1
|
Rehorek SJ, Smith TD. Incubation time, embryonic development and the vomeronasal organ of the Laysan albatross (Phoebastria immutabilis). Anat Rec (Hoboken) 2024. [PMID: 39152727 DOI: 10.1002/ar.25560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
The effect of lengthened incubation periods on embryonic development, especially vestigial structures, is poorly understood. An example of which is the avesuchian vomeronasal organ (VNO), a nasal chemosensory organ found in many tetrapods but absent in adult avesuchians (crocodilians and birds) in whom it is presumed to be a transitory fetal structure. The Laysan Albatross (Phoebastria immutabilis) has an incubation period of their eggs of about 65 days. This incubation period is twice that of domestic fowl, wherein a putative VNO has been documented as an epithelial thickening. The purpose of this study is to document the development of a putative VNO in the albatross. Serial histological sections of nine albatross embryonic heads, across 6 stages (representing days 19 to 32: stages 31-39), were examined. A paired putative VNO was present as a short, tubular structure in the anterodorsal aspect on either side of the nasal septum from stage 32 onwards, getting steadily longer in later specimens. At the earliest stages, the epithelial walls of the tube resemble a neuroepithelium, but then becomes thinner and simpler in morphology. Based on our available age range, it is unclear whether it persists as a rudimentary structure (like that of the human) or if it is a transitory structure (like in chickens) in these mid embryonic stages. Though future studies must determine the fate of the Laysan albatross VNO (e.g., is it retained postnatally?), the role of incubation period length on embryonic development is a bigger question to be explored.
Collapse
Affiliation(s)
- S J Rehorek
- Department of Biology, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | - T D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| |
Collapse
|
2
|
Ruiz-Monachesi MR, Abdala CS, Cruz FB. Allometry and morphological integration shape the chemical detection system in Liolaemus lizards (Squamata, Iguania). ZOOL ANZ 2022. [DOI: 10.1016/j.jcz.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
3
|
Predictive Factors of Chemical and Visual Sensory Organ Size: The Roles of Sex, Environment, and Evolution. Evol Biol 2021. [DOI: 10.1007/s11692-021-09554-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Różański JJ, Capillo G, Lauriano ER, Aragona M, Kuciel M, Zaccone G, Żuwała KD. Ultrastructural and immunocytochemical studies on the olfactory receptor neurons in the
Ichthyosaura alpestris. ACTA ZOOL-STOCKHOLM 2020. [DOI: 10.1111/azo.12351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Józef J. Różański
- Department of Comparative Anatomy Institute of Zoology and Biomedical Researches Faculty of Biology Jagiellonian University in Krakow Kraków Poland
| | - Gioele Capillo
- Department of Veterinary Sciences Polo Universitario dell'Annunziata University of Messina Messina Italy
| | - Eugenia R. Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Marialuisa Aragona
- Department of Veterinary Sciences Polo Universitario dell'Annunziata University of Messina Messina Italy
| | - Michał Kuciel
- Department of Toxicology and Environmental Disease Faculty of Medicine Poison Information Centre Jagiellonian University Cracow Poland
| | - Giacomo Zaccone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging Polo Universitario dell’Annunziata University of Messina Messina Italy
| | - Krystyna D. Żuwała
- Department of Comparative Anatomy Institute of Zoology and Biomedical Researches Faculty of Biology Jagiellonian University in Krakow Kraków Poland
| |
Collapse
|
5
|
Ruiz–Monachesi MR, Cruz FB, Valdecantos S, Labra A. Unravelling associations among chemosensory system components in
Liolaemus
lizards. J Zool (1987) 2020. [DOI: 10.1111/jzo.12819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- M. R. Ruiz–Monachesi
- CONICET‐ Instituto de Bio y Geo Ciencias del NOA (IBIGEO) Facultad de Ciencias Naturales Universidad Nacional de Salta Rosario de Lerma Argentina
| | - F. B. Cruz
- INIBIOMA (CONICET – UNCOMA) Centro Regional Universitario Bariloche Universidad Nacional del Comahue (CRUB)‐Bariloche Río Negro Argentina
| | - S. Valdecantos
- CONICET‐ Instituto de Bio y Geo Ciencias del NOA (IBIGEO) Facultad de Ciencias Naturales Universidad Nacional de Salta Rosario de Lerma Argentina
| | - A. Labra
- Center for Ecological and Evolutionary Synthesis Department of Biosciences University of Oslo Oslo Norway
- ONG Vida Nativa Santiago Chile
| |
Collapse
|
6
|
Różański JJ, Żuwała KD. Macro‐ and micromorphological remodeling of olfactory organs throughout the ontogeny of the fire salamander
Salamandra salamandra
(Linnaeus, 1758). J Morphol 2020; 281:1173-1190. [DOI: 10.1002/jmor.21239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/16/2020] [Accepted: 07/12/2020] [Indexed: 01/24/2023]
Affiliation(s)
- Józef J. Różański
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Faculty of Biology Jagiellonian University in Kraków Kraków Poland
| | - Krystyna D. Żuwała
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Faculty of Biology Jagiellonian University in Kraków Kraków Poland
| |
Collapse
|
7
|
Ahmed Y, Talha N, Ibrahim D, Awad M. Histogenesis of the Vomeronasal Organ in New Zealand White Rabbits. ASIAN JOURNAL OF BIOLOGICAL SCIENCES 2019; 13:23-32. [DOI: 10.3923/ajbs.2020.23.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
8
|
Różański JJ, Żuwała KD. The influence of habitat on olfactory organ structure in selected species of salamanders (Salamandridae, Caudata). ZOOL ANZ 2019. [DOI: 10.1016/j.jcz.2019.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Mohrhardt J, Nagel M, Fleck D, Ben-Shaul Y, Spehr M. Signal Detection and Coding in the Accessory Olfactory System. Chem Senses 2019; 43:667-695. [PMID: 30256909 PMCID: PMC6211456 DOI: 10.1093/chemse/bjy061] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In many mammalian species, the accessory olfactory system plays a central role in guiding behavioral and physiological responses to social and reproductive interactions. Because of its relatively compact structure and its direct access to amygdalar and hypothalamic nuclei, the accessory olfactory pathway provides an ideal system to study sensory control of complex mammalian behavior. During the last several years, many studies employing molecular, behavioral, and physiological approaches have significantly expanded and enhanced our understanding of this system. The purpose of the current review is to integrate older and newer studies to present an updated and comprehensive picture of vomeronasal signaling and coding with an emphasis on early accessory olfactory system processing stages. These include vomeronasal sensory neurons in the vomeronasal organ, and the circuitry of the accessory olfactory bulb. Because the overwhelming majority of studies on accessory olfactory system function employ rodents, this review is largely focused on this phylogenetic order, and on mice in particular. Taken together, the emerging view from both older literature and more recent studies is that the molecular, cellular, and circuit properties of chemosensory signaling along the accessory olfactory pathway are in many ways unique. Yet, it has also become evident that, like the main olfactory system, the accessory olfactory system also has the capacity for adaptive learning, experience, and state-dependent plasticity. In addition to describing what is currently known about accessory olfactory system function and physiology, we highlight what we believe are important gaps in our knowledge, which thus define exciting directions for future investigation.
Collapse
Affiliation(s)
- Julia Mohrhardt
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Maximilian Nagel
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - David Fleck
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Yoram Ben-Shaul
- Department of Medical Neurobiology, School of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
10
|
Aland RC, Gosden E, Bradley AJ. Seasonal morphometry of the vomeronasal organ in the marsupial mouse, Antechinus subtropicus. J Morphol 2016; 277:1517-1530. [PMID: 27641160 PMCID: PMC5095805 DOI: 10.1002/jmor.20593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/19/2016] [Accepted: 08/15/2016] [Indexed: 11/24/2022]
Abstract
The vomeronasal system consists of a peripheral organ and the connected central neuronal networks. The central connections are sexually dimorphic in rodents, and in some species, parameters of the vomeronasal organ (VNO) vary with sex, hormonal exposure, body size and seasonality. The VNO of the dasyurid marsupial mouse, Antechinus subtropicus is presumed to be functional. The unusual life history (male semelparity) is marked by distinct seasonality with differences in hormonal environments both between males and females, and in males at different time points. Body size parameters (e.g., length, weight) display sexual dimorphism and, in males, a pronounced weight gain before breeding is followed by a rapid decline during the single, short reproductive season. VNO morphometry was investigated in male and female A. subtropicus to identify possible life cycle associated activity. The overall length of the VNO is positively correlated with the size of the animal. The amount of sensory epithelium exhibits a negative correlation, decreasing with increasing size of the animal. The effects of sex and breeding condition are not obvious, although they do suggest that sensory vomeronasal epithelium mass declines in the breeding period. The VNO may be more important in A. subtropicus before breeding when it may participate in synchronising reproduction and in the development of the male stress response. J. Morphol. 277:1517–1530, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rachel Claire Aland
- School of Rural Medicine, University of New England, Armidale, NSW, Australia. .,School of Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.
| | - Edward Gosden
- Research Methods Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Adrian J Bradley
- School of Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Garrett EC, Steiper ME. Strong links between genomic and anatomical diversity in both mammalian olfactory chemosensory systems. Proc Biol Sci 2014; 281:20132828. [PMID: 24718758 DOI: 10.1098/rspb.2013.2828] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mammalian olfaction comprises two chemosensory systems: the odorant-detecting main olfactory system (MOS) and the pheromone-detecting vomeronasal system (VNS). Mammals are diverse in their anatomical and genomic emphases on olfactory chemosensation, including the loss or reduction of these systems in some orders. Despite qualitative evidence linking the genomic evolution of the olfactory systems to specific functions and phenotypes, little work has quantitatively tested whether the genomic aspects of the mammalian olfactory chemosensory systems are correlated to anatomical diversity. We show that the genomic and anatomical variation in these systems is tightly linked in both the VNS and the MOS, though the signature of selection is different in each system. Specifically, the MOS appears to vary based on absolute organ and gene family size while the VNS appears to vary according to the relative proportion of functional genes and relative anatomical size and complexity. Furthermore, there is little evidence that these two systems are evolving in a linked fashion. The relationships between genomic and anatomical diversity strongly support a role for natural selection in shaping both the anatomical and genomic evolution of the olfactory chemosensory systems in mammals.
Collapse
Affiliation(s)
- Eva C Garrett
- Program in Anthropology, The Graduate Center, City University of New York, , 365 Fifth Avenue, New York, NY 10016-4309, USA, Program in Biology, The Graduate Center, City University of New York, , 365 Fifth Avenue, New York, NY 10016-4309, USA, New York Consortium in Evolutionary Primatology (NYCEP), , New York, NY, USA, Department of Anthropology, Hunter College, City University of New York, , 695 Park Avenue, New York, NY 10065-5024, USA
| | | |
Collapse
|
12
|
Brykczynska U, Tzika AC, Rodriguez I, Milinkovitch MC. Contrasted evolution of the vomeronasal receptor repertoires in mammals and squamate reptiles. Genome Biol Evol 2013; 5:389-401. [PMID: 23348039 PMCID: PMC3590772 DOI: 10.1093/gbe/evt013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The vomeronasal organ (VNO) is an olfactory structure that detects pheromones and environmental cues. It consists of sensory neurons that express evolutionary unrelated groups of transmembrane chemoreceptors. The predominant V1R and V2R receptor repertoires are believed to detect airborne and water-soluble molecules, respectively. It has been suggested that the shift in habitat of early tetrapods from water to land is reflected by an increase in the ratio of V1R/V2R genes. Snakes, which have a very large VNO associated with a sophisticated tongue delivery system, are missing from this analysis. Here, we use RNA-seq and RNA in situ hybridization to study the diversity, evolution, and expression pattern of the corn snake vomeronasal receptor repertoires. Our analyses indicate that snakes and lizards retain an extremely limited number of V1R genes but exhibit a large number of V2R genes, including multiple lineages of reptile-specific and snake-specific expansions. We finally show that the peculiar bigenic pattern of V2R vomeronasal receptor gene transcription observed in mammals is conserved in squamate reptiles, hinting at an important but unknown functional role played by this expression strategy. Our results do not support the hypothesis that the shift to a vomeronasal receptor repertoire dominated by V1Rs in mammals reflects the evolutionary transition of early tetrapods from water to land. This study sheds light on the evolutionary dynamics of the vomeronasal receptor families in vertebrates and reveals how mammals and squamates differentially adapted the same ancestral vomeronasal repertoire to succeed in a terrestrial environment.
Collapse
Affiliation(s)
- Urszula Brykczynska
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Sciences III, Geneva, Switzerland
| | | | | | | |
Collapse
|
13
|
Sensory Mediation of Foraging Behavior in the Western Lesser Siren ( Siren intermedia nettingi). J HERPETOL 2013. [DOI: 10.1670/11-209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Kondoh D, Yamamoto Y, Nakamuta N, Taniguchi K, Taniguchi K. Seasonal changes in the histochemical properties of the olfactory epithelium and vomeronasal organ in the Japanese striped snake, Elaphe quadrivirgata. Anat Histol Embryol 2011; 41:41-53. [PMID: 21895741 DOI: 10.1111/j.1439-0264.2011.01101.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Seasonal changes in the histochemical properties of the vomeronasal and olfactory epithelia of the Japanese striped snake were examined in four seasons, viz. the reproductive, pre-hibernating, hibernating and post-hibernating seasons. In the vomeronasal and olfactory supporting cells, secretory granules were much more abundant in the hibernating season than in the other seasons. In the vomeronasal and olfactory receptor cells, the lipofuscin granules were much fewer in the post-hibernating season than in the other seasons. In histochemical studies with 21 lectins, several lectins stained the vomeronasal and olfactory epithelia (receptor cells, supporting cells and free border) more weakly in the hibernating season than in the reproductive season. However, all lectins stained both epithelia in the hibernating season after sialic acid removal in a similar manner as in the reproductive season after sialic acid removal. These lectin histochemical studies indicate that sialic acid residues in the vomeronasal and olfactory epithelia are more numerous in the hibernating season than in the reproductive season. The results suggest that during hibernation, the vomeronasal and olfactory receptor cells possibly undergo rapid cell turnover, and that during this time, the vomeronasal and olfactory epithelia are securely protected from pathogens by an innate immune defence system.
Collapse
Affiliation(s)
- D Kondoh
- Department of Basic Veterinary Science, The United Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu, Gifu, Japan
| | | | | | | | | |
Collapse
|
15
|
Pheromonal communication in amphibians. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 196:713-27. [PMID: 20526605 DOI: 10.1007/s00359-010-0540-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 05/03/2010] [Accepted: 05/19/2010] [Indexed: 10/19/2022]
Abstract
Pheromonal communication is widespread in salamanders and newts and may also be important in some frogs and toads. Several amphibian pheromones have been behaviorally, biochemically and molecularly identified. These pheromones are typically peptides or proteins. Study of pheromone evolution in plethodontid salamanders has revealed that courtship pheromones have been subject to continual evolutionary change, perhaps as a result of co-evolution between the pheromonal ligand and its receptor. Pheromones are detected by the vomeronasal organ and main olfactory epithelium. Chemosensory neurons express vomeronasal receptors or olfactory receptors. Frogs have relatively large numbers of vomeronasal receptors that are transcribed in both the vomeronasal organ and the main olfactory epithelium. Salamander vomeronasal receptors apparently are restricted to the vomeronasal organ. To date, no chemosensory ligands have been matched to vomeronasal receptors or olfactory receptors so it is unknown whether particular receptor types are (1) specialized for detection of pheromones versus other chemosignals, or (2) specialized for detection of volatile, nonvolatile, or water-borne chemosignals. Despite progress in understanding amphibian pheromonal communication, only a small fraction of amphibian species have been examined. Study of additional species of amphibians will indicate which traits related to pheromonal communication are evolutionarily conserved and which traits have diverged over time.
Collapse
|
16
|
Abstract
The vomeronasal organ is the primary olfactory organ that detects sexual pheromones in mammals. We investigated the anatomy of the vomeronasal organ of the tammar wallaby (Macropus eugenii), a small macropodid marsupial. Pheromones may be important for activation of the hypothalamo-pituitary axis of tammar males at the start of the breeding season because plasma testosterone and luteinizing hormone concentration in males rise concurrently with pregnancy and the post-partum ovulation in females. The gross anatomy and the connection to the brain of the vomeronasal organ were examined by light and electron microscopy in adult male and female tammars. The vomeronasal organ was well developed in both sexes. The vomeronasal organ is a tubular organ connected at the rostral end via the nasopalatine duct (incisive duct) to the mouth and nasal cavity. At the rostral end the lumen of the vomeronasal organ was crescent shaped, changing to a narrow oval shape caudally. Glandular tissue associated with the vomeronasal organ increased towards the blind end of the organ. The tammar has the typical pattern of mammalian vomeronasal organs with electron-dense supporting cells and electron-lucent receptor cells. Microvilli were present on the surface of both epithelia while cilia were only found on the surface of the non-receptor epithelium. Some non-receptor epithelial cells appeared to secrete mucus into the vomeronasal organ lumen. The vomeronasal organ shows a high degree of structural conservation compared with eutherian mammals. The degree of vomeronasal organ development makes it likely that, as in other mammals, pheromones are important in the reproduction of the tammar.
Collapse
Affiliation(s)
- Nanette Y Schneider
- Department of Zoology, The University of Melbourne, Victoria, Australia, 3010
| | | | | | | |
Collapse
|
17
|
Suárez R, Mpodozis J. Heterogeneities of size and sexual dimorphism between the subdomains of the lateral-innervated accessory olfactory bulb (AOB) of Octodon degus (Rodentia: Hystricognathi). Behav Brain Res 2008; 198:306-12. [PMID: 19046995 DOI: 10.1016/j.bbr.2008.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 11/02/2008] [Indexed: 11/27/2022]
Abstract
The vomeronasal system (VNS) of rodents participates in the regulation of a variety of social and sexual behaviours related to semiochemical communication. All rodents studied so far possess two parallel pathways from the vomeronasal organ (VNO) to the accessory olfactory bulb (AOB). These segregated afferences express either Gi2 or Go protein alpha-subunits and innervate the rostral or caudal half of the AOB, respectively. In muroid rodents, such as rats and mice, both subdivisions of the AOB are of similar proportions; as there is no anatomical feature indicative of the segregation, histochemical detection has been required to portray its boundary. We studied the AOB of Octodon degus, a diurnal caviomorph rodent endemic to central Chile, and found several distinctive traits not reported in a rodent before: (i) the vomeronasal nerve innervates the AOB from its lateral aspect, in opposition to the medial innervation described in rabbits and muroids, (ii) an indentation that spans all layers delimits the boundary between the rostral and caudal AOB subdivisions (rAOB and cAOB, respectively), (iii) the rAOB is twice the size of the cAOB and features more and larger glomeruli, and (iv) the rAOB, but not the cAOB, shows male-biased sexual dimorphisms in size and number of glomeruli, while the cAOB, but not the rAOB, shows a male-biased dimorphism in mitral cell density. The heterogeneities we describe here within AOB subdomains suggest that these segregated regions may engage in distinct operationalities. We discuss our results in relation to conspecific semiochemical communication in O. degus, and present it as a new animal model for the study of VNS neurobiology and evolution.
Collapse
Affiliation(s)
- Rodrigo Suárez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Chile.
| | | |
Collapse
|
18
|
Smith CF, Schwenk K, Earley RL, Schuett GW. Sexual size dimorphism of the tongue in a North American pitviper. J Zool (1987) 2008. [DOI: 10.1111/j.1469-7998.2007.00396.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Bhatnagar KP, Smith TD. Light microscopic and ultrastructural observations on the vomeronasal organ of Anoura (Chiroptera: Phyllostomidae). Anat Rec (Hoboken) 2008; 290:1341-54. [PMID: 17929290 DOI: 10.1002/ar.20601] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The vomeronasal organ (VNO) is known to be present in bats of the family Phyllostomidae, but in most species this is inferred from the presence of accessory olfactory bulbs. Like primates, bats have profound intergroup variations in the vomeronasal system. Of the family Phyllostomidae (49 genera, 143 species) the VNO of approximately 60 species has been studied. Here, we report light microscopic observations of the VNO of Anoura geoffroyi (fetus and adult), A. caudifer, and A. cultrata, as well as ultrastructural observations of the VNO in adult A. geoffroyi. The organ is crescent-shaped, with a wide lumen encroached by a "mushroom body" that contains a venous sinus. In adults, the vomeronasal cartilage is reduced, being longer in absolute length in fetal A. geoffroyi compared with the adult. In the neuroepithelium, the receptor cell microvilli are dark, distinct, and short, emerging from a vesicular tuft; the supporting cell microvilli are relatively much longer. Large paravomeronasal ganglia are observed. The receptor-free epithelium is undulating and lacks cilia or microvilli. Some characteristics of the VNO in Anoura have not been reported in other chiropterans to date, such as the marked reduction of the vomeronasal cartilage and absence of cilia in the receptor-free epithelium. Moreover, if A. geoffroyi is representative, the genus has an adult neuroepithelial volume similar to other mammals of its body size. Further examination of uninvestigated phyllostomid VNOs may elucidate a phylogenetic history of the family, as well as ecological or social correlates of the VNO in the order Chiroptera.
Collapse
Affiliation(s)
- Kunwar P Bhatnagar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA.
| | | |
Collapse
|
20
|
Smith TD, Alport LJ, Burrows AM, Bhatnagar KP, Dennis JC, Tuladhar P, Morrison EE. Perinatal size and maturation of the olfactory and vomeronasal neuroepithelia in lorisoids and lemuroids. Am J Primatol 2007; 69:74-85. [PMID: 17171670 DOI: 10.1002/ajp.20328] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Explanations for the chemosensory abilities of newborn mammals focus primarily on food (milk) acquisition and communication (e.g., maternal-infant bonding). However, the relative importance of the main and accessory (vomeronasal) olfactory systems is hypothesized to differ at birth between altricial and precocial mammals. Strepsirrhines (lemurs and lorises) possess main and accessory olfactory systems, and vary in life-history traits related to infant dependency and maturation. Accordingly, this study examines the size and maturational characteristics of vomeronasal (VNNE) and olfactory (OE) neuroepithelia in strepsirrhines. Serially sectioned heads of 18 infant cadavers were examined microscopically for neuroepithelial distribution. Measurements were taken on the length of the nasal fossa on one side that was occupied by VNNE and OE. The data were corrected for body size using the cranial length or body mass, and were then examined for correlation with several life-history variables, as well as activity pattern. In addition, immunohistochemistry was used to identify cells in the VNNE and OE that express olfactory marker protein (OMP), a marker of mature olfactory neurons. Relative OE extent was not significantly correlated with any of the life-history variables. Relative VNNE length was negatively correlated with relative gestation length and relative neonatal mass (P<0.05). However, when we corrected for phylogenetic relationships, we found no significant correlations between either of the neuroepithelial measurements and life-history variables. Immunohistochemical findings suggest that OE has more OMP-reactive cells than VNNE in all species. OMP-reactive cells appear to be less numerous in diurnal species compared to most nocturnal species. These results indicate that the VNNE may be relatively longer at birth in altricial species. However, it remains uncertain how phylogeny and/or ontogeny may explain these findings.
Collapse
Affiliation(s)
- Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania 16057, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Woodley SK. Sex steroid hormones and sexual dimorphism of chemosensory structures in a terrestrial salamander (Plethodon shermani). Brain Res 2007; 1138:95-103. [PMID: 17276418 DOI: 10.1016/j.brainres.2006.12.094] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 12/06/2006] [Accepted: 12/11/2006] [Indexed: 11/27/2022]
Abstract
The volume of the vomeronasal organ (VNO) in the terrestrial salamander Plethodon shermani was approximately 1.7 times larger in adult males compared to adult females, even though male body size was, on average, slightly smaller than female body size. VNO cell density, however, was the same in adult males and females. The sex difference in VNO volume was found in sexually immature animals as well, indicating that the increase of plasma androgens that occurs at sexual maturity does not produce the sex difference in VNO volume. There was no difference in VNO volume between reproductive and non reproductive adult females, despite differences in plasma estradiol (E2) levels. The volumes of the main olfactory epithelium and muscles regulating diameter of the external nares were similar between males and females, indicating that the VNO per se, and not other aspects of the nasal cavity, was sexually dimorphic. To conclude, the sex difference in VNO volume appears to be a permanent sex difference that develops before sexual maturity. Future studies will examine the functional consequences of this structural sexual dimorphism in a peripheral sensory organ, the VNO.
Collapse
Affiliation(s)
- Sarah K Woodley
- Department of Biological Sciences, Duquesne University, 600 Forbes Ave., Pittsburgh, PA 15282, USA.
| |
Collapse
|
22
|
Brann JH, Fadool DA. Vomeronasal sensory neurons from Sternotherus odoratus (stinkpot/musk turtle) respond to chemosignals via the phospholipase C system. ACTA ACUST UNITED AC 2006; 209:1914-27. [PMID: 16651557 PMCID: PMC2779218 DOI: 10.1242/jeb.02206] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The mammalian signal transduction apparatus utilized by vomeronasal sensory neurons (VSNs) in the vomeronasal organ (VNO) has been richly explored, while that of reptiles, and in particular, the stinkpot or musk turtle Sternotherus odoratus, is less understood. Given that the turtle's well-known reproductive and mating behaviors are governed by chemical communication, 247 patch-clamp recordings were made from male and female S. odoratus VSNs to study the chemosignal-activated properties as well as the second-messenger system underlying the receptor potential. Of the total neurons tested, 88 (35%) were responsive to at least one of five complex natural chemicals, some of which demonstrated a degree of sexual dimorphism in response selectivity. Most notably, male VSNs responded to male urine with solely outward currents. Ruthenium Red, an IP3 receptor (IP3R) antagonist, failed to block chemosignal-activated currents, while the phospholipase C (PLC) inhibitor, U73122, abolished the chemosignal-activated current within 2 min, implicating the PLC system in the generation of a receptor potential in the VNO of musk turtles. Dialysis of several second messengers or their analogues failed to elicit currents in the whole-cell patch-clamp configuration, negating a direct gating of the transduction channel by cyclic adenosine monophosphate (cAMP), inositol 1,4,5-trisphosphate (IP3), arachidonic acid (AA), or diacylglycerol (DAG). Reversal potential analysis of chemosignal-evoked currents demonstrated that inward currents reversed at -5.7+/-7.8 mV (mean +/- s.e.m.; N=10), while outward currents reversed at -28.2+/-2.4 mV (N=30). Measurements of conductance changes associated with outward currents indicated that the outward current represents a reduction of a steady state inward current by the closure of an ion channel when the VSN is exposed to a chemical stimulus such as male urine. Chemosignal-activated currents were significantly reduced when a peptide mimicking a domain on canonical transient receptor potential 2 (TRPC2), to which type 3 IP3 receptor (IP3R3) binds, was included in the recording pipette. Collectively these data suggest that there are multiple transduction cascades operational in the VSNs of S. odoratus, one of which may be mediated by a non-selective cation conductance that is not gated by IP3 but may be modulated by the interaction of its receptor with the TRPC2 channel.
Collapse
Affiliation(s)
- Jessica H. Brann
- The Florida State University, Department of Biological Science, Program in Neuroscience, Biomedical Research Facility, Tallahassee, FL 32306, USA
| | - Debra A. Fadool
- The Florida State University, Department of Biological Science, Program in Neuroscience, Biomedical Research Facility, Tallahassee, FL 32306, USA
- The Florida State University, Department of Biological Science, Program in Molecular Biophysics, Biomedical Research Facility, Tallahassee, FL 32306, USA
- Author for correspondence (e-mail: )
| |
Collapse
|
23
|
Smith TD, Bhatnagar KP, Burrows AM, Shimp KL, Dennis JC, Smith MA, Maico-Tan L, Morrison EE. The vomeronasal organ of greater bushbabies (Otolemur spp.): species, sex, and age differences. ACTA ACUST UNITED AC 2006; 34:135-47. [PMID: 16374715 DOI: 10.1007/s11068-005-5053-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 03/31/2005] [Accepted: 04/04/2005] [Indexed: 10/25/2022]
Abstract
The present study examined interspecies, intersexual, and age-related changes in size of the vomeronasal neuroepithelium (VNNE) of two species of greater bushbabies (genus Otolemur, Infraorder Lorisiformes, Suborder Strepsirrhini). Tissue blocks containing the vomeronasal organs of nine O. crassicaudatus (8 adults, 1 neonate) and ten O. garnettii (9 adults, 1 neonate) were studied by means of serial paraffin sectioning and computer-based reconstruction of VNNE volume. In addition, the immunoreactivity of the VNNE to two neuronal markers, neuron-specific beta tubulin (BT) and olfactory marker protein (OMP) was compared between species, sexes, and ages. Results indicated that a clear VNNE is present at birth in both species, and OMP immunoreactivity was verified in O. garnettii at birth. Male and female adults of both species showed OMP-immunoreactive and BT-immunoreactive neurons in the VNNE. Immunohistochemical findings indicated that all males and the youngest females had the thickest VNNE, especially at the marginal junctions with the receptor-free epithelium. Results of a 2-way Analysis of Variance (ANOVA, species x sex) revealed no significant differences in VNNE length or volume between species, but O. crassicaudatus had significantly (p < 0.05) greater palatal length. Significant (p < 0.05) differences also were found between sexes in VNNE volume, but no significant differences in palatal length or VNNE length. The distribution of VNNE volume against age indicated that the sex differences were more pronounced in O. crassicaudatus than O. garnettii. For both species and sexes, distribution of VNNE volume against age suggested an age-related reduction in volume. These findings demonstrate postnatal plasticity in VNNE size in Otolemur that is reminiscent of that found for olfactory structures in some rodents. Bushbabies or other strepsirrhine primates may offer an opportunity for further understanding of behavioral correlates of VNNE postnatal plasticity, which may represent primitive functional characteristics of the order Primates.
Collapse
Affiliation(s)
- Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, PA 16057, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Smith TD, Bhatnagar KP, Tuladhar P, Burrows AM. Distribution of olfactory epithelium in the primate nasal cavity: are microsmia and macrosmia valid morphological concepts? ACTA ACUST UNITED AC 2005; 281:1173-81. [PMID: 15472902 DOI: 10.1002/ar.a.20122] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The terms "microsmatic" and "macrosmatic" are used to compare species with greater versus lesser olfactory capabilities, such as carnivores compared to certain primates. These categories have been morphologically defined based on the size of olfactory bulb and surface area of olfactory epithelium in the nasal fossa. The present study examines assumptions regarding the morphological relationship of bony elements to the olfactory mucosa, the utility of olfactory epithelial surface area as a comparative measurement, and the utility of the microsmatic concept. We examined the distribution of olfactory neuroepithelium (OE) across the anteroposterior length of the nasal fossa (from the first completely enclosed cross-section of the nasal fossa to the choanae) in the microsmatic marmoset (Callithrix jacchus) compared to four species of nocturnal strepsirrhines (Otolemur crassicaudatus, O. garnetti, Microcebus murinus, and Cheirogaleus medius). Adults of all species were examined and infant C. jacchus, O. crassicaudatus, M. murinus, and C. medius were also examined. All specimens were serially sectioned in the coronal plane and prepared for light microscopic study. Distribution of OE across all the turbinals, nasal septal surfaces, and accessory spaces of the nasal chamber was recorded for each specimen. The right nasal fossae of one adult C. jacchus and one neonatal M. murinus were also three-dimensionally reconstructed using Scion Image software to reveal OE distribution. Findings showed OE to be distributed relatively more anteriorly in adult C. jacchus compared to strepsirrhines. It was also distributed more anteriorly along the nasal septal walls and recesses in neonates than adults. Our findings also showed that OE surface area was not a reliable proxy for receptor neuron numbers due to differing OE thickness among species. Such results indicate that nasal cavity morphology must be carefully reconsidered regarding traditional functional roles (olfaction versus air conditioning) assigned to various nasal cavity structures. At present, the microsmatic concept itself lacks a basis in nasal chamber morphology, since OE may have varying patterns of distribution among different primates.
Collapse
Affiliation(s)
- Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania 16057, USA.
| | | | | | | |
Collapse
|
25
|
Smith TD, Bhatnagar KP. Microsmatic primates: reconsidering how and when size matters. ACTA ACUST UNITED AC 2005; 279:24-31. [PMID: 15278939 DOI: 10.1002/ar.b.20026] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The terms "microsmatic" and "macrosmatic" refer to species with lesser or greater levels, respectively, of olfactory function. Historically, primates are considered microsmats (olfactory sense reduced) with a concomitant increased emphasis on vision. The olfactory bulbs (forebrain centers that receive peripheral olfactory input) are proportionately smaller in primates compared to most other mammals. Similarly, the regions of the nasal cavity that are covered with olfactory epithelium (containing receptor cells) have proportionately less surface area in primates than other mammals. Thus, the generalization that primates are microsmatic is most frequently stated in terms of the proportional rather than absolute size of olfactory structures. Yet the importance of scaling to body size is unclear in regard to the chemical senses such as the olfactory or vomeronasal systems-do chemosensory structures such as olfactory bulbs and olfactory epithelium exhibit the same neural relationship to body mass that is seen for neural tissues that supply innervation to musculature or the skin? Previous studies examining neuronal density, volume, and/or surface area of the olfactory epithelium illustrate that different conclusions may be supported based on the parameter used. Plots of olfactory bulb volume versus body mass that generated for large-scale taxonomic studies or growth studies benefit from body mass (or total brain volume) with a comparative perspective. However, our examination of proportional versus absolute measurements implies that in comparisons within taxa, body size adjustments needlessly distort the data. As a final consideration, another embryonic derivative of the nasal placode, the vomeronasal organ, may warrant consideration regarding a definition of microsomia versus macrosomia.
Collapse
Affiliation(s)
- Timothy D Smith
- School of Physical Therapy, Slippery Rock University, PA 16057, USA.
| | | |
Collapse
|
26
|
Tai FD, Wang TZ, Zhang YH, Sun RY. Sexual dimorphism of the vomeronasal organ and the accessory olfactory bulb of the mandarin voleMicrotus mandarinus and the reed voleM. fortis. ACTA ACUST UNITED AC 2004. [DOI: 10.1007/bf03192506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Smith TD, Bhatnagar KP, Bonar CJ, Shimp KL, Mooney MP, Siegel MI. Ontogenetic characteristics of the vomeronasal organ in Saguinus geoffroyi and Leontopithecus rosalia, with comparisons to other primates. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2003; 121:342-53. [PMID: 12884316 DOI: 10.1002/ajpa.10165] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
It has been suggested that the variability of the primate vomeronasal organ (VNO) may be greater than previously thought, especially among New World monkeys. It is not clear to what extent VNO variation reflects ontogenetic, functional, or phylogenetic differences among primates. The present study investigated VNO anatomy in an ontogenetic series of two genera of callitrichid primates, in order to assess recent attempts to develop VNO character states and to examine the evidence for VNO functionality at different life stages. A sample of six Leontopithecus rosalia, one L. chrysomelas, and six Saguinus geoffroyi was serially sectioned and stained using various methods. Two adult Callithrix jacchus were also sectioned for comparative purposes. The VNO of each primate was examined by light microscopy along its entire rostrocaudal extent. VNOs of the tamarins were described to determine whether they fit into 1 of 3 character states recently attributed to various New World monkeys. At birth, the two species of tamarins differed in the nature of communication between the VNO and nasopalatine duct (NPD). Two of 3 neonatal S. geoffroyi exhibited a fused VNO duct in a more dorsal position (adjacent to the nasal cavity) compared to that of L. rosalia. The VNO duct communicated with the NPD and was patent in neonatal L. rosalia. Both species appeared to have an age-related increase in the amount of sensory epithelium in the VNO. Subadult L. rosalia had caudal regions of the VNO that were exceptionally well-developed, similar to those of strepsirhine primates. Compared to subadults, all adult callitrichids appeared to have more ventral communications of the VNO duct directly into the NPD. Adult S. geoffroyi and L. chrysomelas both had VNO sensory epithelium separated by multiple patches of nonsensory epithelium. This contrasted with the VNOs of C. jacchus, which had a nearly continuous distribution of receptors on all surfaces of the VNO. The findings indicate that tamarins have delayed maturation of the VNO epithelium, and that some species have little or no perinatal function. These results also suggest that ontogenetic changes in craniofacial form may alter the position of the VNO in tamarins. The present study supports the use of at least two character states to categorize the VNO of various callitrichids, but it is suggested that one of these, previously called "reduced sensory epithelium" should be instead termed "interrupted sensory epithelium." The distribution of VNO sensory epithelium does not appear to reflect phylogenetic influences; it is more likely a functional characteristic that varies throughout postnatal life. Therefore, this chemosensory system has a high degree of plasticity relating to age and function, which in some instances can confound the use of characteristics as phylogenetic traits. Further study is needed to quantify VNO receptors in various species to determine if functional differences exist and if some species have more precocious VNO function than others.
Collapse
Affiliation(s)
- Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania 16057, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Salazar I, Lombardero M, Cifuentes JM, Sánchez Quinteiro P, Alemañ N. Morphogenesis and growth of the soft tissue and cartilage of the vomeronasal organ in pigs. J Anat 2003; 202:503-14. [PMID: 12846472 PMCID: PMC1571109 DOI: 10.1046/j.1469-7580.2003.00183.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2003] [Indexed: 11/20/2022] Open
Abstract
The morphology of the soft tissue and supporting cartilage of the vomeronasal organ of the fetal pig was studied from early stages to term. Specimens obtained from an abattoir were aged by crown-to-rump distance. Series of transverse sections show that some time before birth all structures--cartilage, connective tissue, blood vessels, nerves, glands and epithelia--are well developed and very similar in appearance to those of the adult. Furthermore, in transmission electron microscopy photomicrographs obtained at this stage the vomeronasal glands exhibit secretory activity.
Collapse
Affiliation(s)
- Ignacio Salazar
- Department of Anatomy and Embryology, Veterinary Faculty, University of Santiago de Compostela, Lugo, Spain.
| | | | | | | | | |
Collapse
|
29
|
Wirsig-Wiechmann CR, Wiechmann AF, Eisthen HL. What defines the nervus terminalis? Neurochemical, developmental, and anatomical criteria. PROGRESS IN BRAIN RESEARCH 2003; 141:45-58. [PMID: 12508560 DOI: 10.1016/s0079-6123(02)41083-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Celeste R Wirsig-Wiechmann
- Department of Cell Biology, University of Oklahoma Health Science Center, 940 S.L. Young Boulevard, Oklahoma City, OK 73104, USA.
| | | | | |
Collapse
|
30
|
Smith TD, Siegel MI, Bhatnagar KP. Reappraisal of the vomeronasal system of catarrhine primates: ontogeny, morphology, functionality, and persisting questions. THE ANATOMICAL RECORD 2001; 265:176-92. [PMID: 11519019 DOI: 10.1002/ar.1152] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The vomeronasal organ (VNO) is a chemosensory organ that functions in sociosexual communication in many vertebrates. In strepsirhine primates and New World monkeys, the bilateral VNOs are traditionally understood to exist as a well-developed chemosensory epithelial unit. In contrast, the VNOs of catarrhine primates are thought to be absent or exist only as reduced epithelial tubes of uncertain function. However, the VNO of New World monkeys shows substantial variation in the extent of sensory epithelium. Recent findings that the chimpanzee (Pan troglodytes) possesses a VNO similar to humans suggest the variability of the VNO among haplorhine primates may be more extensive than previously thought, and perhaps more at par with that observed in chiropterans. The atypical histologic structure and location of the human/chimpanzee VNO suggest accessory glandular secretion and transport functions. Other catarrhine primates (e.g., Macaca spp.), may truly be characterized by VNO absence. Unique aspects of facial growth and development in catarrhine primates may influence the position or even presence of the VNO in adults. These recent findings demonstrate that previous investigations on some catarrhine primates may have missed the VNO and underestimated the extent of variability. As an understanding of this variation increases, our view of VNO functionality and associated terminology is changing. Further investigations are needed to consider phylogenetic implications of VNO variability and the association of craniofacial form and VNO anatomic position in primates.
Collapse
Affiliation(s)
- T D Smith
- School of Physical Therapy, Slippery Rock University, PA 16057, USA.
| | | | | |
Collapse
|
31
|
Smith TD, Roslinski DL, Burrows AM, Bhatnagar KP, Mooney MP, Siegel MI. SIZE OF THE VOMERONASAL NEUROEPITHELIUM IN TWO SPECIES OFMICROTUSWITH DIFFERING LEVELS OF PATERNAL BEHAVIOR. J Mammal 2001. [DOI: 10.1644/1545-1542(2001)082<0209:sotvni>2.0.co;2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|