1
|
Rogalla MM, Quass GL, Yardley H, Martinez-Voigt C, Ford AN, Wallace G, Dileepkumar D, Corfas G, Apostolides PF. Population coding of auditory space in the dorsal inferior colliculus persists with altered binaural cues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612867. [PMID: 39314270 PMCID: PMC11419156 DOI: 10.1101/2024.09.13.612867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Sound localization is critical for real-world hearing, such as segregating overlapping sound streams. For optimal flexibility, central representations of auditory space must adapt to peripheral changes in binaural cue availability, such as following asymmetric hearing loss in adulthood. However, whether the mature auditory system can reliably encode spatial auditory representations upon abrupt changes in binaural input is unclear. Here we use 2-photon Ca2+ imaging in awake head-fixed mice to determine how the higher-order "shell" layers of the inferior colliculus (IC) encode sound source location in the frontal azimuth, under binaural conditions and after acute monaural hearing loss induced by an ear plug ipsilateral to the imaged hemisphere. Spatial receptive fields were typically broad and not exclusively contralateral: Neurons responded reliably to multiple positions in the contra- and ipsi-lateral hemifields, with preferred positions tiling the entire frontal azimuth. Ear plugging broadened receptive fields and reduced spatial selectivity in a subset of neurons, in agreement with an inhibitory influence of ipsilateral sounds. However ear plugging also enhanced spatial tuning and/or unmasked receptive fields in other neurons, shifting the distribution of preferred angles ipsilaterally with minimal impact on the neuronal population's overall spatial resolution; these effects occurred within 2 hours of ear plugging. Consequently, linear classifiers trained on fluorescence data from control and ear-plugged conditions had similar classification accuracy when tested on held out data from within, but not across hearing conditions. Spatially informative neuronal population codes therefore arise rapidly following monaural hearing loss, in absence of overt experience.
Collapse
Affiliation(s)
- Meike M. Rogalla
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Gunnar L. Quass
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Harry Yardley
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Clara Martinez-Voigt
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Alexander N. Ford
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Gunseli Wallace
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Deepak Dileepkumar
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Gabriel Corfas
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Pierre F. Apostolides
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
2
|
Mafi AM, Tokar N, Russ MG, Barat O, Mellott JG. Age-related ultrastructural changes in the lateral cortex of the inferior colliculus. Neurobiol Aging 2022; 120:43-59. [PMID: 36116395 PMCID: PMC10276896 DOI: 10.1016/j.neurobiolaging.2022.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 10/15/2022]
Abstract
Temporal precision, a key component of sound and speech processing in the inferior colliculus (IC), depends on a balance of inhibition and excitation, and this balance degrades during aging. The cause of disrupted excitatory-inhibitory balance in aging is unknown, however changes at the synapse are a likely candidate. We sought to determine whether synaptic changes occur in the lateral cortex of the IC (IClc), a multimodal nucleus that processes lemniscal, intrinsic, somatosensory, and descending auditory input. Using electron microscopic techniques across young, middle age and old Fisher Brown Norway rats, our results demonstrate minimal loss of synapses in middle age, but significant (∼28%) loss during old age. However, in middle age, targeting of GABAergic dendrites by GABAergic synapses is increased and the active zones of excitatory synapses (that predominantly target GABA-negative dendrites) are lengthened. These synaptic changes likely result in a net increase of excitation in the IClc during middle age. Thus, disruption of excitatory-inhibitory balance in the aging IClc may be due to synaptic changes that begin in middle age.
Collapse
Affiliation(s)
- Amir M Mafi
- The Ohio State College of Medicine, The Ohio State, Columbus, OH, USA
| | - Nick Tokar
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Matthew G Russ
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Oren Barat
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Jeffrey G Mellott
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA.
| |
Collapse
|
3
|
Beebe NL, Silveira MA, Goyer D, Noftz WA, Roberts MT, Schofield BR. Neurotransmitter phenotype and axonal projection patterns of VIP-expressing neurons in the inferior colliculus. J Chem Neuroanat 2022; 126:102189. [PMID: 36375740 PMCID: PMC9772258 DOI: 10.1016/j.jchemneu.2022.102189] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Neurons in the inferior colliculus (IC), the midbrain hub of the central auditory pathway, send ascending and descending projections to other auditory brain regions, as well as projections to other sensory and non-sensory brain regions. However, the axonal projection patterns of individual classes of IC neurons remain largely unknown. Vasoactive intestinal polypeptide (VIP) is a neuropeptide expressed by subsets of neurons in many brain regions. We recently identified a class of IC stellate neurons that we called VIP neurons because they are labeled by tdTomato (tdT) expression in VIP-IRES-Cre x Ai14 mice. Here, using fluorescence in situ hybridization, we found that tdT+ neurons in VIP-IRES-Cre x Ai14 mice express Vglut2, a marker of glutamatergic neurons, and VIP, suggesting that VIP neurons use both glutamatergic and VIPergic signaling to influence their postsynaptic targets. Next, using viral transfections with a Cre-dependent eGFP construct, we labeled the axonal projections of VIP neurons. As a group, VIP neurons project intrinsically, within the ipsilateral and contralateral IC, and extrinsically to all the major targets of the IC. Within the auditory system, VIP neurons sent axons and formed axonal boutons in higher centers, including the medial geniculate nucleus and the nucleus of the brachium of the IC. Less dense projections terminated in lower centers, including the nuclei of the lateral lemniscus, superior olivary complex, and dorsal cochlear nucleus. VIP neurons also project to several non-auditory brain regions, including the superior colliculus, periaqueductal gray, and cuneiform nucleus. The diversity of VIP projections compared to the homogeneity of VIP neuron intrinsic properties suggests that VIP neurons play a conserved role at the microcircuit level, likely involving neuromodulation through glutamatergic and VIPergic signaling, but support diverse functions at the systems level through their participation in different projection pathways.
Collapse
Affiliation(s)
- Nichole L Beebe
- Hearing Research Group, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA.
| | - Marina A Silveira
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA.
| | - David Goyer
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA.
| | - William A Noftz
- Hearing Research Group, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA.
| | - Michael T Roberts
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| | - Brett R Schofield
- Hearing Research Group, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA.
| |
Collapse
|
4
|
Noftz WA, Beebe NL, Mellott JG, Schofield BR. Dense cholinergic projections to auditory and multisensory nuclei of the intercollicular midbrain. Hear Res 2021; 411:108352. [PMID: 34564033 DOI: 10.1016/j.heares.2021.108352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022]
Abstract
Cholinergic axons from the pedunculopontine tegmental nucleus (PPT) innervate the inferior colliculus where they are positioned to modulate both excitatory and inhibitory circuits across the central nucleus and adjacent cortical regions. More rostral regions of the auditory midbrain include the nucleus of the brachium of the inferior colliculus (NBIC), the intercollicular tegmentum (ICt) and the rostral pole of the inferior colliculus (ICrp). These regions appear especially important for multisensory integration and contribute to orienting behavior and many aspects of auditory perception. These regions appear to receive cholinergic innervation but little is known about the distribution of cholinergic axons in these regions or the cells that they contact. The present study used immunostaining to examine the distribution of cholinergic axons and then used chemically-specific viral tracing to examine cholinergic projections from the PPT to the intercollicular areas in male and female transgenic rats. Staining with antibodies against vesicular acetylcholine transporter revealed dense cholinergic innervation throughout the NBIC, ICt and ICrp. Deposits of viral vector into the PPT labeled cholinergic axons bilaterally in the NBIC, ICt and ICrp. In each area, the projections were denser on the ipsilateral side. The axons appeared morphologically similar across the three areas. In each area, en passant and terminal boutons from these axons appeared in the neuropil and also in close apposition to cell bodies. Immunostaining with a marker for GABAergic cells suggested that the cholinergic axons likely contact both GABAergic and non-GABAergic cells in the NBIC, ICt and ICrp. Thus, the cholinergic axons could affect multisensory processing by modulating excitatory and inhibitory circuits in the NBIC, ICt and ICrp. The similarity of axons and their targets suggests there may be a common function for cholinergic innervation across the three areas. Given what is known about the PPT, such functions could be associated with arousal, sleep-wake cycle, reward and plasticity.
Collapse
Affiliation(s)
- William A Noftz
- School of Biomedical Sciences, Kent State University, Kent, OH United States; Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, United States.
| | - Nichole L Beebe
- Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, United States.
| | - Jeffrey G Mellott
- Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, United States.
| | - Brett R Schofield
- School of Biomedical Sciences, Kent State University, Kent, OH United States; Department of Anatomy and Neurobiology, Hearing Research Group, Northeast Ohio Medical University, Rootstown, OH, United States.
| |
Collapse
|
5
|
Bordia T, Zahr NM. The Inferior Colliculus in Alcoholism and Beyond. Front Syst Neurosci 2020; 14:606345. [PMID: 33362482 PMCID: PMC7759542 DOI: 10.3389/fnsys.2020.606345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/02/2020] [Indexed: 12/28/2022] Open
Abstract
Post-mortem neuropathological and in vivo neuroimaging methods have demonstrated the vulnerability of the inferior colliculus to the sequelae of thiamine deficiency as occurs in Wernicke-Korsakoff Syndrome (WKS). A rich literature in animal models ranging from mice to monkeys-including our neuroimaging studies in rats-has shown involvement of the inferior colliculi in the neural response to thiamine depletion, frequently accomplished with pyrithiamine, an inhibitor of thiamine metabolism. In uncomplicated alcoholism (i.e., absent diagnosable neurological concomitants), the literature citing involvement of the inferior colliculus is scarce, has nearly all been accomplished in preclinical models, and is predominately discussed in the context of ethanol withdrawal. Our recent work using novel, voxel-based analysis of structural Magnetic Resonance Imaging (MRI) has demonstrated significant, persistent shrinkage of the inferior colliculus using acute and chronic ethanol exposure paradigms in two strains of rats. We speculate that these consistent findings should be considered from the perspective of the inferior colliculi having a relatively high CNS metabolic rate. As such, they are especially vulnerable to hypoxic injury and may be provide a common anatomical link among a variety of disparate insults. An argument will be made that the inferior colliculi have functions, possibly related to auditory gating, necessary for awareness of the external environment. Multimodal imaging including diffusion methods to provide more accurate in vivo visualization and quantification of the inferior colliculi may clarify the roles of brain stem nuclei such as the inferior colliculi in alcoholism and other neuropathologies marked by altered metabolism.
Collapse
Affiliation(s)
- Tanuja Bordia
- Neuroscience Program, SRI International, Menlo Park, CA, United States
| | - Natalie M. Zahr
- Neuroscience Program, SRI International, Menlo Park, CA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
6
|
Beebe NL, Noftz WA, Schofield BR. Perineuronal nets and subtypes of GABAergic cells differentiate auditory and multisensory nuclei in the intercollicular area of the midbrain. J Comp Neurol 2020; 528:2695-2707. [PMID: 32304096 DOI: 10.1002/cne.24926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 11/10/2022]
Abstract
The intercollicular region, which lies between the inferior and superior colliculi in the midbrain, contains neurons that respond to auditory, visual, and somatosensory stimuli. Golgi studies have been used to parse this region into three distinct nuclei: the intercollicular tegmentum (ICt), the rostral pole of the inferior colliculus (ICrp), and the nucleus of the brachium of the IC (NBIC). Few reports have focused on these nuclei, especially the ICt and the ICrp, possibly due to lack of a marker that distinguishes these areas and is compatible with modern methods. Here, we found that staining for GABAergic cells and perineuronal nets differentiates these intercollicular nuclei in guinea pigs. Further, we found that the proportions of four subtypes of GABAergic cells differentiate intercollicular nuclei from each other and from adjacent inferior collicular subdivisions. Our results support earlier studies that suggest distinct morphology and functions for intercollicular nuclei, and provide staining methods that differentiate intercollicular nuclei and are compatible with most modern techniques. We hope that this will help future studies to further characterize the intercollicular region.
Collapse
Affiliation(s)
- Nichole L Beebe
- Hearing Research Group, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - William A Noftz
- Hearing Research Group, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA.,Biomedical Sciences Program, Kent State University, Kent, Ohio, USA
| | - Brett R Schofield
- Hearing Research Group, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA.,Biomedical Sciences Program, Kent State University, Kent, Ohio, USA
| |
Collapse
|
7
|
Zurita H, Rock C, Perkins J, Apicella AJ. A Layer-specific Corticofugal Input to the Mouse Superior Colliculus. Cereb Cortex 2019; 28:2817-2833. [PMID: 29077796 DOI: 10.1093/cercor/bhx161] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/08/2017] [Indexed: 12/16/2022] Open
Abstract
In the auditory cortex (AC), corticofugal projections arise from each level of the auditory system and are considered to provide feedback "loops" important to modulate the flow of ascending information. It is well established that the cortex can influence the response of neurons in the superior colliculus (SC) via descending corticofugal projections. However, little is known about the relative contribution of different pyramidal neurons to these projections in the SC. We addressed this question by taking advantage of anterograde and retrograde neuronal tracing to directly examine the laminar distribution, long-range projections, and electrophysiological properties of pyramidal neurons projecting from the AC to the SC of the mouse brain. Here we show that layer 5 cortico-superior-collicular pyramidal neurons act as bandpass filters, resonating with a broad peak at ∼3 Hz, whereas layer 6 neurons act as low-pass filters. The dissimilar subthreshold properties of layer 5 and layer 6 cortico-superior-collicular pyramidal neurons can be described by differences in the hyperpolarization-activated cyclic nucleotide-gated cation h-current (Ih). Ih also reduced the summation of short trains of artificial excitatory postsynaptic potentials injected at the soma of layer 5, but not layer 6, cortico-superior-collicular pyramidal neurons, indicating a differential dampening effect of Ih on these neurons.
Collapse
Affiliation(s)
- Hector Zurita
- Department of Biology, Neuroscience Institute, University of Texas at San Antonio, San Antonio, TX, USA
| | - Crystal Rock
- Department of Biology, Neuroscience Institute, University of Texas at San Antonio, San Antonio, TX, USA
| | - Jessica Perkins
- Department of Biology, Neuroscience Institute, University of Texas at San Antonio, San Antonio, TX, USA
| | - Alfonso Junior Apicella
- Department of Biology, Neuroscience Institute, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
8
|
Bednárová V, Grothe B, Myoga MH. Complex and spatially segregated auditory inputs of the mouse superior colliculus. J Physiol 2018; 596:5281-5298. [PMID: 30206945 PMCID: PMC6209754 DOI: 10.1113/jp276370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/10/2018] [Indexed: 12/22/2022] Open
Abstract
Key points Although the visual circuits in the superior colliculus (SC) have been thoroughly examined, the auditory circuits lack equivalent scrutiny. SC neurons receiving auditory inputs in mice were characterized and three distinguishable types of neurons were found. The auditory pathways from external nuclei of the inferior colliculus (IC) were characterized, and a novel direct inhibitory connection and an excitation that drives feed‐forward inhibitory circuits within the SC were found. The direct excitatory and inhibitory inputs exhibited distinct arbourization patterns in the SC. These findings suggest functional differences between excitatory and inhibitory sensory information that targets the auditory SC.
Abstract The superior colliculus (SC) is a midbrain structure that integrates auditory, somatosensory and visual inputs to drive orientation movements. While much is known about how visual information is processed in the superficial layers of the SC, little is known about the SC circuits in the deep layers that process auditory inputs. We therefore characterized intrinsic neuronal properties in the auditory‐recipient layer of the SC (stratum griseum profundum; SGP) and confirmed three electrophysiologically defined clusters of neurons, consistent with literature from other SC layers. To determine the types of inputs to the SGP, we expressed Channelrhodopsin‐2 in the nucleus of the brachium of the inferior colliculus (nBIC) and external cortex of the inferior colliculus (ECIC) and optically stimulated these pathways while recording from SGP neurons. Probing the connections in this manner, we described a monosynaptic excitation that additionally drives feed‐forward inhibition via circuits intrinsic to the SC. Moreover, we found a profound long‐range monosynaptic inhibition in 100% of recorded SGP neurons, a surprising finding considering that only about 15% of SGP‐projecting neurons in the nBIC/ECIC are inhibitory. Furthermore, we found spatial differences in the cell body locations as well as axon trajectories between the monosynaptic excitatory and inhibitory inputs, suggesting that these inputs may be functionally distinct. Taking this together with recent anatomical evidence suggesting an auditory excitation from the nBIC and a GABAergic multimodal inhibition from the ECIC, we propose that sensory integration in the SGP is more multifaceted than previously thought. Although the visual circuits in the superior colliculus (SC) have been thoroughly examined, the auditory circuits lack equivalent scrutiny. SC neurons receiving auditory inputs in mice were characterized and three distinguishable types of neurons were found. The auditory pathways from external nuclei of the inferior colliculus (IC) were characterized, and a novel direct inhibitory connection and an excitation that drives feed‐forward inhibitory circuits within the SC were found. The direct excitatory and inhibitory inputs exhibited distinct arbourization patterns in the SC. These findings suggest functional differences between excitatory and inhibitory sensory information that targets the auditory SC.
Collapse
Affiliation(s)
- Veronika Bednárová
- Max Planck Fellow Group: Circuits of Spatial Hearing, Max Planck Institute of Neurobiology, 82152, Planegg-Martinsried, Germany.,Division of Neurobiology, Department Biologie II, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Benedikt Grothe
- Max Planck Fellow Group: Circuits of Spatial Hearing, Max Planck Institute of Neurobiology, 82152, Planegg-Martinsried, Germany.,Division of Neurobiology, Department Biologie II, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Michael H Myoga
- Max Planck Fellow Group: Circuits of Spatial Hearing, Max Planck Institute of Neurobiology, 82152, Planegg-Martinsried, Germany.,Division of Neurobiology, Department Biologie II, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
9
|
Najdzion J. Cocaine- and amphetamine–regulated transcript peptide and calcium binding proteins immunoreactivity in the deep layers of the superior colliculus of the guinea pig: Implications for multisensory and visuomotor processing. J Chem Neuroanat 2018; 88:55-69. [DOI: 10.1016/j.jchemneu.2017.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/20/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
|
10
|
Mellott JG, Beebe NL, Schofield BR. GABAergic and non-GABAergic projections to the superior colliculus from the auditory brainstem. Brain Struct Funct 2018; 223:1923-1936. [PMID: 29302743 DOI: 10.1007/s00429-017-1599-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 12/22/2017] [Indexed: 02/02/2023]
Abstract
The superior colliculus (SC) contains an auditory space map that is shaped by projections from several subcortical auditory nuclei. Both GABAergic (inhibitory) and excitatory cells contribute to these inputs, but there are contradictory reports regarding the sources of these inputs. We used retrograde tracing techniques in guinea pigs to identify cells in the auditory brainstem that project to the SC. We combined retrograde tracing with immunohistochemistry for glutamic acid decarboxylase (GAD) to identify putative GABAergic cells that participate in this pathway. Following a tracer injection in the SC, the nucleus of the brachium of the inferior colliculus (NBIC) contained the most labeled cells, followed by the inferior colliculus (IC). Smaller populations were observed in the sagulum, paralemniscal area, periolivary nuclei and ventrolateral tegmental nucleus. Overall, only 10% of the retrogradely labeled cells were GAD immunopositive. The presumptive inhibitory cells were observed in the NBIC, IC, superior paraolivary nucleus, sagulum and paralemniscal area. We conclude that the guinea pig SC receives input from a diverse set of auditory brainstem nuclei, some of which provide GABAergic input. These diverse origins of input to the SC likely represent a variety of functions. Inputs from the NBIC and IC likely provide spatial information for guiding orienting behaviors. Inputs from subcollicular nuclei are less likely to provide spatial information; rather, they may provide a shorter route for auditory information to reach the SC, and could generate avoidance or escape responses to an external threat.
Collapse
Affiliation(s)
- Jeffrey G Mellott
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH, USA
| | - Nichole L Beebe
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH, USA
| | - Brett R Schofield
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH, USA.
| |
Collapse
|
11
|
Costa M, Lepore F, Guillemot JP. Spectral and temporal auditory processing in the superior colliculus of aged rats. Neurobiol Aging 2017; 57:64-74. [DOI: 10.1016/j.neurobiolaging.2017.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/04/2017] [Accepted: 05/13/2017] [Indexed: 12/01/2022]
|
12
|
Deviance detection in auditory subcortical structures: what can we learn from neurochemistry and neural connectivity? Cell Tissue Res 2015; 361:215-32. [DOI: 10.1007/s00441-015-2134-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/22/2015] [Indexed: 12/18/2022]
|
13
|
Yao JD, Bremen P, Middlebrooks JC. Transformation of spatial sensitivity along the ascending auditory pathway. J Neurophysiol 2015; 113:3098-111. [PMID: 25744891 DOI: 10.1152/jn.01029.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/27/2015] [Indexed: 11/22/2022] Open
Abstract
Locations of sounds are computed in the central auditory pathway based primarily on differences in sound level and timing at the two ears. In rats, the results of that computation appear in the primary auditory cortex (A1) as exclusively contralateral hemifield spatial sensitivity, with strong responses to sounds contralateral to the recording site, sharp cutoffs across the midline, and weak, sound-level-tolerant responses to ipsilateral sounds. We surveyed the auditory pathway in anesthetized rats to identify the brain level(s) at which level-tolerant spatial sensitivity arises. Noise-burst stimuli were varied in horizontal sound location and in sound level. Neurons in the central nucleus of the inferior colliculus (ICc) displayed contralateral tuning at low sound levels, but tuning was degraded at successively higher sound levels. In contrast, neurons in the nucleus of the brachium of the inferior colliculus (BIN) showed sharp, level-tolerant spatial sensitivity. The ventral division of the medial geniculate body (MGBv) contained two discrete neural populations, one showing broad sensitivity like the ICc and one showing sharp sensitivity like A1. Dorsal, medial, and shell regions of the MGB showed fairly sharp spatial sensitivity, likely reflecting inputs from A1 and/or the BIN. The results demonstrate two parallel brainstem pathways for spatial hearing. The tectal pathway, in which sharp, level-tolerant spatial sensitivity arises between ICc and BIN, projects to the superior colliculus and could support reflexive orientation to sounds. The lemniscal pathway, in which such sensitivity arises between ICc and the MGBv, projects to the forebrain to support perception of sound location.
Collapse
Affiliation(s)
- Justin D Yao
- Department of Neurobiology and Behavior, University of California at Irvine, Irvine, California; Center for Hearing Research, University of California at Irvine, Irvine, California
| | - Peter Bremen
- Department of Otolaryngology, University of California at Irvine, Irvine, California; Center for Hearing Research, University of California at Irvine, Irvine, California
| | - John C Middlebrooks
- Department of Neurobiology and Behavior, University of California at Irvine, Irvine, California; Department of Otolaryngology, University of California at Irvine, Irvine, California; Center for Hearing Research, University of California at Irvine, Irvine, California; Department of Cognitive Sciences, University of California at Irvine, Irvine, California; Department of Biomedical Engineering, University of California at Irvine, Irvine, California
| |
Collapse
|
14
|
Coullon GSL, Jiang F, Fine I, Watkins KE, Bridge H. Subcortical functional reorganization due to early blindness. J Neurophysiol 2015; 113:2889-99. [PMID: 25673746 DOI: 10.1152/jn.01031.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/09/2015] [Indexed: 11/22/2022] Open
Abstract
Lack of visual input early in life results in occipital cortical responses to auditory and tactile stimuli. However, it remains unclear whether cross-modal plasticity also occurs in subcortical pathways. With the use of functional magnetic resonance imaging, auditory responses were compared across individuals with congenital anophthalmia (absence of eyes), those with early onset (in the first few years of life) blindness, and normally sighted individuals. We find that the superior colliculus, a "visual" subcortical structure, is recruited by the auditory system in congenital and early onset blindness. Additionally, auditory subcortical responses to monaural stimuli were altered as a result of blindness. Specifically, responses in the auditory thalamus were equally strong to contralateral and ipsilateral stimulation in both groups of blind subjects, whereas sighted controls showed stronger responses to contralateral stimulation. These findings suggest that early blindness results in substantial reorganization of subcortical auditory responses.
Collapse
Affiliation(s)
- Gaelle S L Coullon
- Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom;
| | - Fang Jiang
- Department of Psychology, University of Nevada, Reno, Nevada; and Department of Psychology, University of Washington, Seattle, Washington
| | - Ione Fine
- Department of Psychology, University of Washington, Seattle, Washington
| | - Kate E Watkins
- Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom; Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Holly Bridge
- Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| |
Collapse
|
15
|
Mellott JG, Bickford ME, Schofield BR. Descending projections from auditory cortex to excitatory and inhibitory cells in the nucleus of the brachium of the inferior colliculus. Front Syst Neurosci 2014; 8:188. [PMID: 25339870 PMCID: PMC4186273 DOI: 10.3389/fnsys.2014.00188] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 09/16/2014] [Indexed: 01/13/2023] Open
Abstract
Descending projections from the auditory cortex (AC) terminate in subcortical auditory centers from the medial geniculate nucleus (MG) to the cochlear nucleus, allowing the AC to modulate the processing of acoustic information at many levels of the auditory system. The nucleus of the brachium of the inferior colliculus (NBIC) is a large midbrain auditory nucleus that is a target of these descending cortical projections. The NBIC is a source of several auditory projections, including an ascending projection to the MG. This ascending projection appears to originate from both excitatory and inhibitory NBIC cells, but whether the cortical projections contact either of these cell groups is unknown. In this study, we first combined retrograde tracing and immunochemistry for glutamic acid decarboxylase (GAD, a marker of GABAergic cells) to identify GABAergic and non-GABAergic NBIC projections to the MG. Our first result is that GAD-immunopositive cells constitute ~17% of the NBIC to MG projection. We then used anterograde labeling and electron microscopy to examine the AC projection to the NBIC. Our second result is that cortical boutons in the NBIC form synapses with round vesicles and asymmetric synapses, consistent with excitatory effects. Finally, we combined fluorescent anterograde labeling of corticofugal axons with immunochemistry and retrograde labeling of NBIC cells that project to the MG. These final results suggest first that AC axons contact both GAD-negative and GAD-positive NBIC cells and, second, that some of cortically-contacted cells project to the MG. Overall, the results imply that corticofugal projections can modulate both excitatory and inhibitory ascending projections from the NBIC to the auditory thalamus.
Collapse
Affiliation(s)
- Jeffrey G Mellott
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University Rootstown, OH USA
| | - Martha E Bickford
- Department of Anatomical Sciences and Neurobiology, University of Louisville Louisville, KY USA
| | - Brett R Schofield
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University Rootstown, OH USA
| |
Collapse
|
16
|
Mendonça C. A review on auditory space adaptations to altered head-related cues. Front Neurosci 2014; 8:219. [PMID: 25120422 PMCID: PMC4110508 DOI: 10.3389/fnins.2014.00219] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/05/2014] [Indexed: 11/23/2022] Open
Abstract
In this article we present a review of current literature on adaptations to altered head-related auditory localization cues. Localization cues can be altered through ear blocks, ear molds, electronic hearing devices, and altered head-related transfer functions (HRTFs). Three main methods have been used to induce auditory space adaptation: sound exposure, training with feedback, and explicit training. Adaptations induced by training, rather than exposure, are consistently faster. Studies on localization with altered head-related cues have reported poor initial localization, but improved accuracy and discriminability with training. Also, studies that displaced the auditory space by altering cue values reported adaptations in perceived source position to compensate for such displacements. Auditory space adaptations can last for a few months even without further contact with the learned cues. In most studies, localization with the subject's own unaltered cues remained intact despite the adaptation to a second set of cues. Generalization is observed from trained to untrained sound source positions, but there is mixed evidence regarding cross-frequency generalization. Multiple brain areas might be involved in auditory space adaptation processes, but the auditory cortex (AC) may play a critical role. Auditory space plasticity may involve context-dependent cue reweighting.
Collapse
Affiliation(s)
- Catarina Mendonça
- Department of Signal Processing and Acoustics, School of Electrical Engineering, Aalto University Espoo, Finland
| |
Collapse
|
17
|
Slee SJ, Young ED. Alignment of sound localization cues in the nucleus of the brachium of the inferior colliculus. J Neurophysiol 2014; 111:2624-33. [PMID: 24671535 DOI: 10.1152/jn.00885.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Accurate sound localization is based on three acoustic cues (interaural time and intensity difference and spectral cues from directional filtering by the pinna). In natural listening conditions, every spatial position of a sound source provides a unique combination of these three cues in "natural alignment." Although neurons in the central nucleus (ICC) of the inferior colliculus (IC) are sensitive to multiple cues, they do not favor their natural spatial alignment. We tested for sensitivity to cue alignment in the nucleus of the brachium of the IC (BIN) in unanesthetized marmoset monkeys. The BIN receives its predominant auditory input from ICC and projects to the topographic auditory space map in the superior colliculus. Sound localization cues measured in each monkey were used to synthesize broadband stimuli with aligned and misaligned cues; spike responses to these stimuli were recorded in the BIN. We computed mutual information (MI) between the set of spike rates and the stimuli containing either aligned or misaligned cues. The results can be summarized as follows: 1) BIN neurons encode more information about auditory space when cues are aligned compared with misaligned. 2) Significantly more units prefer aligned cues in the BIN than in ICC. 3) An additive model based on summing the responses to stimuli with the localization cues varying individually accurately predicts the alignment preference with all cues varying. Overall, the results suggest that the BIN is the first site in the ascending mammalian auditory system that is tuned to natural combinations of sound localization cues.
Collapse
Affiliation(s)
- Sean J Slee
- Oregon Hearing Research Center, Oregon Health and Science University, Portland, Oregon; and Biomedical Engineering Department, Johns Hopkins University, Baltimore, Maryland
| | - Eric D Young
- Biomedical Engineering Department, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
18
|
Gaze shifts to auditory and visual stimuli in cats. J Assoc Res Otolaryngol 2013; 14:731-55. [PMID: 23749194 DOI: 10.1007/s10162-013-0401-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 05/15/2013] [Indexed: 12/19/2022] Open
Abstract
While much is known about the metrics and kinematics of gaze shifts to visual targets in cats, little is known about gaze shifts to auditory targets. Here, cats were trained to localize auditory and visual targets via gaze shifts. Five properties of gaze shifts to sounds were observed. First, gaze shifts were accomplished primarily by large head movements. Unlike primates, the head movement in cats often preceded eye movement though the relative timing of eye in head and head latencies depended upon the target modality and gaze shift magnitude. Second, gaze shift latencies to auditory targets tended to be shorter than equivalent shifts to visual targets for some conditions. Third, the main sequences relating gaze amplitude to maximum gaze velocity for auditory and visual targets were comparable. However, head movements to auditory and visual targets were less consistent than gaze shifts and tended to undershoot the targets by 30 % for both modalities. Fourth, at the end of gaze movement, the proportion of the gaze shift accomplished by the eye-in-head movement was greater to visual than auditory targets. On the other hand, at the end of head movement, the proportion of the gaze shift accomplished by the head was greater to auditory than visual targets. Finally, gaze shifts to long-duration auditory targets were accurate and precise and were similar to accuracy of gaze shifts to long-duration visual targets. Because the metrics of gaze shifts to visual and auditory targets are nearly equivalent, as well as their accuracy, we conclude that both sensorimotor tasks use primarily the same neural substrates for the execution of movement.
Collapse
|
19
|
Chabot N, Mellott JG, Hall AJ, Tichenoff EL, Lomber SG. Cerebral origins of the auditory projection to the superior colliculus of the cat. Hear Res 2013; 300:33-45. [PMID: 23500650 DOI: 10.1016/j.heares.2013.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/08/2013] [Accepted: 02/21/2013] [Indexed: 01/24/2023]
Abstract
The superior colliculus (SC) is critical for directing accurate head and eye movements to visual and acoustic targets. In visual cortex, areas involved in orienting of the head and eyes to a visual stimulus have direct projections to the SC. In auditory cortex of the cat, four areas have been identified to be critical for the accurate orienting of the head and body to an acoustic stimulus. These areas include primary auditory cortex (A1), the posterior auditory field (PAF), the dorsal zone of auditory cortex (DZ), and the auditory field of the anterior ectosylvian sulcus (fAES). Therefore, we hypothesized that these four regions of auditory cortex would have direct projections to the SC. To test this hypothesis, deposits of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) were made into the superficial and deep layers of the SC to label, by means of retrograde transport, the auditory cortical origins of the corticotectal pathway. Bilateral examination of auditory cortex revealed that the vast majority of the labeled cells were located in the hemisphere ipsilateral to the SC injection. In ipsilateral auditory cortex, nearly all the labeled neurons were found in the infragranular layers, predominately in layer V. The largest population of labeled cells was located in the fAES. Few labeled neurons were identified in A1, PAF, or DZ. Thus, in contrast to the visual system, only one of the auditory cortical areas involved in orienting to an acoustic stimulus has a strong direct projection to the SC. Sound localization signals processed in primary (A1) and other non-primary (PAF and DZ) auditory cortices may be transmitted to the SC via a multi-synaptic corticotectal network.
Collapse
Affiliation(s)
- Nicole Chabot
- Cerebral Systems Laboratory, Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | | | | | | | | |
Collapse
|
20
|
Noto CT, Mahzar S, Gnadt J, Kanwal JS. A flexible user-interface for audiovisual presentation and interactive control in neurobehavioral experiments. F1000Res 2013; 2:20. [PMID: 24627768 PMCID: PMC3907162 DOI: 10.12688/f1000research.2-20.v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/16/2013] [Indexed: 11/23/2022] Open
Abstract
A major problem facing behavioral neuroscientists is a lack of unified, vendor-distributed data acquisition systems that allow stimulus presentation and behavioral monitoring while recording neural activity. Numerous systems perform one of these tasks well independently, but to our knowledge, a useful package with a straightforward user interface does not exist. Here we describe the development of a flexible, script-based user interface that enables customization for real-time stimulus presentation, behavioral monitoring and data acquisition. The experimental design can also incorporate neural microstimulation paradigms. We used this interface to deliver multimodal, auditory and visual (images or video) stimuli to a nonhuman primate and acquire single-unit data. Our design is cost-effective and works well with commercially available hardware and software. Our design incorporates a script, providing high-level control of data acquisition via a sequencer running on a digital signal processor to enable behaviorally triggered control of the presentation of visual and auditory stimuli. Our experiments were conducted in combination with eye-tracking hardware. The script, however, is designed to be broadly useful to neuroscientists who may want to deliver stimuli of different modalities using any animal model.
Collapse
Affiliation(s)
- Christopher T Noto
- Department of Neurology, Georgetown University, Washington DC, 20057, USA ; Department of Physiology and Biophysics, Georgetown University, Washington DC, 20057, USA
| | - Suleman Mahzar
- Department of Neurology, Georgetown University, Washington DC, 20057, USA ; Department of Physiology and Biophysics, Georgetown University, Washington DC, 20057, USA ; Current address: Faculty of Computer Science and Engineering, GIK Institute, Topi, 23640, Pakistan
| | - James Gnadt
- Department of Physiology and Biophysics, Georgetown University, Washington DC, 20057, USA ; Current address: NINDS/NIH, Systems and Cognitive Neuroscience, Neuroscience Center, Bethesda MD, 20892, USA
| | - Jagmeet S Kanwal
- Department of Neurology, Georgetown University, Washington DC, 20057, USA ; Department of Physiology and Biophysics, Georgetown University, Washington DC, 20057, USA
| |
Collapse
|
21
|
Geis HRA, Borst JGG. Large GABAergic neurons form a distinct subclass within the mouse dorsal cortex of the inferior colliculus with respect to intrinsic properties, synaptic inputs, sound responses, and projections. J Comp Neurol 2012; 521:189-202. [DOI: 10.1002/cne.23170] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 04/18/2012] [Accepted: 06/07/2012] [Indexed: 11/10/2022]
|
22
|
Tupal S, Faingold CL. The amygdala to periaqueductal gray pathway: plastic changes induced by audiogenic kindling and reversal by gabapentin. Brain Res 2012; 1475:71-9. [PMID: 22841539 DOI: 10.1016/j.brainres.2012.07.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/18/2012] [Accepted: 07/23/2012] [Indexed: 10/28/2022]
Abstract
Repeated, periodic induction of AGS (AGS kindling) in GEPR-9s increases seizure duration and induces an additional generalized clonus phase [post-tonic clonus (PTC)], which involves expansion of the localized brainstem AGS network to the amygdala. The pathway between central amygdala (CeA) and ventrolateral periaqueductal gray (vlPAG) is implicated in several disorders, including pain and anxiety. This pathway is also implicated in the network of audiogenic seizures (AGS) in genetically epilepsy-prone rats (GEPR-9s). We examined AGS kindling-induced changes in vlPAG extracellular action potentials evoked by electrical stimuli in CeA in awake, behaving GEPR-9s, using chronically-implanted stimulation electrodes in CeA and microwire recording electrodes in vlPAG. The effect of gabapentin, an anticonvulsant drug that is also effective in pain and anxiety disorders, on the CeA to vlPAG pathway in AGS-kindled GEPR-9s was also evaluated. Electrical stimulation in CeA evoked consistent, short latency and intensity-dependent vlPAG neuronal firing increases. However, in AGS-kindled GEPR-9s these responses showed a precipitous firing increase with increasing stimulus intensity, as compared to non-kindled GEPR-9s. Gabapentin (50mg/kg, i.p.) significantly reduced vlPAG neuronal responses to CeA stimulation to pre-AGS-kindled levels and reversibly blocked PTC in AGS-kindled GEPR-9s. These data suggest that the amygdala to vlPAG pathway may be critical in mediating the emergence of PTC during AGS kindling. The ability of gabapentin to suppress this pathway may be important for its anticonvulsant effects in AGS-kindled GEPR-9s, and this effect may contribute to gabapentin's effectiveness in anxiety and pain in which the amygdala to PAG pathway is also implicated.
Collapse
Affiliation(s)
- S Tupal
- Dept. Pharmacology, Southern Illinois University School of Medicine, PO Box 19629, Springfield, IL 62794-9629, USA
| | | |
Collapse
|
23
|
Abstract
Spatial attention enables the brain to analyse and evaluate information selectively from a specific location in space, a capacity essential for any animal to behave adaptively in a complex world. We usually think of spatial attention as being controlled by a frontoparietal network in the forebrain. However, emerging evidence shows that a midbrain network also plays a critical role in controlling spatial attention. Moreover, the highly differentiated, retinotopic organization of the midbrain network, especially in birds, makes it amenable to detailed analysis with modern techniques that can elucidate circuit, cellular and synaptic mechanisms of attention. The following review discusses the role of the midbrain network in controlling attention, the neural circuits that support this role and current knowledge about the computations performed by these circuits.
Collapse
Affiliation(s)
- Eric I Knudsen
- Department of Neurobiology, 299 Campus Dr., Stanford University School of Medicine, Stanford, CA 94305-5125, USA.
| |
Collapse
|
24
|
Populin LC, Rajala AZ. Target modality determines eye-head coordination in nonhuman primates: implications for gaze control. J Neurophysiol 2011; 106:2000-11. [PMID: 21795625 DOI: 10.1152/jn.00331.2011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have studied eye-head coordination in nonhuman primates with acoustic targets after finding that they are unable to make accurate saccadic eye movements to targets of this type with the head restrained. Three male macaque monkeys with experience in localizing sounds for rewards by pointing their gaze to the perceived location of sources served as subjects. Visual targets were used as controls. The experimental sessions were configured to minimize the chances that the subject would be able to predict the modality of the target as well as its location and time of presentation. The data show that eye and head movements are coordinated differently to generate gaze shifts to acoustic targets. Chiefly, the head invariably started to move before the eye and contributed more to the gaze shift. These differences were more striking for gaze shifts of <20-25° in amplitude, to which the head contributes very little or not at all when the target is visual. Thus acoustic and visual targets trigger gaze shifts with different eye-head coordination. This, coupled to the fact that anatomic evidence involves the superior colliculus as the link between auditory spatial processing and the motor system, suggests that separate signals are likely generated within this midbrain structure.
Collapse
Affiliation(s)
- Luis C Populin
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | | |
Collapse
|
25
|
Hamada S, Houtani T, Trifonov S, Kase M, Maruyama M, Shimizu JI, Yamashita T, Tomoda K, Sugimoto T. Histological Determination of the Areas Enriched in Cholinergic Terminals and m2 and m3 Muscarinic Receptors in the Mouse Central Auditory System. Anat Rec (Hoboken) 2010; 293:1393-9. [DOI: 10.1002/ar.21186] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Bajo VM, Nodal FR, Moore DR, King AJ. The descending corticocollicular pathway mediates learning-induced auditory plasticity. Nat Neurosci 2009; 13:253-60. [PMID: 20037578 DOI: 10.1038/nn.2466] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 11/09/2009] [Indexed: 11/09/2022]
Abstract
Descending projections from sensory areas of the cerebral cortex are among the largest pathways in the brain, suggesting that they are important for subcortical processing. Although corticofugal inputs have been shown to modulate neuronal responses in the thalamus and midbrain, the behavioral importance of these changes remains unknown. In the auditory system, one of the major descending pathways is from cortical layer V pyramidal cells to the inferior colliculus in the midbrain. We examined the role of these neurons in experience-dependent recalibration of sound localization in adult ferrets by selectively killing the neurons using chromophore-targeted laser photolysis. When provided with appropriate training, animals normally relearn to localize sound accurately after altering the spatial cues available by reversibly occluding one ear. However, this ability was lost after eliminating corticocollicular neurons, whereas normal sound-localization accuracy was unaffected. The integrity of this descending pathway is therefore critical for learning-induced localization plasticity.
Collapse
Affiliation(s)
- Victoria M Bajo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
27
|
Palmer AR, Rosen S. British Society of Audiology Short Papers Meeting on Experimental Studies of Hearing and Deafness. Int J Audiol 2009. [DOI: 10.3109/14992020209078336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Aparicio MA, Saldaña E. Tectotectal neurons and projections: a proposal to establish a consistent nomenclature. Anat Rec (Hoboken) 2008; 292:175-7. [PMID: 19089893 DOI: 10.1002/ar.20837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- María Auxiliadora Aparicio
- Laboratory for the Neurobiology of Hearing, Neuroscience Institute of Castilla y León, University of Salamanca, Salamanca, Spain
| | | |
Collapse
|
29
|
Varga T, Palkovits M, Usdin TB, Dobolyi A. The medial paralemniscal nucleus and its afferent neuronal connections in rat. J Comp Neurol 2008; 511:221-37. [PMID: 18770870 PMCID: PMC2752428 DOI: 10.1002/cne.21829] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Previously, we described a cell group expressing tuberoinfundibular peptide of 39 residues (TIP39) in the lateral pontomesencephalic tegmentum, and referred to it as the medial paralemniscal nucleus (MPL). To identify this nucleus further in rat, we have now characterized the MPL cytoarchitectonically on coronal, sagittal, and horizontal serial sections. Neurons in the MPL have a columnar arrangement distinct from adjacent areas. The MPL is bordered by the intermediate nucleus of the lateral lemniscus nucleus laterally, the oral pontine reticular formation medially, and the rubrospinal tract ventrally, whereas the A7 noradrenergic cell group is located immediately mediocaudal to the MPL. TIP39-immunoreactive neurons are distributed throughout the cytoarchitectonically defined MPL and constitute 75% of its neurons as assessed by double labeling of TIP39 with a fluorescent Nissl dye or NeuN. Furthermore, we investigated the neuronal inputs to the MPL by using the retrograde tracer cholera toxin B subunit. The MPL has afferent neuronal connections distinct from adjacent brain regions including major inputs from the auditory cortex, medial part of the medial geniculate body, superior colliculus, external and dorsal cortices of the inferior colliculus, periolivary area, lateral preoptic area, hypothalamic ventromedial nucleus, lateral and dorsal hypothalamic areas, subparafascicular and posterior intralaminar thalamic nuclei, periaqueductal gray, and cuneiform nucleus. In addition, injection of the anterograde tracer biotinylated dextran amine into the auditory cortex and the hypothalamic ventromedial nucleus confirmed projections from these areas to the distinct MPL. The afferent neuronal connections of the MPL suggest its involvement in auditory and reproductive functions.
Collapse
Affiliation(s)
- Tamás Varga
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and the Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | |
Collapse
|
30
|
Alvarado JC, Fuentes-Santamaría V, Henkel CK. Rapid modifications in calretinin immunostaining in the deep layers of the superior colliculus after unilateral cochlear ablation. Hear Res 2008; 247:78-86. [PMID: 19017539 DOI: 10.1016/j.heares.2008.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2008] [Revised: 10/20/2008] [Accepted: 10/26/2008] [Indexed: 11/24/2022]
Abstract
Calretinin (CR) is a calcium-binding protein that plays an important role in the homeostasis of intracellular calcium concentration in the auditory pathway. To test if hearing loss could lead indirectly to modifications in levels of this calcium-binding protein in neurons and neuropilar structures outside of the lemniscal auditory pathway, CR-immunostaining was evaluated in the superior colliculus (SC) in adult ferrets at 1, 20 and 90 days after unilateral cochlear ablation. The results demonstrate that within 24h there was a significant increase in CR-immunostaining in ablated animals as indicated by an increase in the mean gray level of immunostaining in the deep, multisensory layers of the contralateral SC compared to the ipsilateral side and control ferrets. This upregulation was evident in both neurons and neuropil and did not change at the two subsequent time points. In contrast, there was no change in the superficial layers of the SC which have visual properties but no auditory inputs. These findings suggest that upregulation of CR levels within neurons and neuropil in the contralateral deep SC is subject to modifications by activity in multisynaptic auditory pathways. Therefore, cochlear-driven activity appears to affect calcium-binding protein levels not only in auditory nuclei but also in other neural structures whose response properties may be influenced by auditory-related activity.
Collapse
Affiliation(s)
- Juan Carlos Alvarado
- Regional Center for Biomedical Research (CRIB), Department of Medical Sciences, School of Medicine, University of Castilla-La Mancha, Albacete, Spain
| | | | | |
Collapse
|
31
|
Loftus WC, Malmierca MS, Bishop DC, Oliver DL. The cytoarchitecture of the inferior colliculus revisited: a common organization of the lateral cortex in rat and cat. Neuroscience 2008; 154:196-205. [PMID: 18313229 DOI: 10.1016/j.neuroscience.2008.01.019] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 12/27/2007] [Accepted: 01/02/2008] [Indexed: 11/19/2022]
Abstract
The inferior colliculus (IC) is the major component of the auditory midbrain and contains three major subdivisions: a central nucleus, a dorsal cortex, and a lateral cortex (LC). Discrepancies in the nomenclature and parcellation of the LC in the rat and cat seem to imply different, species-specific functions for this region. To establish a comparable parcellation of the LC for both rat and cat, we investigated its histochemistry and inputs. In both species, the deep lateral cortex is marked by a transition between the nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) rich superficial cortex and a cytochrome oxidase (CO) rich central nucleus. In both species, focal injections of anterograde tracers in the cochlear nucleus at sites of known best frequency produced bands of labeled inputs in two different subdivisions of the IC. A medial band of axons terminated in the central nucleus, while shorter bands were located laterally and oriented nearly perpendicularly to the medial bands. In the rat, these lateral bands were located in the third, deepest layer of the lateral (external) cortex. In the cat, the bands were located in a region that was previously ascribed to the central nucleus, but now considered to belong to the third, deepest layer of the LC, the ventrolateral nucleus. In both species, the LC inputs had a tonotopic organization. In view of this parallel organization, we propose a common parcellation of the IC for rat and cat with a new nomenclature. The deep layer of the LC, previously referred to as layer 3 in the rat, is designated as the 'ventrolateral nucleus' of the LC, making it clear that this region is thought to be homologous with the ventrolateral nucleus in the cat. The similar organization of the LC implies that this subdivision of the IC has similar functions in cats and rats.
Collapse
Affiliation(s)
- W C Loftus
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3401, USA
| | | | | | | |
Collapse
|
32
|
Nodal FR, Bajo VM, Parsons CH, Schnupp JW, King AJ. Sound localization behavior in ferrets: comparison of acoustic orientation and approach-to-target responses. Neuroscience 2007; 154:397-408. [PMID: 18281159 DOI: 10.1016/j.neuroscience.2007.12.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 12/06/2007] [Accepted: 12/10/2007] [Indexed: 10/22/2022]
Abstract
Auditory localization experiments typically either require subjects to judge the location of a sound source from a discrete set of response alternatives or involve measurements of the accuracy of orienting responses made toward the source location. To compare the results obtained by both methods, we trained ferrets by positive conditioning to stand on a platform at the center of a circular arena prior to stimulus presentation and then approach the source of a broadband noise burst delivered from 1 of 12 loudspeakers arranged at 30 degrees intervals in the horizontal plane. Animals were rewarded for making a correct choice. We also obtained a non-categorized measure of localization accuracy by recording head-orienting movements made during the first second following stimulus onset. The accuracy of the approach-to-target responses declined as the stimulus duration was reduced, particularly for lateral and posterior locations, although responses to sounds presented in the frontal region of space and directly behind the animal remained quite accurate. Head movements had a latency of approximately 200 ms and varied systematically in amplitude with stimulus direction. However, the final head bearing progressively undershot the target with increasing eccentricity and rarely exceeded 60 degrees to each side of the midline. In contrast to the approach-to-target responses, the accuracy of the head orienting responses did not change much with stimulus duration, suggesting that the improvement in percent correct scores with longer stimuli was due, at least in part, to re-sampling of the acoustical stimulus after the initial head turn had been made. Nevertheless, for incorrect trials, head orienting responses were more closely correlated with the direction approached by the animals than with the actual target direction, implying that at least part of the neural circuitry for translating sensory spatial signals into motor commands is shared by these two behaviors.
Collapse
Affiliation(s)
- F R Nodal
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford OX1 3PT, UK.
| | | | | | | | | |
Collapse
|
33
|
Pincherli Castellanos TA, Aitoubah J, Molotchnikoff S, Lepore F, Guillemot JP. Responses of inferior collicular cells to species-specific vocalizations in normal and enucleated rats. Exp Brain Res 2007; 183:341-50. [PMID: 17763846 DOI: 10.1007/s00221-007-1049-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 06/24/2007] [Indexed: 12/21/2022]
Abstract
The inferior colliculus (IC) is an obligatory relay for the ascending and descending auditory pathways. Cells in this brainstem structure not only analyze auditory stimuli but they also play a major role in multi-modal integration of auditory and visual information. The aim of the present study was to determine whether cells in the central nucleus of the inferior colliculus (CNIC) of normal rats respond selectively to complex auditory signals, such as species-specific vocalizations, and compare their responses to those obtained in neonatal bilateral enucleated (P2-P3) adult rats. Extra-cellular recordings were carried out in anesthetized normal and enucleated rats using auditory stimuli (pure tones, broadband noise and vocalizations) presented in free field in a semi-anechoic chamber. The results indicate that most cells in the CNIC of both groups respond selectively to species-specific vocalizations better than to the same but inverted sounds. No significant differences were found between the normal and enucleated rat groups in their responses to broadband noise and pure tones.
Collapse
Affiliation(s)
- T A Pincherli Castellanos
- Département de Psychologie, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC, Canada, H3C 3J7
| | | | | | | | | |
Collapse
|
34
|
Rossetti F, Rodrigues MCA, de Oliveira JAC, Garcia-Cairasco N. EEG wavelet analyses of the striatum–substantia nigra pars reticulata–superior colliculus circuitry: Audiogenic seizures and anticonvulsant drug administration in Wistar audiogenic rats (War strain). Epilepsy Res 2006; 72:192-208. [PMID: 17150334 DOI: 10.1016/j.eplepsyres.2006.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 08/04/2006] [Accepted: 08/14/2006] [Indexed: 01/15/2023]
Abstract
The importance of the substantia nigra pars reticulata (SNPr), striatum (STR) and superior colicullus (SC) in the blockade of experimental seizures is well known. But, in audiogenic seizures (brainstem tonic-clonic seizures), the anticonvulsant activity of these nuclei is still controversial. In the present study we aimed to analyze the STR-SNPr-CS circuitry in the audiogenic seizures of Wistar audiogenic rat (WAR). Behavioral and electroencephalographic (EEG) data were collected from WARs under no treatment or injection with systemic (phenobarbital) or intracerebral (intranigral) drugs (muscimol and phenobarbital). The main EEG frequency oscillation of STR, SNPr and SC seen before, during and after audiogenic seizures or during seizure protection, was determinated with wavelet spectral analyses. This method allows the association between behavior and EEG (video-EEG). Audiogenic seizures last only for half a minute in average, suggesting that the interruptions of seizures are probably not due to exhaustion. Systemic phenobarbital caused an acute and dose-dependent behavioral and EEGraphic anticonvulsant effect both in WARs. The dose of phenobarbital 15mg/kg protected animals almost completely, without side effects such as ataxia and sedation. In our data, this endogenous "natural" seizure blockade (or termination) seems to be similar to the "forced" seizure abolition, like the one caused by a systemic non-ataxic phenobarbital dose, because in both cases an intense decrease in the EEG main frequency oscillation can be seen in SNPr and SC. Intranigral phenobarbital or muscimol did not protect animals, and actually induced an increase in the main EEG frequency oscillation in SC. The main finding of the present study is that, in contrast to what is well believed about the incapacity to control audiogenic seizures by the striato-nigro-tectal circuitry, we collected here evidences that these nuclei are involved in the ability to block these seizures. However, the striato-nigro-tectal circuitry in WARs, a genetically developed strain, seems to have different functional mechanisms when compared with normal rats.
Collapse
Affiliation(s)
- Franco Rossetti
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | | | | | | |
Collapse
|
35
|
Hunt DL, King B, Kahn DM, Yamoah EN, Shull GE, Krubitzer L. Aberrant retinal projections in congenitally deaf mice: how are phenotypic characteristics specified in development and evolution? ACTA ACUST UNITED AC 2006; 287:1051-66. [PMID: 16200647 DOI: 10.1002/ar.a.20251] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The contribution of sensory input to the formation of sensory system-specific (sensoritopic) connections of the thalamus and midbrain was investigated using mice lacking the Na+-K+-2Cl- cotransporter (NKCC1) or the plasma membrane Ca2+-ATPase isoform2 (PMCA2). Because these mice are congenitally deaf, the developing nervous system has no exposure to sensory-driven neural activity from the auditory system. Here we compared the retinofugal pathway in normal and congenitally deaf mice using intraocular injections of neuroanatomical tracers into each eye, and relating tracer patterns to identified thalamic nuclei and superior colliculus layers. We demonstrate that loss of such activity results in aberrant projections of the retina into nonvisual auditory structures such as the medial geniculate nucleus and the intermediate layers of the superior colliculus. These findings indicate that activity from peripheral sensory receptor arrays is necessary not only for the refinement of developing connections within a unimodal structure, but for the establishment of sensoritopic or sensory-specific connections of unimodal and multimodal structures. We hypothesize that specification of such connections may occur through the modulation of spatial expression patterns of molecules known to be involved in the development of topography of connections between brain structures, such as the ephrins, via activity-dependent, CRE-mediated gene expression.
Collapse
Affiliation(s)
- Deborah L Hunt
- Center for Neuroscience, University of California at Davis, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
36
|
May PJ. The mammalian superior colliculus: laminar structure and connections. PROGRESS IN BRAIN RESEARCH 2006; 151:321-78. [PMID: 16221594 DOI: 10.1016/s0079-6123(05)51011-2] [Citation(s) in RCA: 452] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The superior colliculus is a laminated midbrain structure that acts as one of the centers organizing gaze movements. This review will concentrate on sensory and motor inputs to the superior colliculus, on its internal circuitry, and on its connections with other brainstem gaze centers, as well as its extensive outputs to those structures with which it is reciprocally connected. This will be done in the context of its laminar arrangement. Specifically, the superficial layers receive direct retinal input, and are primarily visual sensory in nature. They project upon the visual thalamus and pretectum to influence visual perception. These visual layers also project upon the deeper layers, which are both multimodal, and premotor in nature. Thus, the deep layers receive input from both somatosensory and auditory sources, as well as from the basal ganglia and cerebellum. Sensory, association, and motor areas of cerebral cortex provide another major source of collicular input, particularly in more encephalized species. For example, visual sensory cortex terminates superficially, while the eye fields target the deeper layers. The deeper layers are themselves the source of a major projection by way of the predorsal bundle which contributes collicular target information to the brainstem structures containing gaze-related burst neurons, and the spinal cord and medullary reticular formation regions that produce head turning.
Collapse
Affiliation(s)
- Paul J May
- Department of Anatomy, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| |
Collapse
|
37
|
Nodal FR, Doubell TP, Jiang ZD, Thompson ID, King AJ. Development of the projection from the nucleus of the brachium of the inferior colliculus to the superior colliculus in the ferret. J Comp Neurol 2005; 485:202-17. [PMID: 15791643 DOI: 10.1002/cne.20478] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neurons in the deeper layers of the superior colliculus (SC) have spatially tuned receptive fields that are arranged to form a map of auditory space. The spatial tuning of these neurons emerges gradually in an experience-dependent manner after the onset of hearing, but the relative contributions of peripheral and central factors in this process of maturation are unknown. We have studied the postnatal development of the projection to the ferret SC from the nucleus of the brachium of the inferior colliculus (nBIC), its main source of auditory input, to determine whether the emergence of auditory map topography can be attributed to anatomical rewiring of this projection. The pattern of retrograde labeling produced by injections of fluorescent microspheres in the SC on postnatal day (P) 0 and just after the age of hearing onset (P29), showed that the nBIC-SC projection is topographically organized in the rostrocaudal axis, along which sound azimuth is represented, from birth. Injections of biotinylated dextran amine-fluorescein into the nBIC at different ages (P30, 60, and 90) labeled axons with numerous terminals and en passant boutons throughout the deeper layers of the SC. This labeling covered the entire mediolateral extent of the SC, but, in keeping with the pattern of retrograde labeling following microsphere injections in the SC, was more restricted rostrocaudally. No systematic changes were observed with age. The stability of the nBIC-SC projection over this period suggests that developmental changes in auditory spatial tuning involve other processes, rather than a gross refinement of the projection from the nBIC.
Collapse
Affiliation(s)
- Fernando R Nodal
- University Laboratory of Physiology, University of Oxford, Oxford OX1 3PT, United Kingdom.
| | | | | | | | | |
Collapse
|
38
|
Carlile S, Martin R, McAnally K. Spectral Information in Sound Localization. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 70:399-434. [PMID: 16472641 DOI: 10.1016/s0074-7742(05)70012-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Simon Carlile
- Auditory Neuroscience Laboratory, School of Medical Sciences University of Sydney, Sydney NSW 2006, Australia
| | | | | |
Collapse
|
39
|
Skaliora I, Doubell TP, Holmes NP, Nodal FR, King AJ. Functional Topography of Converging Visual and Auditory Inputs to Neurons in the Rat Superior Colliculus. J Neurophysiol 2004; 92:2933-46. [PMID: 15229210 DOI: 10.1152/jn.00450.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have used a slice preparation of the infant rat midbrain to examine converging inputs onto neurons in the deeper multisensory layers of the superior colliculus (dSC). Electrical stimulation of the superficial visual layers (sSC) and of the auditory nucleus of the brachium of the inferior colliculus (nBIC) evoked robust monosynaptic responses in dSC cells. Furthermore, the inputs from the sSC were found to be topographically organized as early as the second postnatal week and thus before opening of the eyes and ear canals. This precocious topography was found to be sculpted by GABAA-mediated inhibition of a more widespread set of connections. Tracer injections in the nBIC, both in coronal slices as well as in hemisected brains, confirmed a robust projection originating in the nBIC with distinct terminals in the proximity of the cell bodies of dSC neurons. Combined stimulation of the sSC and nBIC sites revealed that the presumptive visual and auditory inputs are summed linearly. Finally, whereas either input on its own could manifest a significant degree of paired-pulse facilitation, temporally offset stimulation of the two sites revealed no synaptic interactions, indicating again that the two inputs function independently. Taken together, these data provide the first detailed intracellular analysis of convergent sensory inputs onto dSC neurons and form the basis for further exploration of multisensory integration and developmental plasticity.
Collapse
Affiliation(s)
- Irini Skaliora
- University Laboratory of Physiology, University of Oxford, Oxford OX1 3PT, UK.
| | | | | | | | | |
Collapse
|
40
|
Kimura A, Donishi T, Okamoto K, Tamai Y. Efferent connections of “posterodorsal” auditory area in the rat cortex: Implications for auditory spatial processing. Neuroscience 2004; 128:399-419. [PMID: 15350651 DOI: 10.1016/j.neuroscience.2004.07.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2004] [Indexed: 11/19/2022]
Abstract
We examined efferent connections of the cortical auditory field that receives thalamic afferents specifically from the suprageniculate nucleus (SG) and the dorsal division (MGD) of the medial geniculate body (MG) in the rat [Neuroscience 117 (2003) 1003]. The examined cortical region was adjacent to the caudodorsal border (4.8-7.0 mm posterior to bregma) of the primary auditory area (area Te1) and exhibited relatively late auditory response and high best frequency, compared with the caudal end of area Te1. On the basis of the location and auditory response property, the cortical region is considered identical to "posterodorsal" auditory area (PD). Injections of biocytin in PD revealed characteristic projections, which terminated in cortical areas and subcortical structures that play pivotal roles in directed attention and space processing. The most noticeable cortical terminal field appeared as dense plexuses of axons in area Oc2M, the posterior parietal cortex. Small terminal fields were scattered in area frontal cortex, area 2 that comprises the frontal eye field. The subcortical terminal fields were observed in the pontine nucleus, the nucleus of the brachium inferior colliculus, and the intermediate and deep layers of the superior colliculus. Corticostriatal projections targeted two discrete regions of the caudate putamen: the top of the middle part and the caudal end. It is noteworthy that the inferior colliculus and amygdala virtually received no projection. Corticothalamic projections terminated in the MGD, the SG, the ventral zone of the ventral division of the MG, the ventral margin of the lateral posterior nucleus (LP), and the caudodorsal part of the posterior thalamic nuclear group (Po). Large terminals were found in the MGD, SG, LP and Po besides small terminals, the major component of labeling. The results suggest that PD is an auditory area that plays an important role in spatial processing linked to directed attention and motor function. The results extend to the rat findings from nonhuman primates suggesting the existence of a posterodorsal processing stream for auditory spatial perception.
Collapse
Affiliation(s)
- A Kimura
- Department of Physiology, Wakayama Medical University, Kimiidera 811-1, 641-8509, Japan.
| | | | | | | |
Collapse
|
41
|
Mana S, Chevalier G. The fine organization of nigro-collicular channels with additional observations of their relationships with acetylcholinesterase in the rat. Neuroscience 2002; 106:357-74. [PMID: 11566506 DOI: 10.1016/s0306-4522(01)00283-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The nigro-collicular pathway that links the basal ganglia to the sensorimotor layers of superior colliculus plays a crucial role in promoting orienting behaviors. This connection originating in the pars reticulata and lateralis of the substantia nigra has been shown in rat and cat to be topographically organized. In rat, a functional compartmentalization of the substantia nigra has also been shown reflecting that of the striatum. In light of this, we reinvestigated the topographical arrangement of the nigro-collicular pathway by examining the innervation of each nigral functional zone. We performed small injections of either biocytin or wheatgerm agglutinin conjugated with horseradish peroxidase restricted to identified somatic, visual and auditory nigral zones. Frontally cut sections showed that innervations provided by the three main nigral zones form a mosaic of complementary domains stratified from the stratum opticum to the ventral part of the intermediate collicular layers, with the somatic afferents sandwiched between the visual and the auditory ones. When reconstructed from semi-horizontal sections, nigral innervations organized in the form of a honeycomb-like array composed of 100 cylindrical modules covering three-quarters of the collicular surface. Such a modular architecture is reminiscent of the acetylcholinesterase lattice we previously described in rat intermediate collicular layers. In the enzyme lattice, the surroundings of the cylindrical modules are composed of a mosaic of dense and diffuse enzyme subdomains. Thus, we compared the distribution of the overall nigral projection and of its constituent channels with the acetylcholinesterase lattice. The procedure combined axonal labelling with histochemistry on single sections for acetylcholinesterase activity. The results demonstrate that the overall nigral projection overlaps the acetylcholinesterase lattice and its constituent channels converge with either the dense or the diffuse enzyme subdomains. The stereometric arrangement of the nigro-collicular pathway is suggestive of an architecture promoting the selection of collicular motor programs for different classes of orienting behavior.
Collapse
Affiliation(s)
- S Mana
- Université René Descartes, Laboratoire de Neurosciences Comportementales, Centre Universitaire de Boulogne, 71 avenue Edouard Vaillant, 92774 Boulogne Billancourt, France
| | | |
Collapse
|
42
|
The Inferior Colliculus: A Hub for the Central Auditory System. INTEGRATIVE FUNCTIONS IN THE MAMMALIAN AUDITORY PATHWAY 2002. [DOI: 10.1007/978-1-4757-3654-0_7] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
|
44
|
Yang L, Long C, Faingold CL. Neurons in the deep layers of superior colliculus are a requisite component of the neuronal network for seizures during ethanol withdrawal. Brain Res 2001; 920:134-41. [PMID: 11716819 DOI: 10.1016/s0006-8993(01)03048-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ethanol withdrawal (ETX) in ethanol-dependent animals and humans often results in seizure susceptibility. The deep layers of superior colliculus (DLSC) are proposed to be involved in the neuronal networks of several types of seizures. In rodents, ETX results in susceptibility to audiogenic seizures (AGS), and the DLSC are implicated as a critical component of the seizure network in a genetic form of AGS. Ethanol inhibits NMDA receptors, and the binding at these receptors is increased during ETX in certain brain regions. Therefore, the effect of focal microinjection into DLSC of a competitive NMDA receptor antagonist, DL-2-amino-7-phosphonoheptanoic acid (AP7) on ETX seizures was examined. AP7 (2 and 5 nmol/side) microinjected bilaterally into DLSC suppressed AGS, supporting a critical role of the DLSC in the AGS network during ETX. DLSC neuronal firing changes in behaving rats were subsequently examined, using chronically implanted microwire electrodes. Acoustically-evoked DLSC firing was significantly suppressed during ethanol intoxication and during ETX. However, DLSC neurons began firing tonically 1-2 s before the onset of the wild running behavior of AGS. Acoustically-evoked DLSC firing was suppressed during post-ictal depression with recovery beginning as the righting reflex returned. These data support a requisite role of the DLSC in AGS during ETX. These neuronal firing changes suggest an important role of DLSC neurons in generation of the wild running phase of AGS during ETX, which may be a general pathophysiological mechanism and a critical event in the initiation of wild running, since a similar pattern was seen previously in a genetic form of AGS.
Collapse
Affiliation(s)
- L Yang
- Department of Pharmacology, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, USA
| | | | | |
Collapse
|
45
|
Doubell TP, Baron J, Skaliora I, King AJ. Topographical projection from the superior colliculus to the nucleus of the brachium of the inferior colliculus in the ferret: convergence of visual and auditory information. Eur J Neurosci 2000. [DOI: 10.1111/j.1460-9568.2000.01337.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Abstract
The superior olivary complex (SOC) is part of the auditory brainstem of the vertebrate brain. Residing ventrally in the rhombencephalon, it receives sensory signals from both cochleae through multisynaptic pathways. Neurons of the SOC are also a target of bilateral descending projections. Ascending and descending efferents of the SOC affect the processing of auditory signals on both sides of the brainstem and in both organs of Corti. The pattern of connectivity indicates that the SOC fulfills functions of binaural signal integration serving sound localization. But whereas many of these connectional features are shared with the inferior colliculus (with the important exception of a projection to the inner ear), cellular and molecular investigations have shown that cells residing in SOC are unique in several respects. Unlike those of other auditory brainstem nuclei, they specifically express molecules known to be involved in development, plasticity, and learning (e.g., GAP-43 mRNA, specific subunits of integrin). Moreover, neurons of the SOC in adult mammals respond to various kinds of hearing impairment with the expression of plasticity-related substances (e.g., GAP-43, c-Jun, c-Fos, cytoskeletal elements), indicative of a restructuring of auditory connectivity. These observations suggest that the SOC is pivotal in the developmental and adaptive tuning of binaural processing in young and adult vertebrates.
Collapse
Affiliation(s)
- R B Illing
- Department of Otorhinolaryngology, Neurobiological Research Laboratory, University of Freiburg, D-79106 Freiburg, Germany.
| | | | | |
Collapse
|
47
|
K Harting J, Van Lieshout DP. Projections from the rostral pole of the inferior colliculus to the cat superior colliculus. Brain Res 2000; 881:244-7. [PMID: 11036169 DOI: 10.1016/s0006-8993(00)02849-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The neuroanatomical data given here reveal a dense projection from the rostral pole of the cat inferior colliculus (rpIC) to the superior colliculus (SC). A portion of this pathway distributes in 'patches' across the ventral portion of the intermediate grey layer. These finding suggest that the rpIC input to the SC might play a role in determining the auditory receptive fields of SGI neurons and in the construction of the SC's precise two dimensional map of auditory space.
Collapse
Affiliation(s)
- J K Harting
- Department of Anatomy, University of Wisconsin Medical School, 53706, Madison, WI, USA.
| | | |
Collapse
|
48
|
King AJ, Parsons CH, Moore DR. Plasticity in the neural coding of auditory space in the mammalian brain. Proc Natl Acad Sci U S A 2000; 97:11821-8. [PMID: 11050215 PMCID: PMC34355 DOI: 10.1073/pnas.97.22.11821] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sound localization relies on the neural processing of monaural and binaural spatial cues that arise from the way sounds interact with the head and external ears. Neurophysiological studies of animals raised with abnormal sensory inputs show that the map of auditory space in the superior colliculus is shaped during development by both auditory and visual experience. An example of this plasticity is provided by monaural occlusion during infancy, which leads to compensatory changes in auditory spatial tuning that tend to preserve the alignment between the neural representations of visual and auditory space. Adaptive changes also take place in sound localization behavior, as demonstrated by the fact that ferrets raised and tested with one ear plugged learn to localize as accurately as control animals. In both cases, these adjustments may involve greater use of monaural spectral cues provided by the other ear. Although plasticity in the auditory space map seems to be restricted to development, adult ferrets show some recovery of sound localization behavior after long-term monaural occlusion. The capacity for behavioral adaptation is, however, task dependent, because auditory spatial acuity and binaural unmasking (a measure of the spatial contribution to the "cocktail party effect") are permanently impaired by chronically plugging one ear, both in infancy but especially in adulthood. Experience-induced plasticity allows the neural circuitry underlying sound localization to be customized to individual characteristics, such as the size and shape of the head and ears, and to compensate for natural conductive hearing losses, including those associated with middle ear disease in infancy.
Collapse
Affiliation(s)
- A J King
- University Laboratory of Physiology, Oxford University, Parks Road, Oxford OX1 3PT, United Kingdom.
| | | | | |
Collapse
|
49
|
Gordon M, O'Neill WE. An extralemniscal component of the mustached bat inferior colliculus selective for direction and rate of linear frequency modulations. J Comp Neurol 2000; 426:165-81. [PMID: 10982461 PMCID: PMC3940212 DOI: 10.1002/1096-9861(20001016)426:2<165::aid-cne1>3.0.co;2-i] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Frequency modulations (FMs) are prevalent in human speech, and are important acoustic cues for the categorical discrimination of phonetic contrasts. For bats, FM sweeps are also important for communication and are often the only component in echolocation calls. Auditory neurons tuned to the direction and rate of FM might underlie the encoding of rapid frequency transitions. In the mustached bat, we have discovered a population of such FM selective cells in an area interposed between the central nucleus of the inferior colliculus (ICC) and the nuclei of the lateral lemniscus (NLL). We believe this area to be the ventral extent of the external nucleus of the inferior colliculus (ICXv). To describe FM selectivity of neurons in the ICXv and to compare it to other midbrain nuclei, up- and down-sweeping linear FM stimuli were presented at different modulation rates. Extracellular recordings were made from 171 single units in the ICC, ICXv, and NLL of 10 mustached bats. In the ICXv, there was a much higher degree of FM selectivity than in ICC or NLL and a consistent preference for upward over downward FM sweeps. Anterograde and retrograde transport was examined following focal injections of wheatgerm agglutinin-horseradish peroxidase (WGA-HRP) into ICXv. The main targets of anterograde transport were the deep layers of the superior colliculus and the suprageniculate division of the medial geniculate body. The primary site of retrograde transport was the nucleus of the central acoustic tract in the brainstem. Thus, the ICXv appears to be a part of the central acoustic tract, an extralemniscal pathway linking the auditory brainstem directly to a multimodal nucleus of the thalamus.
Collapse
Affiliation(s)
- M Gordon
- Program in Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| | | |
Collapse
|
50
|
Abstract
Although the rat is often used to determine behavioural sound-localization capabilities or neuronal computation of binaural information, the representation of auditory space in the rat brain has not been investigated so far. We obtained extracellular recordings from auditory neurons in the superior colliculus of anaesthetized rats and examined them for spatial tuning characteristics and topographical order. Many neurons (73%) showed significant tuning, with a single peak in the azimuth response profiles based on spike rates and response latencies. Best azimuth values from neurons in one SC were generally tuned to contralateral and rarely to frontal or ipsilateral directions. Tuning width was mostly broad; at supra-threshold sound pressure levels (35 dB SPL), 55% of the units had a tuning width of > 120 degrees in contralateral space. Additionally, tuning width increased with stimulation intensity. A significant but considerably scattered topographical order of best azimuth directions was observed in the deep layers of the superior colliculus with frontal directions being represented closer to the rostral pole. Tuned auditory units in the intermediate layers of the superior colliculus, however, showed no systematic spatial arrangement. This pattern was confirmed by analysing best azimuth directions from simultaneously recorded units. Our results indicate that the rat superior colliculus contains a representation of auditory space which is similar to that described for other small mammals.
Collapse
Affiliation(s)
- B H Gaese
- Inst. f. Biologie II (Zoologie/Tierphysiologie), RWTH Aachen, Kopernikusstr. 16, D-52074 Aachen, Germany.
| | | |
Collapse
|