1
|
Baker CE, Marta AG, Zimmerman ND, Korade Z, Mathy NW, Wilton D, Simeone T, Kochvar A, Kramer KL, Stessman HAF, Shibata A. CPT2 Deficiency Modeled in Zebrafish: Abnormal Neural Development, Electrical Activity, Behavior, and Schizophrenia-Related Gene Expression. Biomolecules 2024; 14:914. [PMID: 39199302 PMCID: PMC11353230 DOI: 10.3390/biom14080914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Carnitine palmitoyltransferase 2 (CPT2) is an inner mitochondrial membrane protein of the carnitine shuttle and is involved in the beta-oxidation of long chain fatty acids. Beta-oxidation provides an alternative pathway of energy production during early development and starvation. CPT2 deficiency is a genetic disorder that we recently showed can be associated with schizophrenia. We hypothesize that CPT2 deficiency during early brain development causes transcriptional, structural, and functional abnormalities that may contribute to a CNS environment that is susceptible to the emergence of schizophrenia. To investigate the effect of CPT2 deficiency on early vertebrate development and brain function, CPT2 was knocked down in a zebrafish model system. CPT2 knockdown resulted in abnormal lipid utilization and deposition, reduction in body size, and abnormal brain development. Axonal projections, neurotransmitter synthesis, electrical hyperactivity, and swimming behavior were disrupted in CPT2 knockdown zebrafish. RT-qPCR analyses showed significant increases in the expression of schizophrenia-associated genes in CPT2 knockdown compared to control zebrafish. Taken together, these data demonstrate that zebrafish are a useful model for studying the importance of beta-oxidation for early vertebrate development and brain function. This study also presents novel findings linking CPT2 deficiency to the regulation of schizophrenia and neurodegenerative disease-associated genes.
Collapse
Affiliation(s)
- Carly E. Baker
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, USA; (C.E.B.); (K.L.K.)
| | - Aaron G. Marta
- Department of Biology, Creighton University, Omaha, NE 68178, USA; (A.G.M.); (N.D.Z.); (N.W.M.); (D.W.); (A.K.)
| | - Nathan D. Zimmerman
- Department of Biology, Creighton University, Omaha, NE 68178, USA; (A.G.M.); (N.D.Z.); (N.W.M.); (D.W.); (A.K.)
| | - Zeljka Korade
- Department of Pediatrics, Department of Biochemistry & Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68178, USA;
| | - Nicholas W. Mathy
- Department of Biology, Creighton University, Omaha, NE 68178, USA; (A.G.M.); (N.D.Z.); (N.W.M.); (D.W.); (A.K.)
| | - Delaney Wilton
- Department of Biology, Creighton University, Omaha, NE 68178, USA; (A.G.M.); (N.D.Z.); (N.W.M.); (D.W.); (A.K.)
| | - Timothy Simeone
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE 68178, USA; (T.S.); (H.A.F.S.)
| | - Andrew Kochvar
- Department of Biology, Creighton University, Omaha, NE 68178, USA; (A.G.M.); (N.D.Z.); (N.W.M.); (D.W.); (A.K.)
| | - Kenneth L. Kramer
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, USA; (C.E.B.); (K.L.K.)
| | - Holly A. F. Stessman
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE 68178, USA; (T.S.); (H.A.F.S.)
| | - Annemarie Shibata
- Department of Biology, Creighton University, Omaha, NE 68178, USA; (A.G.M.); (N.D.Z.); (N.W.M.); (D.W.); (A.K.)
| |
Collapse
|
2
|
Natsaridis E, Perdikaris P, Fokos S, Dermon CR. Neuronal and Astroglial Localization of Glucocorticoid Receptor GRα in Adult Zebrafish Brain ( Danio rerio). Brain Sci 2023; 13:861. [PMID: 37371341 DOI: 10.3390/brainsci13060861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Glucocorticoid receptor α (GRα), a ligand-regulated transcription factor, mainly activated by cortisol in humans and fish, mediates neural allostatic and homeostatic functions induced by different types of acute and chronic stress, and systemic inflammation. Zebrafish GRα is suggested to have multiple transcriptional effects essential for normal development and survival, similarly to mammals. While sequence alignments of human, monkey, rat, and mouse GRs have shown many GRα isoforms, we questioned the protein expression profile of GRα in the adult zebrafish (Danio rerio) brain using an alternative model for stress-related neuropsychiatric research, by means of Western blot, immunohistochemistry and double immunofluorescence. Our results identified four main GRα-like immunoreactive bands (95 kDa, 60 kDa, 45 kDa and 35 kDa), with the 95 kDa protein showing highest expression in forebrain compared to midbrain and hindbrain. GRα showed a wide distribution throughout the antero-posterior zebrafish brain axis, with the most prominent labeling within the telencephalon, preoptic, hypothalamus, midbrain, brain stem, central grey, locus coeruleus and cerebellum. Double immunofluorescence revealed that GRα is coexpressed in TH+, β2-AR+ and vGLUT+ neurons, suggesting the potential of GRα influences on adrenergic and glutamatergic transmission. Moreover, GRα was co-localized in midline astroglial cells (GFAP+) within the telencephalon, hypothalamus and hindbrain. Interestingly, GRα expression was evident in the brain regions involved in adaptive stress responses, social behavior, and sensory and motor integration, supporting the evolutionarily conserved features of glucocorticoid receptors in the zebrafish brain.
Collapse
Affiliation(s)
- Evangelos Natsaridis
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Rion, 26504 Patras, Greece
| | - Panagiotis Perdikaris
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Rion, 26504 Patras, Greece
| | - Stefanos Fokos
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Rion, 26504 Patras, Greece
| | - Catherine R Dermon
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Rion, 26504 Patras, Greece
| |
Collapse
|
3
|
Korzh V. Development of the brain ventricular system from a comparative perspective. Clin Anat 2023; 36:320-334. [PMID: 36529666 DOI: 10.1002/ca.23994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The brain ventricular system (BVS) consists of brain ventricles and channels filled with cerebrospinal fluid (CSF). Disturbance of CSF flow has been linked to scoliosis and neurodegenerative diseases, including hydrocephalus. This could be due to defects of CSF production by the choroid plexus or impaired CSF movement over the ependyma dependent on motile cilia. Most vertebrates have horizontal body posture. They retain additional evolutionary innovations assisting CSF flow, such as the Reissner fiber. The causes of hydrocephalus have been studied using animal models including rodents (mice, rats, hamsters) and zebrafish. However, the horizontal body posture reduces the effect of gravity on CSF flow, which limits the use of mammalian models for scoliosis. In contrast, fish swim against the current and experience a forward-to-backward mechanical force akin to that caused by gravity in humans. This explains the increased popularity of the zebrafish model for studies of scoliosis. "Slit-ventricle" syndrome is another side of the spectrum of BVS anomalies. It develops because of insufficient inflation of the BVS. Recent advances in zebrafish functional genetics have revealed genes that could regulate the development of the BVS and CSF circulation. This review will describe the BVS of zebrafish, a typical teleost, and vertebrates in general, in comparative perspective. It will illustrate the usefulness of the zebrafish model for developmental studies of the choroid plexus (CP), CSF flow and the BVS.
Collapse
Affiliation(s)
- Vladimir Korzh
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
4
|
Orts-Del'Immagine A, Dhanasekar M, Lejeune FX, Roussel J, Wyart C. A norepinephrine-dependent glial calcium wave travels in the spinal cord upon acoustovestibular stimuli. Glia 2021; 70:491-507. [PMID: 34773299 DOI: 10.1002/glia.24118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023]
Abstract
Although calcium waves have been widely observed in glial cells, their occurrence in vivo during behavior remains less understood. Here, we investigated the recruitment of glial cells in the hindbrain and spinal cord after acousto-vestibular (AV) stimuli triggering escape responses using in vivo population calcium imaging in larval zebrafish. We observed that gap-junction-coupled spinal glial network exhibits large and homogenous calcium increases that rose in the rostral spinal cord and propagated bi-directionally toward the spinal cord and toward the hindbrain. Spinal glial calcium waves were driven by the recruitment of neurons and in particular, of noradrenergic signaling acting through α-adrenergic receptors. Noradrenergic neurons of the medulla-oblongata (NE-MO) were revealed in the vicinity of where the calcium wave started. NE-MO were recruited upon AV stimulation and sent dense axonal projections in the rostro-lateral spinal cord, suggesting these cells could trigger the glial wave to propagate down the spinal cord. Altogether, our results revealed that a simple AV stimulation is sufficient to recruit noradrenergic neurons in the brainstem that trigger in the rostral spinal cord two massive glial calcium waves, one traveling caudally in the spinal cord and another rostrally into the hindbrain.
Collapse
Affiliation(s)
| | | | | | | | - Claire Wyart
- Institut du cerveau, Sorbonne Université, Paris, France
| |
Collapse
|
5
|
Borgonovo J, Ahumada-Galleguillos P, Oñate-Ponce A, Allende-Castro C, Henny P, Concha ML. Organization of the Catecholaminergic System in the Short-Lived Fish Nothobranchius furzeri. Front Neuroanat 2021; 15:728720. [PMID: 34588961 PMCID: PMC8473916 DOI: 10.3389/fnana.2021.728720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/13/2021] [Indexed: 12/02/2022] Open
Abstract
The catecholaminergic system has received much attention based on its regulatory role in a wide range of brain functions and its relevance in aging and neurodegenerative diseases. In the present study, we analyzed the neuroanatomical distribution of catecholaminergic neurons based on tyrosine hydroxylase (TH) immunoreactivity in the brain of adult Nothobranchius furzeri. In the telencephalon, numerous TH+ neurons were observed in the olfactory bulbs and the ventral telencephalic area, arranged as strips extending through the rostrocaudal axis. We found the largest TH+ groups in the diencephalon at the preoptic region level, the ventral thalamus, the pretectal region, the posterior tuberculum, and the caudal hypothalamus. In the dorsal mesencephalic tegmentum, we identified a particular catecholaminergic group. The rostral rhombencephalon housed TH+ cells in the locus coeruleus and the medulla oblongata, distributing in a region dorsal to the inferior reticular formation, the vagal lobe, and the area postrema. Finally, scattered TH+ neurons were present in the ventral spinal cord and the retina. From a comparative perspective, the overall organization of catecholaminergic neurons is consistent with the general pattern reported for other teleosts. However, N. furzeri shows some particular features, including the presence of catecholaminergic cells in the midbrain. This work provides a detailed neuroanatomical map of the catecholaminergic system of N. furzeri, a powerful aging model, also contributing to the phylogenetic understanding of one of the most ancient neurochemical systems.
Collapse
Affiliation(s)
- Janina Borgonovo
- Laboratory of Experimental Ontogeny, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Patricio Ahumada-Galleguillos
- Laboratory of Experimental Ontogeny, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile
| | - Alejandro Oñate-Ponce
- Laboratory of Experimental Ontogeny, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Camilo Allende-Castro
- Laboratory of Experimental Ontogeny, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Pablo Henny
- Department of Anatomy and Interdisciplinary Center of Neurosciences, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Miguel L Concha
- Laboratory of Experimental Ontogeny, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| |
Collapse
|
6
|
James DM, Davidson EA, Yanes J, Moshiree B, Dallman JE. The Gut-Brain-Microbiome Axis and Its Link to Autism: Emerging Insights and the Potential of Zebrafish Models. Front Cell Dev Biol 2021; 9:662916. [PMID: 33937265 PMCID: PMC8081961 DOI: 10.3389/fcell.2021.662916] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/15/2021] [Indexed: 12/22/2022] Open
Abstract
Research involving autism spectrum disorder (ASD) most frequently focuses on its key diagnostic criteria: restricted interests and repetitive behaviors, altered sensory perception, and communication impairments. These core criteria, however, are often accompanied by numerous comorbidities, many of which result in severe negative impacts on quality of life, including seizures, epilepsy, sleep disturbance, hypotonia, and GI distress. While ASD is a clinically heterogeneous disorder, gastrointestinal (GI) distress is among the most prevalent co-occurring symptom complex, manifesting in upward of 70% of all individuals with ASD. Consistent with this high prevalence, over a dozen family foundations that represent genetically distinct, molecularly defined forms of ASD have identified GI symptoms as an understudied area with significant negative impacts on quality of life for both individuals and their caregivers. Moreover, GI symptoms are also correlated with more pronounced irritability, social withdrawal, stereotypy, hyperactivity, and sleep disturbances, suggesting that they may exacerbate the defining behavioral symptoms of ASD. Despite these facts (and to the detriment of the community), GI distress remains largely unaddressed by ASD research and is frequently regarded as a symptomatic outcome rather than a potential contributory factor to the behavioral symptoms. Allowing for examination of both ASD's impact on the central nervous system (CNS) as well as its impact on the GI tract and the associated microbiome, the zebrafish has recently emerged as a powerful tool to study ASD. This is in no small part due to the advantages zebrafish present as a model system: their precocious development, their small transparent larval form, and their parallels with humans in genetics and physiology. While ASD research centered on the CNS has leveraged these advantages, there has been a critical lack of GI-centric ASD research in zebrafish models, making a holistic view of the gut-brain-microbiome axis incomplete. Similarly, high-throughput ASD drug screens have recently been developed but primarily focus on CNS and behavioral impacts while potential GI impacts have not been investigated. In this review, we aim to explore the great promise of the zebrafish model for elucidating the roles of the gut-brain-microbiome axis in ASD.
Collapse
Affiliation(s)
- David M. James
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | | | - Julio Yanes
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - Baharak Moshiree
- Department of Gastroenterology and Hepatology, Atrium Health, Charlotte, NC, United States
| | - Julia E. Dallman
- Department of Biology, University of Miami, Coral Gables, FL, United States
| |
Collapse
|
7
|
The stress - Reproductive axis in fish: The involvement of functional neuroanatomical systems in the brain. J Chem Neuroanat 2020; 112:101904. [PMID: 33278567 DOI: 10.1016/j.jchemneu.2020.101904] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/23/2020] [Accepted: 11/30/2020] [Indexed: 01/26/2023]
Abstract
The neuroendocrine-stress axis of nonmammalian species is evolutionarily conserved, which makes them useful to serve as important model systems for elucidating the function of the vertebrate stress response. The involvement of hypothalamo-pituitary-adrenal (HPA) axis hormones in regulation of stress and reproduction is well described in different vertebrates. However, the stress response is a complex process, which appears to be controlled by a number of neurochemicals in association with hypothalamo-pituitary-interrenal (HPI) axis or independent of HPI axis in fish. In recent years, the participation of neurohormones other than HPI axis in regulation of stress and reproduction is gaining more attention. This review mainly focuses on the involvement of functional neuroanatomical systems such as the catecholaminergic neurotransmitter dopamine (DA) and opioid peptides in regulation of the stress-reproductive axis in fish. Occurrences of DA and opioid peptides like β-endorphin, enkephalins, dynorphin, and endomorphins have been demonstrated in fish brain, and diverse roles such as pain modulation, social behaviour and reproduction are implicated for these hormones. Neuroanatomical studies using retrograde tracing, immunohistochemical staining and lesion methods have demonstrated that the neurons originating in the preoptic region and the nucleus lateralis tuberis directly innervate the pituitary gland and, therefore, the hypophysiotrophic role of these hormones. In addition, heightened synthetic and secretory activity of the opioidergic and the dopaminergic neurons in hypothalamic areas of the brain during stress exposure suggest potentially intricate relationship with the stress-reproductive axis in fish. Current evidence in early vertebrates like fish provides a novel insight into the underlying neuroendocrine mechanisms as additional pathways along the stress-reproductive axis that seem to be conserved during the course of evolution.
Collapse
|
8
|
Gallman K, Fortune E, Rivera D, Soares D. Differences in behavior between surface and cave Astyanax mexicanus may be mediated by changes in catecholamine signaling. J Comp Neurol 2020; 528:2639-2653. [PMID: 32291742 DOI: 10.1002/cne.24923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 11/07/2022]
Abstract
Astyanax mexicanus is a teleost fish that is in the process of allopatric speciation. Ancestral Astyanax are found in surface rivers and derived blind forms are found in cave systems. Adaptation to life in nutrient poor caves without predation includes the evolution of enhanced food seeking behaviors and loss of defensive responses. These behavioral adaptations may be mediated by changes in catecholaminergic control systems in the brain. We examined the distribution of tyrosine hydroxylase, a conserved precursor for the synthesis of the catecholamines dopamine and noradrenaline, in the brains of surface and cave Astyanax using immunohistochemistry. We found differences in tyrosine hydroxylase staining in regions that are associated with nonvisual sensory perception, motor control, endocrine release, and attention. These differences included significant increases in the diameters of tyrosine hydroxylase immunoreactive soma in cave Astyanax in the olfactory bulb, basal telencephalon, preoptic nuclei, ventral thalamus, posterior tuberculum, and locus coeruleus. These increases in modulation by dopamine and noradrenaline likely indicate changes in behavioral control that underlie adaptations to the cave environment.
Collapse
Affiliation(s)
- Kathryn Gallman
- Biological Sciences, New Jersey Institute of Technology, New Jersey, USA
| | - Eric Fortune
- Biological Sciences, New Jersey Institute of Technology, New Jersey, USA
| | - Daihana Rivera
- Biological Sciences, New Jersey Institute of Technology, New Jersey, USA
| | - Daphne Soares
- Biological Sciences, New Jersey Institute of Technology, New Jersey, USA
| |
Collapse
|
9
|
Lozano D, Morona R, González A, López JM. Comparative Analysis of the Organization of the Catecholaminergic Systems in the Brain of Holostean Fishes (Actinopterygii/Neopterygii). BRAIN, BEHAVIOR AND EVOLUTION 2019; 93:206-235. [PMID: 31711060 DOI: 10.1159/000503769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/29/2019] [Indexed: 11/19/2022]
Abstract
Living holosteans, comprising 8 species of bowfins and gars, form a small monophyletic group of actinopterygian fishes, which are currently considered as the sister group to the enormously numerous teleosts and have largely been neglected in neuroanatomical studies. We have studied the catecholaminergic (CAergic) systems by means of antibodies against tyrosine hydroxylase (TH) and dopamine (DA) in the brain of representative species of the 3 genera included in the 2 orders of holostean fishes: Amia calva (Amiiformes) and Lepisosteus platyrhincus, Lepisosteus oculatus, and Atractosteus spatula (Lepisosteiformes). Different groups of TH/DA-immunoreactive (ir) cells were observed in the olfactory bulb, subpallium, and preoptic area of the telencephalon. Hypothalamic groups were labeled in the suprachiasmatic nucleus, tuberal (only in A. calva), retrotuberal, and retromamillary areas; specifically, the paraventricular organ showed only DA immunoreactivity. In the diencephalon, TH/DA-ir groups were detected in the prethalamus, posterior tubercle, and pretectum. In the caudal hindbrain, the solitary tract nucleus and area postrema presented TH/DA-ir cell groups, and also the spinal cord and the retina. Only in A. calva, particular CAergic cell groups were observed in the habenula, the mesencephalic tegmentum, and in the locus coeruleus. Following a neuromeric analysis, the comparison of these results with those obtained in other classes of fishes and tetrapods shows many common traits of CAergic systems shared by most vertebrates and in addition highlights unique features of actinopterygian fishes.
Collapse
Affiliation(s)
- Daniel Lozano
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain
| | - Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain,
| |
Collapse
|
10
|
Rosner E, Chagnaud BP, Wullimann MF. Serotonin systems in three socially communicating teleost species, the grunting toadfish (Allenbatrachus grunniens), a South American marine catfish (Ariopsis seemanni), and the upside-down catfish (Synodontis nigriventris). J Chem Neuroanat 2019; 104:101708. [PMID: 31705955 DOI: 10.1016/j.jchemneu.2019.101708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 11/20/2022]
Abstract
We investigated immunohistochemically the distribution of serotonergic cell populations in three teleost species (one toadfish, Allenbatrachus grunniens, and two catfishes, Synodontis nigriventris and Ariopsis seemanni). All three species exhibited large populations of 5-HT positive neurons in the paraventricular organ (PVO) and the dorsal (Hd) and caudal (Hc) periventricular hypothalamic zones, plus a smaller one in the periventricular pretectum, a few cells in the pineal stalk, and - only in catfishes - in the preoptic region. Furthermore, the rhombencephalic superior and inferior raphe always contained ample serotonergic cells. In each species, a neuronal mass extended into the hypothalamic lateral recess. Only in the toadfish, did this intraventricular structure contain serotonergic cells and arise from Hd, whereas in the catfishes it emerged from medially and represents the dorsal tuberal nucleus seen in other catfishes as well. Serotonergic cells in PVO, Hd and Hc were liquor-contacting. Those of the PVO extended into the midline area of the periventricular posterior tubercular nucleus in both catfishes. Dopaminergic, liquor-contacting neurons were additionally investigated using an antibody against tyrosine hydroxylase (TH) in S. nigriventris showing that TH was never co-localized with serotonin. Because TH antibodies are known to reveal mostly or only the TH1 enzyme, we hypothesize that th1-expressing dopamine cells (unlike th2-expressing ones) do not co-localize with serotonin. Since the three investigated species engage in social communication using swim bladder associated musculature, we investigated the serotonergic innervation of the hindbrain vocal or electromotor nuclei initiating the social signal. We found in all three species serotonergic fibers seemingly originating from close-by serotonergic neurons of inferior raphe or anterior spinal cord. Minor differences appear to be rather species-specific than dependent on the type of social communication.
Collapse
Affiliation(s)
- Elisabeth Rosner
- Department Biologie II, Ludwig-Maximilians-Universität München, Großhaderner Straße 2, 82152 Planegg-Martinsried, Germany; Graduate School of Systemic Neurosciences Munich, Großhaderner Straße 2, 82152 Planegg-Martinsried, Germany
| | - Boris P Chagnaud
- Institute for Biology, Karl-Franzens University Graz, Universitätsplatz 2, 8010 Graz, Austria.
| | - Mario F Wullimann
- Department Biologie II, Ludwig-Maximilians-Universität München, Großhaderner Straße 2, 82152 Planegg-Martinsried, Germany; Graduate School of Systemic Neurosciences Munich, Großhaderner Straße 2, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
11
|
Baeuml SW, Biechl D, Wullimann MF. Adult islet1 Expression Outlines Ventralized Derivatives Along Zebrafish Neuraxis. Front Neuroanat 2019; 13:19. [PMID: 30863287 PMCID: PMC6399416 DOI: 10.3389/fnana.2019.00019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/01/2019] [Indexed: 01/16/2023] Open
Abstract
Signals issued by dorsal roof and ventral floor plates, respectively, underlie the major patterning process of dorsalization and ventralization during vertebrate neural tube development. The ventrally produced morphogen Sonic hedgehog (SHH) is crucial for vertebrate hindbrain and spinal motor neuron development. One diagnostic gene for motor neurons is the LIM/homeodomain gene islet1, which has additional ventral expression domains extending into mid- and forebrain. In order to corroborate motor neuron development and, in particular, to improve on the identification of poorly documented zebrafish forebrain islet1 populations, we studied adult brains of transgenic islet1-GFP zebrafish (3 and 6 months). This molecular neuroanatomical analysis was supported by immunostaining these brains for tyrosine hydroxylase (TH) or choline acetyltransferase (ChAT), respectively, revealing zebrafish catecholaminergic and cholinergic neurons. The present analysis of ChAT and islet1-GFP label confirms ongoing adult expression of islet1 in zebrafish (basal plate) midbrain, hindbrain, and spinal motor neurons. In contrast, non-motor cholinergic systems lack islet1 expression. Additional presumed basal plate islet1 positive systems are described in detail, aided by TH staining which is particularly informative in the diencephalon. Finally, alar plate zebrafish forebrain systems with islet1 expression are described (i.e., thalamus, preoptic region, and subpallium). We conclude that adult zebrafish continue to express islet1 in the same brain systems as in the larva. Further, pending functional confirmation we hypothesize that the larval expression of sonic hedgehog (shh) might causally underlie much of adult islet1 expression because it explains findings beyond ventrally located systems, for example regarding shh expression in the zona limitans intrathalamica and correlated islet1-GFP expression in the thalamus.
Collapse
Affiliation(s)
- Stephan W Baeuml
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniela Biechl
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mario F Wullimann
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
12
|
López JM, Lozano D, Morona R, González A. Organization of the catecholaminergic systems in two basal actinopterygian fishes, Polypterus senegalus
and Erpetoichthys calabaricus
(Actinopterygii: Cladistia). J Comp Neurol 2018; 527:437-461. [DOI: 10.1002/cne.24548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/04/2018] [Accepted: 09/23/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Jesús M. López
- Department of Cell Biology, Faculty of Biology; University Complutense of Madrid; Madrid Spain
| | - Daniel Lozano
- Department of Cell Biology, Faculty of Biology; University Complutense of Madrid; Madrid Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology; University Complutense of Madrid; Madrid Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology; University Complutense of Madrid; Madrid Spain
| |
Collapse
|
13
|
Mahabir S, Chatterjee D, Misquitta K, Chatterjee D, Gerlai R. Lasting changes induced by mild alcohol exposure during embryonic development in BDNF, NCAM and synaptophysin-positive neurons quantified in adult zebrafish. Eur J Neurosci 2018; 47:1457-1473. [PMID: 29846983 DOI: 10.1111/ejn.13975] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 01/17/2023]
Abstract
Fetal alcohol spectrum disorder is one of the leading causes of mental health issues worldwide. Analysis of zebrafish exposed to alcohol during embryonic development confirmed that even low concentrations of alcohol for a short period of time may have lasting behavioral consequences at the adult or old age. The mechanism of this alteration has not been studied. Here, we immersed zebrafish embryos into 1% alcohol solution (vol/vol%) at 24 hr post-fertilization (hpf) for 2 hr and analyzed potential changes using immunohistochemistry. We measured the number of BDNF (brain-derived neurotrophic factor) and NCAM (neuronal cell adhesion molecule)-positive neurons and the intensity of synaptophysin staining in eight brain regions: lateral zone of the dorsal telencephalic area, medial zone of the dorsal telencephalic area, dorsal nucleus of the ventral telencephalic area, ventral nucleus of the ventral telencephalic area, parvocellular preoptic nucleus, ventral habenular nucleus, corpus cerebella and inferior reticular formation. We found embryonic alcohol exposure to significantly reduce the number of BDNF- and NCAM-positive cells in all brain areas studied as compared to control. We also found alcohol to significantly reduce the intensity of synaptophysin staining in all brain areas except the cerebellum and preoptic area. These neuroanatomical changes correlated with previously demonstrated reduction of social behavior in embryonic alcohol-exposed zebrafish, raising the possibility of a causal link. Given the evolutionary conservation across fish and mammals, we emphasize the implication of our current study for human health: even small amount of alcohol consumption may be unsafe during pregnancy.
Collapse
Affiliation(s)
- Samantha Mahabir
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Dipashree Chatterjee
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Keith Misquitta
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Diptendu Chatterjee
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Robert Gerlai
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada.,Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
14
|
Korzh V. Development of brain ventricular system. Cell Mol Life Sci 2018; 75:375-383. [PMID: 28780589 PMCID: PMC5765195 DOI: 10.1007/s00018-017-2605-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/20/2017] [Accepted: 08/02/2017] [Indexed: 12/15/2022]
Abstract
The brain ventricular system (BVS) consists of brain ventricles and channels connecting ventricles filled with cerebrospinal fluid (CSF). The disturbance of CSF flow has been linked to neurodegenerative disease including hydrocephalus, which manifests itself as an abnormal expansion of BVS. This relatively common developmental disorder has been observed in human and domesticated animals and linked to functional deficiency of various cells lineages facing BVS, including the choroid plexus or ependymal cells that generate CSF or the ciliated cells that cilia beating generates CSF flow. To understand the underlying causes of hydrocephalus, several animal models were developed, including rodents (mice, rat, and hamster) and zebrafish. At another side of a spectrum of BVS anomalies there is the "slit-ventricle" syndrome, which develops due to insufficient inflation of BVS. Recent advances in functional genetics of zebrafish brought to light novel genetic elements involved in development of BVS and circulation of CSF. This review aims to reveal common elements of morphologically different BVS of zebrafish as a typical representative of teleosts and other vertebrates and illustrate useful features of the zebrafish model for studies of BVS. Along this line, recent analyses of the two novel zebrafish mutants affecting different subunits of the potassium voltage-gated channels allowed to emphasize an important functional convergence of the evolutionarily conserved elements of protein transport essential for BVS development, which were revealed by the zebrafish and mouse studies.
Collapse
Affiliation(s)
- Vladimir Korzh
- International Institute of Molecular and Cell Biology, Warsaw, Poland.
| |
Collapse
|
15
|
García-Lecea M, Gasanov E, Jedrychowska J, Kondrychyn I, Teh C, You MS, Korzh V. Development of Circumventricular Organs in the Mirror of Zebrafish Enhancer-Trap Transgenics. Front Neuroanat 2017; 11:114. [PMID: 29375325 PMCID: PMC5770639 DOI: 10.3389/fnana.2017.00114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/22/2017] [Indexed: 11/18/2022] Open
Abstract
The circumventricular organs (CVOs) are small structures lining the cavities of brain ventricular system. They are associated with the semitransparent regions of the blood-brain barrier (BBB). Hence it is thought that CVOs mediate biochemical signaling and cell exchange between the brain and systemic blood. Their classification is still controversial and development not fully understood largely due to an absence of tissue-specific molecular markers. In a search for molecular determinants of CVOs we studied the green fluorescent protein (GFP) expression pattern in several zebrafish enhancer trap transgenics including Gateways (ET33-E20) that has been instrumental in defining the development of choroid plexus. In Gateways the GFP is expressed in regions of the developing brain outside the choroid plexus, which remain to be characterized. The neuroanatomical and histological analysis suggested that some previously unassigned domains of GFP expression may correspond to at least six other CVOs–the organum vasculosum laminae terminalis (OVLT), subfornical organ (SFO), paraventricular organ (PVO), pineal (epiphysis), area postrema (AP) and median eminence (ME). Two other CVOs, parapineal and subcommissural organ (SCO) were detected in other enhancer-trap transgenics. Hence enhancer-trap transgenic lines could be instrumental for developmental studies of CVOs in zebrafish and understanding of the molecular mechanism of disease such a hydrocephalus in human. Their future analysis may shed light on general and specific molecular mechanisms that regulate development of CVOs.
Collapse
Affiliation(s)
- Marta García-Lecea
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Evgeny Gasanov
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Justyna Jedrychowska
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Igor Kondrychyn
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,RIKEN Center for Developmental Biology, Kobe, Japan
| | - Cathleen Teh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - May-Su You
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Vladimir Korzh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
16
|
López JM, González A. Organization of the catecholaminergic systems in the brain of lungfishes, the closest living relatives of terrestrial vertebrates. J Comp Neurol 2017. [DOI: 10.1002/cne.24266] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jesús M. López
- Department of Cell Biology; Faculty of Biology, University Complutense of Madrid; Madrid Spain
| | - Agustín González
- Department of Cell Biology; Faculty of Biology, University Complutense of Madrid; Madrid Spain
| |
Collapse
|
17
|
Perelmuter JT, Forlano PM. Connectivity and ultrastructure of dopaminergic innervation of the inner ear and auditory efferent system of a vocal fish. J Comp Neurol 2017; 525:2090-2108. [PMID: 28118481 DOI: 10.1002/cne.24177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 12/23/2022]
Abstract
Dopamine (DA) is a conserved modulator of vertebrate neural circuitry, yet our knowledge of its role in peripheral auditory processing is limited to mammals. The present study combines immunohistochemistry, neural tract tracing, and electron microscopy to investigate the origin and synaptic characteristics of DA fibers innervating the inner ear and the hindbrain auditory efferent nucleus in the plainfin midshipman, a vocal fish that relies upon the detection of mate calls for reproductive success. We identify a DA cell group in the diencephalon as a common source for innervation of both the hindbrain auditory efferent nucleus and saccule, the main hearing endorgan of the inner ear. We show that DA terminals in the saccule contain vesicles but transmitter release appears paracrine in nature, due to the apparent lack of synaptic contacts. In contrast, in the hindbrain, DA terminals form traditional synaptic contacts with auditory efferent neuronal cell bodies and dendrites, as well as unlabeled axon terminals, which, in turn, form inhibitory-like synapses on auditory efferent somata. Our results suggest a distinct functional role for brain-derived DA in the direct and indirect modulation of the peripheral auditory system of a vocal nonmammalian vertebrate.
Collapse
Affiliation(s)
- Jonathan T Perelmuter
- Program in Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, New York, New York, 10016.,Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, 11210
| | - Paul M Forlano
- Program in Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, New York, New York, 10016.,Program in Ecology, Evolutionary Biology and Behavior, The Graduate Center, City University of New York, New York, New York, 10016.,Program in Neuroscience, The Graduate Center, City University of New York, New York, New York, 10016.,Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, 11210.,Aquatic Research and Environmental Assessment Center, Brooklyn College, Brooklyn NY, New York, 11210
| |
Collapse
|
18
|
Du Y, Guo Q, Shan M, Wu Y, Huang S, Zhao H, Hong H, Yang M, Yang X, Ren L, Peng J, Sun J, Zhou H, Li S, Su B. Spatial and Temporal Distribution of Dopaminergic Neurons during Development in Zebrafish. Front Neuroanat 2016; 10:115. [PMID: 27965546 PMCID: PMC5124710 DOI: 10.3389/fnana.2016.00115] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/15/2016] [Indexed: 11/13/2022] Open
Abstract
As one of the model organisms of Parkinson’s disease (PD) research, the zebrafish has its advantages, such as the 87% homology with human genome and transparent embryos which make it possible to observe the development of dopaminergic neurons in real time. However, there is no midbrain dopaminergic system in zebrafish when compared with mammals, and the location and projection of the dopaminergic neurons are seldom reported. In this study, Vmat2:GFP transgenic zebrafish was used to observe the development and distribution of dopaminergic neurons in real time. We found that diencephalons (DC) 2 and DC4 neuronal populations were detected at 24 h post fertilization (hpf). All DC neuronal populations as well as those in locus coeruleus (LC), raphe nuclei (Ra) and telencephalon were detected at 48 hpf. Axons were detected at 72 hpf. At 96 hpf, all the neuronal populations were detected. For the first time we reported axons from the posterior tubercle (PT) of ventral DC projected to subpallium in vivo. However, when compared with results from whole mount tyrosine hydroxylase (TH) immunofluorescence staining in wild type (WT) zebrafish, we found that DC2 and DC4 neuronal populations were mainly dopaminergic, while DC1, DC3, DC5 and DC6 might not. Neurons in pretectum (Pr) and telencephalon were mainly dopaminergic, while neurons in LC and Ra might be noradrenergic. Our study makes some corrections and modifications on the development, localization and distribution of zebrafish dopaminergic neurons, and provides some experimental evidences for the construction of the zebrafish PD model.
Collapse
Affiliation(s)
- Yuchen Du
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Department of Pathology, Chengdu Medical College Chengdu, China
| | - Qiang Guo
- Chongqing Key Laboratory of Neurobiology, Department of Neurobiology, Third Military Medical University Chongqing, China
| | - Minghui Shan
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Department of Pathology, Chengdu Medical College Chengdu, China
| | - Yongmei Wu
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Department of Pathology, Chengdu Medical College Chengdu, China
| | - Sizhou Huang
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Department of Pathology, Chengdu Medical College Chengdu, China
| | - Haixia Zhao
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Department of Pathology, Chengdu Medical College Chengdu, China
| | - Huarong Hong
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Department of Pathology, Chengdu Medical College Chengdu, China
| | - Ming Yang
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Department of Pathology, Chengdu Medical College Chengdu, China
| | - Xi Yang
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Department of Pathology, Chengdu Medical College Chengdu, China
| | - Liyi Ren
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Department of Pathology, Chengdu Medical College Chengdu, China
| | - Jiali Peng
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Department of Pathology, Chengdu Medical College Chengdu, China
| | - Jing Sun
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Department of Pathology, Chengdu Medical College Chengdu, China
| | - Hongli Zhou
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Department of Pathology, Chengdu Medical College Chengdu, China
| | - Shurong Li
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Department of Pathology, Chengdu Medical CollegeChengdu, China; Chengdu Medical College Infertility HospitalChengdu, China
| | - Bingyin Su
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Department of Pathology, Chengdu Medical CollegeChengdu, China; Chengdu Medical College Infertility HospitalChengdu, China
| |
Collapse
|
19
|
Horzmann KA, Freeman JL. Zebrafish Get Connected: Investigating Neurotransmission Targets and Alterations in Chemical Toxicity. TOXICS 2016; 4:19. [PMID: 28730152 PMCID: PMC5515482 DOI: 10.3390/toxics4030019] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/09/2016] [Indexed: 12/17/2022]
Abstract
Neurotransmission is the basis of neuronal communication and is critical for normal brain development, behavior, learning, and memory. Exposure to drugs and chemicals can alter neurotransmission, often through unknown pathways and mechanisms. The zebrafish (Danio rerio) model system is increasingly being used to study the brain and chemical neurotoxicity. In this review, the major neurotransmitter systems, including glutamate, GABA, dopamine, norepinephrine, serotonin, acetylcholine, histamine, and glutamate are surveyed and pathways of synthesis, transport, metabolism, and action are examined. Differences between human and zebrafish neurochemical pathways are highlighted. We also review techniques for evaluating neurological function, including the measurement of neurotransmitter levels, assessment of gene expression through transcriptomic analysis, and the recording of neurobehavior. Finally examples of chemical toxicity studies evaluating alterations in neurotransmitter systems in the zebrafish model are reviewed.
Collapse
Affiliation(s)
| | - Jennifer L. Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA;
| |
Collapse
|
20
|
Yáñez J, Souto Y, Piñeiro L, Folgueira M, Anadón R. Gustatory and general visceral centers and their connections in the brain of adult zebrafish: a carbocyanine dye tract-tracing study. J Comp Neurol 2016; 525:333-362. [PMID: 27343143 DOI: 10.1002/cne.24068] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 02/04/2023]
Abstract
The central connections of the gustatory/general visceral system of the adult zebrafish (Danio rerio) were examined by means of carbocyanine dye tracing. Main primary gustatory centers (facial and vagal lobes) received sensory projections from the facial and vagal nerves, respectively. The vagal nerve also projects to the commissural nucleus of Cajal, a general visceral sensory center. These primary centers mainly project on a prominent secondary gustatory and general visceral nucleus (SGN/V) located in the isthmic region. Secondary projections on the SGN/V were topographically organized, those of the facial lobe mainly ending medially to those of the vagal lobe, and those from the commissural nucleus ventrolaterally. Descending facial lobe projections to the medial funicular nucleus were also noted. Ascending fibers originating from the SGN/V mainly projected to the posterior thalamic nucleus and the lateral hypothalamus (lateral torus, lateral recess nucleus, hypothalamic inferior lobe diffuse nucleus) and an intermediate cell- and fiber-rich region termed here the tertiary gustatory nucleus proper, but not to a nucleus formerly considered as the zebrafish tertiary gustatory nucleus. The posterior thalamic nucleus, tertiary gustatory nucleus proper, and nucleus of the lateral recess gave rise to descending projections to the SGN/V and the vagal lobe. The connectivity between diencephalic gustatory centers and the telencephalon was also investigated. The present results showed that the gustatory connections of the adult zebrafish are rather similar to those reported in other cyprinids, excepting the tertiary gustatory nucleus. Similarities between the gustatory systems of zebrafish and other fishes are also discussed. J. Comp. Neurol. 525:333-362, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Julián Yáñez
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, A Coruña, Spain.,Neurover Group, Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña, A Coruña, Spain
| | - Yara Souto
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, A Coruña, Spain
| | - Laura Piñeiro
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, A Coruña, Spain
| | - Mónica Folgueira
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, A Coruña, Spain.,Neurover Group, Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña, A Coruña, Spain
| | - Ramón Anadón
- Department of Cell Biology and Ecology, Faculty of Biology, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
21
|
Mersereau EJ, Boyle CA, Poitra S, Espinoza A, Seiler J, Longie R, Delvo L, Szarkowski M, Maliske J, Chalmers S, Darland DC, Darland T. Longitudinal Effects of Embryonic Exposure to Cocaine on Morphology, Cardiovascular Physiology, and Behavior in Zebrafish. Int J Mol Sci 2016; 17:ijms17060847. [PMID: 27258254 PMCID: PMC4926381 DOI: 10.3390/ijms17060847] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/30/2016] [Accepted: 05/25/2016] [Indexed: 01/05/2023] Open
Abstract
A sizeable portion of the societal drain from cocaine abuse results from the complications of in utero drug exposure. Because of challenges in using humans and mammalian model organisms as test subjects, much debate remains about the impact of in utero cocaine exposure. Zebrafish offer a number of advantages as a model in longitudinal toxicology studies and are quite sensitive physiologically and behaviorally to cocaine. In this study, we have used zebrafish to model the effects of embryonic pre-exposure to cocaine on development and on subsequent cardiovascular physiology and cocaine-induced conditioned place preference (CPP) in longitudinal adults. Larval fish showed a progressive decrease in telencephalic size with increased doses of cocaine. These treated larvae also showed a dose dependent response in heart rate that persisted 24 h after drug cessation. Embryonic cocaine exposure had little effect on overall health of longitudinal adults, but subtle changes in cardiovascular physiology were seen including decreased sensitivity to isoproterenol and increased sensitivity to cocaine. These longitudinal adult fish also showed an embryonic dose-dependent change in CPP behavior, suggesting an increased sensitivity. These studies clearly show that pre-exposure during embryonic development affects subsequent cocaine sensitivity in longitudinal adults.
Collapse
Affiliation(s)
- Eric J Mersereau
- Biology Department, University of North Dakota, 10 Cornell Street, Grand Forks, ND 58202, USA.
| | - Cody A Boyle
- Biology Department, University of North Dakota, 10 Cornell Street, Grand Forks, ND 58202, USA.
| | - Shelby Poitra
- Biology Department, University of North Dakota, 10 Cornell Street, Grand Forks, ND 58202, USA.
| | - Ana Espinoza
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.
| | - Joclyn Seiler
- Biology Department, University of North Dakota, 10 Cornell Street, Grand Forks, ND 58202, USA.
| | - Robert Longie
- Biology Department, University of North Dakota, 10 Cornell Street, Grand Forks, ND 58202, USA.
| | - Lisa Delvo
- Biology Department, University of North Dakota, 10 Cornell Street, Grand Forks, ND 58202, USA.
| | - Megan Szarkowski
- Biology Department, University of North Dakota, 10 Cornell Street, Grand Forks, ND 58202, USA.
| | - Joshua Maliske
- Biology Department, University of North Dakota, 10 Cornell Street, Grand Forks, ND 58202, USA.
| | - Sarah Chalmers
- Biology Department, University of North Dakota, 10 Cornell Street, Grand Forks, ND 58202, USA.
| | - Diane C Darland
- Biology Department, University of North Dakota, 10 Cornell Street, Grand Forks, ND 58202, USA.
| | - Tristan Darland
- Biology Department, University of North Dakota, 10 Cornell Street, Grand Forks, ND 58202, USA.
| |
Collapse
|
22
|
Ghahramani ZN, Timothy M, Kaur G, Gorbonosov M, Chernenko A, Forlano PM. Catecholaminergic Fiber Innervation of the Vocal Motor System Is Intrasexually Dimorphic in a Teleost with Alternative Reproductive Tactics. BRAIN, BEHAVIOR AND EVOLUTION 2015; 86:131-44. [PMID: 26355302 DOI: 10.1159/000438720] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/13/2015] [Indexed: 01/10/2023]
Abstract
Catecholamines, which include the neurotransmitters dopamine and noradrenaline, are known modulators of sensorimotor function, reproduction, and sexually motivated behaviors across vertebrates, including vocal-acoustic communication. Recently, we demonstrated robust catecholaminergic (CA) innervation throughout the vocal motor system in the plainfin midshipman fish Porichthys notatus, a seasonal breeding marine teleost that produces vocal signals for social communication. There are 2 distinct male reproductive morphs in this species: type I males establish nests and court females with a long-duration advertisement call, while type II males sneak spawn to steal fertilizations from type I males. Like females, type II males can only produce brief, agonistic, grunt type vocalizations. Here, we tested the hypothesis that intrasexual differences in the number of CA neurons and their fiber innervation patterns throughout the vocal motor pathway may provide neural substrates underlying divergence in reproductive behavior between morphs. We employed immunofluorescence (-ir) histochemistry to measure tyrosine hydroxylase (TH; a rate-limiting enzyme in catecholamine synthesis) neuron numbers in several forebrain and hindbrain nuclei as well as TH-ir fiber innervation throughout the vocal pathway in type I and type II males collected from nests during the summer reproductive season. After controlling for differences in body size, only one group of CA neurons displayed an unequivocal difference between male morphs: the extraventricular vagal-associated TH-ir neurons, located just lateral to the dimorphic vocal motor nucleus (VMN), were significantly greater in number in type II males. In addition, type II males exhibited greater TH-ir fiber density within the VMN and greater numbers of TH-ir varicosities with putative contacts on vocal motor neurons. This strong inverse relationship between the predominant vocal morphotype and the CA innervation of vocal motor neurons suggests that catecholamines may function to inhibit vocal output in midshipman. These findings support catecholamines as direct modulators of vocal behavior, and differential CA input appears reflective of social and reproductive behavioral divergence between male midshipman morphs.
Collapse
|
23
|
Forlano PM, Kim SD, Krzyminska ZM, Sisneros JA. Catecholaminergic connectivity to the inner ear, central auditory, and vocal motor circuitry in the plainfin midshipman fish porichthys notatus. J Comp Neurol 2014; 522:2887-927. [PMID: 24715479 PMCID: PMC4107124 DOI: 10.1002/cne.23596] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 01/25/2023]
Abstract
Although the neuroanatomical distribution of catecholaminergic (CA) neurons has been well documented across all vertebrate classes, few studies have examined CA connectivity to physiologically and anatomically identified neural circuitry that controls behavior. The goal of this study was to characterize CA distribution in the brain and inner ear of the plainfin midshipman fish (Porichthys notatus) with particular emphasis on their relationship with anatomically labeled circuitry that both produces and encodes social acoustic signals in this species. Neurobiotin labeling of the main auditory end organ, the saccule, combined with tyrosine hydroxylase immunofluorescence (TH-ir) revealed a strong CA innervation of both the peripheral and central auditory system. Diencephalic TH-ir neurons in the periventricular posterior tuberculum, known to be dopaminergic, send ascending projections to the ventral telencephalon and prominent descending projections to vocal-acoustic integration sites, notably the hindbrain octavolateralis efferent nucleus, as well as onto the base of hair cells in the saccule via nerve VIII. Neurobiotin backfills of the vocal nerve in combination with TH-ir revealed CA terminals on all components of the vocal pattern generator, which appears to largely originate from local TH-ir neurons but may include input from diencephalic projections as well. This study provides strong neuroanatomical evidence that catecholamines are important modulators of both auditory and vocal circuitry and acoustic-driven social behavior in midshipman fish. This demonstration of TH-ir terminals in the main end organ of hearing in a nonmammalian vertebrate suggests a conserved and important anatomical and functional role for dopamine in normal audition.
Collapse
Affiliation(s)
- Paul M. Forlano
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210
- Programs in Neuroscience, Ecology, Evolutionary Biology and Behavior, and Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, Brooklyn, NY 11210
- Aquatic Research and Environmental Assessment Center, Brooklyn College, Brooklyn, NY
- Marine Biological Laboratory, Woods Hole, MA 02543
| | - Spencer D. Kim
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210
| | - Zuzanna M. Krzyminska
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY 11210
| | - Joseph A. Sisneros
- Departments of Psychology and Biology, University of Washington, Seattle, WA, 98195
- Virginia Merrill Bloedel Hearing Research Center, Seattle
- Marine Biological Laboratory, Woods Hole, MA 02543
| |
Collapse
|
24
|
Atomoxetine reduces anticipatory responding in a 5-choice serial reaction time task for adult zebrafish. Psychopharmacology (Berl) 2014; 231:2671-9. [PMID: 24481568 PMCID: PMC4167589 DOI: 10.1007/s00213-014-3439-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/31/2013] [Indexed: 12/20/2022]
Abstract
Deficits in impulse control are related to a number of psychiatric diagnoses, including attention deficit hyperactivity disorder, addiction, and pathological gambling. Despite increases in our knowledge about the underlying neurochemical and neuroanatomical correlates, understanding of the molecular and cellular mechanisms is less well established. Understanding these mechanisms is essential in order to move towards individualized treatment programs and increase efficacy of interventions. Zebrafish are a very useful vertebrate model for exploring molecular processes underlying disease owing to their small size and genetic tractability. Their utility in terms of behavioral neuroscience, however, hinges on the validation and publication of reliable assays with adequate translational relevance. Here, we report an initial pharmacological validation of a fully automated zebrafish version of the commonly used five-choice serial reaction time task using a variable interval pre-stimulus interval. We found that atomoxetine reduced anticipatory responses (0.6 mg/kg), whereas a high-dose (4 mg/kg) methylphenidate increased anticipatory responses and the number of trials completed in a session. On the basis of these results, we argue that similar neurochemical processes in fish as in mammals may control impulsivity, as operationally defined by anticipatory responses on a continuous performance task such as this, making zebrafish potentially a good model for exploring the molecular basis of impulse control disorders and for first-round drug screening.
Collapse
|
25
|
Goebrecht GKE, Kowtoniuk RA, Kelly BG, Kittelberger JM. Sexually-dimorphic expression of tyrosine hydroxylase immunoreactivity in the brain of a vocal teleost fish (Porichthys notatus). J Chem Neuroanat 2014; 56:13-34. [PMID: 24418093 DOI: 10.1016/j.jchemneu.2014.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 01/04/2014] [Accepted: 01/04/2014] [Indexed: 12/23/2022]
Abstract
Vocal communication has emerged as a powerful model for the study of neural mechanisms of social behavior. Modulatory neurochemicals postulated to play a central role in social behavior, related to motivation, arousal, incentive and reward, include the catecholamines, particularly dopamine and noradrenaline. Many questions remain regarding the functional mechanisms by which these modulators interact with sensory and motor systems. Here, we begin to address these questions in a model system for vocal and social behavior, the plainfin midshipman fish (Porichthys notatus). We mapped the distribution of immunoreactivity for the catecholamine-synthesizing enzyme tyrosine hydroxylase (TH) in the midshipman brain. The general pattern of TH(+) cell groups in midshipman appears to be highly conserved with other teleost fish, with a few exceptions, including the apparent absence of pretectal catecholamine cells. Many components of the midshipman vocal and auditory systems were innervated by TH(+) fibers and terminals, including portions of the subpallial area ventralis, the preoptic complex, and the anterior hypothalamus, the midbrain periaqueductal gray and torus semicircularis, several hindbrain auditory nuclei, and parts of the hindbrain vocal pattern generator. These areas thus represent potential sites for catecholamine modulation of vocal and/or auditory behavior. To begin to test functionally whether catecholamines modulate vocal social behaviors, we hypothesized that male and female midshipman, which are sexually dimorphic in both their vocal-motor repertoires and in their responses to hearing conspecific vocalizations, should exhibit sexually dimorphic expression of TH immunoreactivity in their vocal and/or auditory systems. We used quantitative immunohistochemical techniques to test this hypothesis across a number of brain areas. We found significantly higher levels of TH expression in male midshipman relative to females in the TH cell population in the paraventricular organ of the diencephalon and in the TH-innervated torus semicircularis, the main teleost midbrain auditory structure. The torus semicircularis has been implicated in sexually dimorphic behavioral responses to conspecific vocalizations. Our data thus support the general idea that catecholamines modulate vocal and auditory processing in midshipman, and the specific hypothesis that they shape sexually dimorphic auditory responses in the auditory midbrain.
Collapse
Affiliation(s)
- Geraldine K E Goebrecht
- Department of Biology, Gettysburg College, 300 North Washington Street, Gettysburg, PA 17325, USA.
| | - Robert A Kowtoniuk
- Department of Biology, Gettysburg College, 300 North Washington Street, Gettysburg, PA 17325, USA.
| | - Brenda G Kelly
- Department of Biology, Gettysburg College, 300 North Washington Street, Gettysburg, PA 17325, USA.
| | - J Matthew Kittelberger
- Department of Biology, Gettysburg College, 300 North Washington Street, Gettysburg, PA 17325, USA.
| |
Collapse
|
26
|
Pineda R, Beattie CE, Hall CW. Closed-loop neural stimulation for pentylenetetrazole-induced seizures in zebrafish. Dis Model Mech 2013; 6:64-71. [PMID: 22822044 PMCID: PMC3529339 DOI: 10.1242/dmm.009423] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 06/29/2012] [Indexed: 11/20/2022] Open
Abstract
Neural stimulation can reduce the frequency of seizures in persons with epilepsy, but rates of seizure-free outcome are low. Vagus nerve stimulation prevents seizures by continuously activating noradrenergic projections from the brainstem to the cortex. Cortical norepinephrine then increases GABAergic transmission and increases seizure threshold. Another approach, responsive nervous stimulation, prevents seizures by reactively shocking the seizure onset zone in precise synchrony with seizure onset. The electrical shocks abort seizures before they can spread and manifest clinically. The goal of this study was to determine whether a hybrid platform in which brainstem activation triggered in response to impending seizure activity could prevent seizures. We chose the zebrafish as a model organism for this study because of its ability to recapitulate human disease, in conjunction with its innate capacity for tightly controlled high-throughput experimentation. We first set out to determine whether electrical stimulation of the zebrafish hindbrain could have an anticonvulsant effect. We found that pulse train electrical stimulation of the hindbrain significantly increased the latency to onset of pentylenetetrazole-induced seizures, and that this apparent anticonvulsant effect was blocked by noradrenergic antagonists, as is also the case with rodents and humans. We also found that the anticonvulsant effect of hindbrain stimulation could be potentiated by reactive triggering of single pulse electrical stimulations in response to impending seizure activity. Finally, we found that the rate of stimulation triggering was directly proportional to pentylenetetrazole concentration and that the stimulation rate was reduced by the anticonvulsant valproic acid and by larger stimulation currents. Taken as a whole, these results show that that the anticonvulsant effect of brainstem activation can be efficiently utilized by reactive triggering, which suggests that alternative stimulation paradigms for vagus nerve stimulation might be useful. Moreover, our results show that the zebrafish epilepsy model can be used to advance our understanding of neural stimulation in the treatment of epilepsy.
Collapse
Affiliation(s)
- Ricardo Pineda
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
- Center for Molecular Neurobiology, The Ohio State University, Columbus, OH 43210, USA
| | - Christine E. Beattie
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
- Center for Molecular Neurobiology, The Ohio State University, Columbus, OH 43210, USA
| | - Charles W. Hall
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
- Department of Neurology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
27
|
Barreiro-Iglesias A, Mysiak KS, Adrio F, Rodicio MC, Becker CG, Becker T, Anadón R. Distribution of glycinergic neurons in the brain of glycine transporter-2 transgenic Tg(glyt2:Gfp) adult zebrafish: Relationship to brain-spinal descending systems. J Comp Neurol 2012; 521:389-425. [DOI: 10.1002/cne.23179] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 01/25/2012] [Accepted: 06/21/2012] [Indexed: 12/19/2022]
|
28
|
Kress S, Wullimann MF. Correlated basal expression of immediate early gene egr1 and tyrosine hydroxylase in zebrafish brain and downregulation in olfactory bulb after transitory olfactory deprivation. J Chem Neuroanat 2012; 46:51-66. [DOI: 10.1016/j.jchemneu.2012.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/10/2012] [Accepted: 09/11/2012] [Indexed: 02/02/2023]
|
29
|
Schweitzer J, Lohr H, Filippi A, Driever W. Dopaminergic and noradrenergic circuit development in zebrafish. Dev Neurobiol 2012; 72:256-68. [PMID: 21567980 DOI: 10.1002/dneu.20911] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Dopaminergic and noradrenergic neurons constitute some of the major far projecting systems in the vertebrate brain and spinal cord that modulate the activity of circuits controlling a broad range of behaviors. Degeneration or dysfunction of dopaminergic neurons has also been linked to a number of neurological and psychiatric disorders, including Parkinson's disease.Zebrafish (Danio rerio) have emerged over the past two decades into a major genetic vertebrate model system,and thus contributed to a better understanding of developmental mechanisms controlling dopaminergic neuron specification and axonogenesis. In this review, we want to focus on conserved and dynamic aspects of the different catecholaminergic systems, which may help to evaluate the zebrafish as a model for dopaminergic and noradrenergic cellular specification and circuit function as well as biomedical aspects of catecholamine systems.
Collapse
|
30
|
Catecholaminergic System of the Medulla Oblongata of the Amur Bitterling (Bony Fishes, Family Cyprinidae). NEUROPHYSIOLOGY+ 2012. [DOI: 10.1007/s11062-012-9298-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Matsui H, Gavinio R, Takahashi R. Medaka fish Parkinson's disease model. Exp Neurobiol 2012; 21:94-100. [PMID: 23055787 PMCID: PMC3454811 DOI: 10.5607/en.2012.21.3.94] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/09/2012] [Indexed: 11/19/2022] Open
Abstract
The teleost fish has been widely used in creating neurodegenerative models. Here we describe the teleost medaka fish Parkinson's disease (PD) models we developed using toxin treatment and genetic engineering. 1-Methyl-4-phenyl-1,2,3,4-tetrahydropyridine (MPTP), 6-hydroxydopamine (6-OHDA), proteasome inhibitors, lysosome inhibitors and tunicamycin treatment in our model fish replicated some salient features of PD: selective dopamine cell loss and reduced spontaneous movement with the last three toxins producing inclusion bodies ubiquitously in the brain. Despite the ubiquitous distribution of the inclusion bodies, the middle diencephalic dopaminergic neurons were particularly vulnerable to these toxins, supporting the idea that this dopamine cluster is similar to the human substantia nigra. PTEN-induced putative kinase 1 (PINK1) homozygous mutants also showed reduced spontaneous swimming movements. These data indicate that medaka fish can serve as a new model animal of PD. In this review we summarize our previous data and discuss future prospects.
Collapse
Affiliation(s)
- Hideaki Matsui
- Department of Cell Physiology, Zoological Institute, Technical University Brauschweig, Braunschweig 38106, Germany
| | - Roberto Gavinio
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| |
Collapse
|
32
|
Darland T, Mauch JT, Meier EM, Hagan SJ, Dowling JE, Darland DC. Sulpiride, but not SCH23390, modifies cocaine-induced conditioned place preference and expression of tyrosine hydroxylase and elongation factor 1α in zebrafish. Pharmacol Biochem Behav 2012; 103:157-67. [PMID: 22910534 DOI: 10.1016/j.pbb.2012.07.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/21/2012] [Accepted: 07/31/2012] [Indexed: 01/27/2023]
Abstract
Finding genetic polymorphisms and mutations linked to addictive behavior can provide important targets for pharmaceutical and therapeutic interventions. Forward genetic approaches in model organisms such as zebrafish provide a potentially powerful avenue for finding new target genes. In order to validate this use of zebrafish, the molecular nature of its reward system must be characterized. We have previously reported the use of cocaine-induced conditioned place preference (CPP) as a reliable method for screening mutagenized fish for defects in the reward pathway. Here we test if CPP in zebrafish involves the dopaminergic system by co-treating fish with cocaine and dopaminergic antagonists. Sulpiride, a potent D2 receptor (DR2) antagonist, blocked cocaine-induced CPP, while the D1 receptor (DR1) antagonist SCH23390 had no effect. Acute cocaine exposure also induced a rise in the expression of tyrosine hydroxylase (TH), an important enzyme in dopamine synthesis, and a significant decrease in the expression of elongation factor 1α (EF1α), a housekeeping gene that regulates protein synthesis. Cocaine selectively increased the ratio of TH/EF1α in the telencephalon, but not in other brain regions. The cocaine-induced change in TH/EF1α was blocked by co-treatment with sulpiride, but not SCH23390, correlating closely with the action of these drugs on the CPP behavioral response. Immunohistochemical analysis revealed that the drop in EF1α was selective for the dorsal nucleus of the ventral telencephalic area (Vd), a region believed to be the teleost equivalent of the striatum. Examination of TH mRNA and EF1α transcripts suggests that regulation of expression is post-transcriptional, but this requires further examination. These results highlight important similarities and differences between zebrafish and more traditional mammalian model organisms.
Collapse
Affiliation(s)
- Tristan Darland
- Biology Department, University of North Dakota, United States; Turtle Mountain Community College, United States.
| | | | | | | | | | | |
Collapse
|
33
|
Chen YC, Sundvik M, Rozov S, Priyadarshini M, Panula P. MANF regulates dopaminergic neuron development in larval zebrafish. Dev Biol 2012; 370:237-49. [PMID: 22898306 DOI: 10.1016/j.ydbio.2012.07.030] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 06/08/2012] [Accepted: 07/31/2012] [Indexed: 11/24/2022]
Abstract
Mesencephalic astrocyte derived neurotrophic factor (MANF) is recognized as a dopaminergic neurotrophic factor, which can protect dopaminergic neurons from neurotoxic damage. However, little is known about the function of MANF during the vertebrate development. Here, we report that MANF expression is widespread during embryonic development and in adult organs analyzed by qPCR and in situ hybridization in zebrafish. Knockdown of MANF expression with antisense splice-blocking morpholino oligonucleotides resulted in no apparent abnormal phenotype. Nevertheless, the dopamine level of MANF morphants was lower than that of the wild type larvae, the expression levels of the two tyrosine hydroxylase gene transcripts were decreased and a decrease in neuron number in certain groups of th1 and th2 cells in the diencephalon region in MANF morphants was observed. These defects were rescued by injection of exogenous manf mRNA. Strikingly, manf mRNA could partly restore the decrease of th1 positive cells in Nr4a2-deficient larvae. These results suggest that MANF is involved in the regulation of the development of dopaminergic system in zebrafish.
Collapse
Affiliation(s)
- Y-C Chen
- Neuroscience Center and Institute of Biomedicine/AnatomyUniversity of Helsinki, Finland
| | | | | | | | | |
Collapse
|
34
|
Pushchina EV, Varaksin AA, Obukhov DK. Gaseous transmitters in the brain of the masu salmon, Oncorhynchus masou (Salmoniformes, Salmonidae). J EVOL BIOCHEM PHYS+ 2012. [DOI: 10.1134/s0022093012010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
|
36
|
Yamamoto K, Ruuskanen JO, Wullimann MF, Vernier P. Differential expression of dopaminergic cell markers in the adult zebrafish forebrain. J Comp Neurol 2011; 519:576-98. [PMID: 21192085 DOI: 10.1002/cne.22535] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although the simultaneous presence of tyrosine hydroxylase (TH), aromatic amino acid decarboxylase (AADC), dopamine transporter (DAT), and vesicular monoamine transporter 2 (VMAT2) is considered as a phenotypic signature of dopamine (DA) neurons, it has been suggested that they are not uniformly expressed in all dopaminergic brain nuclei. Moreover, in nonmammalian vertebrates, two tyrosine hydroxylase genes (TH1 and TH2) are found, and they exhibit different expression patterns in zebrafish brains. Here we present a detailed description of the distribution of TH1, TH2, AADC, DAT, and VMAT2 transcripts, in relation to TH and DA immunoreactivity to better characterize dopaminergic nuclei in the adult zebrafish forebrain. TH2-positive cells in the hypothalamus are strongly DA immunoreactive (DAir), providing direct evidence that they are dopaminergic. DAir cells are also found in most TH1-positive or TH-immunoreactive (THir) nuclei. However, the DAir signal was weaker than THir in the olfactory bulb, telencephalon, ventral thalamus, pretectum, and some posterior tubercular and preoptic nuclei. These cell populations also exhibited low levels of VMAT2 transcripts, suggesting that low DA is due to a lower vesicular DA accumulation. In contrast, cell populations with low levels of AADC did not always have low levels of DA. DAT transcripts were abundantly expressed in most of the TH1- or TH2-positive territories. In addition, DAT and/or VMAT2 transcripts were found in some periventricular cell populations such as in the telencephalon without TH1 or TH2 expression. Thus, expression patterns of dopaminergic cell markers are not homogeneous, suggesting that the gene regulatory logic determining the dopaminergic phenotype is unexpectedly complex.
Collapse
Affiliation(s)
- Kei Yamamoto
- Neurobiology & Development (UPR3294), Institute of Neurobiology Alfred Fessard, Centre National de la Recherche Scientifique, 91198 CNRS Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
37
|
Pushchina EV, Varaksin AA, Obukhov DK. Cystathionine β-synthase in the CNS of masu salmon Oncorhynchus masou (Salmonidae) and carp Cyprinus carpio (Cyprinidae). NEUROCHEM J+ 2011. [DOI: 10.1134/s1819712411010090] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Comprehensive catecholaminergic projectome analysis reveals single-neuron integration of zebrafish ascending and descending dopaminergic systems. Nat Commun 2011; 2:171. [PMID: 21266970 PMCID: PMC3105308 DOI: 10.1038/ncomms1171] [Citation(s) in RCA: 219] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 12/16/2010] [Indexed: 11/09/2022] Open
Abstract
Essential components of animal behaviour are modulated by dopaminergic (DA) and noradrenergic circuitry. In this study, we reveal at cellular resolution the complete set of projections ('projectome') of every single type of DA and noradrenergio neurons in the central nervous system of zebrafish larvae. The most extensive DA projections are established by posterior tubercular otp-dependent neurons, with individual somata integrating the ascending DA system, the descending diencephalospinal, as well as the endohypothalamic circuitry. These findings suggest a major role in the modulation of physiology and behaviour for otp-dependent DA neurons, which correlate with the mammalian A11 group. We further identified an endogenous subpallial DA system that not only provides most of the local DA projections, but also connects to the ventral diencephalon. The catecholaminergic projectome map provides a framework to understand the evolution and function of these neuromodulatory systems.
Collapse
|
39
|
Ampatzis K, Dermon CR. Regional distribution and cellular localization of beta2-adrenoceptors in the adult zebrafish brain (Danio rerio). J Comp Neurol 2010; 518:1418-41. [PMID: 20187137 DOI: 10.1002/cne.22278] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The beta(2)-adrenergic receptors (ARs) are G-protein-coupled receptors that mediate the physiological responses to adrenaline and noradrenaline. The present study aimed to determine the regional distribution of beta(2)-ARs in the adult zebrafish (Danio rerio) brain by means of in vitro autoradiographic and immunohistochemical methods. The immunohistochemical localization of beta(2)-ARs, in agreement with the quantitative beta-adrenoceptor autoradiography, showed a wide distribution of beta(2)-ARs in the adult zebrafish brain. The cerebellum and the dorsal zone of periventricular hypothalamus exhibited the highest density of [(3)H]CGP-12177 binding sites and beta(2)-AR immunoreactivity. Neuronal cells strongly stained for beta(2)-ARs were found in the periventricular ventral telencephalic area, magnocellular and parvocellular superficial pretectal nuclei (PSm, PSp), occulomotor nucleus (NIII), locus coeruleus (LC), medial octavolateral nucleus (MON), magnocellular octaval nucleus (MaON) reticular formation (SRF, IMRF, IRF), and ganglionic cell layer of cerebellum. Interestingly, in most cases (NIII, LC, MON, MaON, SRF, IMRF, ganglionic cerebellar layer) beta(2)-ARs were colocalized with alpha(2A)-ARs in the same neuron, suggesting their interaction for mediating the physiological functions of nor/adrenaline. Moderate to low labeling of beta(2)-ARs was found in neurons in dorsal telencephalic area, optic tectum (TeO), torus semicircularis (TS), and periventricular gray zone of optic tectum (PGZ). In addition to neuronal, glial expression of beta(2)-ARs was found in astrocytic fibers located in the central gray and dorsal rhombencephalic midline, in close relation to the ventricle. The autoradiographic and immunohistochemical distribution pattern of beta(2)-ARs in the adult zebrafish brain further support the conserved profile of adrenergic/noradrenergic system through vertebrate brain evolution.
Collapse
|
40
|
Filippi A, Mahler J, Schweitzer J, Driever W. Expression of the paralogous tyrosine hydroxylase encoding genes th1 and th2 reveals the full complement of dopaminergic and noradrenergic neurons in zebrafish larval and juvenile brain. J Comp Neurol 2010; 518:423-38. [PMID: 20017209 PMCID: PMC2841823 DOI: 10.1002/cne.22213] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The development of dopaminergic and noradrenergic neurons has received much attention based on their modulatory effect on many behavioral circuits and their involvement in neurodegenerative diseases. The zebrafish (Danio rerio) has emerged as a new model organism with which to study development and function of catecholaminergic systems. Tyrosine hydroxylase is the entry enzyme into catecholamine biosynthesis and is frequently used as a marker for catecholaminergic neurons. A genome duplication at the base of teleost evolution resulted in two paralogous zebrafish tyrosine hydroxylase-encoding genes, th1 and th2, the expression of which has been described previously only for th1. Here we investigate the expression of th2 in the brain of embryonic and juvenile zebrafish. We optimized whole-mount in situ hybridization protocols to detect gene expression in the anatomical three-dimensional context of whole juvenile brains. To confirm whether th2-expressing cells may indeed use dopamine as a neurotransmitter, we also included expression of dopamine beta hydroxylase, dopa decarboxylase, and dopamine transporter in our analysis. Our data provide the first complete account of catecholaminergic neurons in the zebrafish embryonic and juvenile brain. We identified four major th2-expressing neuronal groups that likely use dopamine as transmitter in the zebrafish diencephalon, including neurons of the posterior preoptic nucleus, the paraventricular organ, and the nuclei of the lateral and posterior recesses in the caudal hypothalamus. th2 expression in the latter two groups resolves a previously reported discrepancy, in which strong dopamine but little tyrosine hydroxylase immunoreactivity had been detected in the caudal hypothalamus. Our data also confirm that there are no mesencephalic DA neurons in zebrafish.
Collapse
Affiliation(s)
- Alida Filippi
- Department of Developmental Biology, Institute of Biology I, University of Freiburg, D-79104 Freiburg, Germany
| | | | | | | |
Collapse
|
41
|
Kastenhuber E, Kratochwil CF, Ryu S, Schweitzer J, Driever W. Genetic dissection of dopaminergic and noradrenergic contributions to catecholaminergic tracts in early larval zebrafish. J Comp Neurol 2010; 518:439-58. [PMID: 20017210 PMCID: PMC2841826 DOI: 10.1002/cne.22214] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 06/19/2009] [Accepted: 09/02/2009] [Indexed: 11/25/2022]
Abstract
The catecholamines dopamine and noradrenaline provide some of the major neuromodulatory systems with far-ranging projections in the brain and spinal cord of vertebrates. However, development of these complex systems is only partially understood. Zebrafish provide an excellent model for genetic analysis of neuronal specification and axonal projections in vertebrates. Here, we analyze the ontogeny of the catecholaminergic projections in zebrafish embryos and larvae up to the fifth day of development and establish the basic scaffold of catecholaminergic connectivity. The earliest dopaminergic diencephalospinal projections do not navigate along the zebrafish primary neuron axonal scaffold but establish their own tracts at defined ventrolateral positions. By using genetic tools, we study quantitative and qualitative contributions of noradrenergic and defined dopaminergic groups to the catecholaminergic scaffold. Suppression of Tfap2a activity allows us to eliminate noradrenergic contributions, and depletion of Otp activity deletes mammalian A11-like Otp-dependent ventral diencephalic dopaminergic groups. This analysis reveals a predominant contribution of Otp-dependent dopaminergic neurons to diencephalospinal as well as hypothalamic catecholaminergic tracts. In contrast, noradrenergic projections make only a minor contribution to hindbrain and spinal catecholaminergic tracts. Furthermore, we can demonstrate that, in zebrafish larvae, ascending catecholaminergic projections to the telencephalon are generated exclusively by Otp-dependent diencephalic dopaminergic neurons as well as by hindbrain noradrenergic groups. Our data reveal the Otp-dependent A11-type dopaminergic neurons as the by far most prominent dopaminergic system in larval zebrafish. These findings are consistent with a hypothesis that Otp-dependent dopaminergic neurons establish the major modulatory system for somatomotor and somatosensory circuits in larval fish.
Collapse
Affiliation(s)
- Edda Kastenhuber
- Developmental Biology, Institute of Biology I, University of FreiburgD-79104 Freiburg, Germany
| | - Claudius F Kratochwil
- Developmental Biology, Institute of Biology I, University of FreiburgD-79104 Freiburg, Germany
| | - Soojin Ryu
- Developmental Biology, Institute of Biology I, University of FreiburgD-79104 Freiburg, Germany
| | - Jörn Schweitzer
- Developmental Biology, Institute of Biology I, University of FreiburgD-79104 Freiburg, Germany
- Freiburg Institute for Advanced Studies, University of FreiburgD-79104 Freiburg, Germany
| | - Wolfgang Driever
- Developmental Biology, Institute of Biology I, University of FreiburgD-79104 Freiburg, Germany
- Freiburg Institute for Advanced Studies, University of FreiburgD-79104 Freiburg, Germany
| |
Collapse
|
42
|
Castro A, Becerra M, Manso MJ, Tello J, Sherwood NM, Anadón R. Distribution of growth hormone-releasing hormone-like peptide: Immunoreactivity in the central nervous system of the adult zebrafish (Danio rerio). J Comp Neurol 2009; 513:685-701. [PMID: 19235874 DOI: 10.1002/cne.21977] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The distribution of growth hormone-releasing hormone-like peptides (GHRH-LP) in the central nervous system of the zebrafish was investigated by using immunohistochemical techniques with polyclonal antibodies. ELISAs showed that the antiserum raised against salmon (s)GHRH-LP recognized both zebrafish GHRH-LP1 and -2, whereas the antiserum raised against carp (c)GHRH-LP was more sensitive but detected only zebrafish GHRH-LP1. Neither antiserum detected the true GHRH. Large cells in the nucleus lateralis tuberis were immunoreactive with both antisera, which suggests that they contained zebrafish GHRH-LP1, but not excluding GHRH-LP2. Also, immunoreactive fibers, which putatively originated from these hypothalamic neurons, were present in the hypophysis; both antisera detected fibers, although only sGHRH-LP antiserum stained fibers in the neurointermediate lobe. These fibers may have a neuroendocrine role. Candidates for a role in feeding include several areas in which both antisera labeled cells and fibers, implying a strong reaction for GHRH-LP1 and possibly GHRH-LP2. These areas include the isthmus with cells in the secondary gustatory/visceral nucleus, which were also calretinin immunoreactive. Numerous GHRH-LP-immunoreactive fibers (also labeled by both antisera) probably originate from the gustatory/visceral nucleus to innervate the ventral area of the telencephalon, preglomerular nuclei, torus lateralis and hypothalamic diffuse nucleus, habenula, torus semicircularis, and dorsolateral funiculus of the spinal cord. Present results in the zebrafish brain suggest involvement of GHRH-LP in both neuroendocrine and feeding-associated nervous circuits. The present data on the location of the two GHRH-LPs are the first clue to the possible functions of these two hormones.
Collapse
Affiliation(s)
- Antonio Castro
- Department of Cell and Molecular Biology, University of A Coruña, Spain
| | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Schweitzer J, Driever W. Development of the dopamine systems in zebrafish. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 651:1-14. [PMID: 19731546 DOI: 10.1007/978-1-4419-0322-8_1] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Dopaminergic neurons develop in several distinct regions of the vertebrate brain and project locally or send long axonal projections to distant parts of the CNS to modulate the activity of a variety of circuits, controlling aspects of physiology, behavior and movement. The molecular control of dopaminergic differentiation and the evolution of the various dopaminergic systems are not well understood, as research has mostly focused on ascending mammalian dopaminergic systems of the substantia nigra and ventral tegmental area. Zebrafish have evolved as an excellent genetic and experimental embryological model to study specification and axonal projectivity of dopaminergic neurons. The large evolutionary distance between fish and mammals provides the opportunity to identify conserved core regulatory mechanisms that control differentiation and projection behavior of the various dopaminergic groups in vertebrates. Here, we present an overview of the formation of dopaminergic groups and their projections in zebrafish. We will further review the results from genetic analyses, which have revealed insights on signals as well as transcription factors contributing to dopaminergic differentiation. Together with recently established paradigms for behavioral analysis, dopaminergic systems are studied at all levels in zebrafish, from molecular and cellular to systems and behavioral.
Collapse
Affiliation(s)
- Jörn Schweitzer
- Institute Biology 1, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
45
|
Del Giacco L, Pistocchi A, Cotelli F, Fortunato AE, Sordino P. A peek inside the neurosecretory brain throughOrthopedialenses. Dev Dyn 2008; 237:2295-303. [DOI: 10.1002/dvdy.21668] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
46
|
Ampatzis K, Kentouri M, Dermon CR. Neuronal and glial localization of alpha(2A)-adrenoceptors in the adult zebrafish (Danio rerio) brain. J Comp Neurol 2008; 508:72-93. [PMID: 18300261 DOI: 10.1002/cne.21663] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The alpha(2A)-adrenoceptor (AR) subtype, a G protein-coupled receptor located both pre- and postsynaptically, mediates adrenaline/noradrenaline functions. The present study aimed to determine the alpha(2A)-AR distribution in the adult zebrafish (Danio rerio) brain by means of immunocytochemistry. Detailed mapping showed labeling of alpha(2A)-ARs, in neuropil, neuronal somata and fibers, glial processes, and blood vessels. A high density of alpha(2A)-AR immunoreactivity was found in the ventral telencephalic area, preoptic, pretectal, hypothalamic areas, torus semicircularis, oculomotor nucleus (NIII), locus coreruleus (LC), medial raphe, medial octavolateralis nucleus (MON), magnocellular octaval nucleus (MaON), reticular formation (SRF, IMRF, IRF), rhombencephalic nerves and roots (DV, V, VII, VIII, X), and cerebellar Purkinje cell layer. Moderate levels of alpha(2A)-ARs were observed in the medial and central zone nuclei of dorsal telencephalic area, in the periventricular gray zone of optic tectum, in the dorsomedial part of optic tectum layers, and in the molecular and granular layers of all cerebellum subdivisions. Glial processes were found to express alpha(2A)-ARs in rhombencephalon, intermingled with neuronal fibers. Medium-sized neurons were labeled in telencephalic, diencephalic, and mesencephlic areas, whereas densely labeled large neurons were found in rhombencephalon, locus coeruleus, reticular formation, oculomotor area, medial octavolateralis and magnocellular octaval nuclei, and Purkinje cell somata. The functional role of alpha(2A)-ARs on neurons and glial processes is not known at present; however, their strong relation to the ventricular system, somatosensory nuclei, and nerves supports a possible regulatory role of alpha(2A)-ARs in autonomic functions, nerve output, and sensory integration in adult zebrafish brain.
Collapse
|
47
|
Chandrasekar G, Lauter G, Hauptmann G. Distribution of corticotropin-releasing hormone in the developing zebrafish brain. J Comp Neurol 2007; 505:337-51. [PMID: 17912740 DOI: 10.1002/cne.21496] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Corticotropin-releasing hormone (CRH) plays a central role in the physiological regulation of the hypothalamus-pituitary-adrenal/interrenal axis mediating endocrine, behavioral, autonomic, and immune responses to stress. Despite the wealth of knowledge about the physiological roles of CRH, the genetic mechanisms by which CRH neurons arise during development are poorly understood. As a first step toward analyzing the molecular and genetic pathways involved in CRH lineage specification, we describe the developmental distribution of CRH neurons in the embryonic zebrafish, a model organism for functional genomics and developmental biology. We searched available zebrafish expressed sequence tag (EST) databases for CRH-like sequences and identified one EST that contained the complete zebrafish CRH open reading frame (ORF). The CRH precursor sequence contained a signal peptide, the CRH peptide, and a cryptic peptide with a conserved sequence motif. RT-PCR analysis showed crh expression in a wide range of adult tissues as well as during embryonic and larval stages. By whole-mount in situ hybridization histochemistry, discrete crh-expressing cell clusters were found in different parts of the embryonic zebrafish brain, including telencephalon, preoptic region, hypothalamus, posterior tuberculum, thalamus, epiphysis, midbrain tegmentum, and rostral hindbrain and in the neural retina. The localization of crh mRNA within the preoptic region is consistent with the central role of CRH in the teleost stress response through activation of the hypothalamic-pituitary-interrenal axis. The widespread distribution of CRH-synthesizing cells outside the preoptic region suggests additional functions of CRH in the embryonic zebrafish brain.
Collapse
|
48
|
Gouveia A, de Oliveira CM, Romão CF, de Brito TM, Ventura DF. Effects of trophic poisoning with methylmercury on the appetitive elements of the agonistic sequence in fighting-fish (Betta splendens). THE SPANISH JOURNAL OF PSYCHOLOGY 2007; 10:436-448. [PMID: 17992970 DOI: 10.1017/s1138741600006703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The aggressive display in Betta splendens is particularly prominent, and vital to its adaptation to the environment. Methylmercury is an organic variation of Hg that presents particularly pronounced neuro-behavioral effects. The present experiments aim to test the effect of acute and chronic poisoning with methylmercury on the display in Bettas. The animals were poisoned by trophic means in both experiments (16 ug/kg in acute poisoning; 16 ug/kg/day for chronic poisoning), and tested in agonistic pairs. The total frequency of the display was recorded, analyzing the topography of the agonistic response. The methylmercury seems to present a dose- and detoxification-dependent effect on these responses, with a more pronounced effect on motivity in acute poisoning and on emotionality in the chronic poisoning. It is possible that this effect could be mediated by alteration in the mono-amino-oxidase systems.
Collapse
|
49
|
Boehmler W, Carr T, Thisse C, Thisse B, Canfield VA, Levenson R. D4 Dopamine receptor genes of zebrafish and effects of the antipsychotic clozapine on larval swimming behaviour. GENES BRAIN AND BEHAVIOR 2007; 6:155-66. [PMID: 16764679 DOI: 10.1111/j.1601-183x.2006.00243.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Zebrafish, a model developmental genetic organism, is being increasingly used in behavioural studies. We have initiated studies designed to evaluate the response of zebrafish to antipsychotic drugs. This study focuses on characterization of zebrafish D4 dopamine receptors (D4Rs) and the response of larval zebrafish to the atypical antipsychotic clozapine. The D4R is of interest because of its high affinity for clozapine, while interest in clozapine stems from its effectiveness in reducing symptoms in acutely psychotic, treatment-resistant schizophrenic patients. By mining the zebrafish genomic database, we identified three distinct D4R genes, drd4a, drd4b and drd4c, and generated full-length open reading frames encoding each of the three D4Rs by reverse transcription-polymerase chain reaction. Gene mapping studies showed that each D4R gene mapped to a distinct chromosomal location in the zebrafish genome, and each gene exhibited a unique expression profile during embryogenesis. When administered to larval zebrafish, clozapine produced a rapid and profound effect on locomotor activity. The effect of clozapine was dose-dependent, resulted in hypoactivity and was prevented by the D4-selective agonist ABT-724. Our data suggest that the inhibitory effect of clozapine on the locomotor activity of larval zebrafish may be mediated through D4Rs.
Collapse
Affiliation(s)
- W Boehmler
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
50
|
Piñuela C, Northcutt RG. Immunohistochemical Organization of the Forebrain in the White Sturgeon, Acipenser transmontanus. BRAIN, BEHAVIOR AND EVOLUTION 2007; 69:229-53. [PMID: 17299256 DOI: 10.1159/000099612] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Accepted: 12/20/2005] [Indexed: 11/19/2022]
Abstract
The distribution of substance P (SP), leucine-enkephalin (LENK), serotonin (5HT), dopamine (DA), and tyrosine hydroxylase (TH) was examined in the forebrain of the white sturgeon in order to evaluate several anatomical hypotheses based on cytoarchitectonics, and to gain a better understanding of the evolution of the forebrain in ray-finned fishes. The subpallium of the telencephalon has the highest concentration of the neuropeptides SP and LENK, allowing the pallial-subpallial border to be easily distinguished. The distribution of dopamine is similar to that of serotonin in the subpallium, fibers positive for these transmitters are particularly dense in the dorsal and ventral divisions of the subpallium. In addition, a small population of DA- and 5HT-positive cell bodies--which appear to be unique to sturgeons--was identified at the level of the anterior commissure. The internal granular layer of the olfactory bulbs had large numbers of TH-positive cell bodies and fibers, as did the rostral subpallium. The occurrence of cell bodies positive for LENK in the dorsal nucleus of the rostral subpallium supports the hypothesis that this nucleus is homologous to the striatum in other vertebrates. This is further reinforced by the apparent origin of an ascending dopaminergic pathway from cells in the posterior tubercle that are likely homologous to the ventral tegmental area/substantia nigra in land vertebrates. Finally, the differential distribution of SP and TH in the pallium supports the hypothesis that the pallium, or area dorsalis, can be divided medially into a rostral division (Dm), a caudal division (Dp) that is the main pallial target of secondary olfactory projections, and a narrow lateral division (Dd+Dl) immediately adjacent to the attachment of the tela choroidea along the entire rostrocaudal length of the telencephalic hemisphere.
Collapse
Affiliation(s)
- Carmen Piñuela
- Facultad de Medicina, Universidad de Cadiz, Cadiz, Spain
| | | |
Collapse
|