1
|
Parulekar RS, Sonawane KD. Molecular modeling studies to explore the binding affinity of virtually screened inhibitor toward different aminoglycoside kinases from diverse MDR strains. J Cell Biochem 2017; 119:2679-2695. [DOI: 10.1002/jcb.26435] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 10/18/2017] [Indexed: 01/17/2023]
Affiliation(s)
| | - Kailas D. Sonawane
- Department of MicrobiologyShivaji UniversityKolhapurMaharashtra (M.S.)India
- Department of Biochemistry, Structural Bioinformatics UnitShivaji UniversityKolhapurMaharashtra (M.S.)India
| |
Collapse
|
2
|
Nahar R, Dube D, Parakh R, Deb R, Saxena R, Singh TP, Verma IC. Implication of novel CYP2C9*57 (p.Asn204His) variant in coumarin hypersensitivity. Thromb Res 2013; 131:535-9. [DOI: 10.1016/j.thromres.2013.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/04/2013] [Accepted: 03/19/2013] [Indexed: 11/28/2022]
|
3
|
Ge Y, Wu J, Xia Y, Yang M, Xiao J, Yu J. Molecular dynamics simulation of the complex PBP-2x with drug cefuroxime to explore the drug resistance mechanism of Streptococcus suis R61. PLoS One 2012; 7:e35941. [PMID: 22563422 PMCID: PMC3338546 DOI: 10.1371/journal.pone.0035941] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 03/26/2012] [Indexed: 11/30/2022] Open
Abstract
Drug resistance of Streptococcus suis strains is a worldwide problem for both humans and pigs. Previous studies have noted that penicillin-binding protein (PBPs) mutation is one important cause of β-lactam antibiotic resistance. In this study, we used the molecular dynamics (MD) method to study the interaction differences between cefuroxime (CES) and PBP2x within two newly sequenced Streptococcus suis: drug-sensitive strain A7, and drug-resistant strain R61. The MM-PBSA results proved that the drug bound much more tightly to PBP2x in A7 (PBP2x-A7) than to PBP2x in R61 (PBP2x-R61). This is consistent with the evidently different resistances of the two strains to cefuroxime. Hydrogen bond analysis indicated that PBP2x-A7 preferred to bind to cefuroxime rather than to PBP2x-R61. Three stable hydrogen bonds were formed by the drug and PBP2x-A7, while only one unstable bond existed between the drug and PBP2x-R61. Further, we found that the Gln569, Tyr594, and Gly596 residues were the key mutant residues contributing directly to the different binding by pair wise energy decomposition comparison. By investigating the binding mode of the drug, we found that mutant residues Ala320, Gln553, and Thr595 indirectly affected the final phenomenon by topological conformation alteration. Above all, our results revealed some details about the specific interaction between the two PBP2x proteins and the drug cefuroxime. To some degree, this explained the drug resistance mechanism of Streptococcus suis and as a result could be helpful for further drug design or improvement.
Collapse
Affiliation(s)
- Yan Ge
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiayan Wu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yingjie Xia
- State Key Laboratory of Genetic Resources and Revolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Ming Yang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Jingfa Xiao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Wendt B, Mulbaier M, Wawro S, Schultes C, Alonso J, Janssen B, Lewis J. Toluidinesulfonamide hypoxia-induced factor 1 inhibitors: alleviating drug-drug interactions through use of PubChem data and comparative molecular field analysis guided synthesis. J Med Chem 2011; 54:3982-6. [PMID: 21574568 DOI: 10.1021/jm200272h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Inhibitors of hypoxia-inducible factor 1 (HIF-1) represent promising anticancer therapeutics. We have identified a series of potent toluidinesulfonamide HIF-1 inhibitors. However, the series was threatened by a potential liability to inhibit CYP2C9 which could cause dangerous drug-drug interactions when being coadministered with other drugs. We used structure-activity data from the PubChem database to develop a topomer CoMFA model that guided the design of novel sulfonamides with high selectivity for HIF-1 over CYP2C9 inhibition.
Collapse
Affiliation(s)
- Bernd Wendt
- Elara Pharmaceuticals GmbH , Boxbergring 107, 69127 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
5
|
Ge Y, Wu J, Xiao J, Yu J. Exploration of the binding mode of α/β-type small acid soluble proteins (SASPs) with DNA. J Mol Model 2011; 17:3183-93. [DOI: 10.1007/s00894-011-1007-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 02/01/2011] [Indexed: 11/28/2022]
|
6
|
Lewis DFV, Ito Y. Human CYPs involved in drug metabolism: structures, substrates and binding affinities. Expert Opin Drug Metab Toxicol 2010; 6:661-74. [PMID: 20402561 DOI: 10.1517/17425251003674380] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD There is current interest in the CYPs primarily due to their important role in the Phase I metabolism of foreign compounds, including pharmaceuticals, agrochemicals and environmental pollutants, to which mankind is exposed. AREAS COVERED IN THIS REVIEW The roles of the human CYPs are introduced in the context of using structural modelling and quantitative structure-activity relationships for rationalizing substrate binding, selectivity and rates of metabolism, particularly for drugs in current clinical use. The importance of compound lipophilicity in both substrate binding and metabolic rate is emphasised, together with the employment of an automated docking method (AutoDock) for estimating binding energy and likely route of metabolism for drug substrates. WHAT THE READER WILL GAIN The location of key interacting groups on both substrate and enzyme tends to define the preferred outcome of CYP-mediated drug metabolism in the majority of cases investigated thus far. This enables one to draw up a simple model of the important features present in the binding sites of CYPs which relate to substrate selectivity and likely positions of metabolism. TAKE HOME MESSAGE For the major CYPs involved in human drug metabolism, it would appear that there is a relatively well-defined key distance, in terms of number of intervening atoms, between the main sites of binding and CYP-mediated metabolism.
Collapse
Affiliation(s)
- David F V Lewis
- University of Surrey, Faculty of Health and Medical Sciences, Surrey, UK.
| | | |
Collapse
|
7
|
Jung J, Kim ND, Kim SY, Choi I, Cho KH, Oh WS, Kim DN, No KT. Regioselectivity prediction of CYP1A2-mediated phase I metabolism. J Chem Inf Model 2008; 48:1074-80. [PMID: 18412330 DOI: 10.1021/ci800001m] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A kinetic, reactivity-binding model has been proposed to predict the regioselectivity of substrates meditated by the CYP1A2 enzyme, which is responsible for the metabolism of planar-conjugated compounds such as caffeine. This model consists of a docking simulation for binding energy and a semiempirical molecular orbital calculation for activation energy. Possible binding modes of CYP1A2 substrates were first examined using automated docking based on the crystal structure of CYP1A2, and binding energy was calculated. Then, activation energies for CYP1A2-mediated metabolism reactions were calculated using the semiempirical molecular orbital calculation, AM1. Finally, the metabolic probability obtained from two energy terms, binding and activation energies, was used for predicting the most probable metabolic site. This model predicted 8 out of 12 substrates accurately as the primary preferred site among all possible metabolic sites, and the other four substrates were predicted into the secondary preferred site. This method can be applied for qualitative prediction of drug metabolism mediated by CYP1A2 and other CYP450 family enzymes, helping to develop drugs efficiently.
Collapse
Affiliation(s)
- Jihoon Jung
- Department of Biotechnology, Yonsei University, 120-749, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Polgár T, Menyhárd DK, Keserű GM. Effective virtual screening protocol for CYP2C9 ligands using a screening site constructed from flurbiprofen and S-warfarin pockets. J Comput Aided Mol Des 2007; 21:539-48. [DOI: 10.1007/s10822-007-9137-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 09/26/2007] [Indexed: 11/28/2022]
|
9
|
Tang C, Fang Y, Booth-Genthe C, Kuo Y, Kuduk SD, Rushmore TH, Carr BA. Diclofenac hydroxylation in monkeys: Efficiency, regioselectivity, and response to inhibitors. Biochem Pharmacol 2007; 73:880-90. [PMID: 17223083 DOI: 10.1016/j.bcp.2006.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 11/19/2006] [Accepted: 11/21/2006] [Indexed: 10/23/2022]
Abstract
The catalytic efficiency, regioselectivity, and response to chemical inhibitors of diclofenac (DF) hydroxylation in three Old World monkey liver microsomes (rhesus, cynomolgus, and African green monkey) are different from those determined with human liver microsomes. In contrast to the high affinity-high capacity (low Km-high Vmax) characteristics of DF 4'-hydroxylation in humans, this reaction proceeded in all monkey species with catalytic efficiencies >20-fold lower. However, DF 5-hydroxylation, a negligible reaction in human liver microsomes, was kinetically favored in monkeys mainly due to the increased Vmax values. Chemical inhibitors (reversible or mechanism-based) selective to human CYP3A4 and CYP2C9 failed to differentiate monkey orthologs involved in DF hydroxylation. Immunoinhibition studies with monoclonal antibodies against human CYPs revealed the major contribution of CYP2C and CYP3A to 4'- and to 5-hydroxylation, respectively, in rhesus and cynomolgus liver microsomes. However, in African green monkeys, in addition to CYP2C, CYP3A also appeared to be involved in 4'-hydroxylation. Further studies with recombinant rhesus and African green monkey CYP2C and CYP3A enzymes (rhesus CYP2C75, 2C74, and 3A64; African green monkey CYP2C9agm and CYP3A4agm) confirmed the major role of CYP enzymes of these two subfamilies in DF 4'- and 5-hydroxylation. Clearly, while monkey CYP2C and 3A enzymes retain the same substrate selectivity towards DF hydroxylation as their human orthologs, their altered catalytic efficiency and response to chemical inhibitors may indicate different structural features of active sites as opposed to human orthologs.
Collapse
Affiliation(s)
- Cuyue Tang
- Departments of Drug Metabolism, Merck Research Laboratories, West Point, Pennsylvania 19486, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Lee MD, Ayanoglu E, Gong L. Drug-induced changes in P450 enzyme expression at the gene expression level: a new dimension to the analysis of drug-drug interactions. Xenobiotica 2007; 36:1013-80. [PMID: 17118918 DOI: 10.1080/00498250600861785] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Drug-drug interactions (DDIs) caused by direct chemical inhibition of key drug-metabolizing cytochrome P450 enzymes by a co-administered drug have been well documented and well understood. However, many other well-documented DDIs cannot be so readily explained. Recent investigations into drug and other xenobiotic-mediated expression changes of P450 genes have broadened our understanding of drug metabolism and DDI. In order to gain additional information on DDI, we have integrated existing information on drugs that are substrates, inhibitors, or inducers of important drug-metabolizing P450s with new data on drug-mediated expression changes of the same set of cytochrome P450s from a large-scale microarray gene expression database of drug-treated rat tissues. Existing information on substrates and inhibitors has been updated and reorganized into drug-cytochrome P450 matrices in order to facilitate comparative analysis of new information on inducers and suppressors. When examined at the gene expression level, a total of 119 currently marketed drugs from 265 examined were found to be cytochrome P450 inducers, and 83 were found to be suppressors. The value of this new information is illustrated with a more detailed examination of the DDI between PPARalpha agonists and HMG-CoA reductase inhibitors. This paper proposes that the well-documented, but poorly understood, increase in incidence of rhabdomyolysis when a PPARalpha agonist is co-administered with a HMG-CoA reductase inhibitor is at least in part the result of PPARalpha-induced general suppression of drug metabolism enzymes in liver. The authors believe this type of information will provide insights to other poorly understood DDI questions and stimulate further laboratory and clinical investigations on xenobiotic-mediated induction and suppression of drug metabolism.
Collapse
Affiliation(s)
- M D Lee
- Iconix Biosciences, Mountain View, CA 94043, USA.
| | | | | |
Collapse
|
11
|
Zhou YH, Zheng QC, Li ZS, Zhang Y, Sun M, Sun CC, Si D, Cai L, Guo Y, Zhou H. On the human CYP2C9*13 variant activity reduction: a molecular dynamics simulation and docking study. Biochimie 2006; 88:1457-65. [PMID: 16740353 DOI: 10.1016/j.biochi.2006.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Accepted: 05/01/2006] [Indexed: 11/17/2022]
Abstract
Cytochrome P450 2C9 (CYP2C9) plays a key role in the metabolism of clinical drugs. CYP2C9 is a genetically polymorphic enzyme and some of its allelic variants have less activity compared to the wild-type form. Drugs with a narrow therapeutic index may cause serious toxicity to the individuals who carry such allele. CYP2C9*13, firstly identified by some of the present authors in a Chinese poor metabolizer of lornoxicam, is characterized by mutation encoding Leu90Pro substitution. Kinetic experiments show that CYP2C9*13 has less catalytic activity in elimination of diclofenac and lornoxicam in vitro. In order to explore the structure-activity relationship of CYP2C9*13, the three-dimensional structure models of the substrate-free CYP2C9*1 and its variant CYP2C9*13 are constructed on the basis of the X-ray crystal structure of human CYP2C9*1 (PDB code 1R9O) by molecular dynamics simulations. The structure change caused by Leu90Pro replacement is revealed and used to explain the dramatic decrease of the enzymatic activity in clearance of the two CYP2C9 substrates: diclofenac and lornoxicam. The trans configuration of the bond between Pro90 and Asp89 in CYP2C9*13 is firstly identified. The backbone of residues 106-108 in CYP2C9*13 turns over and their side chains block the entrance for substrates accessing so that the entrance of *13 shrinks greatly than that in the wild-type, which is believed to be the dominant mechanism of the catalytic activity reduction. Consequent docking study which is consistent with the results of the kinetic experiments by Guo et al. identifies the most important residues for enzyme-substrate complexes.
Collapse
Affiliation(s)
- Y-H Zhou
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Crivori P, Poggesi I. Computational approaches for predicting CYP-related metabolism properties in the screening of new drugs. Eur J Med Chem 2006; 41:795-808. [PMID: 16644065 DOI: 10.1016/j.ejmech.2006.03.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 03/09/2006] [Accepted: 03/16/2006] [Indexed: 02/07/2023]
Abstract
The site of biotransformation, the extent and rate of metabolism and the number of active metabolic pathways are among the most important characteristics of the pharmacokinetics of a drug. The catalytic activity of drug metabolizing enzymes is likely the most influential determinant of the pharmacokinetic variability. Metabolic stability is the prerequisite for sustaining the therapeutically relevant concentrations. Metabolic inhibition and induction can give rise to clinically important drug-drug interactions. A variety of computational approaches are currently available for predicting different cytochrome P450 (CYP)-related metabolism endpoints. The present review will describe these approaches and their impact on drug development process. Indications on the available software for the implementation will also be given.
Collapse
Affiliation(s)
- P Crivori
- Prediction and Modeling, Nerviano Medical Sciences Srl, Nerviano Medical Sciences Srl, Italy
| | | |
Collapse
|
13
|
Rojas JC, Aguilar B, Rodríguez-Maldonado E, Collados MT. Pharmacogenetics of oral anticoagulants. Blood Coagul Fibrinolysis 2006; 16:389-98. [PMID: 16093729 DOI: 10.1097/01.mbc.0000174079.47248.0c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The use of oral anticoagulants (OA) is problematic due to its association with hemorrhagic complications. OA metabolism relies on the CYP2C9 complex. Genetic variations compromising metabolic competence of this complex may explain the risk of excessive and hazardous anticoagulation. A pharmacogenetics-based approach to this issue could be beneficial for choosing adequate dose and duration of treatment, in addition to having a better understanding of pharmacological interactions to which OA are susceptible. However, evidence from several basic and clinical studies indicates that both a complicated system of regulation of expression of multiple genes and the influence of a wide variety of epigenetic factors could be responsible for adverse drug reactions associated with the use of OA. Emphasis on understanding the gene-environment interactions could attain new paths to facilitate the use of these important drugs in the quotidian clinical practice.
Collapse
Affiliation(s)
- Julio César Rojas
- Center for Research and Extension in Health Sciences, Instituto Tecnológico y de Estudios Superiores de Monterrey, Nuevo Leon, Mexico
| | | | | | | |
Collapse
|
14
|
Rettie AE, Jones JP. Clinical and toxicological relevance of CYP2C9: drug-drug interactions and pharmacogenetics. Annu Rev Pharmacol Toxicol 2005; 45:477-94. [PMID: 15822186 DOI: 10.1146/annurev.pharmtox.45.120403.095821] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CYP2C9 is a major cytochrome P450 enzyme that is involved in the metabolic clearance of a wide variety of therapeutic agents, including nonsteroidal antiinflammatories, oral anticoagulants, and oral hypoglycemics. Disruption of CYP2C9 activity by metabolic inhibition or pharmacogenetic variability underlies many of the adverse drug reactions that are associated with the enzyme. CYP2C9 is also the first human P450 to be crystallized, and the structural basis for its substrate and inhibitor selectivity is becoming increasingly clear. New, ultrapotent inhibitors of CYP2C9 have been synthesised that aid in the development of quantitative structure-activity relationship (QSAR) models to facilitate drug redesign, and extensive resequencing of the gene and studies of its regulation will undoubtedly help us understand interindividual variability in drug response and toxicity controlled by this enzyme.
Collapse
Affiliation(s)
- Allan E Rettie
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
15
|
Zhang Y, Li ZS, Wu JY, Sun M, Zheng QC, Sun CC. Homology modeling and S(N)2 displacement reaction of fluoroacetate dehalogenase from Burkholderia sp. FA1. Biochem Biophys Res Commun 2005; 325:414-20. [PMID: 15530408 DOI: 10.1016/j.bbrc.2004.10.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Indexed: 10/26/2022]
Abstract
Fluoroacetate dehalogenase (EC 3.8.1.3) catalyzes the dehalogenation of fluoroacetate and other haloacetates. In order to investigate the relation between the structure and the function, and understand the reaction mechanism of the enzyme, a 3D model of fluoroacetate dehalogenase FAc-DEX FA1 was built by homology-based modeling. The 3D model was optimized by unconstrained molecular dynamics simulation. Furthermore, the optimized 3D model was assessed by comparison of specific properties with two known protein structures. From the final 3D model, we find that the main residues involved in the active site in FAc-DEX FA1 were Phe34, Trp148, Tyr147, Tyr212, Asp104, and His271; especially Asp104 was the key nucleophilic residue in substrate binding. A reaction model including Asp104 and the substrate fluoroacetate was then constructed and used to characterize explicit enzymatic reactions. In order to further illustrate catalytic properties, the equilibrium geometries, energies, and frequencies of stationary points (reactants, products, and transition states) of the reaction model were calculated at the B3LYP/6-31G level of theory in both gas phase and solution. The results showed that the reaction in gas was dynamically more favorable than in solution.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130023, PR China
| | | | | | | | | | | |
Collapse
|
16
|
Kemp CA, Maréchal JD, Sutcliffe MJ. Progress in cytochrome P450 active site modeling. Arch Biochem Biophys 2005; 433:361-8. [PMID: 15581592 DOI: 10.1016/j.abb.2004.08.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 08/12/2004] [Indexed: 11/17/2022]
Abstract
Models capable of predicting the possible involvement of cytochromes P450 in the metabolism of drugs or drug candidates are important tools in drug discovery and development. Ideally, functional information would be obtained from crystal structures of all the cytochromes P450 of interest. Initially, only crystal structures of distantly related bacterial cytochromes P450 were available-comparative modeling techniques were used to bridge the gap and produce structural models of human cytochromes P450, and thereby obtain some useful functional information. A significant step forward in the reliability of these models came four years ago with the first crystal structure of a mammalian cytochrome P450, rabbit CYP2C5, followed by the structures of two human enzymes, CYP2C8 and CYP2C9, and a second rabbit enzyme, CYP2B4. The evolution of a CYP2D6 model, leading to the validation of the model as an in silico tool for predicting binding and metabolism, is presented as a case study.
Collapse
Affiliation(s)
- Carol A Kemp
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, UK
| | | | | |
Collapse
|
17
|
Davies C, Witham K, Scott JR, Pearson A, DeVoss JJ, Graham SE, Gillam EMJ. Assessment of arginine 97 and lysine 72 as determinants of substrate specificity in cytochrome P450 2C9 (CYP2C9). Drug Metab Dispos 2005; 32:431-6. [PMID: 15039296 DOI: 10.1124/dmd.32.4.431] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CYP2C9 is distinguished by a preference for substrates bearing a negative charge at physiological pH. Previous studies have suggested that CYP2C9 residues R97 and K72 may play roles in determining preference for anionic substrates by interaction at the active site or in the access channel. The aim of the present study was to assess the role of these two residues in determining substrate selectivity. R97 and K72 were substituted with negative, uncharged polar and hydrophobic residues using a degenerate polymerase chain reaction-directed strategy. Wild-type and mutant enzymes were expressed in bicistronic format with human cytochrome P450 reductase in Escherichia coli. Mutation of R97 led to a loss of holoenzyme expression for R97A, R97V, R97L, R97T, and R97E mutants. Low levels of hemoprotein were detected for R97Q, R97K, R97I, and R97P mutants. Significant apoenzyme was observed, suggesting that heme insertion or protein stability was compromised in R97 mutants. These observations are consistent with a structural role for R97 in addition to any role in substrate binding. By contrast, all K72 mutants examined (K72E, K72Q, K72V, and K72L) could be expressed as hemoprotein at levels comparable to wild-type. Type I binding spectra were obtained with wild-type and K72 mutants using diclofenac and ibuprofen. Mutation of K72 had little or no effect on the interaction with these substrates, arguing against a critical role in determining substrate specificity. Thus, neither residue appears to play a role in determining substrate specificity, but a structural role for R97 can be proposed consistent with recently published crystallographic data for CYP2C9 and CYP2C5.
Collapse
Affiliation(s)
- Carwyn Davies
- Department of Physiology and Pharmacology, School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia, 4072
| | | | | | | | | | | | | |
Collapse
|
18
|
Xiao JF, Li ZS, Sun CC. Homology modeling and molecular dynamics studies of a novel C3-like ADP-ribosyltransferase. Bioorg Med Chem 2004; 12:2035-41. [PMID: 15080907 DOI: 10.1016/j.bmc.2004.02.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Revised: 02/27/2004] [Accepted: 02/28/2004] [Indexed: 11/30/2022]
Abstract
The novel C3-like ADP-ribosyltransferase is produced by a Staphylococcus aureus strain that especially ADP-ribosylates RhoE/Rnd3 subtype proteins, and its three-dimensional (3D) structure has not known. In order to understand the catalytic mechanism, the 3D structure of the protein is built by using homology modeling based on the known crystal structure of exoenzyme C3 from Clostridium botulinum (1G24). Then the model structure is further refined by energy minimization and molecular dynamics methods. The putative nicotinamide adenine dinucleotide (NAD(+))-binding pocket of exoenzyme C3(Stau) is determined by Binding-Site Search module. The NAD(+)-enzyme complex is developed by molecular dynamics simulation and the key residues involved in the combination of enzyme binding to the ligand-NAD(+) are determined, which is helpful to guide the experimental realization and the new mutant designs as well. Our results indicated that the key binding-site residues of Arg48, Glu180, Ser138, Asn134, Arg85, and Gln179 play an important role in the catalysis of exoenzyme C3(Stau), which is in consistent with experimental observation.
Collapse
Affiliation(s)
- Jing-fa Xiao
- Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130023, PR China.
| | | | | |
Collapse
|
19
|
Afzelius L, Raubacher F, Karlén A, Jørgensen FS, Andersson TB, Masimirembwa CM, Zamora I. STRUCTURAL ANALYSIS OF CYP2C9 AND CYP2C5 AND AN EVALUATION OF COMMONLY USED MOLECULAR MODELING TECHNIQUES. Drug Metab Dispos 2004. [DOI: 10.1124/dmd.32.11.1218] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
20
|
Suzuki H, Kneller MB, Rock DA, Jones JP, Trager WF, Rettie AE. Active-site characteristics of CYP2C19 and CYP2C9 probed with hydantoin and barbiturate inhibitors. Arch Biochem Biophys 2004; 429:1-15. [PMID: 15288804 DOI: 10.1016/j.abb.2004.05.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 05/17/2004] [Indexed: 11/28/2022]
Abstract
Three series of N-3 alkyl substituted phenytoin, nirvanol, and barbiturate derivatives were synthesized and their inhibitor potencies were tested against recombinant CYP2C19 and CYP2C9 to probe the interaction of these ligands with the active sites of these enzymes. All compounds were found to be competitive inhibitors of both enzymes, although the degree of inhibitory potency was generally much greater towards CYP2C19. Inhibitor stereochemistry did not markedly influence K(i) towards CYP2C9, and log P adequately predicted inhibitor potency for this enzyme. In contrast, stereochemistry was an important factor in determining inhibitor potency towards CYP2C19. (S)-(+)-N-3-Benzylnirvanol and (R)-(-)-N-3-benzylphenobarbital emerged as the most potent and selective CYP2C19 inhibitors, with K(i) values of < 250nM--at least two orders of magnitude greater inhibitor potency than towards CYP2C9. Both inhibitors were metabolized preferentially at their C-5 phenyl substituents, indicating that CYP2C19 prefers to orient the N-3 substituents away from the active oxygen species. These features were incorporated into expanded CoMFA models for CYP2C9, and a new, validated CoMFA model for CYP2C19.
Collapse
Affiliation(s)
- Hisashi Suzuki
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195-7610, USA
| | | | | | | | | | | |
Collapse
|
21
|
Dickmann LJ, Locuson CW, Jones JP, Rettie AE. Differential Roles of Arg97, Asp293, and Arg108 in Enzyme Stability and Substrate Specificity of CYP2C9. Mol Pharmacol 2004; 65:842-50. [PMID: 15044613 DOI: 10.1124/mol.65.4.842] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
CYP2C9 metabolizes a wide range of drugs, many of which are negatively charged at physiological pH. Therefore, it has been thought that complementarily charged amino acid(s) are critically involved in substrate binding. Previous studies have implicated arginine residues at positions 97, 105, and 108 and aspartate at position 293 in the normal catalytic function of the enzyme. To elucidate the role of these amino acids in the substrate specificity of CYP2C9, a series of mutants were constructed and analyzed for functional activity, thermal stability, and ligand binding. Charge-modifying mutations at positions 97, 105, and 293 decreased catalytic activity toward diclofenac, (S)-warfarin, and pyrene in a substrate-independent manner with Arg105 the least, and Arg97 the most, sensitive amino acids in this regard. Decreases in functional activity paralleled thermal instability of the mutants, suggesting that loss of function reflects more generalized structural changes rather than the absence of a specifically charged amino acid at these three positions. The R108H mutant was inactive toward all three substrates because of unexpected nitrogen ligation to the heme. Conversely, the R108F mutant exhibited substrate-dependent catalytic behavior, with almost complete loss of activity toward (S)-warfarin and diclofenac, but preservation of pyrene metabolism. In addition, the R108F mutation abrogated the Type I difference spectra induced by flurbiprofen and benzbromarone, obligate anions at physiological pH. These data identify critical roles for Arg97 and Asp293 in the structural stability of the enzyme and demonstrate a selective role for Arg108 in the binding and metabolism of negatively charged substrates of CYP2C9.
Collapse
Affiliation(s)
- Leslie J Dickmann
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
22
|
Melet A, Assrir N, Jean P, Pilar Lopez-Garcia M, Marques-Soares C, Jaouen M, Dansette PM, Sari MA, Mansuy D. Substrate selectivity of human cytochrome P450 2C9: importance of residues 476, 365, and 114 in recognition of diclofenac and sulfaphenazole and in mechanism-based inactivation by tienilic acid. Arch Biochem Biophys 2003; 409:80-91. [PMID: 12464247 DOI: 10.1016/s0003-9861(02)00548-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A series of six site-directed mutants of CYP 2C9 were constructed with the aim to better define the amino acid residues that play a critical role in substrate selectivity of CYP 2C9, particularly in three distinctive properties of this enzyme: (i) its selective mechanism-based inactivation by tienilic acid (TA), (ii) its high affinity and hydroxylation regioselectivity toward diclofenac, and (iii) its high affinity for the competitive inhibitor sulfaphenazole (SPA). The S365A mutant exhibited kinetic characteristics for the 5-hydroxylation of TA very similar to those of CYP 2C9; however, this mutant did not undergo any detectable mechanism-based inactivation by TA, which indicates that the OH group of Ser 365 could be the nucleophile forming a covalent bond with an electrophilic metabolite of TA in TA-dependent inactivation of CYP 2C9. The F114I mutant was inactive toward the hydroxylation of diclofenac; moreover, detailed analyses of its interaction with a series of SPA derivatives by difference visible spectroscopy showed that the high affinity of SPA to CYP 2C9 (K(s)=0.4 microM) was completely lost when the phenyl substituent of Phe 114 was replaced with the alkyl group of Ile (K(s)=190+/-20 microM), or when the phenyl substituent of SPA was replaced with a cyclohexyl group (K(s)=120+/-30 microM). However, this cyclohexyl derivative of SPA interacted well with the F114I mutant (K(s)=1.6+/-0.5 microM). At the opposite end, the F94L and F110I mutants showed properties very similar to those of CYP 2C9 toward TA and diclofenac. Finally, the F476I mutant exhibited at least three main differences compared to CYP 2C9: (i) big changes in the k(cat) and K(m) values for TA and diclofenac hydroxylation, (ii) a 37-fold increase of the K(i) value found for the inhibition of CYP 2C9 by SPA, and (iii) a great change in the regioselectivity of diclofenac hydroxylation, the 5-hydroxylation of this substrate by CYP 2C9 F476I exhibiting a k(cat) of 28min(-1). These data indicate that Phe 114 plays an important role in recognition of aromatic substrates of CYP 2C9, presumably via Pi-stacking interactions. They also provide the first experimental evidence showing that Phe 476 plays a crucial role in substrate recognition and hydroxylation by CYP 2C9.
Collapse
Affiliation(s)
- Armelle Melet
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université Paris V, 45 Rue des Saints-Pères, 75270 06 Paris Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Unfavourable absorption, distribution, metabolism and elimination (ADME) properties have been identified as a major cause of failure for candidate molecules in drug development. Consequently, there is increasing interest in the early prediction of ADME properties, with the objective of increasing the success rate of compounds reaching development. This review explores in silico approaches and selected published models for predicting ADME properties from chemical structure alone. In particular, we provide a comparison of methods based on pattern recognition to identify correlations between molecular descriptors and ADME properties, structural models based on classical molecular mechanics and quantum mechanical techniques for modelling chemical reactions.
Collapse
Affiliation(s)
- Darko Butina
- ArQule (UK), 127 Science Park, Milton Road, CB46DG Cambridge, UK
| | | | | |
Collapse
|
24
|
Abstract
The superfamily of enzymes known as the cytochromes P450 (P450s) comprises a wide-ranging class of proteins with diverse functions. They are known, amongst other things, to be involved in the hormonal regulation of metabolism and reproduction, as well as having a major clinical significance through their association with diseases such as cancer, diabetes and hepatitis. Knowledge of the three-dimensional (3D) structure of a protein gives insight into its function. The 3D structures of P450s are therefore of considerable scientific interest. A number of high-resolution structures of P450s have been determined by X-ray crystallography and studies of these structures have provided valuable insights into the mechanism of these enzymes. Only one of these structures is mammalian and as yet there is no structural information on human P450s in the public domain. Until such a structure is solved it is necessary to employ alternative methods to gain structural insight into how human P450s perform their biological function. Here we report on the use of comparative modelling to predict the structure of human P450s based on knowledge of their amino acid sequences plus the 3D structures of other (not human) P450s. As an illustrative example of these techniques we have modelled the structure of P450 2C5 using five bacterial P450 structures as templates. We examine the importance of selecting suitable templates, obtaining a good amino acid sequence alignment, and evaluating the models generated. To improve the quality of the models an iterative cycle of sequence alignment, model building, and model evaluation is employed. The result is a model with excellent stereochemistry, good amino acid side chain environment properties, and a Calpha trace similar to the crystal structure.
Collapse
Affiliation(s)
- Stewart B Kirton
- Department of Chemistry, University of Leicester, University Road, LE1 7RH, UK
| | | | | |
Collapse
|
25
|
Leung AY, Chow HC, Kwong YL, Lie AK, Fung AT, Chow WH, Yip AS, Liang R. Genetic polymorphism in exon 4 of cytochrome P450 CYP2C9 may be associated with warfarin sensitivity in Chinese patients. Blood 2001; 98:2584-7. [PMID: 11588061 DOI: 10.1182/blood.v98.8.2584] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CYP2C9 polymorphisms reported in Caucasians (Arg144Cys in exon 3 and Ile359Leu in exon 7) are extremely uncommon in Chinese persons. The genotype of CYP2C9 in this population was characterized to investigate its relation with the interindividual variation in warfarin dosages. Eighty-nine Chinese patients receiving warfarin were recruited. Target sequences in CYP2C9 in exons 1, 4, and 5 were amplified by polymerase chain reaction, followed by direct sequencing. Polymorphisms at 4 positions were demonstrated in exon 4. Heterozygosities for 608TTG>GTG (Leu208Val), 561CAG>CCG (Gln192Pro), 537CAT>CCT (His184Pro), and 527ATT>CTT (Ile181Leu) existed at frequencies 0.75, 0.20, 0.10, and 0.09, respectively. Seventeen patients (frequency, 0.19) were homozygous for Val208. The common genotypic combinations at these loci are Ile181/His184/Gln192/Leu208Val (n = 50), Ile181/His184/Gln192/Val208 (n = 15), Ile181/His184/Gln192/Leu208 (n = 4), Ile181/His184/Gln192Pro/Leu208Val (n = 6), Ile181/His184Pro/Gln192Pro/Leu208Val (n = 4), and Ile181Leu/His184/Gln192Pro/ Leu208Val (n = 4). At codon 208, heterozygous Leu208Val and homozygous Val208 appeared to have a lower warfarin dose requirement than the homozygous Leu208. Patients who are heterozygous for Ile181Leu had a higher warfarin dose requirement than the homozygous Ile181. Amplified sequences in exons 1 and 5 did not exhibit polymorphism. In conclusion, Chinese patients showed genetic polymorphisms of CYP2C9 in exon 4 and at codon 208; most were heterozygous Leu208Val and homozygous Val208. Homozygous Leu208, a common allele in Caucasians, is uncommon in this cohort. The significance of these CYP2C9 polymorphic alleles remains to be determined.
Collapse
Affiliation(s)
- A Y Leung
- Division of Haematology and Oncology, Department of Medicine, The University of Hong Kong
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ha-Duong NT, Marques-Soares C, Dijols S, Sari MA, Dansette PM, Mansuy D. Interaction of new sulfaphenazole derivatives with human liver cytochrome p450 2Cs: structural determinants required for selective recognition by CYP 2C9 and for inhibition of human CYP 2Cs. Arch Biochem Biophys 2001; 394:189-200. [PMID: 11594733 DOI: 10.1006/abbi.2001.2511] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A series of new derivatives of sulfaphenazole (SPA), in which the NH(2) and phenyl substituents of SPA are replaced by various groups or in which the sulfonamide function of SPA is N-alkylated, were synthesized in order to further explore CYP 2C9 active site and to determine the structural factors explaining the selectivity of SPA for CYP 2C9 within the human P450 2C subfamily. Compounds in which the NH(2) group of SPA was replaced with R(1) = CH(3), Br, CH = CH(2), CH(2)CH = CH(2), and CH(2)CH(2)OH exhibited a high affinity for CYP 2C9, as shown by the dissociation constant of their CYP 2C9 complexes, K(s), which was determined by difference visible spectroscopy (K(s) between 0.1 and 0.4 microM) and their constant of CYP 2C9 inhibition (K(i) between 0.3 and 0.6 microM). This indicates that the CYP 2C9-iron(III)-NH(2)R bond previously described to exist in the CYP 2C9-SPA complex does not play a key role in the high affinity of SPA for CYP 2C9. Compounds in which the phenyl group of SPA was replaced with various aryl or alkyl R(2) substituents only exhibited a high affinity for CYP 2C9 if R(2) is a freely rotating and sufficiently electron-rich aryl substituent. Finally, compounds resulting from a N-alkylation of the SPA sulfonamide function (R(3) = CH(3), C(2)H(5), or C(3)H(7)) did not retain the selective inhibitory properties of SPA toward CYP 2C9. However, they are reasonably good inhibitors of CYP 2C8 and CYP 2C18 (IC(50) approximately 20 microM). These data allow one to better understand the structural factors that are important for selective binding in the CYP 2C9 active site. They also provide us with clues towards new selective inhibitors of CYP 2C8 and CYP 2C18.
Collapse
Affiliation(s)
- N T Ha-Duong
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université Paris V, 45 Rue des Saints-Pères, Paris Cedex 06, 75270, France
| | | | | | | | | | | |
Collapse
|
27
|
Pal AK, Sen S, Ghosh S, Bera AK, Bhattacharya S, Chakraborty S, Banerjee A. Research strategies for design and development of NSAIDs: clue to balance potency and toxicity of acetanilide compounds. J Biomol Struct Dyn 2001; 19:85-93. [PMID: 11565854 DOI: 10.1080/07391102.2001.10506722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Despite the fact that many modern drug therapies are based on the concept of enzyme inhibition, inhibition of several enzymes leads to pathological disorders. Clinically used nonsteroidal anti-inflammatory drugs (NSAIDs) bind to the active site of the membrane protein, cyclooxygenase (COX) and inhibit the synthesis of prostaglandins, the mediators for causing inflammation. At the same time, inhibition of hepatic cysteine proteases by some NSAID metabolites like NAPQI is implicated in the pathogenesis of hepatotoxicity. As a part of our efforts to develop new effective NSAIDs, a comprehensive investigation starting from synthesis to the study of the final metabolism of acetanilide group of compound has been envisaged with appropriate feedback from kinetic studies to enhance our knowledge and technical competency to feed the know-how to the medicinal chemist to screen out and design new acetanilide derivatives of high potency and low toxicity. Structure-function relationship based on the interaction of acetanilide with its cognate enzyme, cyclooxygenase has been studied critically with adequate comparison with several other available crystal structures of COX-NSAID complexes. Furthermore, to make the receptor based drug design strategy a novel and comprehensive one, both the mechanism of metabolism of acetanilide and structural basis of inhibition of cysteine proteases by the reactive metabolite (NAPQI) formed by cytochrome P450 oxidation of acetanilide have been incorporated in the study. It is hoped that this synergistic approach and the results obtained from such consorted structural investigation at atomic level may guide to dictate synthetic modification with judicious balance between cyclooxygenase inhibition and hepatic cysteine protease inhibition to enhance the potential of such molecular medicine to relieve inflammation on one hand and low hepatic toxicity on the other.
Collapse
Affiliation(s)
- A K Pal
- Department of Biophysics, Bose Institute, Calcutta
| | | | | | | | | | | | | |
Collapse
|
28
|
Meyer RP, Hagemeyer CE, Knoth R, Kurz G, Volk B. Oxidative hydrolysis of scoparone by cytochrome p450 CYP2C29 reveals a novel metabolite. Biochem Biophys Res Commun 2001; 285:32-9. [PMID: 11437368 DOI: 10.1006/bbrc.2001.5111] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regioselective 7-demethylation of scoparone is regularly employed as an indicator of phenobarbital-like induction of rat liver cytochrome P450 isoform CYP2B1, e.g., by the antiepileptic drug phenytoin. After induction with phenobarbital and phenytoin, a new reaction sequence catalyzed by Cyp2c29 was identified in mouse liver microsomes. Cyp2c29-dependent 6-demethylation of scoparone resulted in the formation of isoscopoletin, an intermediate which is susceptible to further oxidation. This subsequent oxidation was also catalyzed by Cyp2c29 with a K(m) of 30,31 microM and a V(max) of 3,41 microM/min x microM P450, and resulted in the formation of the new metabolite 3-[4-methoxy-p-(3,6)-benzoquinone]-2-propenoate. This novel metabolite is the product of two consecutive oxidation reactions, proceeding over isoscopoletin to a putative lactone which is accessible to immediate hydrolysis, due to the onium character of the ring oxygen. This opening of the lactone ring corresponds to an oxidative hydrolysis. Differential oxidation of scoparone can be used as a sensitive indicator for distinguishing between different cytochrome P450 isoforms.
Collapse
Affiliation(s)
- R P Meyer
- Department of Neuropathology, University of Freiburg, Freiburg, D-79106, Germany.
| | | | | | | | | |
Collapse
|
29
|
Afzelius L, Zamora I, Ridderström M, Andersson TB, Karlén A, Masimirembwa CM. Competitive CYP2C9 inhibitors: enzyme inhibition studies, protein homology modeling, and three-dimensional quantitative structure-activity relationship analysis. Mol Pharmacol 2001; 59:909-19. [PMID: 11259637 DOI: 10.1124/mol.59.4.909] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
This study describes the generation of a three-dimensional quantitative structure activity relationship (3D-QSAR) model for 29 structurally diverse, competitive CYP2C9 inhibitors defined experimentally from an initial data set of 73 compounds. In parallel, a homology model for CYP2C9 using the rabbit CYP2C5 coordinates was built. For molecules with a known interaction mode with CYP2C9, this homology model, in combination with the docking program GOLD, was used to select conformers to use in the 3D-QSAR analysis. The remaining molecules were docked, and the GRID interaction energies for all conformers proposed by GOLD were calculated. This was followed by a principal component analysis (PCA) of the GRID energies for all conformers of all compounds. Based on the similarity in the PCA plot to the inhibitors with a known interaction mode, the conformer to be used in the 3D-QSAR analysis was selected. The compounds were randomly divided into two groups, the training data set (n = 21) to build the model and the external validation set (n = 8). The PLS (partial least-squares) analysis of the interaction energies against the K(i) values generated a model with r(2) = 0.947 and a cross-validation of q(2) = 0.730. The model was able to predict the entire external data set within 0.5 log units of the experimental K(i) values. The amino acids in the active site showed complementary features to the grid interaction energies in the 3D-QSAR model and were also in agreement with mutagenesis studies.
Collapse
Affiliation(s)
- L Afzelius
- Department of Drug Metabolism and Pharmacokinetics & Bioanalytical Chemistry, AstraZeneca R&D, Mölndal, Sweden
| | | | | | | | | | | |
Collapse
|
30
|
Chapter 25. ADME by computer. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2001. [DOI: 10.1016/s0065-7743(01)36065-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
31
|
Ridderström M, Masimirembwa C, Trump-Kallmeyer S, Ahlefelt M, Otter C, Andersson TB. Arginines 97 and 108 in CYP2C9 are important determinants of the catalytic function. Biochem Biophys Res Commun 2000; 270:983-7. [PMID: 10772937 DOI: 10.1006/bbrc.2000.2538] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human cytochrome P450 2C9 (CYP2C9) is one of the major drug metabolising enzymes which exhibits a broad substrate specificity. The B-C loop is located in the active-site but has been difficult to model, owing to its diverse and flexible structure. To elucidate the function of the B-C loop we used homology modelling based on the Cyp102 structure in combination with functional studies of mutants using diclofenac as a model substrate for CYP2C9. The study shows the importance of the conserved arginine in position 97 and the arginine in position 108 for the catalytic function. The R97A mutant had a 13-fold higher K(m) value while the V(max) was in the same order as the wild type. The R108 mutant had a 100-fold lower activity with diclofenac compared to the wild-type enzyme. The other six mutants (S95A, F100A, L102A, E104A, R105A, and N107A) had kinetic parameters similar to the CYP2C9 wild-type. Our homology model based on the CYP102 structure as template indicates that R97, L102, and R105 are directed into the active site, whereas R108 is not. The change in catalytic function when arginine 97 was replaced with alanine and the orientation of this amino acid in our homology model indicates its importance for substrate interaction.
Collapse
Affiliation(s)
- M Ridderström
- Department of Pharmacokinetics and Drug Metabolism, AstraZeneca R & D, Mölndal, Sweden
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
It is well established that the variable binding-site architecture and composition of the P450 metabolizing heme proteins are major modulators of substrate and product specificity. Even the three closely related human liver isozymes, CYP2C9, CYP2C18, and CYP2C19, do not share all substrates and do not always lead to the same preferred hydroxylation products. The lack of knowledge of their three-dimensional (3D) structures has hindered efforts to understand the differences in their specificities. Building on previous work for the CYP2C9 enzyme, 3D models of CYP2C18 and 2C19 have been constructed and validated by computational methods developed and tested in our laboratory. They were used to characterize explicit enzyme-substrate complexes using the isoform-specific substrates progesterone and (S)-mephenytoin for 2C19 and 2-[2,3-dichloro-4-(3-hydroxypropyloxy)benzoyl]thiophene for 2C18. The results allowed both common and unique binding-site residues to be identified in each model. The calculated preferred hydroxylation site was obtained for each substrate and was found to be consistent with experimental observation. Comparisons were made among the 2C9, 2C18, and 2C19 model binding sites to investigate the subtle differences among them. These models can be used as structure-based guides for mutagenesis studies and screening of potential pharmaceuticals or toxins.
Collapse
Affiliation(s)
- V A Payne
- Molecular Research Institute, Mountain View, California 94043-2316, USA.
| | | | | |
Collapse
|