1
|
Simard S, Matosin N, Mechawar N. Adult Hippocampal Neurogenesis in the Human Brain: Updates, Challenges, and Perspectives. Neuroscientist 2024:10738584241252581. [PMID: 38757781 DOI: 10.1177/10738584241252581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The existence of neurogenesis in the adult human hippocampus has been under considerable debate within the past three decades due to the diverging conclusions originating mostly from immunohistochemistry studies. While some of these reports conclude that hippocampal neurogenesis in humans occurs throughout physiologic aging, others indicate that this phenomenon ends by early childhood. More recently, some groups have adopted next-generation sequencing technologies to characterize with more acuity the extent of this phenomenon in humans. Here, we review the current state of research on adult hippocampal neurogenesis in the human brain with an emphasis on the challenges and limitations of using immunohistochemistry and next-generation sequencing technologies for its study.
Collapse
Affiliation(s)
- Sophie Simard
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Canada
| | - Natalie Matosin
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, Canada
- Department of Psychiatry, McGill University, Montréal, Canada
| |
Collapse
|
2
|
Urbanska N, Simko P, Leskanicova A, Karasova M, Jendzelovska Z, Jendzelovsky R, Rucova D, Kolesarova M, Goga M, Backor M, Kiskova T. Atranorin, a Secondary Metabolite of Lichens, Exhibited Anxiolytic/Antidepressant Activity in Wistar Rats. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111850. [PMID: 36430984 PMCID: PMC9697363 DOI: 10.3390/life12111850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/30/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Atranorin (ATR) is one of lichens' many known secondary metabolites. Most current studies have investigated the various effects of ATR in vitro and only sporadically in vivo. The latest data indicate that ATR may have anxiolytic/antidepressive effects. This study aimed to analyze the potential of ATR in a depression-like state in male Wistar rats. Pregnant females were stressed by restricting their mobility in the final week of pregnancy three times a day for 45 min each, for three following days. After birth, progeny aged 60 days was stressed repeatedly. The male progeny was divided into three groups as follows: CTR group as a healthy control (n = 10), DEP group as a progeny of restricted mothers (n = 10), and ATR group as a progeny of restricted mothers, treated daily for one month with ATR (n = 10; 10 mg/kg of body weight, p.o.). Our results show that ATR acts as an antioxidant and markedly changes animal behavior. Concomitantly, hippocampal neurogenesis increases in the hilus and subgranular zone, together with the number of NeuN mature neurons in the hilus and CA1 regions. Our results indicate a potential antidepressant/anxiolytic effect of ATR. However, further studies in this area are needed.
Collapse
Affiliation(s)
- Nicol Urbanska
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, 04154 Košice, Slovakia
| | - Patrik Simko
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, 04154 Košice, Slovakia
| | - Andrea Leskanicova
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, 04154 Košice, Slovakia
| | - Martina Karasova
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy in Košice, 04180 Košice, Slovakia
| | - Zuzana Jendzelovska
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, 04154 Košice, Slovakia
| | - Rastislav Jendzelovsky
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, 04154 Košice, Slovakia
| | - Dajana Rucova
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, 04154 Košice, Slovakia
| | - Mariana Kolesarova
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, 04154 Košice, Slovakia
| | - Michal Goga
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, 04154 Košice, Slovakia
| | - Martin Backor
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, 04154 Košice, Slovakia
- Department of Biochemistry and Biotechnology, Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, 94976 Nitra, Slovakia
| | - Terezia Kiskova
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, 04154 Košice, Slovakia
- Correspondence:
| |
Collapse
|
3
|
Seng C, Luo W, Földy C. Circuit formation in the adult brain. Eur J Neurosci 2022; 56:4187-4213. [PMID: 35724981 PMCID: PMC9546018 DOI: 10.1111/ejn.15742] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022]
Abstract
Neurons in the mammalian central nervous system display an enormous capacity for circuit formation during development but not later in life. In principle, new circuits could be also formed in adult brain, but the absence of the developmental milieu and the presence of growth inhibition and hundreds of working circuits are generally viewed as unsupportive for such a process. Here, we bring together evidence from different areas of neuroscience—such as neurological disorders, adult‐brain neurogenesis, innate behaviours, cell grafting, and in vivo cell reprogramming—which demonstrates robust circuit formation in adult brain. In some cases, adult‐brain rewiring is ongoing and required for certain types of behaviour and memory, while other cases show significant promise for brain repair in disease models. Together, these examples highlight that the adult brain has higher capacity for structural plasticity than previously recognized. Understanding the underlying mechanisms behind this retained plasticity has the potential to advance basic knowledge regarding the molecular organization of synaptic circuits and could herald a new era of neural circuit engineering for therapeutic repair.
Collapse
Affiliation(s)
- Charlotte Seng
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zurich, Zürich, Switzerland
| | - Wenshu Luo
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zurich, Zürich, Switzerland
| | - Csaba Földy
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zurich, Zürich, Switzerland
| |
Collapse
|
4
|
Blankers SA, Galea LA. Androgens and Adult Neurogenesis in the Hippocampus. ANDROGENS: CLINICAL RESEARCH AND THERAPEUTICS 2021; 2:203-215. [PMID: 35024692 PMCID: PMC8744005 DOI: 10.1089/andro.2021.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 11/12/2022]
Abstract
Adult neurogenesis in the hippocampus is modulated by steroid hormones, including androgens, in male rodents. In this review, we summarize research showing that chronic exposure to androgens, such as testosterone and dihydrotestosterone, enhances the survival of new neurons in the dentate gyrus of male, but not female, rodents, via the androgen receptor. However, the neurogenesis promoting the effect of androgens in the dentate gyrus may be limited to younger adulthood as it is not evident in middle-aged male rodents. Although direct exposure to androgens in adult or middle age does not significantly influence neurogenesis in female rodents, the aromatase inhibitor letrozole enhances neurogenesis in the hippocampus of middle-aged female mice. Unlike other androgens, androgenic anabolic steroids reduce neurogenesis in the hippocampus of male rodents. Collectively, the research indicates that the ability of androgens to enhance hippocampal neurogenesis in adult rodents is dependent on dose, androgen type, sex, duration, and age. We discuss these findings and how androgens may be influencing neuroprotection, via neurogenesis in the hippocampus, in the context of health and disease.
Collapse
Affiliation(s)
- Samantha A. Blankers
- Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada
| | - Liisa A.M. Galea
- Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada
- Department of Psychology, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
5
|
Voluntary Exercise Increases Neurogenesis and Mediates Forgetting of Complex Paired Associates Memories. Neuroscience 2021; 475:1-9. [PMID: 34464663 DOI: 10.1016/j.neuroscience.2021.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022]
Abstract
The hippocampus is a critical structure involved in many forms of learning and memory. It is also one of the only regions in the mammalian brain that continues to generate new neurons throughout adulthood. This process of adult neurogenesis may increase the plasticity of the hippocampus which could be beneficial for learning but has also been demonstrated to decrease the stability of previously acquired memories. Here we test whether exposure to voluntary running (which increases the production of new neurons) following the formation of a gradually acquired paired associates task will result in forgetting of this type of memory. We trained mice in a touchscreen-based object/location task and then increased neurogenesis using voluntary running. Our results indicate that running increased neurogenesis and resulted in poor recall of the previously established memory. When subsequently exposed to a reversal task we also show that running reduced the number of correction trials required to acquire the new task contingencies. This suggests that prior forgetting reduces perseveration on the now outdated memory. Together our results add to a growing body of literature which indicates the important role of adult neurogenesis in destabilizing previously acquired memories to allow for flexible encoding of new memories.
Collapse
|
6
|
Kostin A, Alam MA, McGinty D, Alam MN. Adult hypothalamic neurogenesis and sleep-wake dysfunction in aging. Sleep 2021; 44:5986548. [PMID: 33202015 DOI: 10.1093/sleep/zsaa173] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/22/2020] [Indexed: 12/21/2022] Open
Abstract
In the mammalian brain, adult neurogenesis has been extensively studied in the hippocampal sub-granular zone and the sub-ventricular zone of the anterolateral ventricles. However, growing evidence suggests that new cells are not only "born" constitutively in the adult hypothalamus, but many of these cells also differentiate into neurons and glia and serve specific functions. The preoptic-hypothalamic area plays a central role in the regulation of many critical functions, including sleep-wakefulness and circadian rhythms. While a role for adult hippocampal neurogenesis in regulating hippocampus-dependent functions, including cognition, has been extensively studied, adult hypothalamic neurogenic process and its contributions to various hypothalamic functions, including sleep-wake regulation are just beginning to unravel. This review is aimed at providing the current understanding of the hypothalamic adult neurogenic processes and the extent to which it affects hypothalamic functions, including sleep-wake regulation. We propose that hypothalamic neurogenic processes are vital for maintaining the proper functioning of the hypothalamic sleep-wake and circadian systems in the face of regulatory challenges. Sleep-wake disturbance is a frequent and challenging problem of aging and age-related neurodegenerative diseases. Aging is also associated with a decline in the neurogenic process. We discuss a hypothesis that a decrease in the hypothalamic neurogenic process underlies the aging of its sleep-wake and circadian systems and associated sleep-wake disturbance. We further discuss whether neuro-regenerative approaches, including pharmacological and non-pharmacological stimulation of endogenous neural stem and progenitor cells in hypothalamic neurogenic niches, can be used for mitigating sleep-wake and other hypothalamic dysfunctions in aging.
Collapse
Affiliation(s)
- Andrey Kostin
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA
| | - Md Aftab Alam
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA.,Department of Psychiatry, University of California, Los Angeles, CA
| | - Dennis McGinty
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA.,Department of Psychology, University of California, Los Angeles, CA
| | - Md Noor Alam
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA.,Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| |
Collapse
|
7
|
Formation and integration of new neurons in the adult hippocampus. Nat Rev Neurosci 2021; 22:223-236. [PMID: 33633402 DOI: 10.1038/s41583-021-00433-z] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 01/31/2023]
Abstract
Neural stem cells (NSCs) generate new neurons throughout life in the mammalian brain. Adult-born neurons shape brain function, and endogenous NSCs could potentially be harnessed for brain repair. In this Review, focused on hippocampal neurogenesis in rodents, we highlight recent advances in the field based on novel technologies (including single-cell RNA sequencing, intravital imaging and functional observation of newborn cells in behaving mice) and characterize the distinct developmental steps from stem cell activation to the integration of newborn neurons into pre-existing circuits. Further, we review current knowledge of how levels of neurogenesis are regulated, discuss findings regarding survival and maturation of adult-born cells and describe how newborn neurons affect brain function. The evidence arguing for (and against) lifelong neurogenesis in the human hippocampus is briefly summarized. Finally, we provide an outlook of what is needed to improve our understanding of the mechanisms and functional consequences of adult neurogenesis and how the field may move towards more translational relevance in the context of acute and chronic neural injury and stem cell-based brain repair.
Collapse
|
8
|
He Y, Chen S, Tsoi B, Qi S, Gu B, Wang Z, Peng C, Shen J. Alpinia oxyphylla Miq. and Its Active Compound P-Coumaric Acid Promote Brain-Derived Neurotrophic Factor Signaling for Inducing Hippocampal Neurogenesis and Improving Post-cerebral Ischemic Spatial Cognitive Functions. Front Cell Dev Biol 2021; 8:577790. [PMID: 33537297 PMCID: PMC7849625 DOI: 10.3389/fcell.2020.577790] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/07/2020] [Indexed: 01/19/2023] Open
Abstract
Alpinia oxyphylla Miq. (AOM) is a medicinal herb for improving cognitive functions in traditional Chinese medicine for poststroke treatment, but its efficacies and underlying mechanisms remain unknown. In the present study, we tested the hypothesis that AOM could induce adult hippocampal neurogenesis and improve poststroke cognitive impairment via inducing brain-derived neurotrophic factor (BDNF) signaling pathway. In order to test the hypothesis, we performed both in vivo rat experiments using transient middle cerebral artery occlusion (MCAO) model and in vitro neural stem cell (NSC) experiments using oxygen–glucose deprivation plus reoxygenation. First, AOM treatment significantly up-regulated the expression of BDNF, tropomycin receptor kinase B (TrkB), and phosphorylated AKT (p-AKT) in the hippocampus, enhanced adult hippocampal neurogenesis, and improved the spatial learning/memory and cognitive functions in the post-MCAO ischemic rats in vivo. Next, in vitro studies confirmed p-coumaric acid (P-CA) to be the most effective compound identified from AOM extract with the properties of activating BDNF/TrkB/AKT signaling pathway and promoting NSC proliferation. Cotreatment of BDNF/TrkB-specific inhibitor ANA12 abolished the effects of P-CA on inducing BDNF/TrkB/AKT activation and the NSC proliferation. Finally, animal experiments showed that P-CA treatment enhanced the neuronal proliferation and differentiation in the hippocampus, improved spatial learning and memory functions, and reduced anxiety in the transient MCAO ischemic rats. In conclusion, P-CA is a representative compound from AOM for its bioactivities of activating BDNF/TrkB/AKT signaling pathway, promoting hippocampal neurogenesis, improving cognitive functions, and reducing anxiety in post–ischemic stroke rats.
Collapse
Affiliation(s)
- Yacong He
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shuang Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bun Tsoi
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shuhua Qi
- Medical Technology School, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, China
| | - Bing Gu
- Medical Technology School, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, China
| | - Zhenxing Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- Key Laboratory of Standardization of Chinese Herbal Medicines of Ministry of Education, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Medical Technology School, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
9
|
Bae HJ, Kim J, Jeon SJ, Kim J, Goo N, Jeong Y, Cho K, Cai M, Jung SY, Kwon KJ, Ryu JH. Green tea extract containing enhanced levels of epimerized catechins attenuates scopolamine-induced memory impairment in mice. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112923. [PMID: 32360798 DOI: 10.1016/j.jep.2020.112923] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/17/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Green tea has been used as a traditional medicine to control brain function and digestion. Recent works suggest that drinking green tea could prevent cognitive function impairment. During tea manufacturing processes, such as brewing and sterilization, green tea catechins are epimerized. However, the effects of heat-epimerized catechins on cognitive function are still unknown. To take this advantage, we developed a new green tea extract, high temperature processed-green tea extract (HTP-GTE), which has a similar catechin composition to green tea beverages. AIM OF THE STUDY This study aimed to investigate the effect of HTP-GTE on scopolamine-induced cognitive dysfunction and neuronal differentiation, and to elucidate its underlying mechanisms of action. MATERIALS AND METHODS The neuronal differentiation promoting effects of HTP-GTE in SH-SY5Y cells was assessed by evaluating neurite length and the expression level of synaptophysin. The DNA methylation status at the synaptophysin promoter was determined in differentiated SH-SY5Y cells and in the hippocampi of mice. HTP-GTE was administered for 10 days at doses of 30, 100 and 300 mg/kg (p.o.) to mice, and its effects on cognitive functions were measured by Y-maze and passive avoidance tests under scopolamine-induced cholinergic blockade state. RESULTS HTP-GTE induced neuronal differentiation and neurite outgrowth via the upregulation of synaptophysin gene expression. These beneficial effects of HTP-GTE resulted from reducing DNA methylation levels at the synaptophysin promoter via the suppression of DNMT1 activity. The administration of HTP-GTE ameliorated cognitive impairments in a scopolamine-treated mouse model. CONCLUSIONS These results suggest that HTP-GTE could alleviate cognitive impairment by regulating synaptophysin expression and DNA methylation levels. Taken together, HTP-GTE would be a promising treatment for the cognitive impairment observed in dysfunction of the cholinergic neurotransmitter system.
Collapse
Affiliation(s)
- Ho Jung Bae
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jihyun Kim
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Se Jin Jeon
- Department of Neuroscience, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Seoul, 05029, South Korea
| | - Jaehoon Kim
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Nayeon Goo
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yongwoo Jeong
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kyungnam Cho
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Mudan Cai
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Seo Yun Jung
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kyung Ja Kwon
- Department of Neuroscience, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Seoul, 05029, South Korea
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
10
|
Cognitive impairments in adult mice with RIP140 overexpression in neural stem cells. Behav Brain Res 2020; 393:112777. [PMID: 32579978 DOI: 10.1016/j.bbr.2020.112777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/27/2020] [Accepted: 06/16/2020] [Indexed: 12/31/2022]
Abstract
Receptor-interacting protein 140 (RIP140) is a transcription co-regulator of several transcription factors and a signal transduction regulator. RIP140 was recently implicated in the regulation of cognitive functions. The gene that encodes RIP140 is located on chromosome 21. An increase in RIP140 expression was observed in the fetal cerebral cortex and hippocampus in Down syndrome patients who exhibited strong cognitive disabilities. We hypothesized that RIP140 overexpression affects cognitive function in adult neural development. The present study used a Cre-dependent adeno-associated virus to selectively overexpress RIP140 in neural stem cells using nestin-Cre mice. RIP140 overexpression efficiency was evaluated at the subgranular zone (SGZ) of the dorsal dentate gyrus (dDG) and the subventricular zone (SVZ) of the lateral ventricles (LVs). Mice with RIP140 overexpression in the SGZ exhibited deficits in cognitive function and spatial learning and memory, measured in the Morris water maze, object-place recognition test, and novel object recognition test. However, overexpression of RIP140 in SVZ only impaired performance in the Morris water maze and novel object recognition test but not in the object-place recognition test. Altogether, these results indicated defects in cognitive functions that were associated with RIP140 overexpression in neural stem cells and revealed a behavioral phenotype that may be used as a framework for further investigating the neuropathogenesis of Down syndrome.
Collapse
|
11
|
Baecker J, Wartchow K, Sehm T, Ghoochani A, Buchfelder M, Kleindienst A. Treatment with the Neurotrophic Protein S100B Increases Synaptogenesis after Traumatic Brain Injury. J Neurotrauma 2020; 37:1097-1107. [DOI: 10.1089/neu.2019.6475] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Justus Baecker
- Department of Neurosurgery, Friedrich-Alexander University, Erlangen, Germany
| | - Krista Wartchow
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Tina Sehm
- Department of Neurosurgery, Friedrich-Alexander University, Erlangen, Germany
| | - Ali Ghoochani
- Department of Radiology, Canary Center, Stanford University School of Medicine, Palo Alto, California
| | - Michael Buchfelder
- Department of Neurosurgery, Friedrich-Alexander University, Erlangen, Germany
| | - Andrea Kleindienst
- Department of Neurosurgery, Friedrich-Alexander University, Erlangen, Germany
- Department of Spine Surgery, Klinikum Rummelsberg, Schwarzenbruck, Germany
| |
Collapse
|
12
|
Zhao Z, Li B, Wu Y, Chen X, Guo Y, Shen Y, Huang H. Ketamine affects the integration of developmentally generated granule neurons in the adult stage. BMC Neurosci 2019; 20:60. [PMID: 31852437 PMCID: PMC6921590 DOI: 10.1186/s12868-019-0542-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/07/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Ketamine has been reported to cause neonatal neurotoxicity in a variety of developing animal models. Various studies have been conducted to study the mechanism of neurotoxicity for general anesthetic use during the neonatal period. Previous experiments have suggested that developmentally generated granule neurons in the hippocampus dentate gyrus (DG) supported hippocampus-dependent memory. Therefore, this study aimed to investigate whether ketamine affects the functional integration of developmentally generated granule neurons in the DG. For this purpose,the postnatal day 7 (PND-7) Sprague-Dawley (SD) rats were divided into the control group and the ketamine group (rats who received 4 injections of 40 mg/kg ketamine at 1 h intervals). To label dividing cells, BrdU was administered for three consecutive days after the ketamine exposure; NeuN+/BrdU+cells were observed by using immunofluorescence. To evaluate the developmentally generated granule neurons that support hippocampus-dependent memory, spatial reference memory was tested by using Morris Water Maze at 3 months old, after which the immunofluorescence was used to detect c-Fos expression in the NeuN+/BrdU+ cells. The expression of caspase-3 was measured by western blot to detect the apoptosis in the hippocampal DG. RESULTS The present results showed that the neonatal ketamine exposure did not influence the survival rate of developmentally generated granule neurons at 2 and 3 months old, but ketamine interfered with the integration of these neurons into the hippocampal DG neural circuits and caused a deficit in hippocampal-dependent spatial reference memory tasks. CONCLUSIONS In summary, these findings may promote more studies to investigate the neurotoxicity of ketamine in the developing brain.
Collapse
Affiliation(s)
- Zhanqiang Zhao
- Department of Anesthesiology, Jiangning Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Bing Li
- Department of Anesthesiology, Jiangning Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Yuqing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China
| | - Xujun Chen
- Department of Anesthesiology, Jiangning Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Yan Guo
- Department of Anesthesiology, Jiangning Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Yang Shen
- Department of Anesthesiology, Jiangning Hospital of Traditional Chinese Medicine, Nanjing, China
| | - He Huang
- Department of Anesthesiology, First Affiliated Hospital With Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu, People's Republic of China.
| |
Collapse
|
13
|
Bortolotto V, Bondi H, Cuccurazzu B, Rinaldi M, Canonico PL, Grilli M. Salmeterol, a β2 Adrenergic Agonist, Promotes Adult Hippocampal Neurogenesis in a Region-Specific Manner. Front Pharmacol 2019; 10:1000. [PMID: 31572182 PMCID: PMC6751403 DOI: 10.3389/fphar.2019.01000] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/06/2019] [Indexed: 01/21/2023] Open
Abstract
Neurogenesis persists in the subgranular zone of the hippocampal formation in the adult mammalian brain. In this area, neural progenitor cells (NPCs) receive both permissive and instructive signals, including neurotransmitters, that allow them to generate adult-born neurons which can be functionally integrated in the preexisting circuit. Deregulation of adult hippocampal neurogenesis (ahNG) occurs in several neuropsychiatric and neurodegenerative diseases, including major depression, and represents a potential therapeutic target. Of interest, several studies suggested that, both in rodents and in humans, ahNG is increased by chronic administration of classical monoaminergic antidepressant drugs, suggesting that modulation of this process may participate to their therapeutic effects. Since the established observation that noradrenergic innervations from locus coeruleus make contact with NPC in the dentate gyrus, we investigated the role of beta adrenergic receptor (β-AR) on ahNG both in vitro and in vivo. Here we report that, in vitro, activation of β2-AR by norepinephrine and β2-AR agonists promotes the formation of NPC-derived mature neurons, without affecting NPC survival or differentiation toward glial lineages. Additionally, we show that a selective β2-AR agonist able to cross the blood-brain barrier, salmeterol, positively modulates hippocampal neuroplasticity when chronically administered in adult naïve mice. Indeed, salmeterol significantly increased number, maturation, and dendritic complexity of DCX+ neuroblasts. The increased number of DCX+ cells was not accompanied by a parallel increase in the percentage of BrdU+/DCX+ cells suggesting a potential prosurvival effect of the drug on neuroblasts. More importantly, compared to vehicle, salmeterol promoted ahNG, as demonstrated by an increase in the actual number of BrdU+/NeuN+ cells and in the percentage of BrdU+/NeuN+ cells over the total number of newly generated cells. Interestingly, salmeterol proneurogenic effects were restricted to the ventral hippocampus, an area related to emotional behavior and mood regulation. Since salmeterol is commonly used for asthma therapy in the clinical setting, its novel pharmacological property deserves to be further exploited with a particular focus on drug potential to counteract stress-induced deregulation of ahNG and depressive-like behavior.
Collapse
Affiliation(s)
- Valeria Bortolotto
- Laboratory of Neuroplasticity, University of Piemonte Orientale, Novara, Italy.,Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Heather Bondi
- Laboratory of Neuroplasticity, University of Piemonte Orientale, Novara, Italy.,Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Bruna Cuccurazzu
- Laboratory of Neuroplasticity, University of Piemonte Orientale, Novara, Italy.,Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Maurizio Rinaldi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Pier Luigi Canonico
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Mariagrazia Grilli
- Laboratory of Neuroplasticity, University of Piemonte Orientale, Novara, Italy.,Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
14
|
Roth TC, Krochmal AR, LaDage LD. Reptilian Cognition: A More Complex Picture via Integration of Neurological Mechanisms, Behavioral Constraints, and Evolutionary Context. Bioessays 2019; 41:e1900033. [PMID: 31210380 DOI: 10.1002/bies.201900033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/10/2019] [Indexed: 12/16/2022]
Abstract
Unlike birds and mammals, reptiles are commonly thought to possess only the most rudimentary means of interacting with their environments, reflexively responding to sensory information to the near exclusion of higher cognitive function. However, reptilian brains, though structurally somewhat different from those of mammals and birds, use many of the same cellular and molecular processes to support complex behaviors in homologous brain regions. Here, the neurological mechanisms supporting reptilian cognition are reviewed, focusing specifically on spatial cognition and the hippocampus. These processes are compared to those seen in mammals and birds within an ecologically and evolutionarily relevant context. By viewing reptilian cognition through an integrative framework, a more robust understanding of reptile cognition is gleaned. Doing so yields a broader view of the evolutionarily conserved molecular and cellular mechanisms that underlie cognitive function and a better understanding of the factors that led to the evolution of complex cognition.
Collapse
Affiliation(s)
- Timothy C Roth
- Department of Psychology, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA, 17603, USA
| | - Aaron R Krochmal
- Department of Biology, Washington College, 300 Washington Avenue, Chestertown, MD, 21620, USA
| | - Lara D LaDage
- Division of Mathematics and Natural Sciences, Penn State University Altoona, Altoona, PA, 16601, USA
| |
Collapse
|
15
|
Kostin A, Alam MA, McGinty D, Szymusiak R, Alam MN. Chronic Suppression of Hypothalamic Cell Proliferation and Neurogenesis Induces Aging-Like Changes in Sleep–Wake Organization in Young Mice. Neuroscience 2019; 404:541-556. [DOI: 10.1016/j.neuroscience.2019.01.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 12/14/2018] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
|
16
|
Karimipour M, Rahbarghazi R, Tayefi H, Shimia M, Ghanadian M, Mahmoudi J, Bagheri HS. Quercetin promotes learning and memory performance concomitantly with neural stem/progenitor cell proliferation and neurogenesis in the adult rat dentate gyrus. Int J Dev Neurosci 2019; 74:18-26. [PMID: 30822517 DOI: 10.1016/j.ijdevneu.2019.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/15/2019] [Accepted: 02/21/2019] [Indexed: 01/07/2023] Open
Abstract
The decline in neurogenesis is a very critical problem in Alzheimer disease. Different biological activities have been reported for medicinal application of quercetin. Herein, we investigated the neurogenesis potential of quercetin in a rat model of Alzheimer's disease induced by amyloid-beta injection. Rats were randomly divided into Control, Alzheimer + Saline and Alzheimer + Quercetin groups. Following the administration of Amyloid-beta, rats in the Alzheimer + Quercetin group received 40 mg/kg/day quercetin orally for one month. Our data demonstrated amyloid-β injection could impair learning and memory processing in rats indicated by passive avoidance test evaluation. We noted that one-month quercetin treatment alleviated the detrimental effects of amyloid-β on spatial learning and memory parameters using Morris water maze analysis. Quercetin was found to increase the number of proliferating neural stem/progenitor cells. Notably, quercetin increased the number of DCX-expressing cells, indicating the active dynamic growth of neural progenitor cells in the dentate gyrus of the hippocampus. We further observed that the quercetin improved the number of BrdU/NeuN positive cells contributed to enhanced adult neurogenesis. Based on our results, quercetin had the potential to promote the expression of BDNF, NGF, CREB, and EGR-1 genes involved in regulating neurogenesis. These data suggest that quercetin can play a valuable role in alleviating Alzheimer's disease symptoms by enhancing adult neurogenesis mechanism.
Collapse
Affiliation(s)
- Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Neuroscience Research Center, Advanced Biomedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Tayefi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Shimia
- Department of Neurosurgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mustafa Ghanadian
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Javad Mahmoudi
- Neuroscience Research Center, Advanced Biomedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hesam Saghaei Bagheri
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Abstract
Adult neurogenesis continues to captivate the curiosity of the scientific community; and researchers seem to have a particular interest in identifying the functional implications of such plasticity. While the majority of research focuses on the association between adult neurogenesis and learning and memory (including spatial learning associated with hippocampal neurogenesis and olfactory discrimination associated with neurogenesis in the olfactory system), the following review will explore the link to motivated behaviors. In particular, goal-directed behaviors such as sociosexual, parental, aggressive, as well as depression- and anxiety-like behaviors and their reciprocal association to adult neurogenesis will be evaluated. The review will detail research in humans and other mammalian species. Furthermore, the potential mechanisms underlying these neurogenic alterations will be highlighted. Lastly, the review will conclude with a discussion on the functional significance of these newly generated cells in mediating goal-directed behaviors.
Collapse
Affiliation(s)
- Claudia Jorgensen
- Behavioral Science Department, Utah Valley University, Orem, Utah, USA
| |
Collapse
|
18
|
Oliver RJ, Mandyam CD. Regulation of Adult Neurogenesis by Non-coding RNAs: Implications for Substance Use Disorders. Front Neurosci 2018; 12:849. [PMID: 30524229 PMCID: PMC6261985 DOI: 10.3389/fnins.2018.00849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/30/2018] [Indexed: 12/25/2022] Open
Abstract
The discovery of non-coding RNAs (ncRNAs)has been one of the central findings from early genomic sequencing studies. Not only was the presence of these genes unknown previously, it was the staggering disproportionate share of the genome that was predicted to be encoded by ncRNAs that was truly significant in genomic research. Over the years the function of various classes of these ncRNAs has been revealed. One of the first and enduring regulatory programs associated with these factors was development. In the neurosciences, the discovery of adult derived populations of dividing cells within the brain was equally substantial. The brain was hypothesized to be plastic only in its neuronal connectivity, but the discovery of the generation of new neurons was a novel mechanism of neuronal and behavioral plasticity. The process of adult neurogenesis resembles early neuronal development and has been found to share many parallels in the proper stages of specified genetic programs. Adult neurogenesis has also been found to play a role in learning and memory involved in particular hippocampal-dependent behaviors. Substance use disorders (SUDs) are an example of a behavioral condition that is associated with and possibly driven by hippocampal alterations. Our laboratory has determined that hippocampal adult neurogenesis is necessary for a rodent model of methamphetamine relapse. Due to the previous research on ncRNAs in development and in other brain regions involved in SUDs, we posit that ncRNAs may play a role in adult neurogenesis associated with this disorder. This review will cover the regulatory mechanisms of various classes of ncRNAs on the coordinated genetic program associated with adult neurogenesis with a special focus on how these programs could be dysregulated in SUDs.
Collapse
Affiliation(s)
- Robert J Oliver
- VA San Diego Healthcare System, San Diego, CA, United States
| | - Chitra D Mandyam
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
19
|
Leanza G, Gulino R, Zorec R. Noradrenergic Hypothesis Linking Neurodegeneration-Based Cognitive Decline and Astroglia. Front Mol Neurosci 2018; 11:254. [PMID: 30100866 PMCID: PMC6072880 DOI: 10.3389/fnmol.2018.00254] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/05/2018] [Indexed: 12/31/2022] Open
Abstract
In the past, manipulation of the cholinergic system was seen as the most likely therapeutic for neurodegeneration-based cognitive decline in Alzheimer's disease (AD) (Whitehouse et al., 1982). However, targeting the noradrenergic system also seems a promising strategy, since more recent studies revealed that in post-mortem tissue from patients with AD and other neurodegenerative disorders there is a robust correlation between cognitive decline and loss of neurons from the Locus coeruleus (LC), a system with diffuse noradrenaline (NA) innervation in the central nervous system (CNS). Therefore, the hypothesis has been considered that increasing NA signaling in the CNS will prevent, or at least halt the progression of neurodegeneration and cognitive decline. A hallmark of the age- and neurodegeneration-related cognitive decline is reduced neurogenesis. We here discuss noradrenergic dysfunction in AD-related cognitive decline in humans and its potential involvement in AD pathology and disease progression. We also focus on animal models to allow the validation of the noradrenergic hypothesis of AD, including those based upon the immunotoxin-mediated ablation of LC based on saporin, a protein synthesis interfering agent, which offers selective and graded demise of LC neurons, Finally, we address how astrocytes, an abundant and functionally heterogeneous cell type of neuroglia maintaining homeostasis, may participate in the regulation of neurogenesis, a new strategy for preventing LC neuron loss.
Collapse
Affiliation(s)
- Giampiero Leanza
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
20
|
Pistikova A, Brozka H, Stuchlik A. Adult neurogenesis in the hippocampus from a perspective of discrimination and generalization: a hypothesis. Physiol Res 2018; 66:441-448. [PMID: 28730838 DOI: 10.33549/physiolres.933627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The function of adult neurogenesis in the dentate gyrus is not yet completely understood, though many competing theories have attempted to explain the function of these newly-generated neurons. Most theories give adult neurogenesis a role in aiding known hippocampal/dentate gyrus functions. Other theories offer a novel role for these new cells based on their unique physiological qualities, such as their low excitability threshold. Many behavioral tests have been used to test these theories, but results have been inconsistent and often contradictory. Substantial variability in tests and protocols may be at least partially responsible for the mixed results. On the other hand, conflicting results arising from the same tests can serve as aids in elucidating the function of adult neurogenesis. Here, we offer a hypothesis that considers the cognitive nature of tasks commonly used to assess the function of adult neurogenesis, and introduce a dichotomy between tasks focused on discrimination vs. generalization. We view these two aspects as opposite ends of the continuous spectrum onto which traditional tests can be mapped. We propose that high neurogenesis favors behavioral discrimination while low adult neurogenesis favors behavioral generalization of a knowledge or rule. Since many tasks require both, the effects of neurogenesis could be cancelled out in many cases. Although speculative, we hope that our view presents an interesting and testable hypothesis of the effect of adult neurogenesis in traditional behavioral tasks. We conclude that new, carefully designed behavioral tests may be necessary to reach a final consensus on the role of adult neurogenesis in behavior.
Collapse
Affiliation(s)
- A Pistikova
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic. or
| | | | | |
Collapse
|
21
|
Cao B, Luo Q, Fu Y, Du L, Qiu T, Yang X, Chen X, Chen Q, Soares JC, Cho RY, Zhang XY, Qiu H. Predicting individual responses to the electroconvulsive therapy with hippocampal subfield volumes in major depression disorder. Sci Rep 2018; 8:5434. [PMID: 29615675 PMCID: PMC5882798 DOI: 10.1038/s41598-018-23685-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/15/2018] [Indexed: 12/12/2022] Open
Abstract
Electroconvulsive therapy (ECT) is one of the most effective treatments for major depression disorder (MDD). ECT can induce neurogenesis and synaptogenesis in hippocampus, which contains distinct subfields, e.g., the cornu ammonis (CA) subfields, a granule cell layer (GCL), a molecular layer (ML), and the subiculum. It is unclear which subfields are affected by ECT and whether we predict the future treatment response to ECT by using volumetric information of hippocampal subfields at baseline? In this study, 24 patients with severe MDD received the ECT and their structural brain images were acquired with magnetic resonance imaging before and after ECT. A state-of-the-art hippocampal segmentation algorithm from Freesurfer 6.0 was used. We found that ECT induced volume increases in CA subfields, GCL, ML and subiculum. We applied a machine learning algorithm to the hippocampal subfield volumes at baseline and were able to predict the change in depressive symptoms (r = 0.81; within remitters, r = 0.93). Receiver operating characteristic analysis also showed robust prediction of remission with an area under the curve of 0.90. Our findings provide evidence for particular hippocampal subfields having specific roles in the response to ECT. We also provide an analytic approach for generating predictions about clinical outcomes for ECT in MDD.
Collapse
Affiliation(s)
- Bo Cao
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, United States
| | - Qinghua Luo
- Mental Health Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Yixiao Fu
- Mental Health Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Lian Du
- Mental Health Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Tian Qiu
- Mental Health Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Xiangying Yang
- Mental Health Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Xiaolu Chen
- Mental Health Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Qibin Chen
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, United States
| | - Raymond Y Cho
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, United States
| | - Xiang Yang Zhang
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, United States
| | - Haitang Qiu
- Mental Health Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China.
| |
Collapse
|
22
|
Jarero-Basulto JJ, Gasca-Martínez Y, Rivera-Cervantes MC, Ureña-Guerrero ME, Feria-Velasco AI, Beas-Zarate C. Interactions Between Epilepsy and Plasticity. Pharmaceuticals (Basel) 2018; 11:ph11010017. [PMID: 29414852 PMCID: PMC5874713 DOI: 10.3390/ph11010017] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/01/2018] [Accepted: 02/06/2018] [Indexed: 02/06/2023] Open
Abstract
Undoubtedly, one of the most interesting topics in the field of neuroscience is the ability of the central nervous system to respond to different stimuli (normal or pathological) by modifying its structure and function, either transiently or permanently, by generating neural cells and new connections in a process known as neuroplasticity. According to the large amount of evidence reported in the literature, many stimuli, such as environmental pressures, changes in the internal dynamic steady state of the organism and even injuries or illnesses (e.g., epilepsy) may induce neuroplasticity. Epilepsy and neuroplasticity seem to be closely related, as the two processes could positively affect one another. Thus, in this review, we analysed some neuroplastic changes triggered in the hippocampus in response to seizure-induced neuronal damage and how these changes could lead to the establishment of temporal lobe epilepsy, the most common type of focal human epilepsy.
Collapse
Affiliation(s)
- José J Jarero-Basulto
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, 45220 Zapopan, Jalisco, Mexico.
| | - Yadira Gasca-Martínez
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, 45220 Zapopan, Jalisco, Mexico.
| | - Martha C Rivera-Cervantes
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, 45220 Zapopan, Jalisco, Mexico.
| | - Mónica E Ureña-Guerrero
- Neurotransmission Biology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, 45220 Zapopan, Jalisco, Mexico.
| | - Alfredo I Feria-Velasco
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, 45220 Zapopan, Jalisco, Mexico.
| | - Carlos Beas-Zarate
- Development and Neural Regeneration Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, 45220 Zapopan, Jalisco, Mexico.
| |
Collapse
|
23
|
Shido O, Matsuzaki K, Katakura M. Neurogenesis in the thermoregulatory system. HANDBOOK OF CLINICAL NEUROLOGY 2018; 156:457-463. [PMID: 30454607 DOI: 10.1016/b978-0-444-63912-7.00028-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In response to various internal and external stimuli, neuronal progenitor cells in the hypothalamic area proliferate and differentiate to functionally working neurons even in adult animals. This is the case in the thermoregulatory system, especially in the process of heat acclimation. The heat acclimation process presents two different patterns, namely short-term and long-term heat acclimation. In rats, long-term heat acclimation is attained by exposing subjects to constant heat for more than 4 weeks, while short-term heat acclimation is established within several days of heat exposure. Heat exposure for more than 6 days facilitates cell proliferation in the ependymal layer of the third ventricle. The newborn cells then migrate into the hypothalamic parenchyma. After 33 days of heat exposure, the newborn cells abruptly differentiate to mature neurons. A part of the newborn cells are incorporated in a neuronal circuit in the hypothalamus. However, only 6 days of heat exposure hardly promote neuronal differentiation. An administration of mitosis inhibitor interferes with cell proliferation in the hypothalamic area and attenuates heat acclimation-induced improvement of heat tolerance. Long-term, but not short-term, heat acclimation may be established by generating new functional neurons in the hypothalamic area, which is where an important part of the thermoregulatory circuitry exists in rats.
Collapse
Affiliation(s)
- Osamu Shido
- Department of Environmental Physiology, School of Medicine, Shimane University, Izumo, Japan.
| | - Kentaro Matsuzaki
- Department of Environmental Physiology, School of Medicine, Shimane University, Izumo, Japan
| | - Masanori Katakura
- Department of Nutritional Physiology, Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan
| |
Collapse
|
24
|
Chikama K, Yamada H, Tsukamoto T, Kajitani K, Nakabeppu Y, Uchimura N. Chronic atypical antipsychotics, but not haloperidol, increase neurogenesis in the hippocampus of adult mouse. Brain Res 2017; 1676:77-82. [DOI: 10.1016/j.brainres.2017.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 11/28/2022]
|
25
|
Affiliation(s)
- Philippe Taupin
- National Neuroscience Institute, Singapore
- National University of Singapore
- Nanyang Technological University, Singapore
| |
Collapse
|
26
|
|
27
|
|
28
|
Targeting Adult Neurogenesis for Poststroke Therapy. Stem Cells Int 2017; 2017:5868632. [PMID: 28808445 PMCID: PMC5541797 DOI: 10.1155/2017/5868632] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 06/27/2017] [Indexed: 12/20/2022] Open
Abstract
Adult neurogenesis mainly occurs at the subventricular zone (SVZ) on the walls of the lateral ventricle and the subgranular zone (SGZ) of the dentate gyrus (DG). However, the majority of newborn neurons undergo programmed cell death (PCD) during the period of proliferation, migration, and integration. Stroke activates neural stem cells (NSCs) in both SVZ and SGZ. This process is regulated by a wide variety of signaling pathways. However, the newborn neurons derived from adult neurogenesis are insufficient for tissue repair and function recovery. Thus, enhancing the endogenous neurogenesis driven by ischemia and promoting the survival of newborn neurons can be promising therapeutic interventions for stroke. Here, we present an overview of the process of adult neurogenesis and the potential of stroke-induced neurogenesis on brain repair.
Collapse
|
29
|
Abstract
Neural stem cells (NSCs) have been proposed as a promising cellular source for the treatment of diseases in nervous systems. NSCs can self-renew and generate major cell types of the mammalian central nervous system throughout adulthood. NSCs exist not only in the embryo, but also in the adult brain neurogenic region: the subventricular zone (SVZ) of the lateral ventricle. Embryonic stem (ES) cells acquire NSC identity with a default mechanism. Under the regulations of leukemia inhibitory factor (LIF) and fibroblast growth factors, the NSCs then become neural progenitors. Neurotrophic and differentiation factors that regulate gene expression for controlling neural cell fate and function determine the differentiation of neural progenitors in the developing mammalian brain. For clinical application of NSCs in neurodegenerative disorders and damaged neurons, there are several critical problems that remain to be resolved: 1) how to obtain enough NSCs from reliable sources for autologous transplantation; 2) how to regulate neural plasticity of different adult stem cells; 3) how to control differentiation of NSCs in the adult nervous system. In order to understand the mechanisms that control NSC differentiation and behavior, we review the ontogeny of NSCs and other stem cell plasticity of neuronal differentiation. The role of NSCs and their regulation by neurotrophic factors in CNS development are also reviewed.
Collapse
Affiliation(s)
- Yi-Chao Hsu
- Stem Cell Research Center, National Health Research Institutes, Jhunan, Taiwan
| | - Don-Ching Lee
- Stem Cell Research Center, National Health Research Institutes, Jhunan, Taiwan
| | - Ing-Ming Chiu
- Stem Cell Research Center, National Health Research Institutes, Jhunan, Taiwan
- Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
- Institute of Medical Technology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
30
|
Hippocampal neurogenesis and volume in migrating and wintering semipalmated sandpipers (Calidris pusilla). PLoS One 2017; 12:e0179134. [PMID: 28591201 PMCID: PMC5462419 DOI: 10.1371/journal.pone.0179134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 05/24/2017] [Indexed: 12/13/2022] Open
Abstract
Long distance migratory birds find their way by sensing and integrating information from a large number of cues in their environment. These cues are essential to navigate over thousands of kilometers and reach the same breeding, stopover, and wintering sites every year. The semipalmated sandpiper (Calidris pusilla) is a long-distance migrant that breeds in the arctic tundra of Canada and Alaska and winters on the northeast coast of South America. Its fall migration includes a 5,300-kilometer nonstop flight over the Atlantic Ocean. The avian hippocampus has been proposed to play a central role in the integration of multisensory spatial information for navigation. Hippocampal neurogenesis may contribute to hippocampal function and a variety of factors including cognitive activity, exercise, enrichment, diet and stress influence neurogenesis in the hippocampus. We quantified hippocampal neurogenesis and volume in adult migrating and wintering semipalmated sandpipers using stereological counts of doublecortin (DCX) immunolabeled immature neurons. We found that birds captured in the coastal region of Bragança, Brazil during the wintering period had more DCX positive neurons and larger volume in the hippocampus than individuals captured in the Bay of Fundy, Canada during fall migration. We also estimate the number of NeuN immunolabeled cells in migrating and wintering birds and found no significant differences between them. These findings suggest that, at this time window, neurogenesis just replaced neurons that might be lost during the transatlantic flight. Our findings also show that in active fall migrating birds, a lower level of adult hippocampal neurogenesis is associated with a smaller hippocampal formation. High levels of adult hippocampal neurogenesis and a larger hippocampal formation found in wintering birds may be late occurring effects of long distance migratory flight or the result of conditions the birds experienced while wintering.
Collapse
|
31
|
Fidaleo M, Cavallucci V, Pani G. Nutrients, neurogenesis and brain ageing: From disease mechanisms to therapeutic opportunities. Biochem Pharmacol 2017; 141:63-76. [PMID: 28539263 DOI: 10.1016/j.bcp.2017.05.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/19/2017] [Indexed: 02/08/2023]
Abstract
Appreciation of the physiological relevance of mammalian adult neurogenesis has in recent years rapidly expanded from a phenomenon of homeostatic cell replacement and brain repair to the current view of a complex process involved in high order cognitive functions. In parallel, an array of endogenous or exogenous triggers of neurogenesis has also been identified, among which metabolic and nutritional cues have drawn significant attention. Converging evidence from animal and in vitro studies points to nutrient sensing and energy metabolism as major physiological determinants of neural stem cell fate, and modulators of the whole neurogenic process. While the cellular and molecular circuitries underlying metabolic regulation of neurogenesis are still incompletely understood, the key role of mitochondrial activity and dynamics, and the importance of autophagy have begun to be fully appreciated; moreover, nutrient-sensitive pathways and transducers such as the insulin-IGF cascade, the AMPK/mTOR axis and the transcription regulators CREB and Sirt-1 have been included, beside more established "developmental" signals like Notch and Wnt, in the molecular networks that dictate neural-stem-cell self-renewal, migration and differentiation in response to local and systemic inputs. Many of these nutrient-related cascades are deregulated in the contest of metabolic diseases and in ageing, and may contribute to impaired neurogenesis and thus to cognition defects observed in these conditions. Importantly, accumulating knowledge on the metabolic control of neurogenesis provides a theoretical framework for the trial of new or repurposed drugs capable of interfering with nutrient sensing as enhancers of neurogenesis in the context of neurodegeneration and brain senescence.
Collapse
Affiliation(s)
- Marco Fidaleo
- Institute of General Pathology, Università Cattolica School of Medicine, 00168 Rome, Italy
| | - Virve Cavallucci
- Institute of General Pathology, Università Cattolica School of Medicine, 00168 Rome, Italy
| | - Giovambattista Pani
- Institute of General Pathology, Università Cattolica School of Medicine, 00168 Rome, Italy.
| |
Collapse
|
32
|
Han W, Song X, He R, Li T, Cheng L, Xie L, Chen H, Jiang L. VEGF regulates hippocampal neurogenesis and reverses cognitive deficits in immature rats after status epilepticus through the VEGF R2 signaling pathway. Epilepsy Behav 2017; 68:159-167. [PMID: 28193596 DOI: 10.1016/j.yebeh.2016.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/02/2016] [Accepted: 12/12/2016] [Indexed: 01/17/2023]
Abstract
Epilepsy is the most common chronic disease in children, who exhibit a higher risk for status epilepticus (SE) than adults. Hippocampal neurogenesis is altered by epilepsy, particularly in the immature brain, which may influence cognitive development. Vascular endothelial growth factor (VEGF) represents an attractive target to modulate brain function at the neurovascular interface and is a double-edged sword in seizures. We used the lithium-pilocarpine-induced epilepsy model in immature Sprague-Dawley rats to study the effects of VEGF on hippocampal neurogenesis in the acute phase and on long-term cognitive behaviors in immature rats following status epilepticus (SE). VEGF correlates with cell proliferation in the immature brain after SE. By preprocessing VEGF in the lateral ventricles prior to the induction of the SE model, we found that VEGF increased the proliferation of neural stem cells (NSCs) and promoted the migration of newly generated cells via the VEGF receptor 2 (VEGFR2) signaling pathway. VEGF also inhibited cell loss and reversed the cognitive deficits that accompany SE. Based on our results, VEGF positively contributes to the initial stages of neurogenesis and alleviates cognitive deficits following seizures; moreover, the VEGF/VEGFR2 signaling pathway may provide a novel treatment strategy for epilepsy.
Collapse
Affiliation(s)
- Wei Han
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Xiaojie Song
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Rong He
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Tianyi Li
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Li Cheng
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Lingling Xie
- Department of Neurology, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Chongqing 400014, China
| | - Hengsheng Chen
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Li Jiang
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China; Department of Neurology, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Chongqing 400014, China.
| |
Collapse
|
33
|
Horgusluoglu E, Nudelman K, Nho K, Saykin AJ. Adult neurogenesis and neurodegenerative diseases: A systems biology perspective. Am J Med Genet B Neuropsychiatr Genet 2017; 174:93-112. [PMID: 26879907 PMCID: PMC4987273 DOI: 10.1002/ajmg.b.32429] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/29/2016] [Indexed: 12/21/2022]
Abstract
New neurons are generated throughout adulthood in two regions of the brain, the olfactory bulb and dentate gyrus of the hippocampus, and are incorporated into the hippocampal network circuitry; disruption of this process has been postulated to contribute to neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. Known modulators of adult neurogenesis include signal transduction pathways, the vascular and immune systems, metabolic factors, and epigenetic regulation. Multiple intrinsic and extrinsic factors such as neurotrophic factors, transcription factors, and cell cycle regulators control neural stem cell proliferation, maintenance in the adult neurogenic niche, and differentiation into mature neurons; these factors act in networks of signaling molecules that influence each other during construction and maintenance of neural circuits, and in turn contribute to learning and memory. The immune system and vascular system are necessary for neuronal formation and neural stem cell fate determination. Inflammatory cytokines regulate adult neurogenesis in response to immune system activation, whereas the vasculature regulates the neural stem cell niche. Vasculature, immune/support cell populations (microglia/astrocytes), adhesion molecules, growth factors, and the extracellular matrix also provide a homing environment for neural stem cells. Epigenetic changes during hippocampal neurogenesis also impact memory and learning. Some genetic variations in neurogenesis related genes may play important roles in the alteration of neural stem cells differentiation into new born neurons during adult neurogenesis, with important therapeutic implications. In this review, we discuss mechanisms of and interactions between these modulators of adult neurogenesis, as well as implications for neurodegenerative disease and current therapeutic research. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Emrin Horgusluoglu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kelly Nudelman
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, Indiana
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Andrew J. Saykin
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, Indiana
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
34
|
Almeida AS, Vieira HLA. Role of Cell Metabolism and Mitochondrial Function During Adult Neurogenesis. Neurochem Res 2016; 42:1787-1794. [DOI: 10.1007/s11064-016-2150-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/09/2016] [Accepted: 12/10/2016] [Indexed: 12/15/2022]
|
35
|
Abstract
Stem cells are found throughout the adult mammalian brain, including the subventricular zone (SVZ) adjacent to the lateral ventricles, and in the hippocampal dentate subgranular zone (SGZ). Cells born in the SVZ migrate to the olfactory bulb. Those born in the SGZ migrate into the granule cell layer. Following 5 or 10 min of global ischemia in the adult gerbil, there is a tenfold increase in the birth of new cells in the SGZ as assessed using bromo-deoxy-uridine incorporation. This begins at 7 days, peaks at 11 days, and decreases thereafter. Over the ensuing month, approximately one-fourth of the newborn cells disappear. Of the remaining cells, 60% migrate into the granule cell layer where two-thirds of these become NeuN, calbindin, and MAP-2 immunostained neurons. The remaining 40% of the cells migrate into the dentate hilus where one-fourth of these become glial fibrillary acidic protein-labeled astrocytes. Death of CA1 pyramidal neurons does not stimulate neurogenesis because ischemia-induced tolerance—which does not produce CA1 injury—also stimulated cell proliferation. It is proposed that ischemia-induced neurogenesis contributes to the recovery of function, specifically of anterograde and retrograde recent memory function that is lost following global ischemia in man.
Collapse
|
36
|
Distribution and fate of DCX/PSA-NCAM expressing cells in the adult mammalian cortex: A local reservoir for adult cortical neuroplasticity? ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s11515-016-1403-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Ding XF, Gao X, Ding XC, Fan M, Chen J. Postnatal dysregulation of Notch signal disrupts dendrite development of adult-born neurons in the hippocampus and contributes to memory impairment. Sci Rep 2016; 6:25780. [PMID: 27173138 PMCID: PMC4865733 DOI: 10.1038/srep25780] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 04/22/2016] [Indexed: 01/08/2023] Open
Abstract
Deficits in the Notch pathway are involved in a number of neurologic diseases associated with mental retardation or/and dementia. The mechanisms by which Notch dysregulation are associated with mental retardation and dementia are poorly understood. We found that Notch1 is highly expressed in the adult-born immature neurons in the hippocampus of mice. Retrovirus mediated knockout of notch1 in single adult-born immature neurons decreases mTOR signaling and compromises their dendrite morphogenesis. In contrast, overexpression of Notch1 intracellular domain (NICD), to constitutively activate Notch signaling in single adult-born immature neurons, promotes mTOR signaling and increases their dendrite arborization. Using a unique genetic approach to conditionally and selectively knockout notch 1 in the postnatally born immature neurons in the hippocampus decreases mTOR signaling, compromises their dendrite morphogenesis, and impairs spatial learning and memory. Conditional overexpression of NICD in the postnatally born immature neurons in the hippocampus increases mTOR signaling and promotes dendrite arborization. These data indicate that Notch signaling plays a critical role in dendrite development of immature neurons in the postnatal brain, and dysregulation of Notch signaling in the postnatally born neurons disrupts their development and thus contributes to the cognitive deficits associated with neurological diseases.
Collapse
Affiliation(s)
- Xue-Feng Ding
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Cognitive sciences, Beijing Institute of Basic Medical Sciences, Beijing 100850, P. R. China
| | - Xiang Gao
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xin-Chun Ding
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ming Fan
- Department of Cognitive sciences, Beijing Institute of Basic Medical Sciences, Beijing 100850, P. R. China
| | - Jinhui Chen
- Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute, and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
38
|
Control of adult neurogenesis by programmed cell death in the mammalian brain. Mol Brain 2016; 9:43. [PMID: 27098178 PMCID: PMC4839132 DOI: 10.1186/s13041-016-0224-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/14/2016] [Indexed: 01/19/2023] Open
Abstract
The presence of neural stem cells (NSCs) and the production of new neurons in the adult brain have received great attention from scientists and the public because of implications to brain plasticity and their potential use for treating currently incurable brain diseases. Adult neurogenesis is controlled at multiple levels, including proliferation, differentiation, migration, and programmed cell death (PCD). Among these, PCD is the last and most prominent process for regulating the final number of mature neurons integrated into neural circuits. PCD can be classified into apoptosis, necrosis, and autophagic cell death and emerging evidence suggests that all three may be important modes of cell death in neural stem/progenitor cells. However, the molecular mechanisms that regulate PCD and thereby impact the intricate balance between self-renewal, proliferation, and differentiation during adult neurogenesis are not well understood. In this comprehensive review, we focus on the extent, mechanism, and biological significance of PCD for the control of adult neurogenesis in the mammalian brain. The role of intrinsic and extrinsic factors in the regulation of PCD at the molecular and systems levels is also discussed. Adult neurogenesis is a dynamic process, and the signals for differentiation, proliferation, and death of neural progenitor/stem cells are closely interrelated. A better understanding of how adult neurogenesis is influenced by PCD will help lead to important insights relevant to brain health and diseases.
Collapse
|
39
|
Weng JC, Tikhonova MA, Chen JH, Shen MS, Meng WY, Chang YT, Chen KH, Liang KC, Hung CS, Amstislavskaya TG, Ho YJ. Ceftriaxone prevents the neurodegeneration and decreased neurogenesis seen in a Parkinson's disease rat model: An immunohistochemical and MRI study. Behav Brain Res 2016; 305:126-39. [PMID: 26940602 DOI: 10.1016/j.bbr.2016.02.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/19/2016] [Accepted: 02/26/2016] [Indexed: 02/06/2023]
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) is a widely used technique for detecting neuronal activity in the brain of a living animal. Ceftriaxone (CEF) has been shown to have neuroprotective effects in neurodegenerative diseases. The present study was aimed at clarifying whether, in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) rat model, the known CEF-induced neuronal protection was accompanied by neurogenesis and decreased loss of neuronal activity. After MPTP lesioning (day 0), the rats were treated with CEF (100mg/kg/day, i.p.) or saline for 15 days. They were then injected with MnCl2 (40mg/kg, i.p.) on day 13 and underwent a brain MRI scan on day 14, then the brain was taken for histological evaluation on day 15. The results showed that MPTP lesioning resulted in decreased neuronal activity and density in the nigrostriatal dopaminergic (DAergic) system and the hippocampal CA1, CA3, and dentate gyrus (DG) areas and reduced neurogenesis in the DG, but in hyperactivity in the subthalamic nucleus (STN). These neuronal changes were prevented by CEF treatment. Positive correlations between MEMRI R1 values and neuronal density in the hippocampus were evidenced. Neuronal densities in the hippocampus and SNc were positively correlated. In addition, the R1 value of the STN showed a positive correlation with its neuronal activity but showed a negative correlation with the density of DAergic neurons in the SNc. Therefore, MEMRI R1 value may serve as a good indicator for PD severity and the effect of treatment. To our knowledge, this is the first study showing that CEF prevents loss of neuronal activity and neurogenesis in the brain of PD rats. CEF may therefore have clinical potential in the treatment of PD.
Collapse
Affiliation(s)
- Jun-Cheng Weng
- Department of Medical Imaging and Radiological Sciences, Department of Medical Imaging, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Maria A Tikhonova
- Laboratory of Experimental Models of Neurodegenerative Processes, Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine", Novosibirsk 630117, Russia
| | - Jian-Horng Chen
- School of Physical Therapy, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Mei-Shiuan Shen
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Wan-Yun Meng
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Yen-Ting Chang
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Ke-Hsin Chen
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Keng-Chen Liang
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan, ROC; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Ching-Sui Hung
- Occupational Safety and Health Office, Taipei City Hospital, Taipei 10341, Taiwan, ROC.
| | - Tamara G Amstislavskaya
- Laboratory of Experimental Models of Emotional Pathology, Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine", Novosibirsk 630117, Russia.
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC.
| |
Collapse
|
40
|
López-Hidalgo R, Ballestín R, Vega J, Blasco-Ibáñez JM, Crespo C, Gilabert-Juan J, Nácher J, Varea E. Hypocellularity in the Murine Model for Down Syndrome Ts65Dn Is Not Affected by Adult Neurogenesis. Front Neurosci 2016; 10:75. [PMID: 26973453 PMCID: PMC4773601 DOI: 10.3389/fnins.2016.00075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/17/2016] [Indexed: 01/08/2023] Open
Abstract
Down syndrome (DS) is caused by the presence of an extra copy of the chromosome 21 and it is the most common aneuploidy producing intellectual disability. Neural mechanisms underlying this alteration may include defects in the formation of neuronal networks, information processing and brain plasticity. The murine model for DS, Ts65Dn, presents reduced adult neurogenesis. This reduction has been suggested to underlie the hypocellularity of the hippocampus as well as the deficit in olfactory learning in the Ts65Dn mice. Similar alterations have also been observed in individuals with DS. To determine whether the impairment in adult neurogenesis is, in fact, responsible for the hypocellularity in the hippocampus and physiology of the olfactory bulb, we have analyzed cell proliferation and neuronal maturation in the two major adult neurogenic niches in the Ts656Dn mice: the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ). Additionally, we carried out a study to determine the survival rate and phenotypic fate of newly generated cells in both regions, injecting 5'BrdU and sacrificing the mice 21 days later, and analyzing the number and phenotype of the remaining 5'BrdU-positive cells. We observed a reduction in the number of proliferating (Ki67 positive) cells and immature (doublecortin positive) neurons in the subgranular and SVZ of Ts65Dn mice, but we did not observe changes in the number of surviving cells or in their phenotype. These data correlated with a lower number of apoptotic cells (cleaved caspase 3 positive) in Ts65Dn. We conclude that although adult Ts65Dn mice have a lower number of proliferating cells, it is compensated by a lower level of cell death. This higher survival rate in Ts65Dn produces a final number of mature cells similar to controls. Therefore, the reduction of adult neurogenesis cannot be held responsible for the neuronal hypocellularity in the hippocampus or for the olfactory learning deficit of Ts65Dn mice.
Collapse
Affiliation(s)
- Rosa López-Hidalgo
- Neurobiology Unit and Program in Basic and Applied Neurosciences, Cell Biology Department, Universitat de ValènciaValència, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (BIOTECMED), Universitat de ValènciaValència, Spain
| | - Raul Ballestín
- Neurobiology Unit and Program in Basic and Applied Neurosciences, Cell Biology Department, Universitat de ValènciaValència, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (BIOTECMED), Universitat de ValènciaValència, Spain
| | - Jessica Vega
- Neurobiology Unit and Program in Basic and Applied Neurosciences, Cell Biology Department, Universitat de ValènciaValència, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (BIOTECMED), Universitat de ValènciaValència, Spain
| | - José M. Blasco-Ibáñez
- Neurobiology Unit and Program in Basic and Applied Neurosciences, Cell Biology Department, Universitat de ValènciaValència, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (BIOTECMED), Universitat de ValènciaValència, Spain
| | - Carlos Crespo
- Neurobiology Unit and Program in Basic and Applied Neurosciences, Cell Biology Department, Universitat de ValènciaValència, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (BIOTECMED), Universitat de ValènciaValència, Spain
| | - Javier Gilabert-Juan
- Neurobiology Unit and Program in Basic and Applied Neurosciences, Cell Biology Department, Universitat de ValènciaValència, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (BIOTECMED), Universitat de ValènciaValència, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVAValència, Spain
- CIBERSAM, Spanish National Network for Research in Mental HealthValència, Spain
- Genetics Department, CIBERSAM, Universitat de ValènciaValència, Spain
| | - Juan Nácher
- Neurobiology Unit and Program in Basic and Applied Neurosciences, Cell Biology Department, Universitat de ValènciaValència, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (BIOTECMED), Universitat de ValènciaValència, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVAValència, Spain
- CIBERSAM, Spanish National Network for Research in Mental HealthValència, Spain
- Genetics Department, CIBERSAM, Universitat de ValènciaValència, Spain
| | - Emilio Varea
- Neurobiology Unit and Program in Basic and Applied Neurosciences, Cell Biology Department, Universitat de ValènciaValència, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (BIOTECMED), Universitat de ValènciaValència, Spain
| |
Collapse
|
41
|
|
42
|
Gros A, Veyrac A, Laroche S. [Brain and memory: new neurons to remember]. Biol Aujourdhui 2016; 209:229-248. [PMID: 26820830 DOI: 10.1051/jbio/2015028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 06/05/2023]
Abstract
A defining characteristic of the brain is its remarkable capacity to undergo activity-dependent functional and structural remodelling via mechanisms of plasticity that form the basis of our capacity to encode and retain memories. The prevailing model of how our brain stores new information about relationships between events or new abstract constructs suggests it resides in activity-driven modifications of synaptic strength and remodelling of neural networks brought about by cellular and molecular changes within the neurons activated during learning. To date, the idea that a form of activity-dependent synaptic plasticity known as long-term potentiation, or LTP, and the associated synaptic growth play a central role in the laying down of memories has received considerable support. Beyond this mechanism of plasticity at the synapse, adult neurogenesis, i.e. the birth and growth of new neurons, is another form of neural plasticity that occurs continuously in defined brain regions such as the dentate gyrus of the hippocampus. Here, based on work in the hippocampus, we review the processes and mechanisms of the generation and selection of new neurons in the adult brain and the accumulating evidence that supports the idea that this form of neural plasticity is essential to store and lead to retrievable hippocampal-dependent memories.
Collapse
Affiliation(s)
- Alexandra Gros
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Alexandra Veyrac
- Centre de Recherche en Neurosciences de Lyon, UMR 5292 CNRS, INSERM U1028, Université Lyon 1, 69366 Lyon, France
| | - Serge Laroche
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris Sud, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
43
|
|
44
|
Aertker BM, Bedi S, Cox CS. Strategies for CNS repair following TBI. Exp Neurol 2016; 275 Pt 3:411-426. [DOI: 10.1016/j.expneurol.2015.01.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/08/2015] [Accepted: 01/22/2015] [Indexed: 12/20/2022]
|
45
|
Radley J, Morilak D, Viau V, Campeau S. Chronic stress and brain plasticity: Mechanisms underlying adaptive and maladaptive changes and implications for stress-related CNS disorders. Neurosci Biobehav Rev 2015; 58:79-91. [PMID: 26116544 PMCID: PMC4684432 DOI: 10.1016/j.neubiorev.2015.06.018] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 02/06/2023]
Abstract
Stress responses entail neuroendocrine, autonomic, and behavioral changes to promote effective coping with real or perceived threats to one's safety. While these responses are critical for the survival of the individual, adverse effects of repeated exposure to stress are widely known to have deleterious effects on health. Thus, a considerable effort in the search for treatments to stress-related CNS disorders necessitates unraveling the brain mechanisms responsible for adaptation under acute conditions and their perturbations following chronic stress exposure. This paper is based upon a symposium from the 2014 International Behavioral Neuroscience Meeting, summarizing some recent advances in understanding the effects of stress on adaptive and maladaptive responses subserved by limbic forebrain networks. An important theme highlighted in this review is that the same networks mediating neuroendocrine, autonomic, and behavioral processes during adaptive coping also comprise targets of the effects of repeated stress exposure in the development of maladaptive states. Where possible, reference is made to the similarity of neurobiological substrates and effects observed following repeated exposure to stress in laboratory animals and the clinical features of stress-related disorders in humans.
Collapse
Affiliation(s)
- Jason Radley
- Department of Psychological and Brain Sciences and Interdisciplinary Neuroscience Program, University of Iowa, IA, United States
| | - David Morilak
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, United States
| | - Victor Viau
- Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Serge Campeau
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO, United States.
| |
Collapse
|
46
|
Nitric Oxide Regulates Neurogenesis in the Hippocampus following Seizures. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:451512. [PMID: 26587180 PMCID: PMC4637492 DOI: 10.1155/2015/451512] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/18/2015] [Indexed: 12/30/2022]
Abstract
Hippocampal neurogenesis is changed by brain injury. When neuroinflammation accompanies injury, activation of resident microglial cells promotes the release of inflammatory cytokines and reactive oxygen/nitrogen species like nitric oxide (NO). In these conditions, NO promotes proliferation of neural stem cells (NSC) in the hippocampus. However, little is known about the role of NO in the survival and differentiation of newborn cells in the injured dentate gyrus. Here we investigated the role of NO following seizures in the regulation of proliferation, migration, differentiation, and survival of NSC in the hippocampus using the kainic acid (KA) induced seizure mouse model. We show that NO increased the proliferation of NSC and the number of neuroblasts following seizures but was detrimental to the survival of newborn neurons. NO was also required for the maintenance of long-term neuroinflammation. Taken together, our data show that NO positively contributes to the initial stages of neurogenesis following seizures but compromises survival of newborn neurons.
Collapse
|
47
|
Ji R, Meng L, Li Q, Lu Q. TAM receptor deficiency affects adult hippocampal neurogenesis. Metab Brain Dis 2015; 30:633-44. [PMID: 25487541 PMCID: PMC4414696 DOI: 10.1007/s11011-014-9636-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
The Tyro3, Axl and Mertk (TAM) subfamily of receptor protein tyrosine kinases functions in cell growth, differentiation, survival, and most recently found, in the regulation of immune responses and phagocytosis. All three receptors and their ligands, Gas6 (growth arrest-specific gene 6) and protein S, are expressed in the central nervous system (CNS). TAM receptors play pivotal roles in adult hippocampal neurogenesis. Loss of these receptors causes a comprised neurogenesis in the dentate gyrus of adult hippocampus. TAM receptors have a negative regulatory effect on microglia and peripheral antigen-presenting cells, and play a critical role in preventing overproduction of pro-inflammatory cytokines detrimental to the proliferation, differentiation, and survival of adult neuronal stem cells (NSCs). Besides, these receptors also play an intrinsic trophic function in supporting NSC survival, proliferation, and differentiation into immature neurons. All these events collectively ensure a sustained neurogenesis in adult hippocampus.
Collapse
Affiliation(s)
- Rui Ji
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Lingbin Meng
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Qiutang Li
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Qingxian Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
48
|
The Role of Wnt/β-Catenin Signaling Pathway in Disrupted Hippocampal Neurogenesis of Temporal Lobe Epilepsy: A Potential Therapeutic Target? Neurochem Res 2015; 40:1319-32. [PMID: 26012365 DOI: 10.1007/s11064-015-1614-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 05/06/2015] [Accepted: 05/12/2015] [Indexed: 02/05/2023]
Abstract
Temporal lobe epilepsy is one of the most common clinical neurological disorders. One of the major pathological findings in temporal lobe epilepsy is hippocampal sclerosis, characterized by massive neuronal loss and severe gliosis. The epileptogenesis process of temporal lobe epilepsy usually starts with initial precipitating insults, followed by neurodegeneration, abnormal hippocampus circuitry reorganization, and the formation of hypersynchronicity. Experimental and clinical evidence strongly suggests that dysfunctional neurogenesis is involved in the epileptogenesis. Recent data demonstrate that neurogenesis is induced by acute seizures or precipitating insults, whereas the capacity of neuronal recruitment and proliferation substantially decreases in the chronic phase of epilepsy. Participation of the Wnt/β-catenin signaling pathway in neurogenesis reveals its importance in epileptogenesis; its dysfunction contributes to the structural and functional abnormality of temporal lobe epilepsy, while rescuing this pathway exerts neuroprotective effects. Here, we summarize data supporting the involvement of Wnt/β-catenin signaling in the epileptogenesis of temporal lobe epilepsy. We also propose that the Wnt/β-catenin signaling pathway may serve as a promising therapeutic target for temporal lobe epilepsy treatment.
Collapse
|
49
|
Decoding astrocyte heterogeneity: New tools for clonal analysis. Neuroscience 2015; 323:10-9. [PMID: 25917835 DOI: 10.1016/j.neuroscience.2015.04.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/03/2015] [Accepted: 04/15/2015] [Indexed: 12/11/2022]
Abstract
The importance of astrocyte heterogeneity came out as a hot topic in neurosciences especially over the last decades, when the development of new methodologies allowed demonstrating the existence of big differences in morphological, neurochemical and physiological features between astrocytes. However, although the knowledge about the biology of astrocytes is increasing rapidly, an important characteristic that remained unexplored, until the last years, has been the relationship between astrocyte lineages and cell heterogeneity. To fill this gap, a new method called StarTrack was recently developed, a powerful genetic tool that allows tracking astrocyte lineages forming cell clones. Using StarTrack, a single astrocyte progenitor and its progeny can be specifically labeled from its generation, during embryonic development, to its final fate in the adult brain. Because of this specific labeling, astrocyte clones, exhibiting heterogeneous morphologies and features, can be easily analyzed in relation to their ontogenetic origin. This review summarizes how astrocyte heterogeneity can be decoded studying the embryonic development of astrocyte lineages and their clonal relationship. Finally, we discuss about some of the challenges and opportunities emerging in this exciting area of investigation.
Collapse
|
50
|
Girbovan C, Kent P, Merali Z, Plamondon H. Dose-related effects of chronic resveratrol administration on neurogenesis, angiogenesis, and corticosterone secretion are associated with improved spatial memory retention following global cerebral ischemia. Nutr Neurosci 2015; 19:352-368. [DOI: 10.1179/1476830515y.0000000020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|