1
|
Li J, Liu J, Xiao G, Li L, Xu Y, Yu Y, Liang Z, Xu S, Cheng L. Effects of high pressure synergistic enzymatic physical state and concentration on the denaturation of polyphenol oxidase. Food Chem 2023; 428:136703. [PMID: 37423103 DOI: 10.1016/j.foodchem.2023.136703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/10/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023]
Abstract
The synergistic effect of the initial state of the enzyme and pressure level on the denaturation of PPO has not been clear yet, but it significantly affects the application of high hydrostatic pressure (HHP) in the enzyme-containing food processing. Solid (S-) and low/high concentration liquid (LL-/HL-) polyphenol oxidase (PPO) was used as the study object, and the microscopic conformation, molecular morphology and macroscopic activity of PPO under HHP treatments (100-400 MPa, 25 °C/30 min) were investigated by spectroscopic techniques. The results show that the initial state has a significant effect on the activity, structure, active force and substrate channel of PPO under pressure. The effec can be ranked as follows: physical state > concentration > pressure, S-PPO > LL-PPO > HL-PPO. High concentration has a weakening effect on the pressure denaturation of the PPO solution. Under high pressure, the α-helix and concentration factors play a crucial role in stabilizing the structure.
Collapse
Affiliation(s)
- Jinghao Li
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural, Guangzhou 510610, China; Zhongkai University of Agricultural and Engineering, Guangzhou 510631, China
| | - Jie Liu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural, Guangzhou 510610, China
| | - Gengsheng Xiao
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural, Guangzhou 510610, China; Zhongkai University of Agricultural and Engineering, Guangzhou 510631, China.
| | - Lu Li
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural, Guangzhou 510610, China
| | - Yujuan Xu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural, Guangzhou 510610, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510610, China
| | - Yuanshan Yu
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural, Guangzhou 510610, China
| | - Zhanhong Liang
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural, Guangzhou 510610, China
| | - Sai Xu
- Institute of Facility Agriculture, Guangdong Academy of Agriculture Sciences
| | - Lina Cheng
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural, Guangzhou 510610, China.
| |
Collapse
|
2
|
Yamaguchi T, Akao K, Koutsioubas A, Frielinghaus H, Kohzuma T. Open-Bundle Structure as the Unfolding Intermediate of Cytochrome c' Revealed by Small Angle Neutron Scattering. Biomolecules 2022; 12:95. [PMID: 35053243 PMCID: PMC8774185 DOI: 10.3390/biom12010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/27/2022] Open
Abstract
The dynamic structure changes, including the unfolding, dimerization, and transition from the compact to the open-bundle unfolding intermediate structure of Cyt c', were detected by a small-angle neutron scattering experiment (SANS). The structure of Cyt c' was changed into an unstructured random coil at pD = 1.7 (Rg = 25 Å for the Cyt c' monomer). The four-α-helix bundle structure of Cyt c' at neutral pH was transitioned to an open-bundle structure (at pD ~13), which is given by a numerical partial scattering function analysis as a joint-clubs model consisting of four clubs (α-helices) connected by short loops. The compactly folded structure of Cyt c' (radius of gyration, Rg = 18 Å for the Cyt c' dimer) at neutral or mildly alkaline pD transited to a remarkably larger open-bundle structure at pD ~13 (Rg = 25 Å for the Cyt c' monomer). The open-bundle structure was also supported by ab initio modeling.
Collapse
Affiliation(s)
- Takahide Yamaguchi
- Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito 310-8512, Ibaraki, Japan; (T.Y.); (K.A.)
- Frontier Research Center of Applied Atomic Sciences, Ibaraki University, 162-1 Shirakata, Tokai 319-1106, Ibaraki, Japan
| | - Kouhei Akao
- Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito 310-8512, Ibaraki, Japan; (T.Y.); (K.A.)
| | - Alexandros Koutsioubas
- Jülich Centre for Neutron Science JCNS-4 at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, D-85747 Garching, Germany; (A.K.); (H.F.)
| | - Henrich Frielinghaus
- Jülich Centre for Neutron Science JCNS-4 at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, D-85747 Garching, Germany; (A.K.); (H.F.)
| | - Takamitsu Kohzuma
- Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito 310-8512, Ibaraki, Japan; (T.Y.); (K.A.)
- Frontier Research Center of Applied Atomic Sciences, Ibaraki University, 162-1 Shirakata, Tokai 319-1106, Ibaraki, Japan
| |
Collapse
|
3
|
Abstract
X-ray scattering is uniquely suited to the study of disordered systems and thus has the potential to provide insight into dynamic processes where diffraction methods fail. In particular, while X-ray crystallography has been a staple of structural biology for more than half a century and will continue to remain so, a major limitation of this technique has been the lack of dynamic information. Solution X-ray scattering has become an invaluable tool in structural and mechanistic studies of biological macromolecules where large conformational changes are involved. Such systems include allosteric enzymes that play key roles in directing metabolic fluxes of biochemical pathways, as well as large, assembly-line type enzymes that synthesize secondary metabolites with pharmaceutical applications. Furthermore, crystallography has the potential to provide information on protein dynamics via the diffuse scattering patterns that are overlaid with Bragg diffraction. Historically, these patterns have been very difficult to interpret, but recent advances in X-ray detection have led to a renewed interest in diffuse scattering analysis as a way to probe correlated motions. Here, we will review X-ray scattering theory and highlight recent advances in scattering-based investigations of protein solutions and crystals, with a particular focus on complex enzymes.
Collapse
Affiliation(s)
- Steve P Meisburger
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - William C Thomas
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Maxwell B Watkins
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Nozomi Ando
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| |
Collapse
|
4
|
Fetler L, Vachette P. The Quaternary Structure of the R-State of Escherichia coli Aspartate Transcarbamoylase in Solution Is Different from That in the Crystal and Is Modified by Mg 2+·ATP Binding. Biochemistry 2017; 56:2860-2862. [PMID: 28535029 DOI: 10.1021/acs.biochem.7b00160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- L Fetler
- CERMES3, U. INSERM 988, CNRS UMR 8211, EHESS, Université Paris Descartes , BP 8, F-94801 Villejuif Cedex, France
| | - P Vachette
- Institut de Biologie Intégrative de la Cellule, UMR 9198, Université Paris-Sud , F-91405 Orsay Cedex, France
| |
Collapse
|
5
|
Chen PC, Hub JS. Interpretation of solution x-ray scattering by explicit-solvent molecular dynamics. Biophys J 2015; 108:2573-2584. [PMID: 25992735 PMCID: PMC4457003 DOI: 10.1016/j.bpj.2015.03.062] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/19/2015] [Accepted: 03/09/2015] [Indexed: 11/19/2022] Open
Abstract
Small- and wide-angle x-ray scattering (SWAXS) and molecular dynamics (MD) simulations are complementary approaches that probe conformational transitions of biomolecules in solution, even in a time-resolved manner. However, the structural interpretation of the scattering signals is challenging, while MD simulations frequently suffer from incomplete sampling or from a force-field bias. To combine the advantages of both techniques, we present a method that incorporates solution scattering data as a differentiable energetic restraint into explicit-solvent MD simulations, termed SWAXS-driven MD, with the aim to direct the simulation into conformations satisfying the experimental data. Because the calculations fully rely on explicit solvent, no fitting parameters associated with the solvation layer or excluded solvent are required, and the calculations remain valid at wide angles. The complementarity of SWAXS and MD is illustrated using three biological examples, namely a periplasmic binding protein, aspartate carbamoyltransferase, and a nuclear exportin. The examples suggest that SWAXS-driven MD is capable of refining structures against SWAXS data without foreknowledge of possible reaction paths. In turn, the SWAXS data accelerates conformational transitions in MD simulations and reduces the force-field bias.
Collapse
Affiliation(s)
- Po-Chia Chen
- Institute for Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Lower Saxony, Germany
| | - Jochen S Hub
- Institute for Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Lower Saxony, Germany.
| |
Collapse
|
6
|
Bu W, Pereira LM, Eckenhoff RG, Yuki K. Stereoselectivity of isoflurane in adhesion molecule leukocyte function-associated antigen-1. PLoS One 2014; 9:e96649. [PMID: 24801074 PMCID: PMC4011845 DOI: 10.1371/journal.pone.0096649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/09/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Isoflurane in clinical use is a racemate of S- and R-isoflurane. Previous studies have demonstrated that the effects of S-isoflurane on relevant anesthetic targets might be modestly stronger (less than 2-fold) than R-isoflurane. The X-ray crystallographic structure of the immunological target, leukocyte function-associated antigen-1 (LFA-1) with racemic isoflurane suggested that only S-isoflurane bound specifically to this protein. If so, the use of specific isoflurane enantiomers may have advantage in the surgical settings where a wide range of inflammatory responses is expected to occur. Here, we have further tested the hypothesis that isoflurane enantioselectivity is apparent in solution binding and functional studies. METHODS First, binding of isoflurane enantiomers to LFA-1 was studied using 1-aminoanthracene (1-AMA) displacement assays. The binding site of each enantiomer on LFA-1 was studied using the docking program GLIDE. Functional studies employed the flow-cytometry based ICAM binding assay. RESULTS Both enantiomers decreased 1-AMA fluorescence signal (at 520 nm), indicating that both competed with 1-AMA and bound to the αL I domain. The docking simulation demonstrated that both enantiomers bound to the LFA-1 "lovastatin site." ICAM binding assays showed that S-isoflurane inhibited more potently than R-isoflurane, consistent with the result of 1-AMA competition assay. CONCLUSIONS In contrast with the x-ray crystallography, both enantiomers bound to and inhibited LFA-1. S-isoflurane showed slight preference over R-isoflurane.
Collapse
Affiliation(s)
- Weiming Bu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Luis M. Pereira
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Roderic G. Eckenhoff
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Koichi Yuki
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
7
|
Taube M, Pieńkowska JR, Jarmołowski A, Kozak M. Low-resolution structure of the full-length barley (Hordeum vulgare) SGT1 protein in solution, obtained using small-angle X-ray scattering. PLoS One 2014; 9:e93313. [PMID: 24714665 PMCID: PMC3979677 DOI: 10.1371/journal.pone.0093313] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 03/04/2014] [Indexed: 11/18/2022] Open
Abstract
SGT1 is an evolutionarily conserved eukaryotic protein involved in many important cellular processes. In plants, SGT1 is involved in resistance to disease. In a low ionic strength environment, the SGT1 protein tends to form dimers. The protein consists of three structurally independent domains (the tetratricopeptide repeats domain (TPR), the CHORD- and SGT1-containing domain (CS), and the SGT1-specific domain (SGS)), and two less conserved variable regions (VR1 and VR2). In the present study, we provide the low-resolution structure of the barley (Hordeum vulgare) SGT1 protein in solution and its dimer/monomer equilibrium using small-angle scattering of synchrotron radiation, ab-initio modeling and circular dichroism spectroscopy. The multivariate curve resolution least-square method (MCR-ALS) was applied to separate the scattering data of the monomeric and dimeric species from a complex mixture. The models of the barley SGT1 dimer and monomer were formulated using rigid body modeling with ab-initio structure prediction. Both oligomeric forms of barley SGT1 have elongated shapes with unfolded inter-domain regions. Circular dichroism spectroscopy confirmed that the barley SGT1 protein had a modular architecture, with an α-helical TPR domain, a β-sheet sandwich CS domain, and a disordered SGS domain separated by VR1 and VR2 regions. Using molecular docking and ab-initio protein structure prediction, a model of dimerization of the TPR domains was proposed.
Collapse
Affiliation(s)
- Michał Taube
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
| | - Joanna R. Pieńkowska
- Department of Cell Biology, Institute of Experimental BiFology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Artur Jarmołowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
8
|
Albrecht R, Zeth K. Structural basis of outer membrane protein biogenesis in bacteria. J Biol Chem 2011; 286:27792-803. [PMID: 21586578 PMCID: PMC3149369 DOI: 10.1074/jbc.m111.238931] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/15/2011] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, a multicomponent BAM (β-barrel assembly machinery) complex is responsible for recognition and assembly of outer membrane β-barrel proteins. The functionality of BAM in protein biogenesis is mainly orchestrated through the presence of two essential components, BamA and BamD. Here, we present crystal structures of four lipoproteins (BamB-E). Monomeric BamB and BamD proteins display scaffold architectures typically implied in transient protein interactions. BamB is a β-propeller protein comprising eight WD40 repeats. BamD shows an elongated fold on the basis of five tetratricopeptide repeats, three of which form the scaffold for protein recognition. The rod-shaped BamC protein has evolved through the gene duplication of two conserved domains known to mediate protein interactions in structurally related complexes. By contrast, the dimeric BamE is formed through a domain swap and indicates fold similarity to the β-lactamase inhibitor protein family, possibly integrating cell wall stability in BAM function. Structural and biochemical data show evidence for the specific recognition of amphipathic sequences through the tetratricopeptide repeat architecture of BamD. Collectively, our data advance the understanding of the BAM complex and highlight the functional importance of BamD in amphipathic outer membrane β-barrel protein motif recognition and protein delivery.
Collapse
Affiliation(s)
- Reinhard Albrecht
- From the Department of Protein Evolution, Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen 72076, Germany
| | - Kornelius Zeth
- From the Department of Protein Evolution, Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen 72076, Germany
| |
Collapse
|
9
|
Abstract
Abstract
Small-angle scattering (SAS) of X-rays and neutrons reveals low-resolution structures of biological macromolecules in solution. With the recent experimental and methodological advances, SAS became a unique tool for characterising biological systems. The method covers an extremely broad range of molecule sizes (from a few kDa to hundreds of MDa) and experimental conditions (temperature, pH, salinity, ligand addition, etc.), which is of primary importance for a systemic approach in structural biology. The method provides unique information about the overall structure and conformational changes of native individual proteins, functional complexes, flexible macromolecules and hierarchical systems. New developments in small-angle X-ray and neutron scattering studies of biological macromolecules in solution are briefly reviewed, with a special emphasis on technical and methodological approaches useful for structural systems biology. Possibilities of synergistic use of the method with other techniques are considered.
Collapse
|
10
|
Ho MC, Ménétret JF, Tsuruta H, Allen KN. The origin of the electrostatic perturbation in acetoacetate decarboxylase. Nature 2009; 459:393-7. [PMID: 19458715 DOI: 10.1038/nature07938] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 02/25/2009] [Indexed: 11/10/2022]
Abstract
Acetoacetate decarboxylase (AADase) has long been cited as the prototypical example of the marked shifts in the pK(a) values of ionizable groups that can occur in an enzyme active site. In 1966, it was hypothesized that in AADase the origin of the large pK(a) perturbation (-4.5 log units) observed in the nucleophilic Lys 115 results from the proximity of Lys 116, marking the first proposal of microenvironment effects in enzymology. The electrostatic perturbation hypothesis has been demonstrated in a number of enzymes, but never for the enzyme that inspired its conception, owing to the lack of a three-dimensional structure. Here we present the X-ray crystal structures of AADase and of the enamine adduct with the substrate analogue 2,4-pentanedione. Surprisingly, the shift of the pK(a) of Lys 115 is not due to the proximity of Lys 116, the side chain of which is oriented away from the active site. Instead, Lys 116 participates in the structural anchoring of Lys 115 in a long, hydrophobic funnel provided by the novel fold of the enzyme. Thus, AADase perturbs the pK(a) of the nucleophile by means of a desolvation effect by placement of the side chain into the protein core while enforcing the proximity of polar residues, which facilitate decarboxylation through electrostatic and steric effects.
Collapse
Affiliation(s)
- Meng-Chiao Ho
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118-2394, USA
| | | | | | | |
Collapse
|
11
|
Volkov VV, Lapuk VA, Shtykova EV, Stepina ND, Dembo KA, Sokolova AV, Amarantov SV, Timofeev VP, Ziganshin RK, Varlamova EY. Structural features of Fab fragments of rheumatoid factor IgM-RF in solution. CRYSTALLOGR REP+ 2008. [DOI: 10.1134/s1063774508030140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Abstract
Hydrodynamic bead modeling (HBM) is the representation of a macromolecule by an assembly of spheres (or beads) for which measurable hydrodynamic (and related) parameters are then computed in order to understand better the macromolecular solution conformation. An example-based account is given of the main stages in HBM of rigid macromolecules, namely: model construction, model visualization, accounting for hydration, and hydrodynamic calculations. Different types of models are appropriate for different macromolecules, according to their composition, to what is known about the molecule or according to the types of experimental data that the model should reproduce. Accordingly, the construction of models based on atomic coordinates as well as much lower resolution data (e.g., electron microscopy images) is described. Similarly, several programs for hydrodynamic calculations are summarized, some generating the most basic set of solution parameters (e.g., sedimentation and translational diffusion coefficients, intrinsic viscosity, radius of gyration, and Stokes radius) while others extend to data determined by nuclear magnetic resonance, fluorescence anisotropy, and electric birefringence methods. An insight into the topic of hydrodynamic hydration is given, together with some practical suggestions for its satisfactory treatment in the modeling context. All programs reviewed are freely available.
Collapse
|
13
|
Smolle M, Lindsay JG. Molecular architecture of the pyruvate dehydrogenase complex: bridging the gap. Biochem Soc Trans 2007; 34:815-8. [PMID: 17052205 DOI: 10.1042/bst0340815] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The PDC (pyruvate dehydrogenase complex) is a high-molecular-mass (4-11 MDa) complex of critical importance for glucose homoeostasis in mammals. Its multi-enzyme structure allows for substrate channelling and active-site coupling: sequential catalytic reactions proceed through the rapid transfer of intermediates between individual components and without diffusion into the bulk medium due to its 'swinging arm' that is able to visit all PDC active sites. Optimal positioning of individual components within this multi-subunit complex further affects the efficiency of the overall reaction and stability of its intermediates. Mammalian PDC comprises a 60-meric pentagonal dodecahedral dihydrolipoamide (E2) core attached to which are 30 pyruvate decarboxylase (E1) heterotetramers and six dihydrolipoamide (E3) homodimers at maximal occupancy. Stable E3 integration is mediated by an accessory E3-binding protein associated with the E2 core. Association of the peripheral E1 and E3 enzymes with the PDC core has been studied intensively in recent years and has yielded some interesting and substantial differences when compared with prokaryotic PDCs.
Collapse
Affiliation(s)
- M Smolle
- Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | | |
Collapse
|
14
|
Fetler L, Kantrowitz ER, Vachette P. Direct observation in solution of a preexisting structural equilibrium for a mutant of the allosteric aspartate transcarbamoylase. Proc Natl Acad Sci U S A 2007; 104:495-500. [PMID: 17202260 PMCID: PMC1766413 DOI: 10.1073/pnas.0607641104] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many signaling and metabolic pathways rely on the ability of some of the proteins involved to undergo a substrate-induced transition between at least two structural states. Among the various models put forward to account for binding and activity curves of those allosteric proteins, the Monod, Wyman, and Changeux model for allostery theory has certainly been the most influential, although a central postulate, the preexisting equilibrium between the low-activity, low-affinity quaternary structure and the high-activity, high-affinity quaternary structure states in the absence of substrates, has long awaited direct experimental substantiation. Upon substrate binding, allosteric Escherichia coli aspartate transcarbamoylase adopts alternate quaternary structures, stabilized by a set of interdomain and intersubunit interactions, which are readily differentiated by their solution x-ray scattering curves. Disruption of a salt link, which is observed only in the low-activity, low-affinity quaternary structure, between Lys-143 of the regulatory chain and Asp-236 of the catalytic chain yields a mutant enzyme that is in a reversible equilibrium between at least two states in the absence of ligand, a major tenet of the Monod, Wyman, and Changeux model. By using this mutant as a magnifying glass of the structural effect of ligand binding, a comparative analysis of the binding of carbamoyl phosphate (CP) and analogs points out the crucial role of the amine group of CP in facilitating the transition toward the high-activity, high-affinity quaternary state. Thus, the cooperative binding of aspartate in aspartate transcarbamoylase appears to result from the combination of the preexisting quaternary structure equilibrium with local changes induced by CP binding.
Collapse
Affiliation(s)
- Luc Fetler
- *Centre de Recherche, Institut Curie, F-75248 Paris, France
- Laboratoire Physico-Chimie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 168, F-75248 Paris, France
| | - Evan R. Kantrowitz
- Department of Chemistry, Boston College, Merkert Chemistry Center, Chestnut Hill, MA 02467; and
| | - Patrice Vachette
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Unité Mixte de Recherche 8619, Centre National de la Recherche Scientifique, Université Paris-Sud, Bâtiment 430, F-91405 Orsay Cedex, France
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
15
|
Smolle M, Prior AE, Brown AE, Cooper A, Byron O, Lindsay JG. A new level of architectural complexity in the human pyruvate dehydrogenase complex. J Biol Chem 2006; 281:19772-80. [PMID: 16679318 PMCID: PMC3954457 DOI: 10.1074/jbc.m601140200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian pyruvate dehydrogenase multienzyme complex (PDC) is a key metabolic assembly comprising a 60-meric pentagonal dodecahedral E2 (dihydrolipoamide acetyltransferase) core attached to which are 30 pyruvate decarboxylase E1 heterotetramers and 6 dihydrolipoamide dehydrogenase E3 homodimers at maximal occupancy. Stable E3 integration is mediated by an accessory E3-binding protein (E3BP) located on each of the 12 E2 icosahedral faces. Here, we present evidence for a novel subunit organization in which E3 and E3BP form subcomplexes with a 1:2 stoichiometry implying the existence of a network of E3 "cross-bridges" linking pairs of E3BPs across the surface of the E2 core assembly. We have also determined a low resolution structure for a truncated E3BP/E3 subcomplex using small angle x-ray scattering showing one of the E3BP lipoyl domains docked into the E3 active site. This new level of architectural complexity in mammalian PDC contrasts with the recently published crystal structure of human E3 complexed with its cognate subunit binding domain and provides important new insights into subunit organization, its catalytic mechanism and regulation by the intrinsic PDC kinase.
Collapse
Affiliation(s)
- Michaela Smolle
- Division of Biochemistry & Molecular Biology, Institute of Biomedical & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Division of Infection & Immunity, Institute of Biomedical & Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Alison Elizabeth Prior
- Division of Biochemistry & Molecular Biology, Institute of Biomedical & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Audrey Elaine Brown
- Division of Biochemistry & Molecular Biology, Institute of Biomedical & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Alan Cooper
- Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Olwyn Byron
- Division of Infection & Immunity, Institute of Biomedical & Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - John Gordon Lindsay
- Division of Biochemistry & Molecular Biology, Institute of Biomedical & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
16
|
Tsuruta H, Kihara H, Sano T, Amemiya Y, Vachette P. Influence of nucleotide effectors on the kinetics of the quaternary structure transition of allosteric aspartate transcarbamylase. J Mol Biol 2005; 348:195-204. [PMID: 15808863 DOI: 10.1016/j.jmb.2005.02.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 02/16/2005] [Accepted: 02/17/2005] [Indexed: 11/30/2022]
Abstract
We report the effects of allosteric effectors, ATP, CTP and UTP on the kinetics of the quaternary structure change of Escherichia coli ATCase during the enzyme reaction with physiological substrates. Time-resolved, small-angle, X-ray scattering of solutions allows direct observation of structural transitions over the entire time-course of the enzyme reaction initiated by fast mixing of the enzyme and substrates. In the absence of effectors, all scattering patterns recorded during the reaction are consistent with a two-state, concerted transition model, involving no detectable intermediate conformation that differs from the less active, unliganded T-state and the more active, substrate-bound R-state. The latter predominates during the steady-state phase of enzyme catalysis, while the initial T-state is recovered after substrate consumption. The concerted character of the structural transition is preserved in the presence of all effectors. CTP slightly shifts the dynamical equilibrium during a shortened steady state toward T while the additional presence of UTP makes the steady state vanishingly short. The return transition to the T conformation is slowed significantly in the presence of inhibitors, the effect being most severe in the presence of UTP. While ATP increases the apparent T to R rate, it also increases the duration of the steady-state phase, an apparently paradoxical observation. This observation can be accounted for by the greater increase in the association rate constant of aspartate, promoted by ATP, while the nucleotide produces a lesser degree of increase in the dissociation rate constant. Under our experimental conditions, using high concentrations of both enzyme and substrate, it appears that this very mechanism of activation turns the activator into an efficient inhibitor. The scattering patterns recorded in the presence of ATP support the view that ATP alters the quaternary structure of the substrate-bound enzyme, an effect reminiscent of the reported modification of PALA-bound R-state by Mg-ATP.
Collapse
Affiliation(s)
- Hiro Tsuruta
- Stanford Synchrotron Radiation Laboratory, SLAC, MS 69, 2575 Sand Hill Rd, Menlo Park, CA 94025-7015, USA.
| | | | | | | | | |
Collapse
|
17
|
West JM, Tsuruta H, Kantrowitz ER. A fluorescent probe-labeled Escherichia coli aspartate transcarbamoylase that monitors the allosteric conformational state. J Biol Chem 2003; 279:945-51. [PMID: 14581486 DOI: 10.1074/jbc.m304018200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A new system has been developed capable of monitoring conformational changes of the 240s loop of aspartate transcarbamoylase, which are tightly correlated with the quaternary structural transition, with high sensitivity in solution. Pyrene, a fluorescent probe, was conjugated to residue 241 in the 240s loop of aspartate transcarbamoylase to monitor changes in conformation by fluorescence spectroscopy. Pyrene maleimide was conjugated to a cysteine residue on the 240s loop of a previously constructed double catalytic chain mutant version of the enzyme, C47A/A241C. The pyrene-labeled enzyme undergoes the normal T to R structural transition, as demonstrated by small-angle x-ray scattering. Like the wild-type enzyme, the pyrene-labeled enzyme exhibits cooperativity toward aspartate, and is activated by ATP and inhibited by CTP at subsaturating concentrations of aspartate. The binding of the bisubstrate analogue N-(phosphonoacetyl)-l-aspartate (PALA), or the aspartate analogue succinate, in the presence of saturating carbamoyl phosphate, to the pyrenelabeled enzyme caused a sigmoidal change in the fluorescence emission. Saturation with ATP and CTP (in the presence of either subsaturating amounts of PALA or succinate and carbamoyl phosphate) caused a hyperbolic increase and decrease, respectively, in the fluorescence emission. The half-saturation values from the fluorescence saturation curves and kinetic saturation curves were, within error, identical. Fluorescence and small-angle x-ray scattering stopped-flow experiments, using aspartate and carbamoyl phosphate, confirm that the change in excimer fluorescence and the quaternary structure change correlate. These results in conjunction with previous studies suggest that the allosteric transition involves both global and local conformational changes and that the heterotropic effect of the nucleotides may be exerted through local conformational changes in the active site by directly influencing the conformation of the 240s loop.
Collapse
Affiliation(s)
- Jay M West
- Department of Chemistry, Boston College, Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467, USA
| | | | | |
Collapse
|
18
|
de Azevedo WF, dos Santos GC, dos Santos DM, Olivieri JR, Canduri F, Silva RG, Basso LA, Renard G, da Fonseca IO, Mendes MA, Palma MS, Santos DS. Docking and small angle X-ray scattering studies of purine nucleoside phosphorylase. Biochem Biophys Res Commun 2003. [DOI: 10.1016/j.bbrc.2003.08.093] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
de Azevedo WF, Canduri F, dos Santos DM, Silva RG, de Oliveira JS, de Carvalho LPS, Basso LA, Mendes MA, Palma MS, Santos DS. Crystal structure of human purine nucleoside phosphorylase at 2.3A resolution. Biochem Biophys Res Commun 2003; 308:545-52. [PMID: 12914785 DOI: 10.1016/s0006-291x(03)01431-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Purine nucleoside phosphorylase (PNP) catalyzes the phosphorolysis of the N-ribosidic bonds of purine nucleosides and deoxynucleosides. In human, PNP is the only route for degradation of deoxyguanosine and genetic deficiency of this enzyme leads to profound T-cell mediated immunosuppression. PNP is therefore a target for inhibitor development aiming at T-cell immune response modulation and its low resolution structure has been used for drug design. Here we report the structure of human PNP solved to 2.3A resolution using synchrotron radiation and cryocrystallographic techniques. This structure allowed a more precise analysis of the active site, generating a more reliable model for substrate binding. The higher resolution data allowed the identification of water molecules in the active site, which suggests binding partners for potential ligands. Furthermore, the present structure may be used in the new structure-based design of PNP inhibitors.
Collapse
|
20
|
Petoukhov MV, Svergun DI, Konarev PV, Ravasio S, van den Heuvel RHH, Curti B, Vanoni MA. Quaternary structure of Azospirillum brasilense NADPH-dependent glutamate synthase in solution as revealed by synchrotron radiation x-ray scattering. J Biol Chem 2003; 278:29933-9. [PMID: 12777402 DOI: 10.1074/jbc.m304147200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Azospirillum brasilense glutamate synthase (GltS) is the prototype of bacterial NADPH-dependent enzymes, a class of complex iron-sulfur flavoproteins essential in ammonia assimilation processes. The catalytically active GltS alpha beta holoenzyme and its isolated alpha and beta subunits (162 and 52 kDa, respectively) were analyzed using synchrotron radiation x-ray solution scattering. The GltS alpha subunit and alpha beta holoenzyme were found to be tetrameric in solution, whereas the beta subunit was a mixture of monomers and dimers. Ab initio low resolution shapes restored from the scattering data suggested that the arrangement of alpha subunits in the (alpha beta)4 holoenzyme is similar to that in the tetrameric alpha 4 complex and that beta subunits occupy the periphery of the holoenzyme. The structure of alpha 4 was further modeled using the available crystallographic coordinates of the monomeric alpha subunit assuming P222 symmetry. To model the entire alpha beta holoenzyme, a putative alpha beta protomer was constructed from the coordinates of the alpha subunit and those of the N-terminal region of porcine dihydropyrimidine dehydrogenase, which is similar to the beta subunit. Rigid body refinement yielded a model of GltS with an arrangement of alpha subunits similar to that in alpha 4, but displaying contacts also between beta subunits belonging to adjacent protomers. The holoenzyme model allows for independent catalytic activity of the alpha beta protomers, which is consistent with the available biochemical evidence.
Collapse
Affiliation(s)
- Maxim V Petoukhov
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, D-22603 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Joubert AM, Byrd AS, LiCata VJ. Global conformations, hydrodynamics, and X-ray scattering properties of Taq and Escherichia coli DNA polymerases in solution. J Biol Chem 2003; 278:25341-7. [PMID: 12730189 DOI: 10.1074/jbc.m302118200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli polymerase 1 (Pol 1) and Thermus aquaticus Taq polymerase are homologous Type I DNA polymerases, each comprised of a polymerase domain, a proofreading domain (inactive in Taq), and a 5' nuclease domain. "Klenow" and "Klentaq" are the large fragments of Pol 1 and Taq and are functional polymerases lacking the 5' nuclease domain. In the available crystal structures of full-length Taq, the 5' nuclease domain is positioned in two different orientations: in one structure, it is extended out into solution, whereas in the other, it is folded up against the polymerase domain in a more compact structure. Analytical ultracentrifugation experiments report s20,w values of 5.05 for Taq, 4.1 for Klentaq, 5.3 for E. coli Pol 1, and 4.6 for Klenow. Measured partial specific volumes are all quite similar, indicating no significant differences in packing density between the mesophilic and thermophilic proteins. Small angle x-ray scattering studies report radii of gyration of 38.3 A for Taq, 30.7 A for Klentaq, and 30.5 A for Klenow. The hydrodynamic and x-ray scattering properties of the polymerases were also calculated directly from the different crystal structures using the programs HYDROPRO (Garcia De La Torre, J., Huertas, M. L., and Carrasco, B. (2000) Biophys J. 78, 719-730) and CRYSOL (Svergun, D. I., Barberato, C., and Koch, M. H. J. (1995) J. Appl. Crystalogr. 28, 768-773), respectively. The combined experimental and computational characterizations indicate that the full-length polymerases in solution are in a conformation where the 5' nuclease domain is extended into solution. Further, the radius of gyration, and hence the global conformation of Taq polymerase, is not altered by the binding of either matched primer template DNA or ddATP.
Collapse
Affiliation(s)
- Allison M Joubert
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | |
Collapse
|
22
|
Vachette P, Koch MHJ, Svergun DI. Looking behind the Beamstop: X-Ray Solution Scattering Studies of Structure and Conformational Changes of Biological Macromolecules. Methods Enzymol 2003; 374:584-615. [PMID: 14696389 DOI: 10.1016/s0076-6879(03)74024-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Volkov VV, Kayushina RL, Lapuk VA, Shtykova EV, Varlamova EY, Malfois M, Svergun DI. Solution structures of human immunoglobulins IgG and IgM and rheumatoid factor IgM-RF. CRYSTALLOGR REP+ 2003. [DOI: 10.1134/1.1541750] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Chan RS, Sakash JB, Macol CP, West JM, Tsuruta H, Kantrowitz ER. The role of intersubunit interactions for the stabilization of the T state of Escherichia coli aspartate transcarbamoylase. J Biol Chem 2002; 277:49755-60. [PMID: 12399459 DOI: 10.1074/jbc.m208919200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homotropic cooperativity in Escherichia coli aspartate transcarbamoylase results from the substrate-induced transition from the T to the R state. These two alternate states are stabilized by a series of interdomain and intersubunit interactions. The salt link between Lys-143 of the regulatory chain and Asp-236 of the catalytic chain is only observed in the T state. When Asp-236 is replaced by alanine the resulting enzyme exhibits full activity, enhanced affinity for aspartate, no cooperativity, and no heterotropic interactions. These characteristics are consistent with an enzyme locked in the functional R state. Using small angle x-ray scattering, the structural consequences of the D236A mutant were characterized. The unliganded D236A holoenzyme appears to be in a new structural state that is neither T, R, nor a mixture of T and R states. The structure of the native D236A holoenzyme is similar to that previously reported for another mutant holoenzyme (E239Q) that also lacks intersubunit interactions. A hybrid version of aspartate transcarbamoylase in which one catalytic subunit was wild-type and the other had the D236A mutation was also investigated. The hybrid holoenzyme, with three of the six possible interactions involving Asp-236, exhibited homotropic cooperativity, and heterotropic interactions consistent with an enzyme with both T and R functional states. Small angle x-ray scattering analysis of the unligated hybrid indicated that the enzyme was in a new structural state more similar to the T than to the R state of the wild-type enzyme. These data suggest that three of the six intersubunit interactions involving D236A are sufficient to stabilize a T-like state of the enzyme and allow for an allosteric transition.
Collapse
Affiliation(s)
- Robin S Chan
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | | | | | | |
Collapse
|
25
|
Petoukhov MV, Eady NAJ, Brown KA, Svergun DI. Addition of missing loops and domains to protein models by x-ray solution scattering. Biophys J 2002; 83:3113-25. [PMID: 12496082 PMCID: PMC1302390 DOI: 10.1016/s0006-3495(02)75315-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Inherent flexibility and conformational heterogeneity in proteins can often result in the absence of loops and even entire domains in structures determined by x-ray crystallographic or NMR methods. X-ray solution scattering offers the possibility of obtaining complementary information regarding the structures of these disordered protein regions. Methods are presented for adding missing loops or domains by fixing a known structure and building the unknown regions to fit the experimental scattering data obtained from the entire particle. Simulated annealing was used to minimize a scoring function containing the discrepancy between the experimental and calculated patterns and the relevant penalty terms. In low-resolution models where interface location between known and unknown parts is not available, a gas of dummy residues represents the missing domain. In high-resolution models where the interface is known, loops or domains are represented as interconnected chains (or ensembles of residues with spring forces between the C(alpha) atoms), attached to known position(s) in the available structure. Native-like folds of missing fragments can be obtained by imposing residue-specific constraints. After validation in simulated examples, the methods have been applied to add missing loops or domains to several proteins where partial structures were available.
Collapse
Affiliation(s)
- Maxim V Petoukhov
- European Molecular Biology Laboratory, Hamburg Outstation, D-22603 Hamburg, Germany
| | | | | | | |
Collapse
|
26
|
Vachette P, Dainese E, Vasyliev VB, Di Muro P, Beltramini M, Svergun DI, De Filippis V, Salvato B. A key structural role for active site type 3 copper ions in human ceruloplasmin. J Biol Chem 2002; 277:40823-31. [PMID: 12177070 DOI: 10.1074/jbc.m207188200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human ceruloplasmin is a copper containing serum glycoprotein with multiple functions. The crystal structure shows that its six domains are arranged in three pairs with a pseudo-ternary axis. Both the holo and apo forms of human ceruloplasmin were studied by size exclusion chromatography and small angle x-ray scattering in solution. The experimental curve of the holo form displays conspicuous differences with the scattering pattern calculated from the crystal structure. Once the carbohydrate chains and flexible loops not visible in the crystal are accounted for, remaining discrepancies suggest that the central pair of domains may move as a whole with respect to the rest of the molecule. The quasisymmetrical crystal structure therefore appears to be stabilized by crystal packing forces. Upon copper removal, the scattering pattern of human ceruloplasmin exhibits very large differences with that of the holoprotein, which are interpreted in terms of essentially preserved domains freely moving in solution around flexible linkers and exploring an ensemble of open conformations. This model, which is supported by the analysis of domain interfaces, provides a structural explanation for the differences in copper reincorporation into the apoprotein and activity recovery between human ceruloplasmin and two other multicopper oxidases, ascorbate oxidase and laccase. Our results demonstrate that, beyond catalytic activity, the three-copper cluster at the N-terminal-C-terminal interface plays a crucial role in the structural stability of human ceruloplasmin.
Collapse
Affiliation(s)
- Patrice Vachette
- LURE, Bat. 209d, Université Paris-Sud, B.P. 34, F91898 Orsay Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Dainese E, Minafra R, Sabatucci A, Vachette P, Melloni E, Cozzani I. Conformational changes of calpain from human erythrocytes in the presence of Ca2+. J Biol Chem 2002; 277:40296-301. [PMID: 12189137 DOI: 10.1074/jbc.m204471200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Small angle x-ray scattering has been used to monitor calpain structural transitions during the activation process triggered by Ca(2+) binding. The scattering pattern of the unliganded enzyme in solution does not display any significant difference with that calculated from the crystal structure. The addition of Ca(2+) promotes the formation of large aggregates, indicating the exposure of hydrophobic patches on the surface of the protease. In contrast, Ca(2+) addition in the presence of the thiol proteinase inhibitor E64 or of the inhibitor leupeptin causes a small conformational change with no dissociation of the heterodimer. The resulting conformation appears to be slightly more extended than the unliganded form. From the comparison between ab initio models derived from our data with the crystal structure, the major observable conformational change appears to be localized at level of the L-subunit and in particular seems to confirm the mutual movement already observed by the crystallographic analysis of the dII (dIIb) and the dI (dIIa) domains creating a functional active site. This work not only provides another piece of supporting evidence for the calpain conformational change in the presence of Ca(2+), but actually constitutes the first experimental observation of this change for intact heterodimeric calpain in solution.
Collapse
Affiliation(s)
- Enrico Dainese
- Department of Biomedical Sciences, University of Teramo, Piazza A. Moro 45, 64100 Teramo, Italy.
| | | | | | | | | | | |
Collapse
|
28
|
Fetler L, Tauc P, Baker DP, Macol CP, Kantrowitz ER, Vachette P. Replacement of Asp-162 by Ala prevents the cooperative transition by the substrates while enhancing the effect of the allosteric activator ATP on E. coli aspartate transcarbamoylase. Protein Sci 2002; 11:1074-81. [PMID: 11967364 PMCID: PMC2373563 DOI: 10.1110/ps.4500102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The available crystal structures of Escherichia coli aspartate transcarbamoylase (ATCase) show that the conserved residue Asp-162 from the catalytic chain interacts with essentially the same residues in both the T- and R-states. To study the role of Asp-162 in the regulatory properties of the enzyme, this residue has been replaced by alanine. The mutant D162A shows a 7700-fold reduction in the maximal observed specific activity, a twofold decrease in the affinity for aspartate, a loss of homotropic cooperativity, and decreased activation by the nucleotide effector adenosine triphosphate (ATP) compared with the wild-type enzyme. Small-angle X-ray scattering (SAXS) measurements reveal that the unliganded mutant enzyme adopts the T-quaternary structure of the wild-type enzyme. Most strikingly, the bisubstrate analog N-phosphonacetyl-L-aspartate (PALA) is unable to induce the T to R quaternary structural transition, causing only a small alteration of the scattering pattern. In contrast, addition of the activator ATP in the presence of PALA causes a significant increase in the scattering amplitude, indicating a large quaternary structural change, although the mutant does not entirely convert to the wild-type R structure. Attempts at modeling this new conformation using rigid body movements of the catalytic trimers and regulatory dimers did not yield a satisfactory solution. This indicates that intra- and/or interchain rearrangements resulting from the mutation bring about domain movements not accounted for in the simple model. Therefore, Asp-162 appears to play a crucial role in the cooperative structural transition and the heterotropic regulatory properties of ATCase.
Collapse
Affiliation(s)
- L Fetler
- Laboratoire pour l'Utilisation du Rayonnement Electromagnétique (CNRS, CEA, MER), Université Paris-Sud, F-91898 Orsay Cedex, France
| | | | | | | | | | | |
Collapse
|
29
|
Schüler H. ATPase activity and conformational changes in the regulation of actin. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1549:137-47. [PMID: 11690650 DOI: 10.1016/s0167-4838(01)00255-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The eukaryotic microfilament system is regulated in part through the nucleotide- and cation-dependent conformation of the actin molecule. In this review, recent literature on the crystal and solution structures of actin and other actin-superfamily proteins is summarized. Furthermore, the structure of the nucleotide binding cleft is discussed in terms of the mechanism of ATP hydrolysis and P(i) release. Two distinct domain movements are suggested to participate in the regulation of actin. (1) High-affinity binding of Mg(2+) to actin induces a rearrangement of side chains in the nucleotide binding site leading to an increased ATPase activity and polymerizability, as well as a rotation of subdomain 2 which is mediated by the hydroxyl of serine-14. (2) Hydrolysis of ATP and subsequent release of inorganic phosphate lead to a butterfly-like opening of the actin molecule brought about by a shearing in the interdomain helix 135-150. These domain rearrangements modulate the interaction of actin with a variety of different proteins, and conversely, protein binding to actin can restrict these conformational changes, with ultimate effects on the assembly state of the microfilament system.
Collapse
Affiliation(s)
- H Schüler
- Department of Cell Biology, Wenner-Gren Institute, Stockholm University, S-106 91, Stockholm, Sweden.
| |
Collapse
|
30
|
Svergun DI, Zaccai G, Malfois M, Wade RH, Koch MH, Kozielski F. Conformation of the Drosophila motor protein non-claret disjunctional in solution from X-ray and neutron scattering. J Biol Chem 2001; 276:24826-32. [PMID: 11335729 DOI: 10.1074/jbc.m103618200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The quaternary structures of monomeric and dimeric Drosophila non-claret disjunctional (ncd) constructs were investigated using synchrotron x-ray and neutron solution scattering, and their low resolution shapes were restored ab initio from the scattering data. The experimental curves were further compared with those computed from crystallographic models of one monomeric and three available dimeric ncd structures in the microtubule-independent ADP-bound state. These comparisons indicate that accounting for the missing parts in the crystal structures for all these constructs is indispensable to obtain reasonable fits to the scattering patterns. A ncd construct (MC6) lacking the coiled-coil region is monomeric in solution, but the calculated scattering from the crystallographic monomer yields a poor fit to the data. A tentative configuration of the missing C-terminal residues in the form of an antiparallel beta-sheet was found that significantly improves the fit. The atomic model of a short dimeric ncd construct (MC5) without 2-fold symmetry is found to fit the data better than the symmetric models. Addition of the C-terminal residues to both head domains gives an excellent fit to the x-ray and neutron experimental data, although the orientation of the beta-sheet differs from that of the monomer. The solution structure of the long ncd construct (MC1) including complete N-terminal coiled-coil and motor domains is modeled by adding a straight coiled-coil section to the model of MC5.
Collapse
Affiliation(s)
- D I Svergun
- Institute of Crystallography, Russian Academy of Sciences, Leninsky Prospekt 59, 117333 Russia.
| | | | | | | | | | | |
Collapse
|
31
|
Fetler L, Vachette P. The allosteric activator Mg-ATP modifies the quaternary structure of the R-state of Escherichia coli aspartate transcarbamylase without altering the T<-->R equilibrium. J Mol Biol 2001; 309:817-32. [PMID: 11397099 DOI: 10.1006/jmbi.2001.4681] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The allosteric enzyme aspartate transcarbamylase from Escherichia coli (ATCase) displays regulatory properties that involve various conformational changes, including a large quaternary structure rearrangement. This entails a major change in its solution X-ray scattering curve upon binding substrate analogues. We show here that, in the presence of the nucleotide effector ATP, known to stimulate the enzyme activity, the scattering profiles show a marked dependence on the metal bound to ATP. Whereas ATP has no major effect on the scattering pattern of ATCase, a saturating concentration of Mg-ATP notably modifies the scattering profile of the enzyme, either in the absence or in the presence of the bisubstrate analogue N-(phosphonacetyl)-l-aspartate (PALA). The transition with PALA in the presence of this metal-nucleotide complex remains concerted. Furthermore, Mg-ATP, as already observed with ATP, has no detectable direct effect on the T to R transition. The experimental scattering curves in the presence of Mg-ATP were fitted by a modeling approach using rigid body movements of the regulatory subunits and the catalytic trimers in the crystal structures. While the differences observed in the T-state in the presence of Mg-ATP are essentially attributed to the binding per se of the nucleotide, the solution structure of the R-state complexed to Mg-ATP is even more extended along the 3-fold axis than the previously described R solution structure, which is already more stretched out along the same axis than the crystal R structure. Based on the crystal structure of the enzyme in the R-state complexed with free ATP, a proposal is made to account for the effect of magnesium.
Collapse
Affiliation(s)
- L Fetler
- Laboratoire de Biochimie des Signaux Régulateurs Cellulaires et Moléculaires, Université Pierre et Marie Curie, CNRS UMR 7631, 96, bd. Raspail, Paris, 75006, France
| | | |
Collapse
|
32
|
Hartmann H, Lohkamp B, Hellmann N, Decker H. The allosteric effector l-lactate induces a conformational change of 2x6-meric lobster hemocyanin in the oxy state as revealed by small angle x-ray scattering. J Biol Chem 2001; 276:19954-8. [PMID: 11278676 DOI: 10.1074/jbc.m010435200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hemocyanins are multisubunit respiratory proteins found in many invertebrates. They bind oxygen highly cooperatively. However, not much is known about the structural basis of this behavior. We studied the influence of the physiological allosteric effector l-lactate on the oxygenated quaternary structure of the 2x6-meric hemocyanin from the lobster Homarus americanus employing small angle x-ray scattering (SAXS). The presence of 20 mm l-lactate resulted in different scattering curves compared with those obtained in the absence of l-lactate. The distance distribution functions p(r) indicated a more compact molecule in presence of l-lactate, which is also reflected in a reduction of the radius of gyration by about 0.2 nm (3%). Thus, we show for the first time on a structural basis that a hemocyanin in the oxy state can adopt two different conformations. This is as predicted from the analysis of oxygen binding curves according to the "nesting" model. A comparison of the distance distribution functions p(r) obtained from SAXS with those deduced from electron microscopy revealed large differences. The distance between the two hexamers as deduced from electron microscopy has to be shortened by up to 1.1 nm to agree well with the small angle x-ray curves.
Collapse
Affiliation(s)
- H Hartmann
- Institute of Molecular Biophysics, Johannes Gutenberg-University of Mainz, Welder-Weg 26, D-55128 Mainz, Germany
| | | | | | | |
Collapse
|
33
|
Feil IK, Malfois M, Hendle J, van Der Zandt H, Svergun DI. A novel quaternary structure of the dimeric alpha-crystallin domain with chaperone-like activity. J Biol Chem 2001; 276:12024-9. [PMID: 11278766 DOI: 10.1074/jbc.m010856200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
alphaB-crystallin, a member of the small heat-shock protein family and a major eye lens protein, is a high molecular mass assembly and can act as a molecular chaperone. We report a synchrotron radiation x-ray solution scattering study of a truncation mutant from the human alphaB-crystallin (alphaB57-157), a dimeric protein that comprises the alpha-crystallin domain of the alphaB-crystallin and retains a significant chaperone-like activity. According to the sequence analysis (more than 23% identity), the monomeric fold of the alpha-crystallin domain should be close to that of the small heat-shock protein from Methanococcus jannaschii (MjHSP16.5). The theoretical scattering pattern computed from the crystallographic model of the dimeric MjHSP16.5 deviates significantly from the experimental scattering by the alpha-crystallin domain, pointing to different quaternary structures of the two proteins. A rigid body modeling against the solution scattering data yields a model of the alpha-crystallin domain revealing a new dimerization interface. The latter consists of a strand-turn-strand motif contributed by each of the monomers, which form a four-stranded, antiparallel, intersubunit composite beta-sheet. This model agrees with the recent spin labeling results and suggests that the alphaB-crystallin is composed by flexible building units with an extended surface area. This flexibility may be important for biological activity and for the formation of alphaB-crystallin complexes of variable sizes and compositions.
Collapse
Affiliation(s)
- I K Feil
- European Molecular Biology Laboratory (EMBL), EMBL Hamburg Outstation, Notkestrasse 85, D-22603 Hamburg, Germany.
| | | | | | | | | |
Collapse
|
34
|
Kozielski F, Svergun D, Zaccai G, Wade RH, Koch MH. The overall conformation of conventional kinesins studied by small angle X-ray and neutron scattering. J Biol Chem 2001; 276:1267-75. [PMID: 11020387 DOI: 10.1074/jbc.m007169200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The quaternary structures of several monomeric and dimeric kinesin constructs from Homo sapiens and Drosophila melanogaster were analyzed using small angle x-ray and neutron scattering. The experimental scattering curves of these proteins were compared with simulated scattering curves calculated from available crystallographic coordinates. These comparisons indicate that the overall conformations of the solution structures of D. melanogaster and H. sapiens kinesin heavy chain dimers are compatible with the crystal structure of dimeric kinesin from Rattus norvegicus. This suggests that the unusual asymmetric conformation of dimeric kinesin in the microtubule-independent ADP state is likely to be a general feature of the kinesin heavy chain subfamily. An intermediate length Drosophila construct (365 residues) is mostly monomeric at low protein concentration whereas at higher concentrations it is dimeric with a tendency to form higher oligomers.
Collapse
Affiliation(s)
- F Kozielski
- Laboratoire de Microscopie Electronique Structurale, Institut de Biologie Structurale (CEA 47 CNRS), 41, rue Jules Horowitz, 38027 Grenoble Cedex 01, France.
| | | | | | | | | |
Collapse
|
35
|
Douglas DJ, Collings BA, Numao S, Nesatyy VJ. Detection of noncovalent complex between alpha-amylase and its microbial inhibitor tendamistat by electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2001; 15:89-96. [PMID: 11180535 DOI: 10.1002/1097-0231(20010130)15:2<89::aid-rcm195>3.0.co;2-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) is now routinely used for detection of noncovalent complexes. However, detection of noncovalent protein-protein complexes is not a widespread practice and still produces some challenges for mass spectrometrists. Here we demonstrate the detection of a noncovalent protein-protein complex between alpha-amylase and its microbial inhibitor tendamistat using ESI-MS. Crude porcine pancreatic alpha-amylase was purified using a glycogen precipitation method. Noncovalent complexes between porcine pancreatic alpha-amylase and its microbial inhibitor tendamistat are probed and detected using ESI-MS. The atmosphere-vacuum ESI conditions along with solution conditions and the ratio of inhibitor over enzyme strongly affect the detection of noncovalent complexes in the gas phase. ESI mass spectra of alpha-amylase at pH 7 exhibited charge states significantly lower than that reported previously, which is indicative of a native protein conformation necessary to produce a noncovalent complex. Detection of noncovalent complexes in the gas phase suggests that further use of conventional biochemical approaches to provide a qualitative, and in some cases even quantitative, characterization of equilibria of noncovalent complexes in solution is possible.
Collapse
Affiliation(s)
- D J Douglas
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, B.C., V6T 1Z1, Canada
| | | | | | | |
Collapse
|
36
|
|
37
|
Gutsche I, Holzinger J, Rössle M, Heumann H, Baumeister W, May RP. Conformational rearrangements of an archaeal chaperonin upon ATPase cycling. Curr Biol 2000; 10:405-8. [PMID: 10753750 DOI: 10.1016/s0960-9822(00)00421-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chaperonins are double-ring protein assemblies with a central cavity that provides a sequestered environment for in vivo protein folding. Their reaction cycle is thought to consist of a nucleotide-regulated alternation between an open substrate-acceptor state and a closed folding-active state. The cavity of ATP-charged group I chaperonins, typified by Escherichia coli GroEL [1], is sealed off by a co-chaperonin, whereas group II chaperonins--the archaeal thermosome and eukaryotic TRiC/CCT [2]--possess a built-in lid [3-5]. The mechanism of the lid's rearrangements requires clarification, as even in the absence of nucleotides, thermosomes of Thermoplama acidophilum appear open in vitrified ice [6] and closed in crystals [4]. Here we analyze the conformation of the thermosome at each step of the ATPase cycle by small-angle neutron scattering. The apo-chaperonin is open in solution, and ATP binding induces its further expansion. Closure seems to occur during ATP hydrolysis and before phosphate release, and represents the rate-limiting step of the cycle. The same closure can be triggered by the crystallization buffer. Thus, the allosteric regulation of group II chaperonins appears different from that of their group I counterparts.
Collapse
Affiliation(s)
- I Gutsche
- Max-Planck-Institute for Biochemistry, Martinsried bei München, D-82152, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
Liu L, Wales ME, Wild JR. Allosteric signal transmission involves synergy between discrete structural units of the regulatory subunit of aspartate transcarbamoylase. Arch Biochem Biophys 2000; 373:352-60. [PMID: 10620359 PMCID: PMC3241997 DOI: 10.1006/abbi.1999.1570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have shown that the S5' beta-strand (r93-r97) of the regulatory polypeptides of the aspartate transcarbamoylases (ATCases) from Serratia marcescens and Escherichia coli are responsible for their diverged allosteric regulatory patterns, including conversion of CTP from an inhibitor in E. coli to an activator in S. marcescens. Similarly, mutation of residues located in the interface between the allosteric and the zinc domains resulted in conversion of the ATP responses of the E. coli enzyme from activation to inhibition, suggesting that this interface not only mediates but also discriminates the allosteric responses of ATP and CTP. To further decipher the roles and the interrelationships of these regions in allosteric communication, allosteric-zinc interface mutations (Y77F and V106A) have been introduced into both the native and the S5' beta-strand chimeric backgrounds. While the significance of this interface in the allosteric regulation has been confirmed, there is no direct evidence supporting the presence of distinct pathways for the ATP and CTP signals through this interface. The analysis of the mutational effects reported here suggested that the S5' beta-strand transmits the allosteric signal by modulating the hydrophobic allosteric-zinc interface rather than disturbing the allosteric ligand binding. Intragenic suppression by substitutions in the hydrophobic interface between the allosteric and the zinc domains of the regulatory chains resulted in the partial recovery of allosteric responses in the EC:rS5'sm chimera and reduced the activation by ATP in the Sm:rS5'ec chimera. Thus, it seems that there is a synergy between these two structural units.
Collapse
Affiliation(s)
- Leyuan Liu
- Department of Biochemistry & Biophysics, The Texas A&M University System, College Station, Texas 77843-2128
| | - Melinda E. Wales
- Department of Biochemistry & Biophysics, The Texas A&M University System, College Station, Texas 77843-2128
| | - James R. Wild
- Department of Biochemistry & Biophysics, The Texas A&M University System, College Station, Texas 77843-2128
| |
Collapse
|
39
|
Sakash JB, Chan RS, Tsuruta H, Kantrowitz ER. Three of the six possible intersubunit stabilizing interactions involving Glu-239 are sufficient for restoration of the homotropic and heterotropic properties of Escherichia coli aspartate transcarbamoylase. J Biol Chem 2000; 275:752-8. [PMID: 10625604 DOI: 10.1074/jbc.275.2.752] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A hybrid version of Escherichia coli aspartate transcarbamoylase was investigated in which one catalytic subunit has the wild-type sequence, and the other catalytic subunit has Glu-239 replaced by Gln. Since Glu-239 is involved in intersubunit interactions, this hybrid could be used to evaluate the extent to which T state stabilization is required for homotropic cooperativity and for heterotropic effects. Reconstitution of the hybrid holoenzyme (two different catalytic subunits with three wild-type regulatory subunits) was followed by separation of the mixture by anion-exchange chromatography. To make possible the resolution of the three holoenzyme species formed by the reconstitution, the charge of one of the catalytic subunits was altered by the addition of six aspartic acid residues to the C terminus of each of the catalytic chains (AT-C catalytic subunit). Control experiments indicated that the AT-C catalytic subunit as well as the holoenzyme formed with AT-C and wild-type regulatory subunits had essentially the same homotropic and heterotropic properties as the native catalytic subunit and holoenzyme, indicating that the addition of the aspartate tail did not influence the function of either enzyme. The control reconstituted holoenzyme, in which both catalytic subunits have Glu-239 replaced by Gln, exhibited no cooperativity, an enhanced affinity for aspartate, and essentially no heterotropic response identical to the enzyme isolated without reconstitution. The hybrid containing one normal and one mutant catalytic subunit exhibited homotropic cooperativity with a Hill coefficient of 1.4 and responded to the nucleotide effectors at about 50% of the level of the wild-type enzyme. Small angle x-ray scattering experiments with the hybrid enzyme indicated that in the absence of ligands it was structurally similar, but not identical, to the T state of the wild-type enzyme. In contrast to the wild-type enzyme, addition of carbamoyl phosphate induced a significant alteration in the scattering pattern, whereas the bisubstrate analog N-phosphonoacetyl-L-aspartate induced a significant change in the scattering pattern indicating the transition to the R-structural state. These data indicate that in the hybrid enzyme only three of the usual six interchain interactions involving Glu-239 are sufficient to stabilize the enzyme in a low affinity, low activity state and allow an allosteric transition to occur.
Collapse
Affiliation(s)
- J B Sakash
- Department of Chemistry, Boston College, Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | |
Collapse
|
40
|
Svergun DI, Petoukhov MV, Koch MH, König S. Crystal versus solution structures of thiamine diphosphate-dependent enzymes. J Biol Chem 2000; 275:297-302. [PMID: 10617618 DOI: 10.1074/jbc.275.1.297] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The quaternary structures of the thiamine diphosphate-dependent enzymes transketolase (EC 2.2.1.1; from Saccharomyces cerevisiae), pyruvate oxidase (EC 1.2.3.3; from Lactobacillus plantarum), and pyruvate decarboxylase (EC 4.1.1.1; from Zymomonas mobilis and brewers' yeast, the latter in the native and pyruvamide-activated forms) were examined by synchrotron x-ray solution scattering. The experimental scattering data were compared with the curves calculated from the crystallographic models of these multisubunit enzymes. For all enzymes noted above, except the very compact pyruvate decarboxylase from Z. mobilis, there were significant differences between the experimental and calculated profiles. The changes in relative positions of the subunits in solution were determined by rigid body refinement. For pyruvate oxidase and transketolase, which have tight intersubunit contacts in the crystal, relatively small modifications of the quaternary structure (root mean square displacements of 0.23 and 0.27 nm, respectively) sufficed to fit the experimental data. For the enzymes with looser contacts (the native and activated forms of yeast pyruvate decarboxylase), large modifications of the crystallographic models (root mean square displacements of 0.58 and 1.53 nm, respectively) were required. A clear correlation was observed between the magnitude of the distortions induced by the crystal environment and the interfacial area between subunits.
Collapse
Affiliation(s)
- D I Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, Deutsches Elektronen Synchrotron, Notkestrasse 85, D-22603 Hamburg, Germany.
| | | | | | | |
Collapse
|
41
|
Dainese E, Svergun D, Beltramini M, Di Muro P, Salvato B. Low-resolution structure of the proteolytic fragments of the Rapana venosa hemocyanin in solution. Arch Biochem Biophys 2000; 373:154-62. [PMID: 10620334 DOI: 10.1006/abbi.1999.1514] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rapana venosa hemocyanin (Hc) is a giant oxygen-binding protein consisting of different subunits assembled in a hollow cylinder. The polypeptide chain of each subunit is believed to be folded in several oxygen-binding functional units of molecular mass 50 kDa, each containing a binuclear copper active site. Limited proteolysis with alpha-chymotrypsin of native R. venosa hemocyanin allows the separation of three functional proteolytic fragments with molecular masses of approximately 150, 100, and 50 kDa. The functional fragments, purified by combining gel filtration chromatography and ion-exchange FPLC, were analyzed by means of small-angle X-ray scattering (SAXS). The gyration radius of the 50-kDa Rapana Hc fraction (2.4 nm) agrees well with that calculated on the basis of the dimensions determined by X-ray crystallography for one functional unit of Octopus Hc (2.1 nm). Independent shape determination of the 50- and 100-kDa proteolytic fragments yields consistent low-resolution models. Simultaneous fitting of the SAXS data from these fragments provides a higher-resolution model of the 100-kDa species made of two functional units tilted with respect to each other. The model of the 150-kDa proteolytic fragment consistent with the SAXS data displays a linear chain-like aggregation of the 50-kDa functional units. These observations provide valuable information for the reconstruction of the three-dimensional structure of the minimal functional subunit of gastropod hemocyanin in solution. Furthermore, the spatial relationships among the different functional units within the subunit will help in elucidation of the overall quaternary structure of the oligomeric native protein.
Collapse
Affiliation(s)
- E Dainese
- Institute of Biochemistry, University of Teramo, Teramo, Italy
| | | | | | | | | |
Collapse
|
42
|
Jin L, Stec B, Lipscomb WN, Kantrowitz ER. Insights into the mechanisms of catalysis and heterotropic regulation ofEscherichia coli aspartate transcarbamoylase based upon a structure of the enzyme complexed with the bisubstrate analogueN-phosphonacetyl-L-aspartate at 2.1 ? Proteins 1999. [DOI: 10.1002/(sici)1097-0134(19991201)37:4<729::aid-prot21>3.0.co;2-f] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Zhang H, Song S, Lin Z. CrystallographicB factor of critical residues at enzyme active site. ACTA ACUST UNITED AC 1999; 42:225-32. [DOI: 10.1007/bf03183597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/1998] [Indexed: 11/29/2022]
|
44
|
Roche O, Field MJ. Simulations of the T <--> R conformational transition in aspartate transcarbamylase. PROTEIN ENGINEERING 1999; 12:285-95. [PMID: 10325398 DOI: 10.1093/protein/12.4.285] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aspartate transcarbamylase (ATCase) from Escherichia coli is one of the best known allosteric enzymes. In spite of numerous experiments performed by biochemists, no consensus model for the cooperative transition between the tensed (T) and the relaxed (R) forms exists. It is hypothesized, however, that changes in the quaternary structure play a key role in the allosteric properties of oligomeric proteins such as ATCase. Previous normal mode calculations of the two states of ATCase illustrated the type of motions that could be important in initiating the transition. In this work four pathways for the transition were calculated using the targeted molecular dynamics (TMD) method without constraint on the symmetry of the system. The most important quaternary structure changes are the relative rotation and translation of the catalytic trimers and the rotations of the regulatory dimers. The simulations show that these quaternary changes start immediately and finish when about 70% of the transition is completed whereas there are tertiary changes throughout the transition. In agreement with the work of Lipscomb et al., it was found that the relative translation between the catalytic trimers appears to play a central role in allowing the transition to occur. In all the simulations differences are observed in the opening and closing behaviours of the domains in the catalytic and regulatory chains that could provide a structural interpretation for the results of certain site-directed mutagenesis experiments. Overall the motions of the subunits are concerted even though the constraint imposed on the TMD method does not explicitly require that this be so.
Collapse
Affiliation(s)
- O Roche
- Laboratoire de Dynamique Moléculaire, Institut de Biologie Structurale--Jean-Pierre Ebel, 41 Avenue des Martyrs, F-38027 Grenoble Cedex 01, France
| | | |
Collapse
|
45
|
Thomas A, Hinsen K, Field MJ, Perahia D. Tertiary and quaternary conformational changes in aspartate transcarbamylase: a normal mode study. Proteins 1999; 34:96-112. [PMID: 10336386 DOI: 10.1002/(sici)1097-0134(19990101)34:1<96::aid-prot8>3.0.co;2-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aspartate transcarbamylase (ATCase) initiates the pyrimidine biosynthetic pathway in Escherichia coli. Binding of aspartate to this allosteric enzyme induces a cooperative transition between the tensed (T) and relaxed (R) states of the enzyme which involves large quaternary and tertiary rearrangements. The mechanisms of the transmission of the regulatory signal to the active site (60 A away) and that of the cooperative transition are not known in detail, although a large number of single, double, and triple site-specific mutants and chimeric forms of ATCase have been obtained and kinetically characterized. A previous analysis of the very low-frequency normal modes of both the T and R state structures of ATCase identified some of the large-amplitude motions mediating the intertrimer elongation and rotation that occur during the cooperative transition (Thomas et al., J. Mol. Biol. 257:1070-1087, 1996; Thomas et al., J. Mol. Biol. 261:490-506, 1996). As a complement to that study, the deformation of the quaternary and tertiary structure of ATCase by normal modes below 5 cm(-1) is investigated in this article. The ability of the modes to reproduce the domain motions occurring during the transition is analyzed, with special attention to the interdomain closure in the catalytic chain, which has been shown to be critical for homotropic cooperativity. The calculations show a coupling between the quaternary motions and more localized motions involving specific residues. The particular dynamic behavior of these residues is examined in the light of biochemical results to obtain insights into their role in the transmission of the allosteric signal.
Collapse
Affiliation(s)
- A Thomas
- Laboratoire de Dynamique Moléculaire, Institut de Biologie Structurale--Jean-Pierre Ebel, Grenoble, France
| | | | | | | |
Collapse
|
46
|
Spinozzi F, Carsughi F, Mariani P. Particle shape reconstruction by small-angle scattering: Integration of group theory and maximum entropy to multipole expansion method. J Chem Phys 1998. [DOI: 10.1063/1.477708] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
|
48
|
Svergun DI, Aldag I, Sieck T, Altendorf K, Koch MH, Kane DJ, Kozin MB, Grüber G. A model of the quaternary structure of the Escherichia coli F1 ATPase from X-ray solution scattering and evidence for structural changes in the delta subunit during ATP hydrolysis. Biophys J 1998; 75:2212-9. [PMID: 9788916 PMCID: PMC1299895 DOI: 10.1016/s0006-3495(98)77665-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
The shape and subunit arrangement of the Escherichia coli F1 ATPase (ECF1 ATPase) was investigated by synchrotron radiation x-ray solution scattering. The radius of gyration and the maximum dimension of the enzyme complex are 4.61 +/- 0.03 nm and 15.5 +/- 0.05 nm, respectively. The shape of the complex was determined ab initio from the scattering data at a resolution of 3 nm, which allowed unequivocal identification of the volume occupied by the alpha3beta3 subassembly and further positioning of the atomic models of the smaller subunits. The delta subunit was positioned near the bottom of the alpha3beta3 hexamer in a location consistent with a beta-delta disulfide formation in the mutant ECF1 ATPase, betaY331W:betaY381C:epsilonS108C, when MgADP is bound to the enzyme. The position and orientation of the epsilon subunit were found by interactively fitting the solution scattering data to maintain connection of the two-helix hairpin with the alpha3beta3 complex and binding of the beta-sandwich domain to the gamma subunit. Nucleotide-dependent changes of the delta subunit were investigated by stopped-flow fluorescence technique at 12 degrees C using N-[4-[7-(dimethylamino)-4-methyl]coumarin-3-yl]maleimide (CM) as a label. Fluorescence quenching monitored after addition of MgATP was rapid [k = 6.6 s-1] and then remained constant. Binding of MgADP and the noncleavable nucleotide analog AMP . PNP caused an initial fluorescent quenching followed by a slower decay back to the original level. This suggests that the delta subunit undergoes conformational changes and/or rearrangements in the ECF1 ATPase during ATP hydrolysis.
Collapse
Affiliation(s)
- D I Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, D-22603 Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Tsuruta H, Vachette P, Kantrowitz ER. Direct observation of an altered quaternary-structure transition in a mutant aspartate transcarbamoylase. Proteins 1998. [DOI: 10.1002/(sici)1097-0134(19980601)31:4<383::aid-prot5>3.0.co;2-j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|