1
|
Stinson HE, Ninan I. Median raphe glutamatergic neuron-mediated enhancement of GABAergic transmission and suppression of long-term potentiation in the hippocampus. Heliyon 2024; 10:e38192. [PMID: 39386853 PMCID: PMC11462361 DOI: 10.1016/j.heliyon.2024.e38192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
The ascending neuromodulatory pathway from the median raphe nucleus (MRN) extends widely throughout midline/para-midline regions and robustly innervates the hippocampus. This neuromodulatory pathway is believed to be critical for regulating emotional and affective behaviors. Although the MRN primarily contains serotoninergic (5-HTergic), GABAergic, and glutamatergic neurons, glutamatergic neurons expressing vesicular glutamate transporter 3 (VGLUT3) form the primary MRN input to the hippocampus. Despite the earlier demonstration of the robust MRN VGLUT3 innervation of the hippocampus, little is known about how this MRN glutamatergic input modulates synaptic transmission and plasticity in the hippocampus. Our studies show that MRN VGLUT3 neurons activate serotonin 3a receptor (5-HT3aR)-expressing GABAergic neurons, including VGLUT3-expressing neurons, at the stratum radiatum (SR)/stratum lacunosum moleculare (SLM) border. This MRN VGLUT3 neuron-mediated glutamatergic transmission onto SR/SLM 5-HT3aR neurons is negatively regulated by 5-HT through 5-HT1B receptors. In agreement with the MRN VGLUT3 neuron-mediated activation of the 5-HT3aR GABAergic neurons, activation of MRN VGLUT3 projections induces a long-lasting increase in GABAergic transmission but not glutamatergic transmission in CA1 pyramidal neurons from male but not female mice. Consistent with the MRN VGLUT3 neuron-mediated enhancement of GABAergic transmission in male mice, activation of MRN VGLUT3 projections suppresses Schaffer collateral (SC)-CA1 long-term potentiation (LTP) in male but not female mice. Thus, our results show that MRN VGLUT3 neurons modulate the dorsal hippocampus by augmenting synaptic inhibition of CA1 pyramidal neurons and by suppressing SC-CA1 LTP in a sex-specific manner.
Collapse
Affiliation(s)
- Hannah E. Stinson
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Ipe Ninan
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| |
Collapse
|
2
|
Higa GSV, Viana FJC, Francis-Oliveira J, Cruvinel E, Franchin TS, Marcourakis T, Ulrich H, De Pasquale R. Serotonergic neuromodulation of synaptic plasticity. Neuropharmacology 2024; 257:110036. [PMID: 38876308 DOI: 10.1016/j.neuropharm.2024.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Synaptic plasticity constitutes a fundamental process in the reorganization of neural networks that underlie memory, cognition, emotional responses, and behavioral planning. At the core of this phenomenon lie Hebbian mechanisms, wherein frequent synaptic stimulation induces long-term potentiation (LTP), while less activation leads to long-term depression (LTD). The synaptic reorganization of neuronal networks is regulated by serotonin (5-HT), a neuromodulator capable of modify synaptic plasticity to appropriately respond to mental and behavioral states, such as alertness, attention, concentration, motivation, and mood. Lately, understanding the serotonergic Neuromodulation of synaptic plasticity has become imperative for unraveling its impact on cognitive, emotional, and behavioral functions. Through a comparative analysis across three main forebrain structures-the hippocampus, amygdala, and prefrontal cortex, this review discusses the actions of 5-HT on synaptic plasticity, offering insights into its role as a neuromodulator involved in emotional and cognitive functions. By distinguishing between plastic and metaplastic effects, we provide a comprehensive overview about the mechanisms of 5-HT neuromodulation of synaptic plasticity and associated functions across different brain regions.
Collapse
Affiliation(s)
- Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil; Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - José Francis-Oliveira
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Thainá Soares Franchin
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
3
|
Tian X, Russo SJ, Li L. Behavioral Animal Models and Neural-Circuit Framework of Depressive Disorder. Neurosci Bull 2024:10.1007/s12264-024-01270-7. [PMID: 39120643 DOI: 10.1007/s12264-024-01270-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/26/2024] [Indexed: 08/10/2024] Open
Abstract
Depressive disorder is a chronic, recurring, and potentially life-endangering neuropsychiatric disease. According to a report by the World Health Organization, the global population suffering from depression is experiencing a significant annual increase. Despite its prevalence and considerable impact on people, little is known about its pathogenesis. One major reason is the scarcity of reliable animal models due to the absence of consensus on the pathology and etiology of depression. Furthermore, the neural circuit mechanism of depression induced by various factors is particularly complex. Considering the variability in depressive behavior patterns and neurobiological mechanisms among different animal models of depression, a comparison between the neural circuits of depression induced by various factors is essential for its treatment. In this review, we mainly summarize the most widely used behavioral animal models and neural circuits under different triggers of depression, aiming to provide a theoretical basis for depression prevention.
Collapse
Affiliation(s)
- Xiangyun Tian
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Scott J Russo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Long Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Hwang H, Jin SW, Lee I. Differential functions of the dorsal and intermediate regions of the hippocampus for optimal goal-directed navigation in VR space. eLife 2024; 13:RP97114. [PMID: 39012807 PMCID: PMC11251721 DOI: 10.7554/elife.97114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
Goal-directed navigation requires the hippocampus to process spatial information in a value-dependent manner, but its underlying mechanism needs to be better understood. Here, we investigated whether the dorsal (dHP) and intermediate (iHP) regions of the hippocampus differentially function in processing place and its associated value information. Rats were trained in a place-preference task involving reward zones with different values in a visually rich virtual reality environment where two-dimensional navigation was possible. Rats learned to use distal visual scenes effectively to navigate to the reward zone associated with a higher reward. Inactivation of both dHP and iHP with muscimol altered the efficiency and precision of wayfinding behavior, but iHP inactivation induced more severe damage, including impaired place preference. Our findings suggest that the iHP is more critical for value-dependent navigation toward higher-value goal locations.
Collapse
Affiliation(s)
- Hyeri Hwang
- Department of Brain and Cognitive Sciences, Seoul National UniversitySeoulRepublic of Korea
| | - Seung-Woo Jin
- Department of Psychiatry and Behavioral Sciences, University of WashingtonSeattleUnited States
| | - Inah Lee
- Department of Brain and Cognitive Sciences, Seoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
5
|
Parvin Z, Jaafari Suha A, Afarinesh MR, Hosseinmardi N, Janahmadi M, Behzadi G. Social hierarchy differentially influences the anxiety-like behaviors and dendritic spine density in prefrontal cortex and limbic areas in male rats. Behav Brain Res 2024; 469:115043. [PMID: 38729219 DOI: 10.1016/j.bbr.2024.115043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/28/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Social hierarchy is a fundamental feature of social organization that can influence brain and emotional processing regarding social ranks. Several areas, including the medial prefrontal cortex (mPFC), the hippocampus, and the basolateral nucleus of the amygdala (BLA), are recognized to be involved in the regulation of emotional processing. However, its delicate structural correlates in brain regions are poorly understood. To address this issue, social hierarchy in home-caged sibling Wistar rats (three male rats/cage) was determined by employing a social confrontation tube test (postnatal weeks 9-12). Then, locomotor activity and anxiety-like behaviors were evaluated using an open-field test (OFT) and elevated plus-maze (EPM) at 13 weeks of age. The rapid Golgi impregnation method was conducted to quantify the spine density of the first secondary branch of the primary dendrite in 20 µm length. The results indicated that dominant rats had significantly higher anxiety-like behaviors compared to subordinates, as was evident by lower open-arm entries and time spent in the EPM and lower entries and time spent in the center of OFT. The spine density analysis revealed a significantly higher number of spines in subordinates compared to the dominant rats in dmPFC pyramidal neurons and the apical and basal dendrites of hippocampal CA1 pyramidal neurons. However, the spine density of pyramidal-like neurons in the BLA was higher in dominant rats. Our findings suggest that dominant social rank is associated with higher anxiety and differential density of the dendritic spine in the prefrontal cortex and limbic regions of the brain in male rats.
Collapse
Affiliation(s)
- Zeinab Parvin
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Jaafari Suha
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gila Behzadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Seoane S, van den Heuvel M, Acebes Á, Janssen N. The subcortical default mode network and Alzheimer's disease: a systematic review and meta-analysis. Brain Commun 2024; 6:fcae128. [PMID: 38665961 PMCID: PMC11043657 DOI: 10.1093/braincomms/fcae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/28/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The default mode network is a central cortical brain network suggested to play a major role in several disorders and to be particularly vulnerable to the neuropathological hallmarks of Alzheimer's disease. Subcortical involvement in the default mode network and its alteration in Alzheimer's disease remains largely unknown. We performed a systematic review, meta-analysis and empirical validation of the subcortical default mode network in healthy adults, combined with a systematic review, meta-analysis and network analysis of the involvement of subcortical default mode areas in Alzheimer's disease. Our results show that, besides the well-known cortical default mode network brain regions, the default mode network consistently includes subcortical regions, namely the thalamus, lobule and vermis IX and right Crus I/II of the cerebellum and the amygdala. Network analysis also suggests the involvement of the caudate nucleus. In Alzheimer's disease, we observed a left-lateralized cluster of decrease in functional connectivity which covered the medial temporal lobe and amygdala and showed overlap with the default mode network in a portion covering parts of the left anterior hippocampus and left amygdala. We also found an increase in functional connectivity in the right anterior insula. These results confirm the consistency of subcortical contributions to the default mode network in healthy adults and highlight the relevance of the subcortical default mode network alteration in Alzheimer's disease.
Collapse
Affiliation(s)
- Sara Seoane
- Department of Complex Traits Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
- Institute of Biomedical Technologies (ITB), University of La Laguna, Tenerife 38200, Spain
- Instituto Universitario de Neurociencia (IUNE), University of La Laguna, Tenerife 38200, Spain
| | - Martijn van den Heuvel
- Department of Complex Traits Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam UMC, Amsterdam 1081 HV, The Netherlands
| | - Ángel Acebes
- Institute of Biomedical Technologies (ITB), University of La Laguna, Tenerife 38200, Spain
- Department of Basic Medical Sciences, University of La Laguna, Tenerife 38200, Spain
| | - Niels Janssen
- Institute of Biomedical Technologies (ITB), University of La Laguna, Tenerife 38200, Spain
- Instituto Universitario de Neurociencia (IUNE), University of La Laguna, Tenerife 38200, Spain
- Department of Cognitive, Social and Organizational Psychology, University of La Laguna, Tenerife 38200, Spain
| |
Collapse
|
7
|
Nikbakht N, Pofahl M, Miguel-López A, Kamali F, Tchumatchenko T, Beck H. Efficient encoding of aversive location by CA3 long-range projections. Cell Rep 2024; 43:113957. [PMID: 38489262 DOI: 10.1016/j.celrep.2024.113957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/09/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Memorizing locations that are harmful or dangerous is a key capability of all organisms and requires an integration of affective and spatial information. In mammals, the dorsal hippocampus mainly processes spatial information, while the intermediate to ventral hippocampal divisions receive affective information via the amygdala. However, how spatial and aversive information is integrated is currently unknown. To address this question, we recorded the activity of hippocampal long-range CA3 axons at single-axon resolution in mice forming an aversive spatial memory. We show that intermediate CA3 to dorsal CA3 (i-dCA3) projections rapidly overrepresent areas preceding the location of an aversive stimulus due to a spatially selective addition of new place-coding axons followed by spatially non-specific stabilization. This sequence significantly improves the encoding of location by the i-dCA3 axon population. These results suggest that i-dCA3 axons transmit a precise, denoised, and stable signal indicating imminent danger to the dorsal hippocampus.
Collapse
Affiliation(s)
- Negar Nikbakht
- University of Bonn, Medical Faculty, Institute for Experimental Epileptology and Cognition Research, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Martin Pofahl
- University of Bonn, Medical Faculty, Institute for Experimental Epileptology and Cognition Research, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Albert Miguel-López
- University of Bonn, Medical Faculty, Institute for Experimental Epileptology and Cognition Research, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Fateme Kamali
- University of Bonn, Medical Faculty, Institute for Experimental Epileptology and Cognition Research, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Tatjana Tchumatchenko
- University of Bonn, Medical Faculty, Institute for Experimental Epileptology and Cognition Research, Venusberg-Campus 1, 53127 Bonn, Germany; University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Heinz Beck
- University of Bonn, Medical Faculty, Institute for Experimental Epileptology and Cognition Research, Venusberg-Campus 1, 53127 Bonn, Germany; University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Bonn, Germany.
| |
Collapse
|
8
|
Pandey K, Bessières B, Sheng SL, Taranda J, Osten P, Sandovici I, Constancia M, Alberini CM. Neuronal activity drives IGF2 expression from pericytes to form long-term memory. Neuron 2023; 111:3819-3836.e8. [PMID: 37788670 PMCID: PMC10843759 DOI: 10.1016/j.neuron.2023.08.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/03/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023]
Abstract
Investigations of memory mechanisms have been, thus far, neuron centric, despite the brain comprising diverse cell types. Using rats and mice, we assessed the cell-type-specific contribution of hippocampal insulin-like growth factor 2 (IGF2), a polypeptide regulated by learning and required for long-term memory formation. The highest level of hippocampal IGF2 was detected in pericytes, the multi-functional mural cells of the microvessels that regulate blood flow, vessel formation, the blood-brain barrier, and immune cell entry into the central nervous system. Learning significantly increased pericytic Igf2 expression in the hippocampus, particularly in the highly vascularized stratum lacunosum moleculare and stratum moleculare layers of the dentate gyrus. Igf2 increases required neuronal activity. Regulated hippocampal Igf2 knockout in pericytes, but not in fibroblasts or neurons, impaired long-term memories and blunted the learning-dependent increase of neuronal immediate early genes (IEGs). Thus, neuronal activity-driven signaling from pericytes to neurons via IGF2 is essential for long-term memory.
Collapse
Affiliation(s)
- Kiran Pandey
- Center for Neural Science, New York University, New York, NY 10003, USA
| | | | - Susan L Sheng
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Julian Taranda
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Ionel Sandovici
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Miguel Constancia
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
9
|
Leontiadis LJ, Trompoukis G, Tsotsokou G, Miliou A, Felemegkas P, Papatheodoropoulos C. Rescue of sharp wave-ripples and prevention of network hyperexcitability in the ventral but not the dorsal hippocampus of a rat model of fragile X syndrome. Front Cell Neurosci 2023; 17:1296235. [PMID: 38107412 PMCID: PMC10722241 DOI: 10.3389/fncel.2023.1296235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
Fragile X syndrome (FXS) is a genetic neurodevelopmental disorder characterized by intellectual disability and is related to autism. FXS is caused by mutations of the fragile X messenger ribonucleoprotein 1 gene (Fmr1) and is associated with alterations in neuronal network excitability in several brain areas including hippocampus. The loss of fragile X protein affects brain oscillations, however, the effects of FXS on hippocampal sharp wave-ripples (SWRs), an endogenous hippocampal pattern contributing to memory consolidation have not been sufficiently clarified. In addition, it is still not known whether dorsal and ventral hippocampus are similarly affected by FXS. We used a Fmr1 knock-out (KO) rat model of FXS and electrophysiological recordings from the CA1 area of adult rat hippocampal slices to assess spontaneous and evoked neural activity. We find that SWRs and associated multiunit activity are affected in the dorsal but not the ventral KO hippocampus, while complex spike bursts remain normal in both segments of the KO hippocampus. Local network excitability increases in the dorsal KO hippocampus. Furthermore, specifically in the ventral hippocampus of KO rats we found an increased effectiveness of inhibition in suppressing excitation and an upregulation of α1GABAA receptor subtype. These changes in the ventral KO hippocampus are accompanied by a striking reduction in its susceptibility to induced epileptiform activity. We propose that the neuronal network specifically in the ventral segment of the hippocampus is reorganized in adult Fmr1-KO rats by means of balanced changes between excitability and inhibition to ensure normal generation of SWRs and preventing at the same time derailment of the neural activity toward hyperexcitability.
Collapse
|
10
|
Leontiadis LJ, Trompoukis G, Felemegkas P, Tsotsokou G, Miliou A, Papatheodoropoulos C. Increased Inhibition May Contribute to Maintaining Normal Network Function in the Ventral Hippocampus of a Fmr1-Targeted Transgenic Rat Model of Fragile X Syndrome. Brain Sci 2023; 13:1598. [PMID: 38002556 PMCID: PMC10669536 DOI: 10.3390/brainsci13111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
A common neurobiological mechanism in several neurodevelopmental disorders, including fragile X syndrome (FXS), is alterations in the balance between excitation and inhibition in the brain. It is thought that in the hippocampus, as in other brain regions, FXS is associated with increased excitability and reduced inhibition. However, it is still not known whether these changes apply to both the dorsal and ventral hippocampus, which appear to be differently involved in neurodegenerative disorders. Using a Fmr1 knock-out (KO) rat model of FXS, we found increased neuronal excitability in both the dorsal and ventral KO hippocampus and increased excitatory synaptic transmission in the dorsal hippocampus. Interestingly, synaptic inhibition is significantly increased in the ventral but not the dorsal KO hippocampus. Furthermore, the ventral KO hippocampus displays increased expression of the α1GABAA receptor subtype and a remarkably reduced rate of epileptiform discharges induced by magnesium-free medium. In contrast, the dorsal KO hippocampus displays an increased rate of epileptiform discharges and similar expression of α1GABAA receptors compared with the dorsal WT hippocampus. Blockade of α5GABAA receptors by L-655,708 did not affect epileptiform discharges in any genotype or hippocampal segment, and the expression of α5GABAA receptors did not differ between WT and KO hippocampus. These results suggest that the increased excitability of the dorsal KO hippocampus contributes to its heightened tendency to epileptiform discharges, while the increased phasic inhibition in the Fmr1-KO ventral hippocampus may represent a homeostatic mechanism that compensates for the increased excitability reducing its vulnerability to epileptic activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Costas Papatheodoropoulos
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, 26504 Rion, Greece; (L.J.L.); (G.T. (George Trompoukis)); (P.F.); (G.T. (Giota Tsotsokou)); (A.M.)
| |
Collapse
|
11
|
Wronski ML, Geisler D, Bernardoni F, Seidel M, Bahnsen K, Doose A, Steinhäuser JL, Gronow F, Böldt LV, Plessow F, Lawson EA, King JA, Roessner V, Ehrlich S. Differential alterations of amygdala nuclei volumes in acutely ill patients with anorexia nervosa and their associations with leptin levels. Psychol Med 2023; 53:6288-6303. [PMID: 36464660 PMCID: PMC10358440 DOI: 10.1017/s0033291722003609] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND The amygdala is a subcortical limbic structure consisting of histologically and functionally distinct subregions. New automated structural magnetic resonance imaging (MRI) segmentation tools facilitate the in vivo study of individual amygdala nuclei in clinical populations such as patients with anorexia nervosa (AN) who show symptoms indicative of limbic dysregulation. This study is the first to investigate amygdala nuclei volumes in AN, their relationships with leptin, a key indicator of AN-related neuroendocrine alterations, and further clinical measures. METHODS T1-weighted MRI scans were subsegmented and multi-stage quality controlled using FreeSurfer. Left/right hemispheric amygdala nuclei volumes were cross-sectionally compared between females with AN (n = 168, 12-29 years) and age-matched healthy females (n = 168) applying general linear models. Associations with plasma leptin, body mass index (BMI), illness duration, and psychiatric symptoms were analyzed via robust linear regression. RESULTS Globally, most amygdala nuclei volumes in both hemispheres were reduced in AN v. healthy control participants. Importantly, four specific nuclei (accessory basal, cortical, medial nuclei, corticoamygdaloid transition in the rostral-medial amygdala) showed greater volumetric reduction even relative to reductions of whole amygdala and total subcortical gray matter volumes, whereas basal, lateral, and paralaminar nuclei were less reduced. All rostral-medially clustered nuclei were positively associated with leptin in AN independent of BMI. Amygdala nuclei volumes were not associated with illness duration or psychiatric symptom severity in AN. CONCLUSIONS In AN, amygdala nuclei are altered to different degrees. Severe volume loss in rostral-medially clustered nuclei, collectively involved in olfactory/food-related reward processing, may represent a structural correlate of AN-related symptoms. Hypoleptinemia might be linked to rostral-medial amygdala alterations.
Collapse
Affiliation(s)
- Marie-Louis Wronski
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daniel Geisler
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Fabio Bernardoni
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Maria Seidel
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Klaas Bahnsen
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Arne Doose
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Jonas L. Steinhäuser
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Franziska Gronow
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
- Institute of Medical Psychology, Charité University Medicine Berlin, Berlin, Germany
| | - Luisa V. Böldt
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
- Charité University Medicine Berlin, Berlin, Germany
| | - Franziska Plessow
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Elizabeth A. Lawson
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joseph A. King
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
- Eating Disorder Treatment and Research Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
12
|
Olsen LC, Galler M, Witter MP, Saetrom P, O'Reilly KC. Transcriptional development of the hippocampus and the dorsal-intermediate-ventral axis in rats. Hippocampus 2023; 33:1028-1047. [PMID: 37280038 DOI: 10.1002/hipo.23549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 06/08/2023]
Abstract
Risk and resilience for neuropsychiatric illnesses are established during brain development, and transcriptional markers of risk may be identifiable in early development. The dorsal-ventral axis of the hippocampus has behavioral, electrophysiological, anatomical, and transcriptional gradients and abnormal hippocampus development is associated with autism, schizophrenia, epilepsy, and mood disorders. We previously showed that differential gene expression along the dorsoventral hippocampus in rats was present at birth (postnatal day 0, P0), and that a subset of differentially expressed genes (DEGs) was present at all postnatal ages examined (P0, P9, P18, and P60). Here, we extend the analysis of that gene expression data to understand the development of the hippocampus as a whole by examining DEGs that change with age. We additionally examine development of the dorsoventral axis by looking at DEGs along the axis at each age. Using both unsupervised and supervised analyses, we find that the majority of DEGs are present from P0 to P18, with many expression profiles presenting peaks or dips at P9/18. During development of the hippocampus, enriched pathways associated with learning, memory, and cognition increase with age, as do pathways associated with neurotransmission and synaptic function. Development of the dorsoventral axis is greatest at P9 and P18 and is marked by DEGs associated with metabolic functions. Our data indicate that neurodevelopmental disorders like epilepsy, schizophrenia and affective disorders are enriched with developmental DEGs in the hippocampus, regardless of dorsoventral location, with the greatest enrichment of these clinical disorders seen in genes whose expression changes from P0-9. When comparing DEGs from the ventral and dorsal poles, the greatest number of neurodevelopmental disorders is enriched with DEGs found at P18. Taken together, the developing hippocampus undergoes substantial transcriptional maturation during early postnatal development, with expression of genes involved in neurodevelopmental disorders also showing maximal expression changes within this developmental period.
Collapse
Affiliation(s)
- Lene C Olsen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Bioinformatics Core Facility - BioCore, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- Department of Microbiology, St. Olavs Hospital, Trondheim, Norway
| | - Meital Galler
- Department of Neuroscience and Behavior, Barnard College of Columbia University, New York, New York, USA
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University for Science and Technology, Trondheim, Norway
| | - Pål Saetrom
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Bioinformatics Core Facility - BioCore, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- Department of Computer and Information Science, NTNU Norwegian University for Science and Technology, Trondheim, Norway
| | - Kally C O'Reilly
- Department of Psychiatry, Columbia University; New York State Psychiatric Institute, New York, New York, USA
| |
Collapse
|
13
|
Shi HJ, Wang S, Wang XP, Zhang RX, Zhu LJ. Hippocampus: Molecular, Cellular, and Circuit Features in Anxiety. Neurosci Bull 2023; 39:1009-1026. [PMID: 36680709 PMCID: PMC10264315 DOI: 10.1007/s12264-023-01020-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/13/2022] [Indexed: 01/22/2023] Open
Abstract
Anxiety disorders are currently a major psychiatric and social problem, the mechanisms of which have been only partially elucidated. The hippocampus serves as a major target of stress mediators and is closely related to anxiety modulation. Yet so far, its complex anatomy has been a challenge for research on the mechanisms of anxiety regulation. Recent advances in imaging, virus tracking, and optogenetics/chemogenetics have permitted elucidation of the activity, connectivity, and function of specific cell types within the hippocampus and its connected brain regions, providing mechanistic insights into the elaborate organization of the hippocampal circuitry underlying anxiety. Studies of hippocampal neurotransmitter systems, including glutamatergic, GABAergic, cholinergic, dopaminergic, and serotonergic systems, have contributed to the interpretation of the underlying neural mechanisms of anxiety. Neuropeptides and neuroinflammatory factors are also involved in anxiety modulation. This review comprehensively summarizes the hippocampal mechanisms associated with anxiety modulation, based on molecular, cellular, and circuit properties, to provide tailored targets for future anxiety treatment.
Collapse
Affiliation(s)
- Hu-Jiang Shi
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Shuang Wang
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xin-Ping Wang
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Rui-Xin Zhang
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Li-Juan Zhu
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China.
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 201108, China.
| |
Collapse
|
14
|
Chen SY, Liu KF, Tan SY, Chen XS, Li HD, Li JJ, Zhou JW, Yang L, Long C. Deubiquitinase CYLD regulates excitatory synaptic transmission and short-term plasticity in the hippocampus. Brain Res 2023; 1806:148313. [PMID: 36878342 DOI: 10.1016/j.brainres.2023.148313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
The fate of proteins is determined by the addition of various forms of polyubiquitin during ubiquitin-mediated proteasomal degradation. Cylindromatosis (CYLD), a K63-specific deubiquitinase, is enriched in postsynaptic density fractions of the rodent central nervous system (CNS), but the synaptic role of CYLD in the CNS is poorly understand. Here we show that CYLD deficiency (Cyld-/-) results in reduced intrinsic hippocampal neuronal firing, a decrease in the frequency of spontaneous excitatory postsynaptic currents and a decrease in the amplitude of field excitatory postsynaptic potentials. Moreover, Cyld-/- hippocampus shows downregulated levels of presynaptic vesicular glutamate transporter 1 (vGlut1) and upregulated levels of postsynaptic GluA1, a subunit of the AMPA receptor, together with an altered paired-pulse ratio (PPR). We also found increased activation of astrocytes and microglia in the hippocampus of Cyld-/- mice. The present study suggests a critical role for CYLD in mediating hippocampal neuronal and synaptic activity.
Collapse
Affiliation(s)
- Shi-Yuan Chen
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Ke-Fang Liu
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Shu-Yi Tan
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Xiao-Shan Chen
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Hui-Dong Li
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Jing-Jing Li
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Jian-Wen Zhou
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Li Yang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, PR China.
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
15
|
Paré D, Headley DB. The amygdala mediates the facilitating influence of emotions on memory through multiple interacting mechanisms. Neurobiol Stress 2023; 24:100529. [PMID: 36970449 PMCID: PMC10034520 DOI: 10.1016/j.ynstr.2023.100529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Emotionally arousing experiences are better remembered than neutral ones, highlighting that memory consolidation differentially promotes retention of experiences depending on their survival value. This paper reviews evidence indicating that the basolateral amygdala (BLA) mediates the facilitating influence of emotions on memory through multiple mechanisms. Emotionally arousing events, in part by triggering the release of stress hormones, cause a long-lasting enhancement in the firing rate and synchrony of BLA neurons. BLA oscillations, particularly gamma, play an important role in synchronizing the activity of BLA neurons. In addition, BLA synapses are endowed with a unique property, an elevated post-synaptic expression of NMDA receptors. As a result, the synchronized gamma-related recruitment of BLA neurons facilitates synaptic plasticity at other inputs converging on the same target neurons. Given that emotional experiences are spontaneously remembered during wake and sleep, and that REM sleep is favorable to the consolidation of emotional memories, we propose a synthesis for the various lines of evidence mentioned above: gamma-related synchronized firing of BLA cells potentiates synapses between cortical neurons that were recruited during an emotional experience, either by tagging these cells for subsequent reactivation or by enhancing the effects of reactivation itself.
Collapse
Affiliation(s)
- Denis Paré
- Center for Molecular and Behavioral Neuroscience, Rutgers University - Newark, 197 University Avenue, Newark, NJ, 07102, USA
| | - Drew B. Headley
- Center for Molecular and Behavioral Neuroscience, Rutgers University - Newark, 197 University Avenue, Newark, NJ, 07102, USA
| |
Collapse
|
16
|
Cai CY, Tao Y, Zhou Y, Yang D, Qin C, Bian XL, Xian JY, Cao B, Chang L, Wu HY, Luo CX, Zhu DY. Nos1 + and Nos1 - excitatory neurons in the BLA regulate anxiety- and depression-related behaviors oppositely. J Affect Disord 2023; 333:181-192. [PMID: 37080493 DOI: 10.1016/j.jad.2023.04.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/31/2023] [Accepted: 04/14/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND The basolateral amygdala (BLA) neurons are primarily glutamatergic and have been associated with emotion regulation. However, little is known about the roles of BLA neurons expressing neuronal nitric oxide synthase (nNOS, Nos1) in the regulation of emotional behaviors. METHODS Using Nos1-cre mice and chemogenetic and optogenetic manipulations, we specifically silenced or activated Nos1+ or Nos1- neurons in the BLA, or silenced their projections to the anterdorsal bed nucleus of the stria terminalis (adBNST) and ventral hippocampus (vHPC). We measured anxiety behaviors in elevated plus maze (EPM) and open-field test (OFT), and measured depression behaviors in forced swimming test (FST) and tail suspension test (TST). RESULTS BLA Nos1+ neurons were predominantly glutamatergic, and glutamatergic but not GABAergic Nos1+ neurons were involved in controlling anxiety- and depression-related behaviors. Interestingly, by selectively manipulating the activities of BLA Nos1+ and Nos1- excitatory neurons, we found that they had opposing effects on anxiety- and depression-related behaviors. BLA Nos1+ excitatory neurons projected to the adBNST, this BLA-adBNST circuit controlled the expression of anxiety- and depression-related behaviors, while BLA Nos1- excitatory neurons projected to vHPC, this BLA-vHPC circuit contributed to the expression of anxiety- and depression-related behaviors. Moreover, excitatory vHPC-adBNST circuit antagonized the role of BLA-adBNST circuit in regulating anxiety- and depression-related behaviors. CONCLUSIONS BLA Nos1+ and Nos1- excitatory neuron subpopulations exert different effects on anxiety- and depression-related behaviors through distinct projection circuits, providing a new insight of BLA excitatory neurons in emotional regulation. LIMITATIONS We did not perform retrograde labeling from adBNST and vHPC regions.
Collapse
Affiliation(s)
- Cheng-Yun Cai
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yan Tao
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ying Zhou
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Di Yang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Cheng Qin
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xin-Lan Bian
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jia-Yun Xian
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Bo Cao
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Lei Chang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Hai-Yin Wu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Chun-Xia Luo
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing 211166, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.
| |
Collapse
|
17
|
Asim M, Wang H, Waris A. Altered neurotransmission in stress-induced depressive disorders: The underlying role of the amygdala in depression. Neuropeptides 2023; 98:102322. [PMID: 36702033 DOI: 10.1016/j.npep.2023.102322] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/30/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Depression is the second leading cause of disability in the world population, for which currently available pharmacological therapies either have poor efficacy or have some adverse effects. Accumulating evidence from clinical and preclinical studies demonstrates that the amygdala is critically implicated in depressive disorders, though the underlying pathogenesis mechanism needs further investigation. In this literature review, we overviewed depression and the key role of Gamma-aminobutyric acid (GABA) and Glutamate neurotransmission in depression. Notably, we discussed a new cholecystokinin-dependent plastic changes mechanism under stress and a possible antidepressant response of cholecystokinin B receptor (CCKBR) antagonist. Moreover, we discussed the fundamental role of the amygdala in depression, to discuss and understand the pathophysiology of depression and the inclusive role of the amygdala in this devastating disorder.
Collapse
Affiliation(s)
- Muhammad Asim
- Department of Biomedical science, City University of Hong Kong, Kowloon Tong 0000, Hong Kong; City University of Hong Kong Shenzhen research institute, Shenzhen 518507, PR China; Department of Neuroscience, City University of Hong Kong, Kowloon Tong 0000, Hong Kong.
| | - Huajie Wang
- City University of Hong Kong Shenzhen research institute, Shenzhen 518507, PR China; Department of Neuroscience, City University of Hong Kong, Kowloon Tong 0000, Hong Kong
| | - Abdul Waris
- Department of Biomedical science, City University of Hong Kong, Kowloon Tong 0000, Hong Kong; City University of Hong Kong Shenzhen research institute, Shenzhen 518507, PR China
| |
Collapse
|
18
|
Bach EC, Ewin SE, Heaney CF, Carlson HN, Ortelli OA, Almonte AG, Chappell AM, Raab-Graham KF, Weiner JL. Chemogenetic inhibition of a monosynaptic projection from the basolateral amygdala to the ventral hippocampus selectively reduces appetitive, but not consummatory, alcohol drinking-related behaviours. Eur J Neurosci 2023; 57:1241-1259. [PMID: 36840503 PMCID: PMC10931538 DOI: 10.1111/ejn.15944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/16/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023]
Abstract
Alcohol use disorder (AUD) and anxiety/stressor disorders frequently co-occur and this dual diagnosis represents a major health and economic problem worldwide. The basolateral amygdala (BLA) is a key brain region that is known to contribute to the aetiology of both disorders. Although many studies have implicated BLA hyperexcitability in the pathogenesis of AUD and comorbid conditions, relatively little is known about the specific efferent projections from this brain region that contribute to these disorders. Recent optogenetic studies have shown that the BLA sends a strong monosynaptic excitatory projection to the ventral hippocampus (vHC) and that this circuit modulates anxiety- and fear-related behaviours. However, it is not known if this pathway influences alcohol drinking-related behaviours. Here, we employed a rodent operant self-administration regimen that procedurally separates appetitive (e.g. seeking) and consummatory (e.g., drinking) behaviours, chemogenetics and brain region-specific microinjections, to determine if BLA-vHC circuitry influences alcohol and sucrose drinking-related measures. We first confirmed prior optogenetic findings that silencing this circuit reduced anxiety-like behaviours on the elevated plus maze. We then demonstrated that inhibiting the BLA-vHC pathway significantly reduced appetitive drinking-related behaviours for both alcohol and sucrose while having no effect on consummatory measures. Taken together, these findings provide the first indication that the BLA-vHC circuit may regulate appetitive reward seeking directed at alcohol and natural rewards and add to a growing body of evidence suggesting that dysregulation of this pathway may contribute to the pathophysiology of AUD and anxiety/stressor-related disorders.
Collapse
Affiliation(s)
- Eva C Bach
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Sarah E Ewin
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Chelcie F Heaney
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Hannah N Carlson
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Olivia A Ortelli
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Antoine G Almonte
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Ann M Chappell
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Kimberly F Raab-Graham
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jeffrey L Weiner
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
19
|
Chong YS, Wong LW, Gaunt J, Lee YJ, Goh CS, Morris RGM, Ch'ng TH, Sajikumar S. Distinct contributions of ventral CA1/amygdala co-activation to the induction and maintenance of synaptic plasticity. Cereb Cortex 2023; 33:676-690. [PMID: 35253866 DOI: 10.1093/cercor/bhac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 02/03/2023] Open
Abstract
The amygdala is known to modulate hippocampal synaptic plasticity. One role could be an immediate effect of basolateral amygdala (BLA) in priming synaptic plasticity in the hippocampus. Another role could be through associative synaptic co-operation and competition that triggers events involved in the maintenance of synaptic potentiation. We present evidence that the timing and activity level of BLA stimulation are important factors for the induction and maintenance of long-term potentiation (LTP) in ventral hippocampal area CA1. A 100 Hz BLA co-stimulation facilitated the induction of LTP, whereas 200 Hz co-stimulation attenuated induction. A 100 Hz BLA co-stimulation also caused enhanced persistence, sufficient to prevent synaptic competition. This maintenance effect is likely through translational mechanisms, as mRNA expression of primary response genes was unaffected, whereas protein level of plasticity-related products was increased. Further understanding of the neural mechanisms of amygdala modulation on hippocampus could provide insights into the mechanisms of emotional disorders.
Collapse
Affiliation(s)
- Yee Song Chong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, SIngapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117456, Singapore
| | - Lik-Wei Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, SIngapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117456, Singapore.,Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Jessica Gaunt
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Yan Jun Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore.,Interdisciplinary Graduate School, Nanyang Technological University, Singapore 637335, Singapore
| | - Cai Shan Goh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, SIngapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117456, Singapore
| | - Richard G M Morris
- Laboratory for Cognitive Neuroscience, Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh EH8 9JZ, Scotland
| | - Toh Hean Ch'ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, SIngapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117456, Singapore.,Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
20
|
Zhang L, Hu X, Hu Y, Tang M, Qiu H, Zhu Z, Gao Y, Li H, Kuang W, Ji W. Structural covariance network of the hippocampus-amygdala complex in medication-naïve patients with first-episode major depressive disorder. PSYCHORADIOLOGY 2022; 2:190-198. [PMID: 38665275 PMCID: PMC10917195 DOI: 10.1093/psyrad/kkac023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 04/28/2024]
Abstract
Background The hippocampus and amygdala are densely interconnected structures that work together in multiple affective and cognitive processes that are important to the etiology of major depressive disorder (MDD). Each of these structures consists of several heterogeneous subfields. We aim to explore the topologic properties of the volume-based intrinsic network within the hippocampus-amygdala complex in medication-naïve patients with first-episode MDD. Methods High-resolution T1-weighted magnetic resonance imaging scans were acquired from 123 first-episode, medication-naïve, and noncomorbid MDD patients and 81 age-, sex-, and education level-matched healthy control participants (HCs). The structural covariance network (SCN) was constructed for each group using the volumes of the hippocampal subfields and amygdala subregions; the weights of the edges were defined by the partial correlation coefficients between each pair of subfields/subregions, controlled for age, sex, education level, and intracranial volume. The global and nodal graph metrics were calculated and compared between groups. Results Compared with HCs, the SCN within the hippocampus-amygdala complex in patients with MDD showed a shortened mean characteristic path length, reduced modularity, and reduced small-worldness index. At the nodal level, the left hippocampal tail showed increased measures of centrality, segregation, and integration, while nodes in the left amygdala showed decreased measures of centrality, segregation, and integration in patients with MDD compared with HCs. Conclusion Our results provide the first evidence of atypical topologic characteristics within the hippocampus-amygdala complex in patients with MDD using structure network analysis. It provides more delineate mechanism of those two structures that underlying neuropathologic process in MDD.
Collapse
Affiliation(s)
- Lianqing Zhang
- Functional and molecular imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xinyue Hu
- Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, PR China
| | - Yongbo Hu
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, PR China
| | - Mengyue Tang
- Functional and molecular imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Hui Qiu
- Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, PR China
| | - Ziyu Zhu
- Functional and molecular imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yingxue Gao
- Functional and molecular imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Hailong Li
- Functional and molecular imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Weihong Kuang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, PR China
| | - Weidong Ji
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science and Affiliated Mental Health Center, East China Normal University, Shanghai 200335, China
- Child Psychiatry, Shanghai Changning Mental Health Center, Shanghai 200335, China
| |
Collapse
|
21
|
Gøtzsche CR, Woldbye DPD, Hundahl CA, Hay-Schmidt A. Neuroglobin deficiency increases seizure susceptibility but does not affect basal behavior in mice. J Neurosci Res 2022; 100:1921-1932. [PMID: 35822521 PMCID: PMC9544565 DOI: 10.1002/jnr.25105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 12/27/2022]
Abstract
Neuroglobin (Ngb) is found in the neurones of several different brain areas and is known to bind oxygen and other gaseous molecules and reactive oxygen species (ROS) in vitro, but it does not seem to act as a respiratory molecule for neurones. Using male and female Ngb‐knockout (KO) mice, we addressed the role of Ngb in neuronal brain activity using behavioral tests but found no differences in general behaviors, memory processes, and anxiety−/depression‐like behaviors. Oxidative stress and ROS play key roles in epileptogenesis, and oxidative injury produced by an excessive production of free radicals is involved in the initiation and progression of epilepsy. The ROS binding properties led us to hypothesize that lack of Ngb could affect central coping with excitatory stimuli. We consequently explored whether exposure to the excitatory molecule kainate (KA) would increase severity of seizures in mice lacking Ngb. We found that the duration and severity of seizures were increased, while the latency time to develop seizures was shortened in Ngb‐KO compared to wildtype adult female mice. Consistently, c‐fos expression after KA was significantly increased in Ngb‐KO mice in the amygdala and piriform cortex, regions rich in Ngb and known to be centrally involved in seizure generation. Moreover, the measured c‐fos expression levels were correlated with seizure susceptibility. With these new findings combined with previous studies we propose that Ngb could constitute an intrinsic defense mechanism against neuronal hyperexcitability and oxidative stress by buffering of ROS in amygdala and other Ngb‐containing brain regions.
Collapse
Affiliation(s)
- Casper R Gøtzsche
- Department for Neuroscience, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - David P D Woldbye
- Department for Neuroscience, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Anders Hay-Schmidt
- Department of Odontology, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Cuccovia V Reis FM, Novaes LS, Dos Santos NB, Ferreira-Rosa KC, Perfetto JG, Baldo MVC, Munhoz CD, Canteras NS. Predator fear memory depends on glucocorticoid receptors and protein synthesis in the basolateral amygdala and ventral hippocampus. Psychoneuroendocrinology 2022; 141:105757. [PMID: 35427951 DOI: 10.1016/j.psyneuen.2022.105757] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/01/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
Previous studies have suggested that the basolateral amygdala (BLA) and the ventral hippocampus (VH) are critical sites for predator-related fear memory. Predator exposure is an intense emotional experience and should increase plasmatic corticosterone likely to modulate the emotion-related memories. However, it is unclear whether the BLA and VH harbor plastic events underlying predator-related fear memory storage and how molecular and endocrine mechanisms interact to modulate memory to the predatory threat. Here, we first examined the effects of protein synthesis inhibition in the BLA and VH on fear memory to a predatory threat. We next evaluated how exposure to a predatory threat impacts the corticosterone release and how the inhibition of corticosterone synthesis can influence predator-related fear memory. Finally, we examined how predator exposure triggers the activation of glucocorticoid and mineralocorticoid receptors in the BLA and VH and whether the GR antagonist injection affects predator-related fear memory. We showed that predator-related contextual fear is dependent on protein synthesis in the BLA and VH. Moreover, we described the impact of rapid glucocorticoid release during predatory exposure on the formation of contextual fear responses and that GR-induced signaling facilitates memory consolidation within the BLA and VH. The results are relevant in understanding how life-threatening situations such as a predator encounter impact fear memory storage and open exciting perspectives to investigate GR-induced proteins as targets to deciphering and manipulating aversive memories.
Collapse
Affiliation(s)
| | - Leonardo Santana Novaes
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil
| | - Nilton Barreto Dos Santos
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil
| | | | - Juliano Genaro Perfetto
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil
| | - Marcus Vinicius C Baldo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Carolina Demarchi Munhoz
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil
| | - Newton Sabino Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
23
|
The role of inhibitory circuits in hippocampal memory processing. Nat Rev Neurosci 2022; 23:476-492. [DOI: 10.1038/s41583-022-00599-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 11/08/2022]
|
24
|
Nasa A, Mosley O, Roman E, Kelliher A, Gaughan C, Levins KJ, Coppinger D, O'Hanlon E, Cannon M, Roddy DW. MRI volumetric changes in hippocampal subfields in psychosis: a protocol for a systematic review and meta-analysis. Syst Rev 2022; 11:44. [PMID: 35292116 PMCID: PMC8925181 DOI: 10.1186/s13643-022-01916-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The hippocampus has for long been known for its ability to form new, declarative memory. However, emerging findings across conditions in the psychosis spectrum also implicate its role in emotional regulation. Systematic reviews have demonstrated consistent volume atrophic changes in the hippocampus. The aim of the systematic review and metanalysis which will follow from this protocol will be to investigate the volume-based neuroimaging findings across each of the subfields of the hippocampus in psychosis independent of diagnosis. METHODS Volume changes across subfields of the hippocampus in psychotic illnesses will be assessed by systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). MRI neuroimaging studies of patients with a definitive diagnosis of psychosis (including brief pre-diagnostic states) will be included. Studies lacking adequate controls, illicit drug use, medical psychosis, history of other significant psychiatric comorbidities, or emphasis on age groups above 65 or below 16 will be excluded. Subfields investigated will include the CA1, CA2/3, CA4, subiculum, presubiculum, parasubiculum, dentate gyrus, stratum, molecular layer, granular cell layer, entorhinal cortex, and fimbria. Two people will independently screen abstracts from the output of the search to select suitable studies. This will be followed by the two reviewers performing a full-text review of the studies which were selected based on suitable abstracts. One reviewer will independently perform all the data extraction, and another reviewer will then systemically check all the extracted information using the original articles to ensure accuracy. Statistical analysis will be performed using the metafor and meta-packages in R Studio with the application of the random-effects model. DISCUSSION This study will provide insight into the volumetric changes in psychosis of the subfields of the hippocampus, independent of diagnosis. This may shed light on the intricate neural pathology which encompasses psychosis and will open avenues for further exploration of the structures identified as potential drivers of volume change. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42020199558.
Collapse
Affiliation(s)
- Anurag Nasa
- Department of Psychiatry, Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Olivia Mosley
- Department of Psychiatry, Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Elena Roman
- Department of Psychiatry, Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Allison Kelliher
- Department of Psychiatry, Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Caoimhe Gaughan
- Department of Psychiatry, Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Kirk J Levins
- Department of Anaesthesiology, Intensive Care and Pain Medicine, St. Vincent's University Hospital, Dublin 4, Ireland
| | - David Coppinger
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Erik O'Hanlon
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Mary Cannon
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Darren William Roddy
- Department of Psychiatry, Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland. .,Department of Physiology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
25
|
Mirzayi P, Shobeiri P, Kalantari A, Perry G, Rezaei N. Optogenetics: implications for Alzheimer's disease research and therapy. Mol Brain 2022; 15:20. [PMID: 35197102 PMCID: PMC8867657 DOI: 10.1186/s13041-022-00905-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/10/2022] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD), a critical neurodegenerative condition, has a wide range of effects on brain activity. Synaptic plasticity and neuronal circuits are the most vulnerable in Alzheimer’s disease, but the exact mechanism is unknown. Incorporating optogenetics into the study of AD has resulted in a significant leap in this field during the last decades, kicking off a revolution in our knowledge of the networks that underpin cognitive functions. In Alzheimer's disease, optogenetics can help to reduce and reverse neural circuit and memory impairments. Here we review how optogenetically driven methods have helped expand our knowledge of Alzheimer's disease, and how optogenetic interventions hint at a future translation into therapeutic possibilities for further utilization in clinical settings. In conclusion, neuroscience has witnessed one of its largest revolutions following the introduction of optogenetics into the field.
Collapse
Affiliation(s)
- Parsa Mirzayi
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, 14194, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Parnian Shobeiri
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, 14194, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirali Kalantari
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, 14194, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - George Perry
- Department of Biology and Neurosciences Institute, University of Texas at San Antonio (UTSA), San Antonio, TX, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran. .,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran. .,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Research Center for Immunodeficiencies, Children's Medical Center, Dr. Gharib St, Keshavarz Blvd, Tehran, Iran.
| |
Collapse
|
26
|
Pessoa L, Medina L, Desfilis E. Refocusing neuroscience: moving away from mental categories and towards complex behaviours. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200534. [PMID: 34957851 PMCID: PMC8710886 DOI: 10.1098/rstb.2020.0534] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/01/2021] [Indexed: 11/12/2022] Open
Abstract
Mental terms-such as perception, cognition, action, emotion, as well as attention, memory, decision-making-are epistemically sterile. We support our thesis based on extensive comparative neuroanatomy knowledge of the organization of the vertebrate brain. Evolutionary pressures have moulded the central nervous system to promote survival. Careful characterization of the vertebrate brain shows that its architecture supports an enormous amount of communication and integration of signals, especially in birds and mammals. The general architecture supports a degree of 'computational flexibility' that enables animals to cope successfully with complex and ever-changing environments. Here, we suggest that the vertebrate neuroarchitecture does not respect the boundaries of standard mental terms, and propose that neuroscience should aim to unravel the dynamic coupling between large-scale brain circuits and complex, naturalistic behaviours. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Luiz Pessoa
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | - Loreta Medina
- Department of Experimental Medicine, Institut de Recerca Biomèdica de Lleida Fundació Dr. Pifarré (IRBLleida), University of Lleida, 25198 Lleida, Spain
| | - Ester Desfilis
- Department of Experimental Medicine, Institut de Recerca Biomèdica de Lleida Fundació Dr. Pifarré (IRBLleida), University of Lleida, 25198 Lleida, Spain
| |
Collapse
|
27
|
The Entorhinal Cortex as a Gateway for Amygdala Influences on Memory Consolidation. Neuroscience 2022; 497:86-96. [PMID: 35122874 DOI: 10.1016/j.neuroscience.2022.01.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/16/2022]
Abstract
The amygdala, specifically its basolateral nucleus (BLA), is a critical site integrating neuromodulatory influences on memory consolidation in other brain areas. Almost 20 years ago, we reported the first direct evidence that BLA activity is required for modulatory interventions in the entorhinal cortex (EC) to affect memory consolidation (Roesler, Roozendaal, and McGaugh, 2002). Since then, significant advances have been made in our understanding of how the EC participates in memory. For example, the characterization of grid cells specialized in processing spatial information in the medial EC (mEC) that act as major relayers of information to the hippocampus (HIP) has changed our view of memory processing by the EC; and the development of optogenetic technologies for manipulation of neuronal activity has recently enabled important new discoveries on the role of the BLA projections to the EC in memory. Here, we review the current evidence on interactions between the BLA and EC in synaptic plasticity and memory formation. The findings suggest that the EC may function as a gateway and mediator of modulatory influences from the BLA, which are then processed and relayed to the HIP. Through extensive reciprocal connections among the EC, HIP, and several cortical areas, information related to new memories is then consolidated by these multiple brain systems, through various molecular and cellular mechanisms acting in a distributed and highly concerted manner, during several hours after learning. A special note is made on the contribution by Ivan Izquierdo to our understanding of memory consolidation at the brain system level.
Collapse
|
28
|
Implicit and explicit emotional memory recall in anxiety and depression: Role of basolateral amygdala and cortisol-norepinephrine interaction. Psychoneuroendocrinology 2022; 136:105598. [PMID: 34894424 DOI: 10.1016/j.psyneuen.2021.105598] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/14/2021] [Accepted: 11/17/2021] [Indexed: 01/05/2023]
Abstract
Anxiety and depression are linked to both explicit and implicit memory biases, which are defined as the tendency to preferentially recall emotionally negative information at conscious and subconscious levels, respectively. Functional connectivity (FC) of the basolateral amygdala (BLA) and related stress hormones (i.e., cortisol and norepinephrine) are purportedly implicated in these biases. However, previous findings on memory biases in anxiety and depression have been inconsistent, likely due to their symptomatic complications. Therefore, the underlying neurobiological mechanism remains unclear. We thus investigated whether anxiety and depression as premorbid predispositions are related to the memory biases, and whether FC of BLA, cortisol, and 3-methoxy-4-hydroxyphenylglycol (MHPG: a major metabolite of norepinephrine) would affect the anxiety/depression-related biased memory recall in 100 participants without psychiatric symptomatology. Psycho-behavioral assessment, resting-state fMRI scans, and saliva collection at 10-points-in-time across two days were conducted. Correlations of memory biases with anxiety/depression and neurobiological markers were explored. As a result, neither anxiety nor depression were correlated with explicit memory bias to negative (vs. positive) information, although depression was associated with better recall of the negative stimuli only when they were perceived as self-relevant. In contrast, both anxiety and depression were correlated with implicit memory bias; however, the effects were solely explained by anxiety. Furthermore, FC of the BLA with subgenual anterior cingulate cortex (sgACC) and the synergetic effect of cortisol and MHPG uniquely affected the implicit memory bias. These findings suggest that anxiety facilitates an initial snapshot of negative information and can be accompanied by depression when the information creates negative semantic associations with the self. The BLA-sgACC neural connectivity and cortisol-norepinephrine interaction that are associated with the implicit memory bias might be one of the important neurobiological targets in the prevention and treatment for comorbid anxiety and depressive disorders.
Collapse
|
29
|
Long-lasting Postnatal Sensory Deprivation Alters Dendritic Morphology of Pyramidal Neurons in the Rat Hippocampus: Behavioral Correlates. Neuroscience 2022; 480:79-96. [PMID: 34785272 DOI: 10.1016/j.neuroscience.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/20/2022]
Abstract
The role of normal sensory inputs in the development of sensory cortices is well known, however, their impacts on the hippocampus, an integrator of sensory modalities with important roles in cognitive functions, has received much less attention. Here, we applied a long-term sensory deprivation paradigm by trimming the rats' whiskers bilaterally, from postnatal day 3 to 59. Female sensory-deprived (SD) rats showed more on-wall rearing and visits to the center of the open-field box, shorter periods of grooming, less defecation and less anxiety-like behaviors in the elevated plus-maze compared to controls, who had their intact whiskers brushed. Passive avoidance memory retention was sex-dependently impaired in the female SD rats. In the radial arm maze, however, reference spatial memory was impaired only in the male SD rats. Nonetheless, working memory errors increased in both sexes of SD rats. Besides depletion of CA1 and CA3 pyramidal neurons in SD rats, Sholl analysis of Golgi-Cox stained neurons revealed that prolonged sensory deprivation has retracted the arborization of CA1 basal dendrites in SD group, while solely female SD rats had diminished CA1 apical dendrites. Sholl analysis of CA3 neurons in SD animals also disclosed significantly more branched apical dendrites in males and basal dendrites in females. Sensory deprivation also led to a considerable spine loss and variation of different spine types in a sex-dependent manner. Our findings suggest that experience-dependent structural plasticity is capable of spreading far beyond the manipulated sensory zones and the inevitable functional alterations can be expressed in a multifactorial sex-dependent manner.
Collapse
|
30
|
Fan Y, Zhang L, Kong X, Liu K, Wu H. Different Exercise Time on 5-HT and Anxiety-like Behavior in the Rat With Vascular Dementia. Am J Alzheimers Dis Other Demen 2022; 37:15333175221082743. [PMID: 35344444 PMCID: PMC10581105 DOI: 10.1177/15333175221082743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Previous studies have demonstrated that pre-exercise suppresses anxiety-like behavior, but the effects of different exercise times on vascular dementia induced anxiety-like behavior have not been well investigated. OBJECTIVE The present study aims to investigate the underlying neurochemical mechanism of different pre-vascular-dementia exercise times on 5-HT and anxiety-like behavior in rats with vascular dementia. METHODS 32 Sprague-Dawley (SD) rats were randomly divided into 4 groups: sham group (S group, n = 8), vascular dementia group (VD group, n = 8), 1-week physical exercise and vascular dementia group (1WVD group, n = 8), and 4 weeks physical exercise and vascular dementia group (4WVD group, n = 8). 1 week and 4 weeks of voluntary wheel running were used as pre-exercise training. The vascular dementia model was established by bilateral common carotid arteries occlusion (BCCAo) for 1 week. But bilateral common carotid arteries were not ligated in the sham group. The level of hippocampal 5-HT was detected with in vivo microdialysis coupled with high-performance liquid chromatography (MD-HPLC). Elevated plus maze (EPM), open field (OF), and light/dark box test were used to test anxiety-like behavior. RESULTS Compared with the C group, the hippocampal 5-HT was significantly decreased in the VD group after 1 week of ligated operation. The hippocampal 5-HT levels in 1WVD and 4WVD groups were substantially higher than the level in the VD group. The hippocampal 5-HT level has no significant difference among C, 1WVD, and 4WVD. Behavioral data suggested that the rats in the VD group developed obvious anxiety-like behavior after 1 week of ligation surgery. Still, the rats in 1WVD and 4WVD groups did not show significant anxiety-like behavior. CONCLUSION Both 1 week and 4 weeks of voluntary running wheel exercise can inhibit the anxiety-like behavior in rats with vascular dementia by upregulating 5-HT levels in the hippocampus in the VD model.
Collapse
Affiliation(s)
- Yongzhao Fan
- Capital University of Physical Education and Sports, Comprehensive Key Laboratory of Sports Ability Evaluation and Research of the General Administration of Sport of China, Beijing Key Laboratory of Sports Function Assessment and Technical Analysis, Beijing, 100191, China
| | - Linlin Zhang
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
| | - Xiaoyang Kong
- Capital University of Physical Education and Sports, Comprehensive Key Laboratory of Sports Ability Evaluation and Research of the General Administration of Sport of China, Beijing Key Laboratory of Sports Function Assessment and Technical Analysis, Beijing, 100191, China
| | - Kun Liu
- Capital University of Physical Education and Sports, Comprehensive Key Laboratory of Sports Ability Evaluation and Research of the General Administration of Sport of China, Beijing Key Laboratory of Sports Function Assessment and Technical Analysis, Beijing, 100191, China
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Brain Peace Science Foundation, New Haven, CT, USA
| | - Hao Wu
- Capital University of Physical Education and Sports, Comprehensive Key Laboratory of Sports Ability Evaluation and Research of the General Administration of Sport of China, Beijing Key Laboratory of Sports Function Assessment and Technical Analysis, Beijing, 100191, China
| |
Collapse
|
31
|
The Basolateral Amygdala Mediates the Role of Rapid Eye Movement Sleep in Integrating Fear Memory Responses. Life (Basel) 2021; 12:life12010017. [PMID: 35054410 PMCID: PMC8781875 DOI: 10.3390/life12010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022] Open
Abstract
The basolateral amygdala (BLA) mediates the effects of stress and fear on rapid eye movement sleep (REM) and on REM-related theta (θ) oscillatory activity in the electroencephalograph (EEG), which is implicated in fear memory consolidation. We used optogenetics to assess the potential role of BLA glutamate neurons (BLAGlu) in regulating behavioral, stress and sleep indices of fear memory, and their relationship to altered θ. An excitatory optogenetic construct targeting glutamatergic cells (AAV-CaMKIIα-hChR2-eYFP) was injected into the BLA of mice. Telemetry was used for real-time monitoring of EEG, activity, and body temperature to determine sleep states and stress-induced hyperthermia (SIH). For 3 h following shock training (ST: 20 footshocks, 0.5 mA, 0.5 s, 1 min interval), BLA was optogenetically stimulated only during REM (REM + L) or NREM (NREM + L). Mice were then re-exposed to the fear context at 24 h, 48 h, and 1 week after ST and assessed for behavior, SIH, sleep and θ activity. Control mice were infected with a construct without ChR2 (eYFP) and studied under the same conditions. REM + L significantly reduced freezing and facilitated immediate recovery of REM tested at 24 h and 48 h post-ST during contextual re-exposures, whereas NREM + L had no significant effect. REM + L significantly reduced post-ST REM-θ, but attenuated REM-θ reductions at 24 h compared to those found in NREM + L and control mice. Fear-conditioned SIH persisted regardless of treatment. The results demonstrate that BLAGlu activity during post-ST REM mediates the integration of behavioral and sleep indices of fear memory by processes that are associated with θ oscillations within the amygdalo-hippocampal pathway. They also demonstrate that fear memories can remain stressful (as indicated by SIH) even when fear conditioned behavior (freezing) and changes in sleep are attenuated.
Collapse
|
32
|
Twible C, Abdo R, Zhang Q. Astrocyte Role in Temporal Lobe Epilepsy and Development of Mossy Fiber Sprouting. Front Cell Neurosci 2021; 15:725693. [PMID: 34658792 PMCID: PMC8514632 DOI: 10.3389/fncel.2021.725693] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Epilepsy affects approximately 50 million people worldwide, with 60% of adult epilepsies presenting an onset of focal origin. The most common focal epilepsy is temporal lobe epilepsy (TLE). The role of astrocytes in the presentation and development of TLE has been increasingly studied and discussed within the literature. The most common histopathological diagnosis of TLE is hippocampal sclerosis. Hippocampal sclerosis is characterized by neuronal cell loss within the Cornu ammonis and reactive astrogliosis. In some cases, mossy fiber sprouting may be observed. Mossy fiber sprouting has been controversial in its contribution to epileptogenesis in TLE patients, and the mechanisms surrounding the phenomenon have yet to be elucidated. Several studies have reported that mossy fiber sprouting has an almost certain co-existence with reactive astrogliosis within the hippocampus under epileptic conditions. Astrocytes are known to play an important role in the survival and axonal outgrowth of central and peripheral nervous system neurons, pointing to a potential role of astrocytes in TLE and associated cellular alterations. Herein, we review the recent developments surrounding the role of astrocytes in the pathogenic process of TLE and mossy fiber sprouting, with a focus on proposed signaling pathways and cellular mechanisms, histological observations, and clinical correlations in human patients.
Collapse
Affiliation(s)
- Carolyn Twible
- Department of Pathology and Lab Medicine, Western University, London, ON, Canada
| | - Rober Abdo
- Department of Pathology and Lab Medicine, Western University, London, ON, Canada.,Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Qi Zhang
- Department of Pathology and Lab Medicine, Western University, London, ON, Canada.,Department of Pathology and Lab Medicine, London Health Sciences Centre, University Hospital, London, ON, Canada
| |
Collapse
|
33
|
Kong MS, Kim EJ, Park S, Zweifel LS, Huh Y, Cho J, Kim JJ. 'Fearful-place' coding in the amygdala-hippocampal network. eLife 2021; 10:e72040. [PMID: 34533133 PMCID: PMC8500711 DOI: 10.7554/elife.72040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/17/2021] [Indexed: 12/03/2022] Open
Abstract
Animals seeking survival needs must be able to assess different locations of threats in their habitat. However, the neural integration of spatial and risk information essential for guiding goal-directed behavior remains poorly understood. Thus, we investigated simultaneous activities of fear-responsive basal amygdala (BA) and place-responsive dorsal hippocampus (dHPC) neurons as rats left the safe nest to search for food in an exposed space and encountered a simulated 'predator.' In this realistic situation, BA cells increased their firing rates and dHPC place cells decreased their spatial stability near the threat. Importantly, only those dHPC cells synchronized with the predator-responsive BA cells remapped significantly as a function of escalating risk location. Moreover, optogenetic stimulation of BA neurons was sufficient to cause spatial avoidance behavior and disrupt place fields. These results suggest a dynamic interaction of BA's fear signalling cells and dHPC's spatial coding cells as animals traverse safe-danger areas of their environment.
Collapse
Affiliation(s)
- Mi-Seon Kong
- Department of Psychology, University of WashingtonSeattleUnited States
- Department of Psychiatry and Behavioral Sciences, University of WashingtonSeattleUnited States
| | - Eun Joo Kim
- Department of Psychology, University of WashingtonSeattleUnited States
| | - Sanggeon Park
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans UniversitySeoulRepublic of Korea
- Institute for Bio-Medical Convergence, International St. Mary’s Hospital, Catholic Kwandong UniversityIncheonRepublic of Korea
| | - Larry S Zweifel
- Department of Psychiatry and Behavioral Sciences, University of WashingtonSeattleUnited States
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Yeowool Huh
- Institute for Bio-Medical Convergence, International St. Mary’s Hospital, Catholic Kwandong UniversityIncheonRepublic of Korea
- Department of Medical Science, College of Medicine, Catholic Kwandong UniversityGangneungRepublic of Korea
| | - Jeiwon Cho
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans UniversitySeoulRepublic of Korea
| | - Jeansok J Kim
- Department of Psychology, University of WashingtonSeattleUnited States
| |
Collapse
|
34
|
Roesler R, Parent MB, LaLumiere RT, McIntyre CK. Amygdala-hippocampal interactions in synaptic plasticity and memory formation. Neurobiol Learn Mem 2021; 184:107490. [PMID: 34302951 DOI: 10.1016/j.nlm.2021.107490] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/14/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
Memories of emotionally arousing events tend to endure longer than other memories. This review compiles findings from several decades of research investigating the role of the amygdala in modulating memories of emotional experiences. Episodic memory is a kind of declarative memory that depends upon the hippocampus, and studies suggest that the basolateral complex of the amygdala (BLA) modulates episodic memory consolidation through interactions with the hippocampus. Although many studies in rodents and imaging studies in humans indicate that the amygdala modulates memory consolidation and plasticity processes in the hippocampus, the anatomical pathways through which the amygdala affects hippocampal regions that are important for episodic memories were unresolved until recent optogenetic advances made it possible to visualize and manipulate specific BLA efferent pathways during memory consolidation. Findings indicate that the BLA influences hippocampal-dependent memories, as well as synaptic plasticity, histone modifications, gene expression, and translation of synaptic plasticity associated proteins in the hippocampus. More recent findings from optogenetic studies suggest that the BLA modulates spatial memory via projections to the medial entorhinal cortex, and that the frequency of activity in this pathway is a critical element of this modulation.
Collapse
Affiliation(s)
- Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS, Brazil; Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 (ICBS, Campus Centro/UFRGS), 90050-170 Porto Alegre, RS, Brazil.
| | - Marise B Parent
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA; Department of Psychology, Georgia State University, Atlanta, GA 30303, USA.
| | - Ryan T LaLumiere
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA.
| | - Christa K McIntyre
- School of Behavior and Brain Sciences, The University of Texas at Dallas, Richardson, TX 75080-3021, USA.
| |
Collapse
|
35
|
Differential encoding of place value between the dorsal and intermediate hippocampus. Curr Biol 2021; 31:3053-3072.e5. [DOI: 10.1016/j.cub.2021.04.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/08/2021] [Accepted: 04/28/2021] [Indexed: 01/08/2023]
|
36
|
Machida M, Sweeten BLW, Adkins AM, Wellman LL, Sanford LD. Basolateral Amygdala Regulates EEG Theta-activity During Rapid Eye Movement Sleep. Neuroscience 2021; 468:176-185. [PMID: 34147563 DOI: 10.1016/j.neuroscience.2021.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/18/2022]
Abstract
Pharmacological and optogenetic studies have demonstrated that the basolateral amygdala (BLA) plays a pivotal role in regulating fear-conditioned changes in sleep, in particular, rapid eye movement sleep (REM). However, the linkage between BLA and REM regulation has been minimally examined. In this study, we optogenetically activated or inhibited BLA selectively during spontaneous REM, and determined the effects on REM amounts and on hippocampus regulated EEG-theta (θ) activity. Excitatory (CaMKIIα-hChR2 (E123A)-eYFP-WPRE) or inhibitory (CaMKIIα-eNpHR3.0-eYFP-WPRE) optogenetic constructs were stereotaxically delivered targeting glutamatergic cells in BLA (BLAGlu) of mice. Viral constructs without opsin (CaMKIIα-eYFP-WPRE) were used as controls. All mice were implanted with telemetry transmitters for monitoring electroencephalography (EEG), activity, and body temperature, and with optic cannulas for light delivery to the BLA. BLAGlu were optogenetically activated by blue light (473 nm), or inhibited by green light (532 nm), in 10 s epochs during REM, or non-REM (NREM), in undisturbed mice. Sleep amounts and EEG activity were analyzed. Projections from BLAGlu to neurons in hippocampus were immunohistochemically (IHC) examined. Brief optogenetic activation of BLAGlu during REM immediately reduced EEG theta activity (5-8 Hz, REM-θ), without affecting overall amount and propensity of sleep, while optogenetic inhibition increased REM-θ. Stimulation during NREM had no effect on EEG spectra or sleep. IHC results showed that glutamatergic and GABAergic cells in CA3 of the hippocampus received inputs from BLAGlu projection neurons. Activation of BLAGlu reduced, and inhibition increased, REM-θ without otherwise altering sleep. Optogenetic stimulation of BLAGlu may be useful for systematically manipulating sleep-related amygdalo-hippocampal interactions.
Collapse
Affiliation(s)
- Mayumi Machida
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Brook L W Sweeten
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Austin M Adkins
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Laurie L Wellman
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Larry D Sanford
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA.
| |
Collapse
|
37
|
TGF-β/Smad Signalling in Neurogenesis: Implications for Neuropsychiatric Diseases. Cells 2021; 10:cells10061382. [PMID: 34205102 PMCID: PMC8226492 DOI: 10.3390/cells10061382] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
TGF-β/Smad signalling has been the subject of extensive research due to its role in the cell cycle and carcinogenesis. Modifications to the TGF-β/Smad signalling pathway have been found to produce disparate effects on neurogenesis. We review the current research on canonical and non-canonical TGF-β/Smad signalling pathways and their functions in neurogenesis. We also examine the observed role of neurogenesis in neuropsychiatric disorders and the relationship between TGF-β/Smad signalling and neurogenesis in response to stressors. Overlapping mechanisms of cell proliferation, neurogenesis, and the development of mood disorders in response to stressors suggest that TGF-β/Smad signalling is an important regulator of stress response and is implicated in the behavioural outcomes of mood disorders.
Collapse
|
38
|
Pentkowski NS, Rogge-Obando KK, Donaldson TN, Bouquin SJ, Clark BJ. Anxiety and Alzheimer's disease: Behavioral analysis and neural basis in rodent models of Alzheimer's-related neuropathology. Neurosci Biobehav Rev 2021; 127:647-658. [PMID: 33979573 DOI: 10.1016/j.neubiorev.2021.05.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) pathology is commonly associated with cognitive decline but is also composed of neuropsychiatric symptoms including psychological distress and alterations in mood, including anxiety and depression. Emotional dysfunction in AD is frequently modeled using tests of anxiety-like behavior in transgenic rodents. These tests often include the elevated plus-maze, light/dark test and open field test. In this review, we describe prototypical behavioral paradigms used to examine emotional dysfunction in transgenic models of AD, specifically anxiety-like behavior. Next, we summarize the results of studies examining anxiety-like behavior in transgenic rodents, noting that the behavioral outcomes using these paradigms have produced inconsistent results. We suggest that future research will benefit from using a battery of tests to examine emotional behavior in transgenic AD models. We conclude by discussing putative, overlapping neurobiological mechanisms underlying AD-related neuropathology, stress and anxiety-like behavior reported in AD models.
Collapse
Affiliation(s)
- Nathan S Pentkowski
- Department of Psychology, University of New Mexico, Albuquerque, NM, 87109, Mexico.
| | | | - Tia N Donaldson
- Department of Psychology, University of New Mexico, Albuquerque, NM, 87109, Mexico
| | - Samuel J Bouquin
- Department of Psychology, University of New Mexico, Albuquerque, NM, 87109, Mexico
| | - Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, 87109, Mexico.
| |
Collapse
|
39
|
Zhang WH, Zhang JY, Holmes A, Pan BX. Amygdala Circuit Substrates for Stress Adaptation and Adversity. Biol Psychiatry 2021; 89:847-856. [PMID: 33691931 DOI: 10.1016/j.biopsych.2020.12.026] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/24/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022]
Abstract
Brain systems that promote maintenance of homeostasis in the face of stress have significant adaptive value. A growing body of work across species demonstrates a critical role for the amygdala in promoting homeostasis by regulating physiological and behavioral responses to stress. This review focuses on an emerging body of evidence that has begun to delineate the contribution of specific long-range amygdala circuits in mediating the effects of stress. After summarizing the major anatomical features of the amygdala and its connectivity to other limbic structures, we discuss recent findings from rodents showing how stress causes structural and functional remodeling of amygdala neuronal outputs to defined cortical and subcortical target regions. We also consider some of the environmental and genetic factors that have been found to moderate how the amygdala responds to stress and relate the emerging preclinical literature to the current understanding of the pathophysiology and treatment of stress-related neuropsychiatric disorders. Future effort to translate these findings to clinics may help to develop valuable tools for prevention, diagnosis, and treatment of these diseases.
Collapse
Affiliation(s)
- Wen-Hua Zhang
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China
| | - Jun-Yu Zhang
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institues of Health, Bethesda, Maryland
| | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China.
| |
Collapse
|
40
|
Wahlstrom KL, Alvarez-Dieppa AC, McIntyre CK, LaLumiere RT. The medial entorhinal cortex mediates basolateral amygdala effects on spatial memory and downstream activity-regulated cytoskeletal-associated protein expression. Neuropsychopharmacology 2021; 46:1172-1182. [PMID: 33007779 PMCID: PMC8115646 DOI: 10.1038/s41386-020-00875-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/08/2020] [Accepted: 09/21/2020] [Indexed: 01/09/2023]
Abstract
The basolateral amygdala (BLA) modulates the consolidation of dorsal hippocampus (DH)-dependent spatial and dorsolateral striatum (DLS)-dependent cued-response memories, often in competition with one another. Evidence suggests that a critical mechanism for BLA influences on memory consolidation is via effects on activity-regulated cytoskeletal-associated protein (ARC) in downstream brain regions. However, the circuitry by which the BLA modulates ARC in multiple competing memory systems remains unclear. Prior evidence indicates that optogenetic stimulation of BLA projections to the medial entorhinal cortex (mEC) enhances the consolidation of spatial learning and impairs the consolidation of cued-response learning, suggesting this pathway provides a circuit for favoring one system over another. Therefore, we hypothesized the BLA-mEC pathway mediates effects on downstream ARC-based synaptic plasticity related to these competing memory systems. To address this, male and female Sprague-Dawley rats underwent spatial or cued-response Barnes maze training and, 45 min later, were sacrificed for ARC analysis in synaptoneurosomes from the DH and DLS. Initial experiments found that spatial training alone increased ARC levels in the DH above those observed in control rats and rats that underwent a cued-response version of the task. Postspatial training optogenetic stimulation of the BLA-mEC pathway altered the balance of ARC expression in the DH vs. DLS, specifically shifting the balance in favor of the DH-based spatial memory system, although the precise region of ARC changes differed by sex. These findings suggest that BLA-mEC pathway influences on ARC in downstream regions are a mechanism by which the BLA can favor one memory system over another.
Collapse
Affiliation(s)
- Krista L. Wahlstrom
- grid.214572.70000 0004 1936 8294Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242 USA
| | - Amanda C. Alvarez-Dieppa
- grid.267323.10000 0001 2151 7939School of Behavioral and Brain Sciences, University of Texas-Dallas, Richardson, TX 75080 USA
| | - Christa K. McIntyre
- grid.267323.10000 0001 2151 7939School of Behavioral and Brain Sciences, University of Texas-Dallas, Richardson, TX 75080 USA
| | - Ryan T. LaLumiere
- grid.214572.70000 0004 1936 8294Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242 USA ,grid.214572.70000 0004 1936 8294Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242 USA
| |
Collapse
|
41
|
Song S, Qiu J, Lu W. Predicting disease severity in children with combined attention deficit hyperactivity disorder using quantitative features from structural MRI of amygdaloid and hippocampal subfields. J Neural Eng 2021; 18. [PMID: 33706290 DOI: 10.1088/1741-2552/abeddf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/11/2021] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Volumetric changes in the amygdaloid and hippocampal subfields have been observed in children with combined attention deficit hyperactivity disorder (ADHD-C). The purpose of this study was to investigate whether volumetric changes in the amygdaloid and hippocampal subfields could be used to predict disease severity in children with ADHD-C. APPROACH The data used in this study was from ADHD-200 datasets, a total of 76 ADHD-C patients were included in this study. T1 structural MRI data were used and 64 structural features from the amygdala and hippocampus were extracted. Three ADHD rating scales were used as indicators of ADHD severity. Sequential backward elimination (SBE) algorithm was used for feature selection. A linear support vector regression (SVR) was configured to predict disease severity in children with ADHD-C. MAIN RESULTS The three ADHD rating scales could be accurately predicted with the use of SBE-SVR. SBE-SVR achieved the highest accuracy in predicting ADHD index with a correlation of 0.7164 (p < 0.001, tested with 1000-time permutation test). Mean squared error of the SVR was 43.6868, normalized mean squared error was 0.0086, mean absolute error was 3.2893. Several amygdaloid and hippocampal subregions were significantly related to ADHD severity, as revealed by the absolute weight from the SVR model. SIGNIFICANCE The proposed SBE-SVR could accurately predict the severity of patients with ADHD-C based on quantitative features extracted from the amygdaloid and hippocampal structures. The results also demonstrated that the two subcortical nuclei could be used as potential biomarkers in the progression and evaluation of ADHD.
Collapse
Affiliation(s)
- Shanghu Song
- Department of Radiology, Shandong First Medical University, No. 619 Changcheng Road, Taian, Shandong, 271016, CHINA
| | - Jianfeng Qiu
- Shandong Medical University, No. 6699 Qingdao Road, Jinan, 250100, CHINA
| | - Weizhao Lu
- Department of Radiology, Shandong First Medical University, No. 6699 Qingdao Road, Jinan, Shandong, 250000, CHINA
| |
Collapse
|
42
|
Rafiq S, Batool Z, Liaquat L, Haider S. Blockade of muscarinic receptors impairs reconsolidation of older fear memory by decreasing cholinergic neurotransmission: A study in rat model of PTSD. Life Sci 2020; 256:118014. [DOI: 10.1016/j.lfs.2020.118014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/25/2022]
|
43
|
Witter MP, Amaral DG. The entorhinal cortex of the monkey: VI. Organization of projections from the hippocampus, subiculum, presubiculum, and parasubiculum. J Comp Neurol 2020; 529:828-852. [DOI: 10.1002/cne.24983] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Menno P. Witter
- Department of Psychiatry and Behavioral Sciences The MIND Institute and the California National Primate Research Center Davis California USA
| | - David G. Amaral
- Department of Psychiatry and Behavioral Sciences The MIND Institute and the California National Primate Research Center Davis California USA
| |
Collapse
|
44
|
McDonald AJ. Functional neuroanatomy of the basolateral amygdala: Neurons, neurotransmitters, and circuits. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2020; 26:1-38. [PMID: 34220399 PMCID: PMC8248694 DOI: 10.1016/b978-0-12-815134-1.00001-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alexander J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
45
|
Katona L, Hartwich K, Tomioka R, Somogyi J, Roberts JDB, Wagner K, Joshi A, Klausberger T, Rockland KS, Somogyi P. Synaptic organisation and behaviour-dependent activity of mGluR8a-innervated GABAergic trilaminar cells projecting from the hippocampus to the subiculum. Brain Struct Funct 2020; 225:705-734. [PMID: 32016558 PMCID: PMC7046583 DOI: 10.1007/s00429-020-02029-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
In the hippocampal CA1 area, the GABAergic trilaminar cells have their axon distributed locally in three layers and also innervate the subiculum. Trilaminar cells have a high level of somato-dendritic muscarinic M2 acetylcholine receptor, lack somatostatin expression and their presynaptic inputs are enriched in mGluR8a. But the origin of their inputs and their behaviour-dependent activity remain to be characterised. Here we demonstrate that (1) GABAergic neurons with the molecular features of trilaminar cells are present in CA1 and CA3 in both rats and mice. (2) Trilaminar cells receive mGluR8a-enriched GABAergic inputs, e.g. from the medial septum, which are probably susceptible to hetero-synaptic modulation of neurotransmitter release by group III mGluRs. (3) An electron microscopic analysis identifies trilaminar cell output synapses with specialised postsynaptic densities and a strong bias towards interneurons as targets, including parvalbumin-expressing cells in the CA1 area. (4) Recordings in freely moving rats revealed the network state-dependent segregation of trilaminar cell activity, with reduced firing during movement, but substantial increase in activity with prolonged burst firing (> 200 Hz) during slow wave sleep. We predict that the behaviour-dependent temporal dynamics of trilaminar cell firing are regulated by their specialised inhibitory inputs. Trilaminar cells might support glutamatergic principal cells by disinhibition and mediate the binding of neuronal assemblies between the hippocampus and the subiculum via the transient inhibition of local interneurons.
Collapse
Affiliation(s)
- Linda Katona
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| | - Katja Hartwich
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Ryohei Tomioka
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
- Laboratory for Cortical Organization and Systematics, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
- Department of Morphological Neural Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jozsef Somogyi
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - J David B Roberts
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Kristina Wagner
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Abhilasha Joshi
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
- Department of Physiology, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA, USA
| | - Thomas Klausberger
- Center for Brain Research, Division of Cognitive Neurobiology, Medical University of Vienna, 1090, Vienna, Austria
| | - Kathleen S Rockland
- Laboratory for Cortical Organization and Systematics, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
- Department of Anatomy and Neurobiology, Boston University School of Medicine, 72 East Concord St., Boston, MA, 02118, USA
| | - Peter Somogyi
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
46
|
Lecei A, van Winkel R. Hippocampal pattern separation of emotional information determining risk or resilience in individuals exposed to childhood trauma: Linking exposure to neurodevelopmental alterations and threat anticipation. Neurosci Biobehav Rev 2020; 108:160-170. [DOI: 10.1016/j.neubiorev.2019.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 12/29/2022]
|
47
|
Cembrowski MS, Spruston N. Heterogeneity within classical cell types is the rule: lessons from hippocampal pyramidal neurons. Nat Rev Neurosci 2019; 20:193-204. [PMID: 30778192 DOI: 10.1038/s41583-019-0125-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mechanistic operation of brain regions is often interpreted by partitioning constituent neurons into 'cell types'. Historically, such cell types were broadly defined by their correspondence to gross features of the nervous system (such as cytoarchitecture). Modern-day neuroscientific techniques, enabling a more nuanced examination of neuronal properties, have illustrated a wealth of heterogeneity within these classical cell types. Here, we review the extent of this within-cell-type heterogeneity in one of the simplest cortical regions of the mammalian brain, the rodent hippocampus. We focus on the mounting evidence that the classical CA3, CA1 and subiculum pyramidal cell types all exhibit prominent and spatially patterned within-cell-type heterogeneity, and suggest these cell types provide a model system for exploring the organization and function of such heterogeneity. Given that the hippocampus is structurally simple and evolutionarily ancient, within-cell-type heterogeneity is likely to be a general and crucial feature of the mammalian brain.
Collapse
Affiliation(s)
- Mark S Cembrowski
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - Nelson Spruston
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
48
|
Wang C, Zhang Y, Shao S, Cui S, Wan Y, Yi M. Ventral Hippocampus Modulates Anxiety-Like Behavior in Male But Not Female C57BL/6 J Mice. Neuroscience 2019; 418:50-58. [DOI: 10.1016/j.neuroscience.2019.08.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/17/2019] [Accepted: 08/22/2019] [Indexed: 11/25/2022]
|
49
|
Pessoa L, Medina L, Hof PR, Desfilis E. Neural architecture of the vertebrate brain: implications for the interaction between emotion and cognition. Neurosci Biobehav Rev 2019; 107:296-312. [PMID: 31541638 DOI: 10.1016/j.neubiorev.2019.09.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/06/2019] [Accepted: 09/13/2019] [Indexed: 11/15/2022]
Abstract
Cognition is considered a hallmark of the primate brain that requires a high degree of signal integration, such as achieved in the prefrontal cortex. Moreover, it is often assumed that cognitive capabilities imply "superior" computational mechanisms compared to those involved in emotion or motivation. In contrast to these ideas, we review data on the neural architecture across vertebrates that support the concept that association and integration are basic features of the vertebrate brain, which are needed to successfully adapt to a changing world. This property is not restricted to a few isolated brain centers, but rather resides in neuronal networks working collectively in a context-dependent manner. In different vertebrates, we identify shared large-scale connectional systems involving the midbrain, hypothalamus, thalamus, basal ganglia, and amygdala. The high degree of crosstalk and association between these systems at different levels supports the notion that cognition, emotion, and motivation cannot be separated - all of them involve a high degree of signal integration.
Collapse
Affiliation(s)
- Luiz Pessoa
- Department of Psychology, Department of Electrical and Computer Engineering, Maryland Neuroimaging Center, University of Maryland, College Park, MD 20742, USA.
| | - Loreta Medina
- Laboratory of Evolutionary and Developmental Neurobiology, Department of Experimental Medicine, University of Lleida, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), 25198 Lleida, Spain
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ester Desfilis
- Laboratory of Evolutionary and Developmental Neurobiology, Department of Experimental Medicine, University of Lleida, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), 25198 Lleida, Spain
| |
Collapse
|
50
|
Xu C, Wang Y, Zhang S, Nao J, Liu Y, Wang Y, Ding F, Zhong K, Chen L, Ying X, Wang S, Zhou Y, Duan S, Chen Z. Subicular pyramidal neurons gate drug resistance in temporal lobe epilepsy. Ann Neurol 2019; 86:626-640. [PMID: 31340057 DOI: 10.1002/ana.25554] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Drug-resistant epilepsy causes great clinical danger and still lacks effective treatments. METHODS Here, we used multifaceted approaches combining electrophysiology, optogenetics, and chemogenetics in a classic phenytoin-resistant epilepsy model to reveal the key target of subicular pyramidal neurons in phenytoin resistance. RESULTS In vivo neural recording showed that the firing rate of pyramidal neurons in the subiculum, but not other hippocampal subregions, could not be inhibited by phenytoin in phenytoin-resistant rats. Selective inhibition of subicular pyramidal neurons by optogenetics or chemogenetics reversed phenytoin resistance, whereas selective activation of subicular pyramidal neurons induced phenytoin resistance. Moreover, long-term low-frequency stimulation at the subiculum, which is clinically feasible, significantly inhibited the subicular pyramidal neurons and reversed phenytoin resistance. Furthermore, in vitro electrophysiology revealed that off-target use of phenytoin on sodium channels of subicular pyramidal neurons was involved in the phenytoin resistance, and clinical neuroimaging data suggested the volume of the subiculum in drug-resistant patients was related to the usage of sodium channel inhibitors. INTERPRETATION These results highlight that the subicular pyramidal neurons may be a key switch control of drug-resistant epilepsy and represent a new potential target for precise treatments. ANN NEUROL 2019;86:626-640.
Collapse
Affiliation(s)
- Cenglin Xu
- Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of National Health Commission and Chinese Academy of Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Wang
- Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of National Health Commission and Chinese Academy of Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuo Zhang
- Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of National Health Commission and Chinese Academy of Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiazhen Nao
- Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of National Health Commission and Chinese Academy of Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yao Liu
- Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of National Health Commission and Chinese Academy of Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Wang
- Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of National Health Commission and Chinese Academy of Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fang Ding
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kai Zhong
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Liying Chen
- Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of National Health Commission and Chinese Academy of Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoying Ying
- Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of National Health Commission and Chinese Academy of Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuang Wang
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yudong Zhou
- Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of National Health Commission and Chinese Academy of Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shumin Duan
- Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of National Health Commission and Chinese Academy of Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhong Chen
- Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of National Health Commission and Chinese Academy of Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|