potential following BLA stimulation was facilitated in MS-exposed adolescents. Since ELA increases activity of the early-developing BLA, while the PFC exhibits protracted development, we further examined impacts of glutamatergic BLA activity during early adolescence on later-life PFC innervation and heightened anxiety. In early adolescence, MS-exposed animals exhibited decreased anxiety-like behavior, and acute adolescent BLA inhibition induced behaviors that resembled those of MS animals. To examine long-lasting impacts of adolescent BLA activity on innervation, BLA-originating axonal boutons in the PFC were quantified in late adolescence after early adolescent BLA inhibition. We further tested whether late adolescent BLA-PFC changes were associated with anxious reactivity expressed as heightened acoustic startle responses. MS rearing increased BLA-PFC innervation and threat reactivity in late adolescence, however early adolescent BLA inhibition was insufficient to prevent MS effects, suggesting that earlier BLA activity or post-synaptic receptor rearrangement in the PFC drives altered innervation. Taken together, these findings highlight both pre- and postsynaptic changes in the adolescent BLA-PFC circuit following ELA.
Collapse
Affiliation(s)
- Caitlyn R Cody
- Psychology Department, Northeastern University, Boston MA 02115
| | | | | | | | - Chaney McKnight
- Psychology Department, Northeastern University, Boston MA 02115
| | - Kuei Tseng
- Department of Anatomy and Cell Biology, University of Illinois, Chicago IL 60612
| | | |
Collapse
|
2
|
Yang S, Tseng KY. Maturation of Corticolimbic Functional Connectivity During Sensitive Periods of Brain Development. Curr Top Behav Neurosci 2022; 53:37-53. [PMID: 34386969 DOI: 10.1007/7854_2021_239] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The maturation of key corticolimbic structures and the prefrontal cortex during sensitive periods of brain development from early life through adolescence is crucial for the acquisition of a variety of cognitive and affective processes associated with adult behavior. In this chapter, we first review how key cellular and circuit level changes during adolescence dictate the development of the prefrontal cortex and its capacity to integrate contextual and emotional information from the ventral hippocampus and the amygdala. We further discuss how afferent transmission from ventral hippocampal and amygdala inputs displays unique age-dependent trajectories that directly impact prefrontal functional maturation through adolescence. We conclude by proposing that time-sensitive strengthening of specific corticolimbic synapses is a critical contributing factor for the protracted maturation of cognitive and emotional regulation by the prefrontal cortex.
Collapse
Affiliation(s)
- Shaolin Yang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kuei Y Tseng
- Department of Anatomy and Cell Biology, University of Illinois at Chicago - College of Medicine, Chicago, IL, USA.
| |
Collapse
|
3
|
Abstract
During evolution, the cerebral cortex advances by increasing in surface and the introduction of new cytoarchitectonic areas among which the prefrontal cortex (PFC) is considered to be the substrate of highest cognitive functions. Although neurons of the PFC are generated before birth, the differentiation of its neurons and development of synaptic connections in humans extend to the 3rd decade of life. During this period, synapses as well as neurotransmitter systems including their receptors and transporters, are initially overproduced followed by selective elimination. Advanced methods applied to human and animal models, enable investigation of the cellular mechanisms and role of specific genes, non-coding regulatory elements and signaling molecules in control of prefrontal neuronal production and phenotypic fate, as well as neuronal migration to establish layering of the PFC. Likewise, various genetic approaches in combination with functional assays and immunohistochemical and imaging methods reveal roles of neurotransmitter systems during maturation of the PFC. Disruption, or even a slight slowing of the rate of neuronal production, migration and synaptogenesis by genetic or environmental factors, can induce gross as well as subtle changes that eventually can lead to cognitive impairment. An understanding of the development and evolution of the PFC provide insight into the pathogenesis and treatment of congenital neuropsychiatric diseases as well as idiopathic developmental disorders that cause intellectual disabilities.
Collapse
Affiliation(s)
- Sharon M Kolk
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands.
| | - Pasko Rakic
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
4
|
Guadagno A, Belliveau C, Mechawar N, Walker CD. Effects of Early Life Stress on the Developing Basolateral Amygdala-Prefrontal Cortex Circuit: The Emerging Role of Local Inhibition and Perineuronal Nets. Front Hum Neurosci 2021; 15:669120. [PMID: 34512291 PMCID: PMC8426628 DOI: 10.3389/fnhum.2021.669120] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/29/2021] [Indexed: 01/10/2023] Open
Abstract
The links between early life stress (ELS) and the emergence of psychopathology such as increased anxiety and depression are now well established, although the specific neurobiological and developmental mechanisms that translate ELS into poor health outcomes are still unclear. The consequences of ELS are complex because they depend on the form and severity of early stress, duration, and age of exposure as well as co-occurrence with other forms of physical or psychological trauma. The long term effects of ELS on the corticolimbic circuit underlying emotional and social behavior are particularly salient because ELS occurs during critical developmental periods in the establishment of this circuit, its local balance of inhibition:excitation and its connections with other neuronal pathways. Using examples drawn from the human and rodent literature, we review some of the consequences of ELS on the development of the corticolimbic circuit and how it might impact fear regulation in a sex- and hemispheric-dependent manner in both humans and rodents. We explore the effects of ELS on local inhibitory neurons and the formation of perineuronal nets (PNNs) that terminate critical periods of plasticity and promote the formation of stable local networks. Overall, the bulk of ELS studies report transient and/or long lasting alterations in both glutamatergic circuits and local inhibitory interneurons (INs) and their associated PNNs. Since the activity of INs plays a key role in the maturation of cortical regions and the formation of local field potentials, alterations in these INs triggered by ELS might critically participate in the development of psychiatric disorders in adulthood, including impaired fear extinction and anxiety behavior.
Collapse
Affiliation(s)
- Angela Guadagno
- Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Claudia Belliveau
- Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Claire-Dominique Walker
- Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
5
|
Uliana DL, Gomes FV, Grace AA. Stress impacts corticoamygdalar connectivity in an age-dependent manner. Neuropsychopharmacology 2021; 46:731-740. [PMID: 33096542 PMCID: PMC8027626 DOI: 10.1038/s41386-020-00886-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 01/13/2023]
Abstract
Stress is a socio-environmental risk factor for the development of psychiatric disorders, with the age of exposure potentially determining the outcome. Several brain regions mediate stress responsivity, with a prominent role of the medial prefrontal cortex (mPFC) and basolateral amygdala (BLA) and their reciprocal inhibitory connectivity. Here we investigated the impact of stress exposure during adolescence and adulthood on the activity of putative pyramidal neurons in the BLA and corticoamygdalar plasticity using in vivo electrophysiology. 155 male Sprague-Dawley rats were subjected to a combination of footshock/restraint stress in either adolescence (postnatal day 31-40) or adulthood (postnatal day 65-74). Both adolescent and adult stress increased the number of spontaneously active putative BLA pyramidal neurons 1-2 weeks, but not 5-6 weeks post stress. High-frequency stimulation (HFS) of BLA and mPFC depressed evoked spike probability in the mPFC and BLA, respectively, in adult but not adolescent rats. In contrast, an adult-like BLA HFS-induced decrease in spike probability of mPFC neurons was found 1-2 weeks post-adolescent stress. Changes in mPFC and BLA neuron discharge were found 1-2 weeks post-adult stress after BLA and mPFC HFS, respectively. All these changes were transient since they were not found 5-6 weeks post adolescent or adult stress. Our findings indicate that stress during adolescence may accelerate the development of BLA-PFC plasticity, probably due to BLA hyperactivity, which can also disrupt the reciprocal communication of BLA-mPFC after adult stress. Therefore, precocious BLA-mPFC connectivity alterations may represent an early adaptive stress response that ultimately may contribute to vulnerability to adult psychiatric disorders.
Collapse
Affiliation(s)
- Daniela L. Uliana
- grid.21925.3d0000 0004 1936 9000Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA USA
| | - Felipe V. Gomes
- grid.21925.3d0000 0004 1936 9000Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA USA ,grid.11899.380000 0004 1937 0722Present Address: Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Anthony A. Grace
- grid.21925.3d0000 0004 1936 9000Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
6
|
Maturation of amygdala inputs regulate shifts in social and fear behaviors: A substrate for developmental effects of stress. Neurosci Biobehav Rev 2021; 125:11-25. [PMID: 33581221 DOI: 10.1016/j.neubiorev.2021.01.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 11/21/2022]
Abstract
Stress can negatively impact brain function and behaviors across the lifespan. However, stressors during adolescence have particularly harmful effects on brain maturation, and on fear and social behaviors that extend beyond adolescence. Throughout development, social behaviors are refined and the ability to suppress fear increases, both of which are dependent on amygdala activity. We review rodent literature focusing on developmental changes in social and fear behaviors, cortico-amygdala circuits underlying these changes, and how this circuitry is altered by stress. We first describe changes in fear and social behaviors from adolescence to adulthood and parallel developmental changes in cortico-amygdala circuitry. We propose a framework in which maturation of cortical inputs to the amygdala promote changes in social drive and fear regulation, and the particularly damaging effects of stress during adolescence may occur through lasting changes in this circuit. This framework may explain why anxiety and social pathologies commonly co-occur, adolescents are especially vulnerable to stressors impacting social and fear behaviors, and predisposed towards psychiatric disorders related to abnormal cortico-amygdala circuits.
Collapse
|
7
|
Odriozola P, Gee DG. Learning About Safety: Conditioned Inhibition as a Novel Approach to Fear Reduction Targeting the Developing Brain. Am J Psychiatry 2021; 178:136-155. [PMID: 33167673 PMCID: PMC7951569 DOI: 10.1176/appi.ajp.2020.20020232] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adolescence is a peak time for the onset of psychiatric disorders, with anxiety disorders being the most common and affecting as many as 30% of youths. A core feature of anxiety disorders is difficulty regulating fear, with evidence suggesting deficits in extinction learning and corresponding alterations in frontolimbic circuitry. Despite marked changes in this neural circuitry and extinction learning throughout development, interventions for anxious youths are largely based on principles of extinction learning studied in adulthood. Safety signal learning, based on conditioned inhibition of fear in the presence of a cue that indicates safety, has been shown to effectively reduce anxiety-like behavior in animal models and attenuate fear responses in healthy adults. Cross-species evidence suggests that safety signal learning involves connections between the ventral hippocampus and the prelimbic cortex in rodents or the dorsal anterior cingulate cortex in humans. Particularly because this pathway follows a different developmental trajectory than fronto-amygdala circuitry involved in traditional extinction learning, safety cues may provide a novel approach to reducing fear in youths. In this review, the authors leverage a translational framework to bring together findings from studies in animal models and humans and to bridge the gap between research on basic neuroscience and clinical treatment. The authors consider the potential application of safety signal learning for optimizing interventions for anxious youths by targeting the biological state of the developing brain. Based on the existing cross-species literature on safety signal learning, they propose that the judicious use of safety cues may be an effective and neurodevelopmentally optimized approach to enhancing treatment outcomes for youths with anxiety disorders.
Collapse
Affiliation(s)
| | - Dylan G. Gee
- Department of Psychology, Yale University, New Haven, Conn
| |
Collapse
|
8
|
Raineki C, Morgan EJ, Ellis L, Weinberg J. Glucocorticoid receptor expression in the stress-limbic circuitry is differentially affected by prenatal alcohol exposure and adolescent stress. Brain Res 2019; 1718:242-251. [PMID: 31102593 PMCID: PMC6579044 DOI: 10.1016/j.brainres.2019.05.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/25/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
The dense expression of glucocorticoid receptors (GR) within the amygdala, medial prefrontal cortex (mPFC) and paraventricular nucleus of hypothalamus (PVN) mediates many aspects of emotional and stress regulation. Importantly, both prenatal alcohol exposure (PAE) and adolescent stress are known to induce emotional and stress dysregulation. Little is known, however, about how PAE and/or adolescent stress may alter the expression of GR in the amygdala, mPFC, and PVN. To fill this gap, we exposed PAE and control adolescent male and female rats to chronic mild stress (CMS) and assessed GR mRNA expression in the amygdala, mPFC, and PVN immediately following stress or in adulthood. We found that the effects of PAE on GR expression were more prevalent in the amygdala, while effects of adolescent stress on GR expression were more prevalent in the mPFC. Moreover, PAE effects in the amygdala were more pronounced during adolescence and adolescent stress effects in the mPFC were more pronounced in adulthood. GR expression in the PVN was affected by both PAE and adolescent stress. Finally, PAE and/or adolescent stress effects were distinct between males and females. Together, these results suggest that PAE and adolescent CMS induce dynamic alterations in GR expression in the amygdala, mPFC, and PVN, which manifest differently depending on the brain area, age, and sex of the animal. Additionally, these data indicate that PAE-induced hyperresponsiveness to stress and increased vulnerability to mental health problems may be mediated by different neural mechanisms depending on the sex and age of the animal.
Collapse
Affiliation(s)
- Charlis Raineki
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada.
| | - Erin J Morgan
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Linda Ellis
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
9
|
Raber J, Arzy S, Bertolus JB, Depue B, Haas HE, Hofmann SG, Kangas M, Kensinger E, Lowry CA, Marusak HA, Minnier J, Mouly AM, Mühlberger A, Norrholm SD, Peltonen K, Pinna G, Rabinak C, Shiban Y, Soreq H, van der Kooij MA, Lowe L, Weingast LT, Yamashita P, Boutros SW. Current understanding of fear learning and memory in humans and animal models and the value of a linguistic approach for analyzing fear learning and memory in humans. Neurosci Biobehav Rev 2019; 105:136-177. [PMID: 30970272 DOI: 10.1016/j.neubiorev.2019.03.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/30/2019] [Accepted: 03/18/2019] [Indexed: 01/04/2023]
Abstract
Fear is an emotion that serves as a driving factor in how organisms move through the world. In this review, we discuss the current understandings of the subjective experience of fear and the related biological processes involved in fear learning and memory. We first provide an overview of fear learning and memory in humans and animal models, encompassing the neurocircuitry and molecular mechanisms, the influence of genetic and environmental factors, and how fear learning paradigms have contributed to treatments for fear-related disorders, such as posttraumatic stress disorder. Current treatments as well as novel strategies, such as targeting the perisynaptic environment and use of virtual reality, are addressed. We review research on the subjective experience of fear and the role of autobiographical memory in fear-related disorders. We also discuss the gaps in our understanding of fear learning and memory, and the degree of consensus in the field. Lastly, the development of linguistic tools for assessments and treatment of fear learning and memory disorders is discussed.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, USA; Departments of Neurology and Radiation Medicine, and Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, USA.
| | - Shahar Arzy
- Department of Medical Neurobiology, Hebrew University, Jerusalem 91904, Israel
| | | | - Brendan Depue
- Departments of Psychological and Brain Sciences and Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
| | - Haley E Haas
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, USA
| | - Stefan G Hofmann
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Maria Kangas
- Department of Psychology, Macquarie University, Sydney, Australia
| | | | - Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Hilary A Marusak
- Department of Pharmacy Practice, Wayne State University, Detroit, MI, USA
| | - Jessica Minnier
- School of Public Health, Oregon Health & Science University, Portland, OR, USA
| | - Anne-Marie Mouly
- Lyon Neuroscience Research Center, CNRS-UMR 5292, INSERM U1028, Université Lyon, Lyon, France
| | - Andreas Mühlberger
- Department of Psychology (Clinical Psychology and Psychotherapy), University of Regensburg, Regensburg, Germany; PFH - Private University of Applied Sciences, Department of Psychology (Clinical Psychology and Psychotherapy Research), Göttingen, Germany
| | - Seth Davin Norrholm
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, USA
| | - Kirsi Peltonen
- Faculty of Social Sciences/Psychology, Tampere University, Tampere, Finland
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Christine Rabinak
- Department of Pharmacy Practice, Wayne State University, Detroit, MI, USA
| | - Youssef Shiban
- Department of Psychology (Clinical Psychology and Psychotherapy), University of Regensburg, Regensburg, Germany; PFH - Private University of Applied Sciences, Department of Psychology (Clinical Psychology and Psychotherapy Research), Göttingen, Germany
| | - Hermona Soreq
- Department of Biological Chemistry, Edmond and Lily Safra Center of Brain Science and The Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| | - Michael A van der Kooij
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, Universitatsmedizin der Johannes Guttenberg University Medical Center, Mainz, Germany
| | | | - Leah T Weingast
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, USA
| | - Paula Yamashita
- School of Public Health, Oregon Health & Science University, Portland, OR, USA
| | - Sydney Weber Boutros
- Department of Behavioral Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
10
|
Neurocircuitry of fear extinction in adult and juvenile rats. Behav Brain Res 2018; 351:161-167. [DOI: 10.1016/j.bbr.2018.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 05/12/2018] [Accepted: 06/01/2018] [Indexed: 01/14/2023]
|
11
|
Reduced resting-state functional connectivity of the basolateral amygdala to the medial prefrontal cortex in preweaning rats exposed to chronic early-life stress. Brain Struct Funct 2018; 223:3711-3729. [DOI: 10.1007/s00429-018-1720-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/15/2018] [Indexed: 10/28/2022]
|
12
|
Song C, Moyer JR. Layer- and subregion-specific differences in the neurophysiological properties of rat medial prefrontal cortex pyramidal neurons. J Neurophysiol 2018; 119:177-191. [PMID: 28978762 PMCID: PMC5866461 DOI: 10.1152/jn.00146.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 10/02/2017] [Accepted: 10/02/2017] [Indexed: 12/25/2022] Open
Abstract
Medial prefrontal cortex (mPFC) is critical for the expression of long-term conditioned fear. However, the neural circuits involving fear memory acquisition and retrieval are still unclear. Two subregions within mPFC that have received a lot of attention are the prelimbic (PL) and infralimbic (IL) cortices (e.g., Santini E, Quirk GJ, Porter JT. J Neurosci 28: 4028-4036, 2008; Song C, Ehlers VL, Moyer JR Jr J Neurosci 35: 13511-13524, 2015). Interestingly, PL and IL may play distinct roles during fear memory acquisition and retrieval but the underlying mechanism is poorly understood. One possibility is that the intrinsic membrane properties differ between these subregions. Thus, the current study was carried out to characterize the basic membrane properties of mPFC neurons in different layers and subregions. We found that pyramidal neurons in L2/3 were more hyperpolarized and less excitable than in L5. This was observed in both IL and PL and was associated with an enhanced h-current in L5 neurons. Within L2/3, IL neurons were more excitable than those in PL, which may be due to a lower spike threshold and higher input resistance in IL neurons. Within L5, the intrinsic excitability was comparable between neurons obtained in IL and PL. Thus, the heterogeneity in physiological properties of mPFC neurons may underlie the observed subregion-specific contribution of mPFC in cognitive function and emotional control, such as fear memory expression. NEW & NOTEWORTHY This is the first study to demonstrate that medial prefrontal cortical (mPFC) neurons are heterogeneous in both a layer- and a subregion-specific manner. Specifically, L5 neurons are more depolarized and more excitable than those neurons in L2/3, which is likely due to variations in h-current. Also, infralimbic neurons are more excitable than those of prelimbic neurons in layer 2/3, which may be due to differences in certain intrinsic properties, including input resistance and spike threshold.
Collapse
Affiliation(s)
- Chenghui Song
- Department of Psychology, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin
| | - James R Moyer
- Department of Psychology, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin
- Department of Biological Sciences, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin
| |
Collapse
|
13
|
Development of the emotional brain. Neurosci Lett 2017; 693:29-34. [PMID: 29197573 DOI: 10.1016/j.neulet.2017.11.055] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/01/2017] [Accepted: 11/26/2017] [Indexed: 11/22/2022]
Abstract
In this article, we highlight the importance of dynamic reorganization of neural circuitry during adolescence, as it relates to the development of emotion reactivity and regulation. We offer a neurobiological account of hierarchical, circuit-based changes that coincide with emotional development during this time. Recent imaging studies suggest that the development of the emotional brain involves a cascade of changes in limbic and cognitive control circuitry. These changes are particularly pronounced during adolescence, when the demand for self regulation across a variety of emotional and social situations may be greatest. We propose that hierarchical changes in circuitry, from subcortico-subcortical to subcortico-cortical to cortico-subcortical and finally to cortico-cortical, may underlie the gradual changes in emotion reactivity and regulation throughout adolescence into young adulthood, with changes at each level being necessary for the instantiation of changes at the next level.
Collapse
|
14
|
Doenni VM, Song CM, Hill MN, Pittman QJ. Early-life inflammation with LPS delays fear extinction in adult rodents. Brain Behav Immun 2017; 63:176-185. [PMID: 27888073 DOI: 10.1016/j.bbi.2016.11.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/10/2016] [Accepted: 11/21/2016] [Indexed: 10/20/2022] Open
Abstract
A large body of evidence has been brought forward connecting developmental immune activation to abnormal fear and anxiety levels. Anxiety disorders have extremely high lifetime prevalence, yet susceptibility factors that contribute to their emergence are poorly understood. In this research we investigated whether an inflammatory insult early in life can alter the response to fear conditioning in adulthood. Fear learning and extinction are important and adaptive behaviors, mediated largely by the amygdala and its interconnectivity with cortico-limbic circuits. Male and female rat pups were given LPS (100μg/kg i.p.) or saline at postnatal day 14; LPS activated cFos expression in the central amygdala 2.5h after exposure, but not the basal or lateral nuclei. When tested in adulthood, acquisition of an auditory cued or contextual learned fear memory was largely unaffected as was the extinction of fear to a conditioned context. However, we detected a deficit in auditory fear extinction in male and female rats that experienced early-life inflammation, such that there is a significant delay in fear extinction processes resulting in more sustained fear behaviors in response to a conditioned cue. This response was specific to extinction training and did not persist into extinction recall. The effect could not be explained by differences in pain threshold (unaltered) or in baseline anxiety, which was elevated in adolescent females only and unaltered in adolescent males and adult males and females. This research provides further evidence for the involvement of the immune system during development in the shaping of fear and anxiety related behaviors.
Collapse
Affiliation(s)
- V M Doenni
- Hotchkiss Brain Institute, Cumming School of Medicine, Mathison Center for Mental Health, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; Department of Neuroscience, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| | - C M Song
- Hotchkiss Brain Institute, Cumming School of Medicine, Mathison Center for Mental Health, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - M N Hill
- Hotchkiss Brain Institute, Cumming School of Medicine, Mathison Center for Mental Health, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Q J Pittman
- Hotchkiss Brain Institute, Cumming School of Medicine, Mathison Center for Mental Health, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
15
|
Postnatal development of neurotransmitter systems and their relevance to extinction of conditioned fear. Neurobiol Learn Mem 2017; 138:252-270. [DOI: 10.1016/j.nlm.2016.10.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/22/2016] [Accepted: 10/31/2016] [Indexed: 12/14/2022]
|
16
|
Neonatal Amygdala Functional Connectivity at Rest in Healthy and Preterm Infants and Early Internalizing Symptoms. J Am Acad Child Adolesc Psychiatry 2017; 56:157-166. [PMID: 28117062 PMCID: PMC5302247 DOI: 10.1016/j.jaac.2016.11.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 10/06/2016] [Accepted: 11/21/2016] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Alterations in the normal developmental trajectory of amygdala resting state functional connectivity (rs-FC) have been associated with atypical emotional processes and psychopathology. Little is known, however, regarding amygdala rs-FC at birth or its relevance to outcomes. This study examined amygdala rs-FC in healthy, full-term (FT) infants and in very preterm (VPT) infants, and tested whether variability of neonatal amygdala rs-FC predicted internalizing symptoms at age 2 years. METHOD Resting state fMRI data were obtained shortly after birth from 65 FT infants (gestational age [GA] ≥36 weeks) and 57 VPT infants (GA <30 weeks) at term equivalent. Voxelwise correlation analyses were performed using individual-specific bilateral amygdala regions of interest. Total internalizing symptoms and the behavioral inhibition, depression/withdrawal, general anxiety, and separation distress subdomains were assessed in a subset (n = 44) at age 2 years using the Infant Toddler Social Emotional Assessment. RESULTS In FT and VPT infants, the amygdala demonstrated positive correlations with subcortical and limbic structures and negative correlations with cortical regions, although magnitudes were decreased in VPT infants. Neonatal amygdala rs-FC predicted internalizing symptoms at age 2 years with regional specificity consistent with known pathophysiology in older populations: connectivity with the anterior insula related to depressive symptoms, with the dorsal anterior cingulate related to generalized anxiety, and with the medial prefrontal cortex related to behavioral inhibition. CONCLUSION Amygdala rs-FC is well established in neonates. Variability in regional neonatal amygdala rs-FC predicted internalizing symptoms at 2 years, suggesting that risk for internalizing symptoms may be established in neonatal amygdala functional connectivity patterns.
Collapse
|
17
|
Heller AS, Cohen AO, Dreyfuss MFW, Casey BJ. Changes in cortico-subcortical and subcortico-subcortical connectivity impact cognitive control to emotional cues across development. Soc Cogn Affect Neurosci 2016; 11:1910-1918. [PMID: 27445212 DOI: 10.1093/scan/nsw097] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/30/2016] [Accepted: 07/11/2016] [Indexed: 12/20/2022] Open
Abstract
The capacity to suppress inappropriate thoughts, emotions and actions in favor of appropriate ones shows marked changes throughout childhood and adolescence. Most research has focused on pre-frontal circuit development to explain these changes. Yet, subcortical circuitry involving the amygdala and ventral striatum (VS) has been shown to modulate cue-triggered motivated behaviors in rodents. The nature of the interaction between these two subcortical regions in humans is less well understood, especially during development when there appears to be heightened sensitivity to emotional cues. In the current study, we tested how task-based cortico-subcortical and subcortico-subcortical functional connectivity in 155 participants ages from 5 to 32 impacted cognitive control performance on an emotional go/nogo task. Functional connectivity between the amygdala and VS was inversely correlated with age and predicted cognitive control to emotional cues, when controlling for performance to neutral cues. In contrast, increased medial pre-frontal-amygdala connectivity was associated with better cognitive control to emotional cues and this cortical-subcortical connectivity mediated the association between amygdala-VS connectivity and emotional cognitive control. These findings suggest a dissociation in how subcortical-subcortical and cortical-subcortical connectivity impact cognitive control across development.
Collapse
Affiliation(s)
- Aaron S Heller
- Department of Psychiatry, Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College, 1300 York Avenue, P.O. Box 140, New York, NY 10065, USA .,Departments of Psychology and Psychiatry, University of Miami, P.O. Box 248185, Coral Gables, FL 33124-0751, USA
| | - Alexandra O Cohen
- Department of Psychiatry, Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College, 1300 York Avenue, P.O. Box 140, New York, NY 10065, USA
| | - Michael F W Dreyfuss
- Department of Psychiatry, Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College, 1300 York Avenue, P.O. Box 140, New York, NY 10065, USA
| | - B J Casey
- Department of Psychiatry, Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College, 1300 York Avenue, P.O. Box 140, New York, NY 10065, USA
| |
Collapse
|
18
|
Caballero A, Granberg R, Tseng KY. Mechanisms contributing to prefrontal cortex maturation during adolescence. Neurosci Biobehav Rev 2016; 70:4-12. [PMID: 27235076 DOI: 10.1016/j.neubiorev.2016.05.013] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 12/17/2022]
Abstract
Adolescence is defined as a transitional period between childhood and adulthood characterized by changes in social interaction and acquisition of mature cognitive abilities. These changes have been associated with the maturation of brain regions involved in the control of motivation, emotion, and cognition. Among these regions, the protracted development of the human prefrontal cortex during adolescence has been proposed to underlie the maturation of cognitive functions and the regulation of affective responses. Studies in animal models allow us to test the causal contribution of specific neural processes in the development of the prefrontal cortex and the acquisition of adult behavior. This review summarizes the cellular and synaptic mechanisms occurring in the rodent prefrontal cortex during adolescence as a model for understanding the changes underlying human prefrontal development.
Collapse
Affiliation(s)
- Adriana Caballero
- Department of Cellular & Molecular Pharmacology, The Chicago Medical School at Rosalind Franklin University of Medicine & Science, North Chicago, IL 60064, USA
| | - Rachel Granberg
- Department of Cellular & Molecular Pharmacology, The Chicago Medical School at Rosalind Franklin University of Medicine & Science, North Chicago, IL 60064, USA
| | - Kuei Y Tseng
- Department of Cellular & Molecular Pharmacology, The Chicago Medical School at Rosalind Franklin University of Medicine & Science, North Chicago, IL 60064, USA.
| |
Collapse
|
19
|
Sharma AN, Fries GR, Galvez JF, Valvassori SS, Soares JC, Carvalho AF, Quevedo J. Modeling mania in preclinical settings: A comprehensive review. Prog Neuropsychopharmacol Biol Psychiatry 2016; 66:22-34. [PMID: 26545487 PMCID: PMC4728043 DOI: 10.1016/j.pnpbp.2015.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/29/2015] [Accepted: 11/03/2015] [Indexed: 12/17/2022]
Abstract
The current pathophysiological understanding of mechanisms leading to onset and progression of bipolar manic episodes remains limited. At the same time, available animal models for mania have limited face, construct, and predictive validities. Additionally, these models fail to encompass recent pathophysiological frameworks of bipolar disorder (BD), e.g. neuroprogression. Therefore, there is a need to search for novel preclinical models for mania that could comprehensively address these limitations. Herein we review the history, validity, and caveats of currently available animal models for mania. We also review new genetic models for mania, namely knockout mice for genes involved in neurotransmission, synapse formation, and intracellular signaling pathways. Furthermore, we review recent trends in preclinical models for mania that may aid in the comprehension of mechanisms underlying the neuroprogressive and recurring nature of BD. In conclusion, the validity of animal models for mania remains limited. Nevertheless, novel (e.g. genetic) animal models as well as adaptation of existing paradigms hold promise.
Collapse
Affiliation(s)
- Ajaykumar N. Sharma
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Gabriel R. Fries
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Juan F. Galvez
- Department of Psychiatry, Pontificia Universidad Javeriana School of Medicine, Bogotá, Colombia
| | - Samira S. Valvassori
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Jair C. Soares
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - André F. Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Joao Quevedo
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil.
| |
Collapse
|
20
|
Deal AL, Erickson KJ, Shiers SI, Burman MA. Limbic system development underlies the emergence of classical fear conditioning during the third and fourth weeks of life in the rat. Behav Neurosci 2016; 130:212-30. [PMID: 26820587 DOI: 10.1037/bne0000130] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Classical fear conditioning creates an association between an aversive stimulus and a neutral stimulus. Although the requisite neural circuitry is well understood in mature organisms, the development of these circuits is less well studied. The current experiments examine the ontogeny of fear conditioning and relate it to neuronal activation assessed through immediate early gene (IEG) expression in the amygdala, hippocampus, perirhinal cortex, and hypothalamus of periweanling rats. Rat pups were fear conditioned, or not, during the third or fourth weeks of life. Neuronal activation was assessed by quantifying expression of FBJ osteosarcoma oncogene (FOS) using immunohistochemistry (IHC) in Experiment 1. Fos and early growth response gene-1 (EGR1) expression was assessed using qRT-PCR in Experiment 2. Behavioral data confirm that both auditory and contextual fear continue to emerge between PD 17 and 24. The IEG expression data are highly consistent with these behavioral results. IHC results demonstrate significantly more FOS protein expression in the basal amygdala of fear-conditioned PD 23 subjects compared to control subjects, but no significant difference at PD 17. qRT-PCR results suggest specific activation of the amygdala only in older subjects during auditory fear expression. A similar effect of age and conditioning status was also observed in the perirhinal cortex during both contextual and auditory fear expression. Overall, the development of fear conditioning occurring between the third and fourth weeks of life appears to be at least partly attributable to changes in activation of the amygdala and perirhinal cortex during fear conditioning or expression. (PsycINFO Database Record
Collapse
|
21
|
Ehrlich DE, Josselyn SA. Plasticity-related genes in brain development and amygdala-dependent learning. GENES BRAIN AND BEHAVIOR 2015; 15:125-43. [PMID: 26419764 DOI: 10.1111/gbb.12255] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/12/2015] [Accepted: 09/14/2015] [Indexed: 12/31/2022]
Abstract
Learning about motivationally important stimuli involves plasticity in the amygdala, a temporal lobe structure. Amygdala-dependent learning involves a growing number of plasticity-related signaling pathways also implicated in brain development, suggesting that learning-related signaling in juveniles may simultaneously influence development. Here, we review the pleiotropic functions in nervous system development and amygdala-dependent learning of a signaling pathway that includes brain-derived neurotrophic factor (BDNF), extracellular signaling-related kinases (ERKs) and cyclic AMP-response element binding protein (CREB). Using these canonical, plasticity-related genes as an example, we discuss the intersection of learning-related and developmental plasticity in the immature amygdala, when aversive and appetitive learning may influence the developmental trajectory of amygdala function. We propose that learning-dependent activation of BDNF, ERK and CREB signaling in the immature amygdala exaggerates and accelerates neural development, promoting amygdala excitability and environmental sensitivity later in life.
Collapse
Affiliation(s)
- D E Ehrlich
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA.,Department of Otolaryngology, NYU Langone School of Medicine, New York, NY, USA
| | - S A Josselyn
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Yang XD, Liao XM, Uribe-Mariño A, Liu R, Xie XM, Jia J, Su YA, Li JT, Schmidt MV, Wang XD, Si TM. Stress during a critical postnatal period induces region-specific structural abnormalities and dysfunction of the prefrontal cortex via CRF1. Neuropsychopharmacology 2015; 40:1203-15. [PMID: 25403725 PMCID: PMC4367464 DOI: 10.1038/npp.2014.304] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/07/2014] [Accepted: 11/13/2014] [Indexed: 02/02/2023]
Abstract
During the early postnatal period, environmental influences play a pivotal role in shaping the development of the neocortex, including the prefrontal cortex (PFC) that is crucial for working memory and goal-directed actions. Exposure to stressful experiences during this critical period may disrupt the development of PFC pyramidal neurons and impair the wiring and function of related neural circuits. However, the molecular mechanisms of the impact of early-life stress on PFC development and function are not well understood. In this study, we found that repeated stress exposure during the first postnatal week hampered dendritic development in layers II/III and V pyramidal neurons in the dorsal agranular cingulate cortex (ACd) and prelimbic cortex (PL) of neonatal mice. The deleterious effects of early postnatal stress on structural plasticity persisted to adulthood only in ACd layer V pyramidal neurons. Most importantly, concurrent blockade of corticotropin-releasing factor receptor 1 (CRF1) by systemic antalarmin administration (20 μg/g of body weight) during early-life stress exposure prevented stress-induced apical dendritic retraction and spine loss in ACd layer V neurons and impairments in PFC-dependent cognitive tasks. Moreover, the magnitude of dendritic regression, especially the shrinkage of apical branches, of ACd layer V neurons predicted the degree of cognitive deficits in stressed mice. Our data highlight the region-specific effects of early postnatal stress on the structural plasticity of prefrontal pyramidal neurons, and suggest a critical role of CRF1 in modulating early-life stress-induced prefrontal abnormalities.
Collapse
Affiliation(s)
- Xiao-Dun Yang
- Institute of Mental Health, Peking University, Beijing, China,Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Xue-Mei Liao
- Institute of Mental Health, Peking University, Beijing, China,Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Andrés Uribe-Mariño
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Rui Liu
- Institute of Mental Health, Peking University, Beijing, China,Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Xiao-Meng Xie
- Institute of Mental Health, Peking University, Beijing, China,Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Jiao Jia
- Department of Mental Health, Dayi Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Yun-Ai Su
- Institute of Mental Health, Peking University, Beijing, China,Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Ji-Tao Li
- Institute of Mental Health, Peking University, Beijing, China,Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Mathias V Schmidt
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Xiao-Dong Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China,Department of Neurobiology, Zhejiang University School of Medicine, 310058 Hangzhou, China, Tel: +86 571 88208506, Fax: +86 571 88208640, E-mail:
| | - Tian-Mei Si
- Institute of Mental Health, Peking University, Beijing, China,Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China,Institute of Mental Health, Peking University, No. 51, Hua Yuan Bei Road, 100191 Beijing, China, Tel: +86 10 82801948, Fax: +86 10 62352880, E-mail:
| |
Collapse
|
23
|
Vargas-Martínez F, Uvnäs-Moberg K, Petersson M, Olausson HA, Jiménez-Estrada I. Neuropeptides as neuroprotective agents: Oxytocin a forefront developmental player in the mammalian brain. Prog Neurobiol 2014; 123:37-78. [DOI: 10.1016/j.pneurobio.2014.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023]
|
24
|
Carabelli B, Delattre AM, Pudell C, Mori MA, Suchecki D, Machado RB, Venancio DP, Piazzetta SR, Hammerschmidt I, Zanata SM, Lima MMS, Zanoveli JM, Ferraz AC. The Antidepressant-Like Effect of Fish Oil: Possible Role of Ventral Hippocampal 5-HT1A Post-synaptic Receptor. Mol Neurobiol 2014; 52:206-15. [DOI: 10.1007/s12035-014-8849-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/31/2014] [Indexed: 01/05/2023]
|
25
|
A developmental shift from positive to negative connectivity in human amygdala-prefrontal circuitry. J Neurosci 2013; 33:4584-93. [PMID: 23467374 DOI: 10.1523/jneurosci.3446-12.2013] [Citation(s) in RCA: 487] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Recent human imaging and animal studies highlight the importance of frontoamygdala circuitry in the regulation of emotional behavior and its disruption in anxiety-related disorders. Although tracing studies have suggested changes in amygdala-cortical connectivity through the adolescent period in rodents, less is known about the reciprocal connections within this circuitry across human development, when these circuits are being fine-tuned and substantial changes in emotional control are observed. The present study examined developmental changes in amygdala-prefrontal circuitry across the ages of 4-22 years using task-based functional magnetic resonance imaging. Results suggest positive amygdala-prefrontal connectivity in early childhood that switches to negative functional connectivity during the transition to adolescence. Amygdala-medial prefrontal cortex functional connectivity was significantly positive (greater than zero) among participants younger than 10 years, whereas functional connectivity was significantly negative (less than zero) among participants 10 years and older, over and above the effect of amygdala reactivity. The developmental switch in functional connectivity was paralleled by a steady decline in amygdala reactivity. Moreover, the valence switch might explain age-related improvement in task performance and a developmentally normative decline in anxiety. Initial positive connectivity followed by a valence shift to negative connectivity provides a neurobiological basis for regulatory development and may present novel insight into a more general process of developing regulatory connections.
Collapse
|
26
|
Chareyron LJ, Lavenex PB, Lavenex P. Postnatal development of the amygdala: A stereological study in rats. J Comp Neurol 2012; 520:3745-63. [DOI: 10.1002/cne.23132] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Tottenham N. Human amygdala development in the absence of species-expected caregiving. Dev Psychobiol 2012; 54:598-611. [PMID: 22714586 DOI: 10.1002/dev.20531] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 01/07/2011] [Indexed: 11/10/2022]
Abstract
In altricial species, like the human, caregiver presence is necessary for typical emotional development. Children who have been raised in institutional care early in life experience caregiver deprivation and are at significantly elevated risk for emotional difficulties. The current manuscript examines the non-human and human literatures on amygdala development following caregiver deprivation and presents an argument that in the absence of the species-expected caregiver presence, human amygdala development exhibits rapid development and perhaps premature engagement that results in some of the emotional phenotypes observed following early institutional care.
Collapse
Affiliation(s)
- Nim Tottenham
- Department of Psychology, University of California, Los Angeles, PO Box 951563, Los Angeles, CA 90095, USA.
| |
Collapse
|
28
|
Amygdalar connections in the lesser hedgehog tenrec. Brain Struct Funct 2011; 217:141-64. [PMID: 21638204 DOI: 10.1007/s00429-011-0328-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 05/04/2011] [Indexed: 12/18/2022]
Abstract
The present study analyses the overall extrinsic connectivity of the non-olfactory amygdala (Ay) in the lesser hedgehog tenrec. The data were obtained from tracer injections into the lateral and intermediate portions of the Ay as well as several non-amygdalar brain regions. Both the solitary and the parabrachial nucleus receive descending projections from the central nucleus of the Ay, but only the parabrachial nucleus appears to project to the Ay. There is one prominent region in the ventromedial hypothalamus connected reciprocally with the medial and central Ay. Amygdalar afferents clearly arise from the dorsomedial thalamus, the subparafascicular nuclei and the medial geniculate complex (GM). Similar to other subprimate species, the latter projections originate in the dorsal and most caudal geniculate portions and terminate in the dorsolateral Ay. Unusual is the presence of amygdalo-projecting cells in the marginal geniculate zone and their virtual absence in the medial GM. As in other species, amygdalo-striatal projections mainly originate in the basolateral Ay and terminate predominantly in the ventral striatum. Given the poor differentiation of the tenrec's neocortex, there is a remarkable similarity with regard to the amygdalo-cortical connectivity between tenrec and rat, particularly as to prefrontal, limbic and somatosensorimotor areas as well as the rhinal cortex throughout its length. The tenrec's isocortex dorsomedial to the caudal rhinal cortex, on the other hand, may not be connected with the Ay. An absence of such connections is expected for primary auditory and visual fields, but it is unusual for their secondary fields.
Collapse
|
29
|
Kimoto K, Ono Y, Tachibana A, Hirano Y, Otsuka T, Ohno A, Yamaya K, Obata T, Onozuka M. Chewing-induced regional brain activity in edentulous patients who received mandibular implant-supported overdentures: A preliminary report. J Prosthodont Res 2011; 55:89-97. [DOI: 10.1016/j.jpor.2010.09.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 08/17/2010] [Accepted: 09/16/2010] [Indexed: 11/16/2022]
|
30
|
Wilber AA, Walker AG, Southwood CJ, Farrell MR, Lin GL, Rebec GV, Wellman CL. Chronic stress alters neural activity in medial prefrontal cortex during retrieval of extinction. Neuroscience 2010; 174:115-31. [PMID: 21044660 DOI: 10.1016/j.neuroscience.2010.10.070] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 10/10/2010] [Accepted: 10/25/2010] [Indexed: 11/30/2022]
Abstract
Chronic restraint stress produces morphological changes in medial prefrontal cortex and disrupts a prefrontally mediated behavior, retrieval of extinction. To assess potential physiological correlates of these alterations, we compared neural activity in infralimbic and prelimbic cortex of unstressed versus stressed rats during fear conditioning and extinction. After implantation of microwire bundles into infralimbic or prelimbic cortex, rats were either unstressed or stressed via placement in a plastic restrainer (3 h/day for 1 week). Rats then underwent fear conditioning and extinction while activity of neurons in infralimbic or prelimbic cortex was recorded. Percent freezing and neural activity were assessed during all phases of training. Chronic stress enhanced freezing during acquisition of conditioned fear, and altered both prelimbic and infralimbic activity during this phase. Stress did not alter initial extinction or conditioned stimulus (CS)-related activity during this phase. However, stress impaired retrieval of extinction assessed 24 h later, and this was accompanied by alterations in neuronal activity in both prelimbic and infralimbic cortex. In prelimbic cortex, unstressed rats showed decreased activity in response to CS presentation, whereas stressed rats showed no change. In infralimbic cortex, neurons in unstressed rats exhibited increased firing in response to the CS, whereas stressed rats showed no increase in infralimbic firing during the tone. Finally, CS-related firing in infralimbic but not prelimbic cortex was correlated with extinction retrieval. Thus, the stress-induced alteration of neuronal activity in infralimbic cortex may be responsible for the stress-induced deficit in retrieval of extinction.
Collapse
Affiliation(s)
- A A Wilber
- Department of Psychological and Brain Sciences and Program in Neuroscience, 1101 East 10th Street, Indiana University, Bloomington, IN 47405, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Raineki C, Pickenhagen A, Roth TL, Babstock DM, McLean JH, Harley CW, Lucion AB, Sullivan RM. The neurobiology of infant maternal odor learning. Braz J Med Biol Res 2010; 43:914-9. [PMID: 20835686 DOI: 10.1590/s0100-879x2010007500090] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 08/24/2010] [Indexed: 02/04/2023] Open
Abstract
Infant rats must learn to identify their mother's diet-dependent odor. Once learned, maternal odor controls pups' approach to the mother, their social behavior and nipple attachment. Here we present a review of the research from four different laboratories, which suggests that neural and behavioral responses to the natural maternal odor and neonatal learned odors are similar. Together, these data indicate that pups have a unique learning circuit relying on the olfactory bulb for neural plasticity and on the hyperfunctioning noradrenergic locus coeruleus flooding the olfactory bulb with norepinephrine to support the neural changes. Another important factor making this system unique is the inability of the amygdala to become incorporated into the infant learning circuit. Thus, infant rats appear to be primed in early life to learn odors that will evoke approach responses supporting attachment to the caregiver.
Collapse
Affiliation(s)
- C Raineki
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Schizophrenia is a disorder in which disturbances in the integration of emotion with cognition plays a central role and probably involves several different regions, including the dorsolateral prefrontal cortex, the rostral anterior cingulate cortex, the hippocampal formation, and basolateral amygdala (BLA). Recent brain imaging studies have reported changes in volume, whereas postmortem studies point to dysfunction of the GABA and glutamate systems in these regions. Microarray-based profiles indicate that complex changes in the expression of genes associated with synaptic transmission and ion channels are involved in GABA cell dysfunction in schizophrenics. Molecular abnormalities vary considerably on the basis of sector and layer, suggesting that the unique connectivity of intrinsic and extrinsic afferents may critical in regulating the activity of genes in specific subpopulations of GABA cells. Projections of the BLA may be of particular importance to the induction of abnormal circuitry in schizophrenia, as their ingrowth during late adolescence and early adulthood may help to 'trigger' the onset of illness in susceptible individuals. A preponderance of cellular and molecular abnormalities has been found in the stratum oriens (SO) of sectors CA3/2 in which BLA afferents provide a robust innervation. These observations have lead to the development of a rodent model for the study of abnormal circuitry in this disorder. For example, single-cell recordings in hippocampal slices exposed to increased activation from the BLA have shown decreases in GABA currents in pyramidal neurons in SO of CA3/2, but not CA1, and support the validity of this model. Overall, the postmortem studies of neural circuitry abnormalities in schizophrenia are beginning to implicate specific cellular, molecular, and electrophysiological mechanism in specific subtypes of cortical neurons defined by their afferent and efferent connectivity within key corticolimbic regions.
Collapse
Affiliation(s)
- Francine M Benes
- Program in Structural and Molecular Neuroscience, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
33
|
Parent MA, Wang L, Su J, Netoff T, Yuan LL. Identification of the hippocampal input to medial prefrontal cortex in vitro. Cereb Cortex 2009; 20:393-403. [PMID: 19515741 DOI: 10.1093/cercor/bhp108] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
To delineate the cellular mechanisms underlying the function of medial prefrontal cortex (mPFC) networks, it is critical to understand how synaptic inputs from various afferents are integrated and drive neuronal activity in this region. Using a newly developed slice preparation, we were able to identify a bundle of axons that contain extraneocortical fibers projecting to neurons in the prelimbic cortex. The anatomical origin and functional connectivity of the identified fiber bundle were probed by in vivo track tracing in combination with optic and whole-cell recordings of neurons in layers 2/3 and 5/6. We demonstrate that the identified bundle contains afferent fibers primarily from the ventral hippocampus but does not include contributions from the mediodorsal nucleus of the thalamus, amygdala, or lateral hypothalamus/medial forebrain bundle. Further, we provide evidence that activation of this fiber bundle results in patterned activity of neurons in the mPFC, which is distinct from that of laminar stimulation of either the deep layers 5/6 or the superficial layer 1. Evoked excitatory postsynaptic potentials are monosynaptic and glutamatergic and exhibit bidirectional changes in synaptic efficacy in response to physiologically relevant induction protocols. These data provide the necessary groundwork for the characterization of the hippocampal pathway projecting to the mPFC.
Collapse
Affiliation(s)
- Marc A Parent
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
34
|
|
35
|
Yates MA, Markham JA, Anderson SE, Morris JR, Juraska JM. Regional variability in age-related loss of neurons from the primary visual cortex and medial prefrontal cortex of male and female rats. Brain Res 2008; 1218:1-12. [PMID: 18513705 DOI: 10.1016/j.brainres.2008.04.055] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 11/16/2007] [Accepted: 04/23/2008] [Indexed: 11/17/2022]
Abstract
During aging, changes in the structure of the cerebral cortex of the rat have been seen, but potential changes in neuron number remain largely unexplored. In the present study, stereological methods were used to examine neuron number in the medial prefrontal cortex and primary visual cortex of young adult (85-90 days of age) and aged (19-22 months old) male and female rats in order to investigate any age-related losses. Possible sex differences in aging were also examined since sexually dimorphic patterns of aging have been seen in other measures. An age-related loss of neurons (18-20%), which was mirrored in volume losses, was found to occur in the primary visual cortex in both sexes in all layers except IV. Males, but not females, also lost neurons (15%) from layer V/VI of the ventral medial prefrontal cortex and showed an overall decrease in volume of this region. In contrast, dorsal medial prefrontal cortex showed no age-related changes. The effects of aging clearly differ among regions of the rat brain and to some degree, between the sexes.
Collapse
Affiliation(s)
- M A Yates
- Psychology Department, University of Illinois Urbana-Champaign, Champaign, IL 61820, USA
| | | | | | | | | |
Collapse
|
36
|
Cunningham MG, Bhattacharyya S, Benes FM. Increasing Interaction of amygdalar afferents with GABAergic interneurons between birth and adulthood. Cereb Cortex 2007; 18:1529-35. [PMID: 17971342 DOI: 10.1093/cercor/bhm183] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previous work in animal models has shown that projections from the basolateral amygdala (BLA) progressively infiltrate the medial prefrontal cortex (mPFC) from birth to adulthood, with the most dramatic sprouting occurring during the postweanling period. GABAergic (gamma-aminobutyric acidergic) interneurons in the human homolog of the rat mPFC have been implicated in the pathophysiology of schizophrenia, an illness with an onset that is delayed until late adolescence. Here we investigated the interaction of BLA fibers with mPFC GABAergic interneurons from postnatal day 6 (P6) to P120 using anterograde tracing and immunocytochemistry. We found a 3-fold increase in axosomatic and an 8-fold increase in axo-dendritic contacts in both layers II and V of the mPFC. Ultrastructural analysis using a colloidal gold immunolocalization demonstrated that the greatest proportion of BLA appositions were with GABA-negative spines (30.8%) and GABA-positive dendritic shafts (35.5%). Although GABA-negative interactions demonstrated well-defined axo-spinous synapses, membrane specializations could not be identified with confidence in GABA-positive elements. Our findings suggest that GABAergic interneurons are major targets for BLA fibers projecting to the mPFC. The establishment of this circuitry, largely during adolescence, may contribute to the integration of emotional responses with attentional and other cognitive processes mediated within this region during corticolimbic development.
Collapse
Affiliation(s)
- Miles G Cunningham
- Laboratory of Structural Neuroscience, McLean Hospital, Harvard Medical School, Boston, MA 02478, USA
| | | | | |
Collapse
|
37
|
Cunningham MG, Ames HM, Christensen MK, Sorensen JC. Zincergic innervation of medial prefrontal cortex by basolateral projection neurons. Neuroreport 2007; 18:531-5. [PMID: 17413652 DOI: 10.1097/wnr.0b013e328091c212] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The basolateral amygdaloid complex is a site of origin for zinc-containing pathways in the brain; it is also known for its massive innervation of the medial prefrontal cortex. The presence, and potential neuromodulatory role, of zinc within this fundamental corticolimbic circuit has not been described. For this study, basolateral neurons innervating the medial prefrontal cortex were retrogradely labeled with FluoroGold, and zinc-containing neurons were identified using autometallography to visualize zinc selenium precipitates. Upon quantification of single-labeled and double-labeled cells, 35% of basolateral neurons projecting to medial prefrontal cortex were found to also contain zinc. We conclude that zinc may act as a neuromodulator for a substantial proportion of basolateral-medial prefrontal cortical innervation, therefore implicating zinc in corticolimbic function as well as pathology.
Collapse
Affiliation(s)
- Miles G Cunningham
- Laboratory for Neural Reconstruction, McLean Hospital, Program in Neuroscience and Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | |
Collapse
|
38
|
Shionoya K, Moriceau S, Lunday L, Miner C, Roth TL, Sullivan RM. Development switch in neural circuitry underlying odor-malaise learning. Learn Mem 2006; 13:801-8. [PMID: 17101877 PMCID: PMC1783635 DOI: 10.1101/lm.316006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fetal and infant rats can learn to avoid odors paired with illness before development of brain areas supporting this learning in adults, suggesting an alternate learning circuit. Here we begin to document the transition from the infant to adult neural circuit underlying odor-malaise avoidance learning using LiCl (0.3 M; 1% of body weight, ip) and a 30-min peppermint-odor exposure. Conditioning groups included: Paired odor-LiCl, Paired odor-LiCl-Nursing, LiCl, and odor-saline. Results showed that Paired LiCl-odor conditioning induced a learned odor aversion in postnatal day (PN) 7, 12, and 23 pups. Odor-LiCl Paired Nursing induced a learned odor preference in PN7 and PN12 pups but blocked learning in PN23 pups. 14C 2-deoxyglucose (2-DG) autoradiography indicated enhanced olfactory bulb activity in PN7 and PN12 pups with odor preference and avoidance learning. The odor aversion in weanling aged (PN23) pups resulted in enhanced amygdala activity in Paired odor-LiCl pups, but not if they were nursing. Thus, the neural circuit supporting malaise-induced aversions changes over development, indicating that similar infant and adult-learned behaviors may have distinct neural circuits.
Collapse
Affiliation(s)
- Kiseko Shionoya
- Department of Zoology, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Stephanie Moriceau
- Department of Zoology, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Lauren Lunday
- Department of Zoology, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Cathrine Miner
- Department of Zoology, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Tania L. Roth
- Department of Zoology, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Regina M. Sullivan
- Department of Zoology, University of Oklahoma, Norman, Oklahoma 73019, USA
- Corresponding author.E-mail ; fax (405) 325-2699
| |
Collapse
|
39
|
Abstract
A strong attachment to the caregiver is critical for survival in altricial species, including humans. While some behavioral aspects of attachment have been characterized, its neurobiology has only recently received attention. Using a mammalian imprinting model, we are assessing the neural circuitry that enables infant rats to attach quickly to a caregiver, thus enhancing survival in the nest. Specifically, the hyper-functioning noradrenergic locus coeruleus (LC) enables pups to learn rapid, robust preference for the caregiver. Conversely, a hypo-functional amygdala appears to prevent the infant from learning aversions to the caregiver. Adult LC and amygdala functional emergence correlates with sensitive period termination. This study suggests the neonatal brain is not an immature version of the adult brain but is uniquely designed to optimize attachment to the caregiver. Although human attachment may not rely on identical circuitry, the work reviewed here suggests a new conceptual framework in which to explore human attachments, particularly attachments to abusive caregivers.
Collapse
|
40
|
BERRETTA SABINA. Local Release of GABAergic Inhibition in the Medial Prefrontal Cortex Induces Immediate-Early Genes in Selective Neuronal Subpopulations in the Amygdala. Ann N Y Acad Sci 2006. [DOI: 10.1111/j.1749-6632.2003.tb07112.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Abstract
The amygdala plays a crucial role in the orchestration and modulation of the organism response to aversive, stressful events. This response could be conceived as the result of two interdependent components. The first is represented by sets of visceral and motor responses aimed at helping the organism to cope with the present event. The second is the acquisition and modulation of memories relative to the stressful stimulus and its context. This latter component contributes to the instatement of conditioned stress responses that are essential to the capability of the organism to predict future exposures to similar stimuli in order to avoid them or counteract them effectively. In the amygdala, these two components become fully integrated. Massive networks link the amygdala to the hypothalamus, midbrain and brainstem. These networks convey visceral, humoral and nociceptive information to the amygdala and mediate its effects on the hypothalamic-pituitary-adrenal axis as well on autonomic and motor centers. On the other hand, interactions between the amygdala and interconnected cortical networks play a crucial role in acquisition, consolidation and extinction of learning relative to the stressful stimulus. Within the scope of this review, current evidence relative to the interaction between the amygdala and cortical networks will be considered in relationship to the integration of the conditioned response to stress.
Collapse
Affiliation(s)
- Sabina Berretta
- Harvard Medical School, Department of Psychiatry, 25 Shattuck Street, Boston, Massachusetts 02115, USA.
| |
Collapse
|
42
|
Sisk CL, Zehr JL. Pubertal hormones organize the adolescent brain and behavior. Front Neuroendocrinol 2005; 26:163-74. [PMID: 16309736 DOI: 10.1016/j.yfrne.2005.10.003] [Citation(s) in RCA: 693] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 10/19/2005] [Accepted: 10/19/2005] [Indexed: 11/22/2022]
Abstract
Maturation of the reproductive system during puberty results in elevated levels of gonadal steroid hormones. These hormones sculpt neural circuits during adolescence, a time of dramatic rewiring of the nervous system. Here, we review the evidence that steroid-dependent organization of the adolescent brain programs a variety of adult behaviors in animals and humans. Converging lines of evidence indicate that adolescence may be a sensitive period for steroid-dependent brain organization and that variation in the timing of interactions between the hormones of puberty and the adolescent brain leads to individual differences in adult behavior and risk of sex-biased psychopathologies.
Collapse
Affiliation(s)
- Cheryl L Sisk
- Neuroscience Program and Department of Psychology, Michigan State University, East Lansing, MI, USA.
| | | |
Collapse
|
43
|
Rosa MLNM, Guimarães FS, de Oliveira RMW, Padovan CM, Pearson RCA, Del Bel EA. Restraint stress induces beta-amyloid precursor protein mRNA expression in the rat basolateral amygdala. Brain Res Bull 2005; 65:69-75. [PMID: 15680546 DOI: 10.1016/j.brainresbull.2004.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Revised: 11/03/2004] [Accepted: 11/12/2004] [Indexed: 11/17/2022]
Abstract
Several studies have shown the involvement of beta-amyloid precursor proteins (APP) isoforms in physiological process like development of the central nervous system (CNS), functional roles in mature brain, and in pathological process like Alzheimer's disease, neuronal experimental damage, and stress, among others. However, the APP functions are still not clear. In the brain, APP(695) isoform is predominantly found in neurons while APP(751/770) isoforms are predominantly found in astroglial cells and have been associated to neurodegenerative processes. Acute or chronic stress in rats may trigger specific response mechanisms in several brain areas such as amygdala, hippocampus and cortex with the involvement of multiple neurotransmitters. Chronic stress may also induce neuronal injury in rat hippocampus. In situ hybridization (ISH) was used to investigate the expression of APP(695) and APP(751/770) mRNA in amygdala and hippocampus of male Wistar rats (n=4-6 per group) after acute (2 or 6h) or chronic (2h daily/7 days or 6h daily/21 days) restraint stress. Only the APP(695) mRNA expression was significantly increased in the basolateral amygdaloid nuclei following acute or chronic restraint. No APP isoform changed in hippocampus after any stress condition. These results suggest that restraint stress induces changes in gene expression of APP(695) in basolateral amygdaloid nucleus, an area related to stress response.
Collapse
|
44
|
Berretta S, Lange N, Bhattacharyya S, Sebro R, Garces J, Benes FM. Long-term effects of amygdala GABA receptor blockade on specific subpopulations of hippocampal interneurons. Hippocampus 2005; 14:876-94. [PMID: 15382257 DOI: 10.1002/hipo.20002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Growing evidence indicates that the amygdala modulates hippocampal functions. To test the hypothesis that this modulation may involve long-lasting effects on interneuronal networks in the hippocampus, changes in the expression of neurochemical markers specific for different interneuronal subpopulations were assessed in adult rats 96 h following acute infusion of low doses of the GABAA receptor antagonist picrotoxin into the amygdala. The numerical density (Nd) of somata showing immunoreactivity (IR) for parvalbumin (PVB) was decreased in dentate gyrus (DG) and the CA4-2 region, while that of calretinin (CR)-IR was decreased in DG and CA2. The Nd of calbindin D28k (CB)-IR somata was decreased in CA3-2. The densities of axon terminals arising from PVB-IR and cholecystokinin (CCK)-IR basket neurons were also altered, with those of CCK-IR terminals increased across all sectors, while PVB-IR terminals were decreased only in the CA region. Increases in CCK-IR terminals were paralleled by increases of terminals with IR for the 65-kD isoform of glutamate decarboxylase (GAD65). Mixed-effects statistical models, adapted specifically for these analyses, indicated that perturbations of amygdalar inputs to the hippocampus significantly alter the drive that hippocampal PVB-, CR-, and CB-IR neurons within the dentate gyrus/CA4 region exercise on CCK-IR terminals within the same region as well as in CA3-1. These results suggest that amygdalar modulation of specific neuronal subpopulations may induce lasting and far-reaching changes in the hippocampus during normal functioning, as well as in diseases involving a disruption of amygdalar activity. In particular, changes in specific interneuronal markers within selective hippocampal sectors detected in the present results are strikingly similar to those reported in this region in schizophrenia. These similarities suggest that, in this disease, a disruption of GABAergic transmission within the amygdala may play a significant role in the induction of abnormalities in the hippocampus.
Collapse
Affiliation(s)
- Sabina Berretta
- Program for Structural and Molecular Neuroscience, McLean Hospital, Belmont, Massachusetts 02478, USA
| | | | | | | | | | | |
Collapse
|
45
|
Diergaarde L, Gerrits MAFM, Brouwers JPW, van Ree JM. Early amygdala damage disrupts performance on medial prefrontal cortex-related tasks but spares spatial learning and memory in the rat. Neuroscience 2005; 130:581-90. [PMID: 15590142 DOI: 10.1016/j.neuroscience.2004.09.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2004] [Indexed: 11/25/2022]
Abstract
Recent studies have demonstrated that the postnatal development of connections between the basolateral amygdala (BLA) and the medial prefrontal cortex (mPFC) mature around postnatal days 13-15 (pd13-15), whereas these between the BLA and other structures such as the nucleus accumbens and the mediodorsal thalamus are completed by pd7. Accordingly, it is hypothesized that mPFC cytoarchitecture and hence its function may be specifically affected by neonatal (i.e. on pd7) but not later induced (i.e. on pd21) damage to the BLA. To test this hypothesis, rats received excitotoxic lesions to the BLA on either pd7 or pd21 and were subjected to two tests putatively sensitive to mPFC dysfunction, namely food hoarding and spontaneous alternation. In addition, rats were tested for spatial learning and memory, to determine any possible effects on hippocampal function. Consistent with the documented effects of mPFC lesions, pd7 damage to the BLA impaired spontaneous alternation and food hoarding performance, an effect that was not found in rats with BLA lesions induced on pd21. Spatial learning and memory, however, were not affected by the (neonatal) lesion procedure. Together, these results indicate that neonatal BLA damage affects species-specific sequential behavior and flexibility, which may be attributed to abnormal functioning of the mPFC.
Collapse
Affiliation(s)
- L Diergaarde
- Rudolf Magnus Institute of Neuroscience, Department of Pharmacology and Anatomy, University Medical Center Utrecht, P.O. Box 80040, 3508 TA Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
46
|
Diergaarde L, Spruijt BM, Wolterink-Donselaar IG, Gerrits MAFM, van Ree JM. Neonatal Amygdala Lesions Affect Appetitive Motivational and Consummatory Aspects of Social Behavior in the Rat. Behav Neurosci 2005; 119:814-20. [PMID: 15998203 DOI: 10.1037/0735-7044.119.3.814] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the present study, rats received amygdala lesions (AMX) on either Postnatal Day 7 (PD 7; immature brain) or PD 21 (almost mature brain), and adult social activity was studied after short-term isolation housing. Sham-operated rats demonstrated increased following and approaching behavior after 7 days of isolation compared with after 4 days of isolation, an effect that was absent in AMX-PD 7 and AMX-PD 21 rats. Furthermore, AMX-PD 7 rats, but not AMX-PD 21 rats, displayed a reduction in investigatory behavior after prolonged isolation. This indicates that in AMX-PD 21 rats, mainly appetitive motivational aspects of social behavior were affected, whereas in AMX-PD 7 rats both motivational and consummatory aspects were disturbed. Finally, the reported deficits in AMX-PD 7 rats may reflect neurodevelopmental deficits of structures connected with the amygdala.
Collapse
Affiliation(s)
- Leontien Diergaarde
- Rudolf Magnus Institute of Neuroscience, Department of Pharmacology and Anatomy, University Medical Center Utrecht, Utrecht, Netherlands.
| | | | | | | | | |
Collapse
|
47
|
Gonzalez LE, Quiñonez B, Rangel A, Pino S, Hernandez L. Tonic and phasic alteration in amygdala 5-HT, glutamate and GABA transmission after prefrontal cortex damage in rats. Brain Res 2004; 1005:154-63. [PMID: 15044074 DOI: 10.1016/j.brainres.2004.01.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2004] [Indexed: 11/19/2022]
Abstract
The relationship between the ventromedial prefrontal cortex and the amygdala during the presentation of an unconditioned fear stimulus was assessed. Rats underwent bilateral ibotenic acid or vehicle administration into the ventromedial prefrontal cortex. Five weeks later, the behavior as well as the neurochemical changes in the amygdala was evaluated before and after a brief cat presentation. Lesioned animal freezing behavior increased 10 times when compared to controls. In the right basolateral amygdala, basal concentrations of 5-HT, 5-HIAA, glutamate and serine were elevated but basal level of GABA was diminished in lesioned animals relative to controls. Sham but not lesioned animals increased 5-HT and decreased GABA and serine levels after cat presentation. Phasic changes in glutamate were not detected either in lesioned or shams but the difference in amygdala glutamate between lesioned and shams persisted after cat presentation. These data show that increased serotonin and glutamate tone and decreased gabaergic tone in the amygdala correlate to elevated fear and anxiety after prefrontal cortex ibotenic acid lesion. The lesion also seems to produce a failure of adaptive changes in neurotransmitter systems revealing lost of control of the ventromedial prefrontal cortex over the amygdala in frightening situations.
Collapse
Affiliation(s)
- Luis E Gonzalez
- Department of Physiology, School of Medicine, Los Andes University, Av. Don Tulio. Nivel calle 33, Merida 5101A, Apartado 109, Merida, Venezuela.
| | | | | | | | | |
Collapse
|
48
|
Abstract
Clinical data suggests a strong negative impact of traumatic attachments on adult mental illness, presumably through organizing brain development. To further explore this clinical issue, a mammalian model of imprinting was developed to characterize the neural basis of attachment in both healthy and traumatic attachments. The altricial neonatal rat must learn the mother's odor for nipple attachment, huddling, and orienting to the mother, all of which are required for pup survival. While it appears maladaptive to depend upon learning for attachment, the unique learning system of neonatal pups greatly enhances odor-preference learning and attachment while pups are confined to the nest. This heightened learning is expressed behaviorally as an enhanced ability to acquire learned odor preferences and a decreased ability to acquire learned odor aversions. Specifically, both odor-milk and odor-shock (0.5 mA) conditioning result in odor-preference acquisition. It appears as though there are at least three brain structures underlying the neonatal rat's sensitive period for heightened odor learning: (1) odor learning is encoded in the olfactory bulb; (2) the hyperfunctioning noradrenergic locus coeruleus (LC) appears to support preference conditioning through release of NE; and (3) the hypofunctioning amygdala appears to underlie pups' difficulty in learning odor aversions. Overall, this suggests that the CNS of altricial infants is specialized for optimizing attachments to their caregiver.
Collapse
Affiliation(s)
- Regina M Sullivan
- Zoology Department, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA.
| |
Collapse
|
49
|
Abstract
Clinical data suggests a strong negative impact of traumatic attachments on adult mental illness, presumably through organizing brain development. To further explore this clinical issue, a mammalian model of imprinting was developed to characterize the neural basis of attachment in both healthy and traumatic attachments. The altricial neonatal rat must learn the mother's odor for nipple attachment, huddling, and orienting to the mother, all of which are required for pup survival. While it appears maladaptive to depend upon learning for attachment, the unique learning system of neonatal pups greatly enhances odor-preference learning and attachment while pups are confined to the nest. This heightened learning is expressed behaviorally as an enhanced ability to acquire learned odor preferences and a decreased ability to acquire learned odor aversions. Specifically, both odor-milk and odor-shock (0.5 mA) conditioning result in odor-preference acquisition. It appears as though there are at least three brain structures underlying the neonatal rat's sensitive period for heightened odor learning: (1) odor learning is encoded in the olfactory bulb; (2) the hyperfunctioning noradrenergic locus coeruleus (LC) appears to support preference conditioning through release of NE; and (3) the hypofunctioning amygdala appears to underlie pups' difficulty in learning odor aversions. Overall, this suggests that the CNS of altricial infants is specialized for optimizing attachments to their caregiver.
Collapse
Affiliation(s)
- Regina M Sullivan
- Zoology Department, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA.
| |
Collapse
|
50
|
Machado-Vieira R, Kapczinski F, Soares JC. Perspectives for the development of animal models of bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28:209-24. [PMID: 14751416 DOI: 10.1016/j.pnpbp.2003.10.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bipolar disorder (BD) has been a particularly challenging illness for the development of adequate animal models for neurobiological studies. These difficulties are largely related to the peculiar clinical characteristics of this illness, with an intriguing alternation of mania, depression, euthymia, and mixed states. The etiology and brain mechanisms involved in this several mental illness remain unknown. Preclinical studies with animal models of mania or depression have been developed to evaluate the potential efficacy of new psychotropic drugs and generate information concerning the biochemical effects of these drugs on specific targets. These models try to mimic the behavioral components of mania and depression in human subjects and examine the pharmacological responses and mechanisms of action of potentially new therapeutic agents. The main limitation is that there is currently no model that would mimic mood cyclicity, which is a hallmark feature of BD. Thus, these models do not represent valid paradigms for the study of this illness, because they do not address key questions regarding cyclicity. In this review, we propose that new genetics approaches involving potential animal models of BD are a promising new area for further development.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Laboratory of Experimental Psychiatry, Hospital de Clínicas de Porto Alegre, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | | | | |
Collapse
|