1
|
Korb A, Tajbakhsh S, Comai GE. Functional specialisation and coordination of myonuclei. Biol Rev Camb Philos Soc 2024; 99:1164-1195. [PMID: 38477382 DOI: 10.1111/brv.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Myofibres serve as the functional unit for locomotion, with the sarcomere as fundamental subunit. Running the entire length of this structure are hundreds of myonuclei, located at the periphery of the myofibre, juxtaposed to the plasma membrane. Myonuclear specialisation and clustering at the centre and ends of the fibre are known to be essential for muscle contraction, yet the molecular basis of this regionalisation has remained unclear. While the 'myonuclear domain hypothesis' helped explain how myonuclei can independently govern large cytoplasmic territories, novel technologies have provided granularity on the diverse transcriptional programs running simultaneously within the syncytia and added a new perspective on how myonuclei communicate. Building upon this, we explore the critical cellular and molecular sources of transcriptional and functional heterogeneity within myofibres, discussing the impact of intrinsic and extrinsic factors on myonuclear programs. This knowledge provides new insights for understanding muscle development, repair, and disease, but also opens avenues for the development of novel and precise therapeutic approaches.
Collapse
Affiliation(s)
- Amaury Korb
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Shahragim Tajbakhsh
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Glenda E Comai
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| |
Collapse
|
2
|
Teng H, Zheng J, Liang Y, Zhao J, Yan Y, Li S, Li S, Tong H. Podocan promoting skeletal muscle post-injury regeneration by inhibiting TGF-β signaling pathway. FASEB J 2024; 38:e23502. [PMID: 38430223 DOI: 10.1096/fj.202302158rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Podocan, the fifth member of Small Leucine-Rich Proteoglycan (SLRP) family of extracellular matrix components, is poorly known in muscle development. Previous studies have shown that Podocan promotes C2C12 differentiation in mice. In this study, we elucidated the effect of Podocan on skeletal muscle post-injury regeneration and its underlying mechanism. Injection of Podocan protein promoted the process of mice skeletal muscle post-injury regeneration. This effect seemed to be from the acceleration of muscle satellite cell differentiation in vivo. Meanwhile, Podocan promoted myogenic differentiation in vitro by binding with TGF-β1 to inhibit the activity of the TGF-β signaling pathway. These results indicated that Podocan had the potential roles to enhance skeletal muscle post-injury regeneration. Its mechanism is likely the regulation of the expression of p-Smad2 and p-Smad4 related to the TGF-β signaling pathway by interacting with TGF-β1.
Collapse
Affiliation(s)
- Huaixin Teng
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, China
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, China
| | - Jingxian Zheng
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, China
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, China
| | - Yanyan Liang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, China
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, China
| | - Jingwen Zhao
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, China
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, China
| | - Yunqin Yan
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, China
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, China
| | - Shufeng Li
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, China
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, China
| | - Shuang Li
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, China
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, China
| | - Huili Tong
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, China
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
3
|
Bagley JR, Denes LT, McCarthy JJ, Wang ET, Murach KA. The myonuclear domain in adult skeletal muscle fibres: past, present and future. J Physiol 2023; 601:723-741. [PMID: 36629254 PMCID: PMC9931674 DOI: 10.1113/jp283658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Most cells in the body are mononuclear whereas skeletal muscle fibres are uniquely multinuclear. The nuclei of muscle fibres (myonuclei) are usually situated peripherally which complicates the equitable distribution of gene products. Myonuclear abundance can also change under conditions such as hypertrophy and atrophy. Specialised zones in muscle fibres have different functions and thus distinct synthetic demands from myonuclei. The complex structure and regulatory requirements of multinuclear muscle cells understandably led to the hypothesis that myonuclei govern defined 'domains' to maintain homeostasis and facilitate adaptation. The purpose of this review is to provide historical context for the myonuclear domain and evaluate its veracity with respect to mRNA and protein distribution resulting from myonuclear transcription. We synthesise insights from past and current in vitro and in vivo genetically modified models for studying the myonuclear domain under dynamic conditions. We also cover the most contemporary knowledge on mRNA and protein transport in muscle cells. Insights from emerging technologies such as single myonuclear RNA-sequencing further inform our discussion of the myonuclear domain. We broadly conclude: (1) the myonuclear domain can be flexible during muscle fibre growth and atrophy, (2) the mechanisms and role of myonuclear loss and motility deserve further consideration, (3) mRNA in muscle is actively transported via microtubules and locally restricted, but proteins may travel far from a myonucleus of origin and (4) myonuclear transcriptional specialisation extends beyond the classic neuromuscular and myotendinous populations. A deeper understanding of the myonuclear domain in muscle may promote effective therapies for ageing and disease.
Collapse
Affiliation(s)
- James R. Bagley
- Muscle Physiology Laboratory, Department of Kinesiology, San Francisco State University, San Francisco, California
| | | | - John J. McCarthy
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Physiology, College of Medicine, University of Kentucky
| | - Eric T. Wang
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, University of Florida, Gainesville, Florida
- Myology Institute, University of Florida
- Genetics Institute, University of Florida
| | - Kevin A. Murach
- Exercise Science Research Center, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, Arkansas
- Cell and Molecular Biology Graduate Program, University of Arkansas
| |
Collapse
|
4
|
Rodgers BD, Ward CW. Myostatin/Activin Receptor Ligands in Muscle and the Development Status of Attenuating Drugs. Endocr Rev 2022; 43:329-365. [PMID: 34520530 PMCID: PMC8905337 DOI: 10.1210/endrev/bnab030] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Muscle wasting disease indications are among the most debilitating and often deadly noncommunicable disease states. As a comorbidity, muscle wasting is associated with different neuromuscular diseases and myopathies, cancer, heart failure, chronic pulmonary and renal diseases, peripheral neuropathies, inflammatory disorders, and, of course, musculoskeletal injuries. Current treatment strategies are relatively ineffective and can at best only limit the rate of muscle degeneration. This includes nutritional supplementation and appetite stimulants as well as immunosuppressants capable of exacerbating muscle loss. Arguably, the most promising treatments in development attempt to disrupt myostatin and activin receptor signaling because these circulating factors are potent inhibitors of muscle growth and regulators of muscle progenitor cell differentiation. Indeed, several studies demonstrated the clinical potential of "inhibiting the inhibitors," increasing muscle cell protein synthesis, decreasing degradation, enhancing mitochondrial biogenesis, and preserving muscle function. Such changes can prevent muscle wasting in various disease animal models yet many drugs targeting this pathway failed during clinical trials, some from serious treatment-related adverse events and off-target interactions. More often, however, failures resulted from the inability to improve muscle function despite preserving muscle mass. Drugs still in development include antibodies and gene therapeutics, all with different targets and thus, safety, efficacy, and proposed use profiles. Each is unique in design and, if successful, could revolutionize the treatment of both acute and chronic muscle wasting. They could also be used in combination with other developing therapeutics for related muscle pathologies or even metabolic diseases.
Collapse
Affiliation(s)
| | - Christopher W Ward
- Department of Orthopedics and Center for Biomedical Engineering and Technology (BioMET), University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Jaiswal JK, Nagaraju K, Morgan J. Terence A Partridge: A career dedicated to pursuit of curiosity, mentorship, and secrets of skeletal muscle stem cells. J Neuromuscul Dis 2021; 8:S173-S179. [PMID: 34806614 DOI: 10.3233/jnd-219010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA.,Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Kanneboyina Nagaraju
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY, USA
| | - Jennifer Morgan
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK
| |
Collapse
|
6
|
Partridge TA. Enhancing Interrogation of Skeletal Muscle Samples for Informative Quantitative Data. J Neuromuscul Dis 2021; 8:S257-S269. [PMID: 34511511 PMCID: PMC8673506 DOI: 10.3233/jnd-210736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Careful quantitative analysis of histological preparations of muscle samples is crucial to accurate investigation of myopathies in man and of interpretation of data from animals subjected to experimental or potentially therapeutic treatments. Protocols for measuring cell numbers are subject to problems arising from biases associated with preparative and analytical techniques. Prominent among these is the effect of polarized structure of skeletal muscle on sampling bias. It is also common in this tissue to collect data as ratios to convenient reference dominators, the fundamental bases of which are ill-defined, or unrecognized or not accurately assessable. Use of such 'floating' denominators raises a barrier to estimation of the absolute values that assume practical importance in medical research, where accurate comparison between different scenarios in different species is essential to the aim of translating preclinical research findings in animal models to clinical utility in Homo sapiens.This review identifies some of the underappreciated problems with current morphometric practice, some of which are exacerbated in skeletal muscle, and evaluates the extent of their intrusiveness into the of building an objective, accurate, picture of the structure of the muscle sample. It also contains recommendations for eliminating or at least minimizing these problems. Principal among these, would be the use of stereological procedures to avoid the substantial counting biases arising from inter-procedure differences in object size and section thickness.Attention is also drawn to the distortions of interpretation arising from use of undefined or inappropriate denominators.
Collapse
Affiliation(s)
- Terence A Partridge
- Professor of Integrative Systemic Biology, George Washington University, Washington DC.,Honorary Professor, Institute of Child Health, University College London
| |
Collapse
|
7
|
Morgan J, Muntoni F. Changes in Myonuclear Number During Postnatal Growth -Implications for AAV Gene Therapy for Muscular Dystrophy. J Neuromuscul Dis 2021; 8:S317-S324. [PMID: 34334413 PMCID: PMC8673494 DOI: 10.3233/jnd-210683] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adult skeletal muscle is a relatively stable tissue, as the multinucleated muscle fibres contain post-mitotic myonuclei. During early postnatal life, muscle growth occurs by the addition of skeletal muscle stem cells (satellite cells) or their progeny to growing muscle fibres. In Duchenne muscular dystrophy, which we shall use as an example of muscular dystrophies, the muscle fibres lack dystrophin and undergo necrosis. Satellite-cell mediated regeneration occurs, to repair and replace the necrotic muscle fibres, but as the regenerated muscle fibres still lack dystrophin, they undergo further cycles of degeneration and regeneration.AAV gene therapy is a promising approach for treating Duchenne muscular dystrophy. But for a single dose of, for example, AAV coding for dystrophin, to be effective, the treated myonuclei must persist, produce sufficient dystrophin and a sufficient number of nuclei must be targeted. This latter point is crucial as AAV vector remains episomal and does not replicate in dividing cells. Here, we describe and compare the growth of skeletal muscle in rodents and in humans and discuss the evidence that myofibre necrosis and regeneration leads to the loss of viral genomes within skeletal muscle. In addition, muscle growth is expected to lead to the dilution of the transduced nuclei especially in case of very early intervention, but it is not clear if growth could result in insufficient dystrophin to prevent muscle fibre breakdown. This should be the focus of future studies.
Collapse
Affiliation(s)
- Jennifer Morgan
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.,National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK
| |
Collapse
|
8
|
Abstract
The resident stem cell for skeletal muscle is the satellite cell. On the 50th anniversary of its discovery in 1961, we described the history of skeletal muscle research and the seminal findings made during the first 20 years in the life of the satellite cell (Scharner and Zammit 2011, doi: 10.1186/2044-5040-1-28). These studies established the satellite cell as the source of myoblasts for growth and regeneration of skeletal muscle. Now on the 60th anniversary, we highlight breakthroughs in the second phase of satellite cell research from 1980 to 2000. These include technical innovations such as isolation of primary satellite cells and viable muscle fibres complete with satellite cells in their niche, together with generation of many useful reagents including genetically modified organisms and antibodies still in use today. New methodologies were combined with description of endogenous satellite cells markers, notably Pax7. Discovery of the muscle regulatory factors Myf5, MyoD, myogenin, and MRF4 in the late 1980s revolutionized understanding of the control of both developmental and regerenative myogenesis. Emergence of genetic lineage markers facilitated identification of satellite cells in situ, and also empowered transplantation studies to examine satellite cell function. Finally, satellite cell heterogeneity and the supportive role of non-satellite cell types in muscle regeneration were described. These major advances in methodology and in understanding satellite cell biology provided further foundations for the dramatic escalation of work on muscle stem cells in the 21st century.
Collapse
Affiliation(s)
- Elise N. Engquist
- Randall Centre for Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London, SE1 1UL, UK
| | - Peter S. Zammit
- Randall Centre for Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London, SE1 1UL, UK
- Correspondence to: Randall Centre for Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London, SE1 1UL, UK. E-mail:
| |
Collapse
|
9
|
Grounds MD, Terrill JR, Al-Mshhdani BA, Duong MN, Radley-Crabb HG, Arthur PG. Biomarkers for Duchenne muscular dystrophy: myonecrosis, inflammation and oxidative stress. Dis Model Mech 2020; 13:13/2/dmm043638. [PMID: 32224496 PMCID: PMC7063669 DOI: 10.1242/dmm.043638] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal, X-linked disease that causes severe loss of muscle mass and function in young children. Promising therapies for DMD are being developed, but the long lead times required when using clinical outcome measures are hindering progress. This progress would be facilitated by robust molecular biomarkers in biofluids, such as blood and urine, which could be used to monitor disease progression and severity, as well as to determine optimal drug dosing before a full clinical trial. Many candidate DMD biomarkers have been identified, but there have been few follow-up studies to validate them. This Review describes the promising biomarkers for dystrophic muscle that have been identified in muscle, mainly using animal models. We strongly focus on myonecrosis and the associated inflammation and oxidative stress in DMD muscle, as the lack of dystrophin causes repeated bouts of myonecrosis, which are the key events that initiate the resultant severe dystropathology. We discuss the early events of intrinsic myonecrosis, along with early regeneration in the context of histological and other measures that are used to quantify its incidence. Molecular biomarkers linked to the closely associated events of inflammation and oxidative damage are discussed, with a focus on research related to protein thiol oxidation and to neutrophils. We summarise data linked to myonecrosis in muscle, blood and urine of dystrophic animal species, and discuss the challenge of translating such biomarkers to the clinic for DMD patients, especially to enhance the success of clinical trials. Summary: This Review discusses biomarkers in blood and urine linked to myonecrosis, inflammation and oxidative stress, to enhance development of therapies for DMD, and the challenges to be overcome for clinical translation.
Collapse
Affiliation(s)
- Miranda D Grounds
- School of Human Sciences, the University of Western Australia, Perth, WA 6009, Australia
| | - Jessica R Terrill
- School of Molecular Sciences, the University of Western Australia, Perth, WA 6009, Australia
| | - Basma A Al-Mshhdani
- School of Molecular Sciences, the University of Western Australia, Perth, WA 6009, Australia
| | - Marisa N Duong
- School of Molecular Sciences, the University of Western Australia, Perth, WA 6009, Australia
| | - Hannah G Radley-Crabb
- School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
| | - Peter G Arthur
- School of Molecular Sciences, the University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
10
|
Abstract
Skeletal muscle fibres are multinucleated cells that contain postmitotic nuclei (i.e. they are no longer able to divide) and perform muscle contraction. They are formed by fusion of muscle precursor cells, and grow into elongating myofibres by the addition of further precursor cells, called satellite cells, which are also responsible for regeneration following injury. Skeletal muscle regeneration occurs in most muscular dystrophies in response to necrosis of muscle fibres. However, the complex environment within dystrophic skeletal muscle, which includes inflammatory cells, fibroblasts and fibro-adipogenic cells, together with the genetic background of the in vivo model and the muscle being studied, complicates the interpretation of laboratory studies on muscular dystrophies. Many genes are expressed in satellite cells and in other tissues, which makes it difficult to determine the molecular cause of various types of muscular dystrophies. Here, and in the accompanying poster, we discuss our current knowledge of the cellular mechanisms that govern the growth and regeneration of skeletal muscle, and highlight the defects in satellite cell function that give rise to muscular dystrophies. Summary: The mechanisms of skeletal muscle development, growth and regeneration are described. We discuss whether these processes are dysregulated in inherited muscle diseases and identify pathways that may represent therapeutic targets.
Collapse
Affiliation(s)
- Jennifer Morgan
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK .,National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Terence Partridge
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.,National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London WC1N 1EH, UK.,Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Ave NW, Washington, DC 20010, USA
| |
Collapse
|
11
|
Meng J, Sweeney NP, Doreste B, Muntoni F, McClure M, Morgan J. Restoration of Functional Full-Length Dystrophin After Intramuscular Transplantation of Foamy Virus-Transduced Myoblasts. Hum Gene Ther 2020; 31:241-252. [PMID: 31801386 PMCID: PMC7047098 DOI: 10.1089/hum.2019.224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/24/2019] [Indexed: 12/12/2022] Open
Abstract
Stem cell therapy is a promising strategy to treat muscle diseases such as Duchenne muscular dystrophy (DMD). To avoid immune rejection of donor cells or donor-derived muscle, autologous cells, which have been genetically modified to express dystrophin, are preferable to cells derived from healthy donors. Restoration of full-length dystrophin (FL-dys) using viral vectors is extremely challenging, due to the limited packaging capacity of the vectors, but we have recently shown that either a foamy viral or lentiviral vector is able to package FL-dys open-reading frame and transduce myoblasts derived from a DMD patient. Differentiated myotubes derived from these transduced cells produced FL-dys. Here, we transplanted the foamy viral dystrophin-corrected DMD myoblasts intramuscularly into mdx nude mice, and showed that the transduced cells contributed to muscle regeneration, expressing FL-dys in nearly all the muscle fibers of donor origin. Furthermore, we showed that the restored FL-dys recruited members of the dystrophin-associated protein complex and neuronal nitric oxide synthase within donor-derived muscle fibers, evidence that the restored dystrophin protein is functional. Dystrophin-expressing donor-derived muscle fibers expressed lower levels of utrophin than host muscle fibers, providing additional evidence of functional improvement of donor-derived myofibers. This is the first in vivo evidence that foamy virus vector-transduced DMD myoblasts can contribute to muscle regeneration and mediate functional dystrophin restoration following their intramuscular transplantation, representing a promising therapeutic strategy for individual small muscles in DMD.
Collapse
Affiliation(s)
- Jinhong Meng
- Developmental Neuroscience Programme, Molecular Neurosciences Section, Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Nathan Paul Sweeney
- Jefferiss Research Trust Laboratories, Imperial College London, London, United Kingdom
| | - Bruno Doreste
- Developmental Neuroscience Programme, Molecular Neurosciences Section, Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Francesco Muntoni
- Developmental Neuroscience Programme, Molecular Neurosciences Section, Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Myra McClure
- Jefferiss Research Trust Laboratories, Imperial College London, London, United Kingdom
| | - Jennifer Morgan
- Developmental Neuroscience Programme, Molecular Neurosciences Section, Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| |
Collapse
|
12
|
Sokołowska E, Błachnio-Zabielska AU. A Critical Review of Electroporation as A Plasmid Delivery System in Mouse Skeletal Muscle. Int J Mol Sci 2019; 20:ijms20112776. [PMID: 31174257 PMCID: PMC6600476 DOI: 10.3390/ijms20112776] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
The gene delivery to skeletal muscles is a promising strategy for the treatment of both muscular disorders (by silencing or overexpression of specific gene) and systemic secretion of therapeutic proteins. The use of a physical method like electroporation with plate or needle electrodes facilitates long-lasting gene silencing in situ. It has been reported that electroporation enhances the expression of the naked DNA gene in the skeletal muscle up to 100 times and decreases the changeability of the intramuscular expression. Coelectransfer of reporter genes such as green fluorescent protein (GFP), luciferase or beta-galactosidase allows the observation of correctly performed silencing in the muscles. Appropriate selection of plasmid injection volume and concentration, as well as electrotransfer parameters, such as the voltage, the length and the number of electrical pulses do not cause long-term damage to myocytes. In this review, we summarized the electroporation methodology as well as the procedure of electrotransfer to the gastrocnemius, tibialis, soleus and foot muscles and compare their advantages and disadvantages.
Collapse
Affiliation(s)
- Emilia Sokołowska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 15-222 Bialystok, Poland.
| | | |
Collapse
|
13
|
Fast and slow myosin as markers of muscle regeneration in mangled extremities: a pilot study. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2019; 29:1539-1547. [PMID: 31111314 DOI: 10.1007/s00590-019-02448-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
Abstract
Mangled extremities were classically managed by amputation. But over the past few decades, with the advancement in surgical techniques, an increased number of limb salvages have been possible. As muscles usually get damaged in such grievous injuries, a thorough understanding of muscle regeneration may give a better insight into muscle healing in these injuries. Muscles are composed of slow and fast fibers which can be represented by slow and fast myosin, respectively. There are some animal studies which reported differential regeneration of slow and fast muscle fibers during muscle healing. We conducted this pilot study to find out whether the same holds true for muscle healing in mangled extremities also. This pilot study is designed in 15 patients with lower limb mangled extremities presenting to trauma center of PGIMER, Chandigarh, who were operated within 24 h of injury to see whether muscle healing in mangled extremities follows the same pattern. Biopsies were taken during initial surgery conducted within 24 h of injury and on the 7th day of injury when patient was posted again for secondary wound closure procedure or revision amputation. The biopsy samples were subjected to histopathological and immunohistochemistry examination using antibodies against fast and slow myosin. We found that the regenerating muscle fibers in the biopsy sample taken on the 7th day of injury showed only slow muscle fibers with the absence of fast muscle fibers when compared with the initial biopsy results showing differential regeneration of slow muscle fibers.
Collapse
|
14
|
Meyer GA. Evidence of induced muscle regeneration persists for years in the mouse. Muscle Nerve 2018; 58:858-862. [PMID: 30159908 DOI: 10.1002/mus.26329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/21/2018] [Accepted: 08/26/2018] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Efficient repositioning of centralized nuclei after injury has long been assumed, with centralized nuclei frequently cited as indicators of ongoing regeneration. However, reports of centralized nuclei that persist after full recovery of fiber area and muscle force production call into question the time course of nuclear repositioning. METHODS We evaluated regeneration after cardiotoxin-induced damage in 10-week-old mice by quantifying intracellular and extracellular pathology at 2 and 94 weeks post-injection. RESULTS Centrally nucleated fibers were still prevalent at 94 weeks post-injection, representing > 25% of muscle fibers. Areas with > 90% centrally nucleated fibers could still be identified. Extra-myocellular indicators of regeneration (e.g., fibrosis and fatty infiltration) also remained significantly elevated at the 94-week time-point. DISCUSSION These findings indicate that not all nuclei are repositioned at the conclusion of induced muscle regeneration. Muscle Nerve 58:858-862, 2018.
Collapse
Affiliation(s)
- Gretchen A Meyer
- Program in Physical Therapy, Washington University in St. Louis, 4444 Forest Park Avenue, Suite 1101, St. Louis, Missouri, 63108, USA
| |
Collapse
|
15
|
Santos-Zas I, Negroni E, Mamchaoui K, Mosteiro CS, Gallego R, Butler-Browne GS, Pazos Y, Mouly V, Camiña JP. Obestatin Increases the Regenerative Capacity of Human Myoblasts Transplanted Intramuscularly in an Immunodeficient Mouse Model. Mol Ther 2017; 25:2345-2359. [PMID: 28750736 DOI: 10.1016/j.ymthe.2017.06.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 02/08/2023] Open
Abstract
Although cell-based therapy is considered a promising method aiming at treating different muscular disorders, little clinical benefit has been reported. One of major hurdles limiting the efficiency of myoblast transfer therapy is the poor survival of the transplanted cells. Any intervention upon the donor cells focused on enhancing in vivo survival, proliferation, and expansion is essential to improve the effectiveness of such therapies in regenerative medicine. In the present work, we investigated the potential role of obestatin, an autocrine peptide factor regulating skeletal muscle growth and repair, to improve the outcome of myoblast-based therapy by xenotransplanting primary human myoblasts into immunodeficient mice. The data proved that short in vivo obestatin treatment of primary human myoblasts not only enhances the efficiency of engraftment, but also facilitates an even distribution of myoblasts in the host muscle. Moreover, this treatment leads to a hypertrophic response of the human-derived regenerating myofibers. Taken together, the activation of the obestatin/GPR39 pathway resulted in an overall improvement of the efficacy of cell engraftment within the host's skeletal muscle. These data suggest considerable potential for future therapeutic applications and highlight the importance of combinatorial therapies.
Collapse
Affiliation(s)
- Icia Santos-Zas
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), 15706 Santiago de Compostela, Spain
| | - Elisa Negroni
- Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, INSERM UMRS974, Center for Research in Myology, 47 Boulevard de l'hôpital, 75013 Paris, France
| | - Kamel Mamchaoui
- Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, INSERM UMRS974, Center for Research in Myology, 47 Boulevard de l'hôpital, 75013 Paris, France
| | - Carlos S Mosteiro
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), 15706 Santiago de Compostela, Spain
| | - Rosalia Gallego
- Departamento de Ciencias Morfológicas, Universidad de Santiago de Compostela, 15704 Santiago de Compostela, Spain
| | - Gillian S Butler-Browne
- Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, INSERM UMRS974, Center for Research in Myology, 47 Boulevard de l'hôpital, 75013 Paris, France
| | - Yolanda Pazos
- Laboratorio de Patología Digestiva, IDIS, CHUS, SERGAS, 15706 Santiago de Compostela, Spain
| | - Vincent Mouly
- Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, INSERM UMRS974, Center for Research in Myology, 47 Boulevard de l'hôpital, 75013 Paris, France.
| | - Jesus P Camiña
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), 15706 Santiago de Compostela, Spain.
| |
Collapse
|
16
|
Iyer SR, Shah SB, Valencia AP, Schneider MF, Hernández-Ochoa EO, Stains JP, Blemker SS, Lovering RM. Altered nuclear dynamics in MDX myofibers. J Appl Physiol (1985) 2016; 122:470-481. [PMID: 27979987 DOI: 10.1152/japplphysiol.00857.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 01/17/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disorder in which the absence of dystrophin leads to progressive muscle degeneration and weakness. Although the genetic basis is known, the pathophysiology of dystrophic skeletal muscle remains unclear. We examined nuclear movement in wild-type (WT) and muscular dystrophy mouse model for DMD (MDX) (dystrophin-null) mouse myofibers. We also examined expression of proteins in the linkers of nucleoskeleton and cytoskeleton (LINC) complex, as well as nuclear transcriptional activity via histone H3 acetylation and polyadenylate-binding nuclear protein-1. Because movement of nuclei is not only LINC dependent but also microtubule dependent, we analyzed microtubule density and organization in WT and MDX myofibers, including the application of a unique 3D tool to assess microtubule core structure. Nuclei in MDX myofibers were more mobile than in WT myofibers for both distance traveled and velocity. MDX muscle shows reduced expression and labeling intensity of nesprin-1, a LINC protein that attaches the nucleus to the microtubule and actin cytoskeleton. MDX nuclei also showed altered transcriptional activity. Previous studies established that microtubule structure at the cortex is disrupted in MDX myofibers; our analyses extend these findings by showing that microtubule structure in the core is also disrupted. In addition, we studied malformed MDX myofibers to better understand the role of altered myofiber morphology vs. microtubule architecture in the underlying susceptibility to injury seen in dystrophic muscles. We incorporated morphological and microtubule architectural concepts into a simplified finite element mathematical model of myofiber mechanics, which suggests a greater contribution of myofiber morphology than microtubule structure to muscle biomechanical performance.NEW & NOTEWORTHY Microtubules provide the means for nuclear movement but show altered organization in the muscular dystrophy mouse model (MDX) (dystrophin-null) muscle. Here, MDX myofibers show increased nuclear movement, altered transcriptional activity, and altered linkers of nucleoskeleton and cytoskeleton complex expression compared with healthy myofibers. Microtubule architecture was incorporated in finite element modeling of passive stretch, revealing a role of fiber malformation, commonly found in MDX muscle. The results suggest that alterations in microtubule architecture in MDX muscle affect nuclear movement, which is essential for muscle function.
Collapse
Affiliation(s)
- Shama R Iyer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sameer B Shah
- Departments of Orthopaedic Surgery and Bioengineering, University of California San Diego, La Jolla, California
| | - Ana P Valencia
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Martin F Schneider
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Erick O Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Silvia S Blemker
- Department of Biomedical Engineering and Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia; and
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland; .,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
17
|
Mishra P, Varuzhanyan G, Pham AH, Chan DC. Mitochondrial Dynamics is a Distinguishing Feature of Skeletal Muscle Fiber Types and Regulates Organellar Compartmentalization. Cell Metab 2015; 22:1033-44. [PMID: 26603188 PMCID: PMC4670593 DOI: 10.1016/j.cmet.2015.09.027] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/08/2015] [Accepted: 09/23/2015] [Indexed: 01/18/2023]
Abstract
Skeletal muscle fibers differentiate into specific fiber types with distinct metabolic properties determined by their reliance on oxidative phosphorylation (OXPHOS). Using in vivo approaches, we find that OXPHOS-dependent fibers, compared to glycolytic fibers, contain elongated mitochondrial networks with higher fusion rates that are dependent on the mitofusins Mfn1 and Mfn2. Switching of a glycolytic fiber to an oxidative IIA type is associated with elongation of mitochondria, suggesting that mitochondrial fusion is linked to metabolic state. Furthermore, we reveal that mitochondrial proteins are compartmentalized to discrete domains centered around their nuclei of origin. The domain dimensions are dependent on fiber type and are regulated by the mitochondrial dynamics proteins Mfn1, Mfn2, and Mff. Our results indicate that mitochondrial dynamics is tailored to fiber type physiology and provides a rationale for the segmental defects characteristic of aged and diseased muscle fibers.
Collapse
Affiliation(s)
- Prashant Mishra
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Grigor Varuzhanyan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anh H Pham
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
18
|
Muscle stem cells contribute to myofibres in sedentary adult mice. Nat Commun 2015; 6:7087. [PMID: 25971691 PMCID: PMC4435732 DOI: 10.1038/ncomms8087] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/31/2015] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle is essential for mobility, stability, and whole body metabolism, and muscle loss, for instance during sarcopenia, has profound consequences. Satellite cells (muscle stem cells) have been hypothesized, but not yet demonstrated, to contribute to muscle homeostasis and a decline in their contribution to myofiber homeostasis to play a part in sarcopenia. To test their role in muscle maintenance, we genetically labeled and ablated satellite cells in adult sedentary mice. We demonstrate via genetic lineage experiments that even in the absence of injury, satellite cells contribute to myofibers in all adult muscles, although the extent and timing differs. However, genetic ablation experiments showed that satellite cells are not globally required to maintain myofiber cross-sectional area of uninjured adult muscle.
Collapse
|
19
|
Duddy W, Duguez S, Johnston H, Cohen TV, Phadke A, Gordish-Dressman H, Nagaraju K, Gnocchi V, Low S, Partridge T. Muscular dystrophy in the mdx mouse is a severe myopathy compounded by hypotrophy, hypertrophy and hyperplasia. Skelet Muscle 2015; 5:16. [PMID: 25987977 PMCID: PMC4434871 DOI: 10.1186/s13395-015-0041-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 04/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Preclinical testing of potential therapies for Duchenne muscular dystrophy (DMD) is conducted predominantly of the mdx mouse. But lack of a detailed quantitative description of the pathology of this animal limits our ability to evaluate the effectiveness of putative therapies or their relevance to DMD. METHODS Accordingly, we have measured the main cellular components of muscle growth and regeneration over the period of postnatal growth and early pathology in mdx and wild-type (WT) mice; phalloidin binding is used as a measure of fibre size, myonuclear counts and BrdU labelling as records of myogenic activity. RESULTS We confirm a two-phase postnatal growth pattern in WT muscle: first, increase in myonuclear number over weeks 1 to 3, then expansion of myonuclear domain. Mdx muscle growth lags behind that of WT prior to overt signs of pathology. Fibres are smaller, with fewer myonuclei and smaller myonuclear domains. Moreover, satellite cells are more readily detached from mdx than WT muscle fibres. At 3 weeks, mdx muscles enter a phase of florid myonecrosis, accompanied by concurrent regeneration of an intensity that results in complete replacement of pre-existing muscle over the succeeding 3 to 4 weeks. Both WT and mdx muscles attain maximum size by 12 to 14 weeks, mdx muscle fibres being up to 50% larger than those of WT as they become increasingly branched. Mdx muscle fibres also become hypernucleated, containing twice as many myonuclei per sarcoplasmic volume, as those of WT, the excess corresponding to the number of centrally placed myonuclei. CONCLUSIONS The best-known consequence of lack of dystrophin that is common to DMD and the mdx mouse is the conspicuous necrosis and regeneration of muscle fibres. We present protocols for measuring this in terms both of loss of muscle nuclei previously labelled with BrdU and of the intensity of myonuclear labelling with BrdU administered during the regeneration period. Both measurements can be used to assess the efficacy of putative antinecrotic agents. We also show that lack of dystrophin is associated with a number of previously unsuspected abnormalities of muscle fibre structure and function that do not appear to be directly associated with myonecrosis.
Collapse
Affiliation(s)
- William Duddy
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue NW, Washington DC, 20010 USA ; Myology Center of Research, Institut de Myologie Pitié-Salpétrière - Bâtiment Babinski, 75651 Paris Cedex 13, France
| | - Stephanie Duguez
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue NW, Washington DC, 20010 USA ; Myology Center of Research, Institut de Myologie Pitié-Salpétrière - Bâtiment Babinski, 75651 Paris Cedex 13, France
| | - Helen Johnston
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue NW, Washington DC, 20010 USA
| | - Tatiana V Cohen
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue NW, Washington DC, 20010 USA ; Center for Genetic Muscle Disorders, Kennedy Krieger Institute, 801 N. Broadway, Baltimore, MD 21205 USA
| | - Aditi Phadke
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue NW, Washington DC, 20010 USA
| | - Heather Gordish-Dressman
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue NW, Washington DC, 20010 USA
| | - Kanneboyina Nagaraju
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue NW, Washington DC, 20010 USA
| | - Viola Gnocchi
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue NW, Washington DC, 20010 USA
| | - SiewHui Low
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218 USA
| | - Terence Partridge
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue NW, Washington DC, 20010 USA
| |
Collapse
|
20
|
Partridge TA, Morgan JE. Multiple insights from myogenic cell transplants. Hum Gene Ther 2014; 25:404-5. [PMID: 24848316 DOI: 10.1089/hum.2014.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Pichavant C, Pavlath GK. Incidence and severity of myofiber branching with regeneration and aging. Skelet Muscle 2014; 4:9. [PMID: 24855558 PMCID: PMC4030050 DOI: 10.1186/2044-5040-4-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/01/2014] [Indexed: 11/30/2022] Open
Abstract
Background Myofibers with an abnormal branching cytoarchitecture are commonly found in muscular dystrophy and in regenerated or aged nondystrophic muscles. Such branched myofibers from dystrophic mice are more susceptible to damage than unbranched myofibers in vitro, suggesting that muscles containing a high percentage of these myofibers are more prone to injury. Little is known about the regulation of myofiber branching. Methods To gain insights into the formation and fate of branched myofibers, we performed in-depth analyses of single myofibers isolated from dystrophic and nondystrophic (myotoxin-injured or aged) mouse muscles. The proportion of branched myofibers, the number of branches per myofiber and the morphology of the branches were assessed. Results Aged dystrophic mice exhibited the most severe myofiber branching as defined by the incidence of branched myofibers and the number of branches per myofiber, followed by myotoxin-injured, wild-type muscles and then aged wild-type muscles. In addition, the morphology of the branched myofibers differed among the various models. In response to either induced or ongoing muscle degeneration, branching was restricted to regenerated myofibers containing central nuclei. In myotoxin-injured muscles, the amount of branched myofibers remained stable over time. Conclusion We suggest that myofiber branching is a consequence of myofiber remodeling during muscle regeneration. Our present study lays valuable groundwork for identifying the molecular pathways leading to myofiber branching in dystrophy, trauma and aging. Decreasing myofiber branching in dystrophic patients may improve muscle resistance to mechanical stress.
Collapse
Affiliation(s)
- Christophe Pichavant
- Department of Pharmacology, Rollins Research Center, Emory University, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Grace K Pavlath
- Department of Pharmacology, Rollins Research Center, Emory University, 1510 Clifton Road, Atlanta, GA 30322, USA
| |
Collapse
|
22
|
Muir LA, Nguyen QG, Hauschka SD, Chamberlain JS. Engraftment potential of dermal fibroblasts following in vivo myogenic conversion in immunocompetent dystrophic skeletal muscle. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14025. [PMID: 25558461 PMCID: PMC4280788 DOI: 10.1038/mtm.2014.25] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Autologous dermal fibroblasts (dFbs) are promising candidates for enhancing muscle regeneration in Duchenne muscular dystrophy (DMD) due to their ease of isolation, immunological compatibility, and greater proliferative potential than DMD satellite cells. We previously showed that mouse fibroblasts, after MyoD-mediated myogenic reprogramming in vivo, engraft in skeletal muscle and supply dystrophin. Assessing the therapeutic utility of this system requires optimization of conversion and transplantation conditions and quantitation of engraftment so that these parameters can be correlated with possible functional improvements. Here, we derived dFbs from transgenic mice carrying mini-dystrophin, transduced them by lentivirus carrying tamoxifen-inducible MyoD, and characterized their myogenic and engraftment potential. After cell transplantation into the muscles of immunocompetent dystrophic mdx4cv mice, tamoxifen treatment drove myogenic conversion and fusion into myofibers that expressed high levels of mini-dystrophin. Injecting 50,000 cells/µl (1 × 106 total cells) resulted in a peak of ~600 mini-dystrophin positive myofibers in tibialis anterior muscle single cross-sections. However, extensor digitorum longus muscles with up to 30% regional engraftment showed no functional improvements; similar limitations were obtained with whole muscle mononuclear cells. Despite the current lack of physiological improvement, this study suggests a viable initial strategy for using a patient-accessible dermal cell population to enhance skeletal muscle regeneration in DMD.
Collapse
Affiliation(s)
- Lindsey A Muir
- Program in Molecular and Cellular Biology, University of Washington ; Department of Neurology, University of Washington
| | | | | | - Jeffrey S Chamberlain
- Department of Neurology, University of Washington ; Department of Biochemistry, University of Washington ; Department of Medicine, University of Washington
| |
Collapse
|
23
|
Abstract
Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration.
Collapse
Affiliation(s)
- Hang Yin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
24
|
Boldrin L, Morgan JE. Modulation of the host skeletal muscle niche for donor satellite cell grafting. Methods Mol Biol 2013; 1035:179-90. [PMID: 23959991 DOI: 10.1007/978-1-62703-508-8_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skeletal muscle tissue has a remarkable capability of regenerating in pathological conditions or after injury. The principal muscle stem cells, satellite cells, are responsible for this prompt and efficient process. Normally quiescent in their niches underneath the basal lamina of each muscle fiber, satellite cells become activated to repair or form new fibers. Ideally, healthy donor stem cells could be transplanted to regenerate the skeletal muscle tissue to repair a genetic defect. However, to be efficient, cell grafting requires modulation of the host muscle environment to allow homing of, and regeneration by, donor satellite cells. Here, we provide methods to modulate the host mouse muscle environment in order to destroy or preserve the muscle niche before transplanting donor satellite cells. We also describe methods to investigate donor-derived muscle regeneration and self-renewal.
Collapse
Affiliation(s)
- Luisa Boldrin
- The Dubowitz Neuromuscular Centre UCL, Institute of Child Health, London, UK
| | | |
Collapse
|
25
|
Tassin A, Laoudj-Chenivesse D, Vanderplanck C, Barro M, Charron S, Ansseau E, Chen YW, Mercier J, Coppée F, Belayew A. DUX4 expression in FSHD muscle cells: how could such a rare protein cause a myopathy? J Cell Mol Med 2012. [PMID: 23206257 PMCID: PMC3823138 DOI: 10.1111/j.1582-4934.2012.01647.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is one of the most frequent hereditary muscle disorders. It is linked to contractions of the D4Z4 repeat array in 4q35. We have characterized the double homeobox 4 (DUX4) gene in D4Z4 and its mRNA transcribed from the distal D4Z4 unit to a polyadenylation signal in the flanking pLAM region. It encodes a transcription factor expressed in FSHD but not healthy muscle cells which initiates a gene deregulation cascade causing differentiation defects, muscle atrophy and oxidative stress. PITX1 was the first identified DUX4 target and encodes a transcription factor involved in muscle atrophy. DUX4 was found expressed in only 1/1000 FSHD myoblasts. We have now shown it was induced upon differentiation and detected in about 1/200 myotube nuclei. The DUX4 and PITX1 proteins presented staining gradients in consecutive myonuclei which suggested a diffusion as known for other muscle nuclear proteins. Both protein half-lifes were regulated by the ubiquitin-proteasome pathway. In addition, we could immunodetect the DUX4 protein in FSHD muscle extracts. As a model, we propose the DUX4 gene is stochastically activated in a small number of FSHD myonuclei. The resulting mRNAs are translated in the cytoplasm around an activated nucleus and the DUX4 proteins diffuse to adjacent nuclei where they activate target genes such as PITX1. The PITX1 protein can further diffuse to additional myonuclei and expand the transcriptional deregulation cascade initiated by DUX4. Together the diffusion and the deregulation cascade would explain how a rare protein could cause the muscle defects observed in FSHD.
Collapse
Affiliation(s)
- Alexandra Tassin
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Neal A, Boldrin L, Morgan JE. The satellite cell in male and female, developing and adult mouse muscle: distinct stem cells for growth and regeneration. PLoS One 2012; 7:e37950. [PMID: 22662253 PMCID: PMC3360677 DOI: 10.1371/journal.pone.0037950] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 04/30/2012] [Indexed: 11/18/2022] Open
Abstract
Satellite cells are myogenic cells found between the basal lamina and the sarcolemma of the muscle fibre. Satellite cells are the source of new myofibres; as such, satellite cell transplantation holds promise as a treatment for muscular dystrophies. We have investigated age and sex differences between mouse satellite cells in vitro and assessed the importance of these factors as mediators of donor cell engraftment in an in vivo model of satellite cell transplantation. We found that satellite cell numbers are increased in growing compared to adult and in male compared to female adult mice. We saw no difference in the expression of the myogenic regulatory factors between male and female mice, but distinct profiles were observed according to developmental stage. We show that, in contrast to adult mice, the majority of satellite cells from two week old mice are proliferating to facilitate myofibre growth; however a small proportion of these cells are quiescent and not contributing to this growth programme. Despite observed changes in satellite cell populations, there is no difference in engraftment efficiency either between satellite cells derived from adult or pre-weaned donor mice, male or female donor cells, or between male and female host muscle environments. We suggest there exist two distinct satellite cell populations: one for muscle growth and maintenance and one for muscle regeneration.
Collapse
Affiliation(s)
- Alice Neal
- The Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, London, United Kingdom
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, London, United Kingdom
- * E-mail: (AN); (JEM)
| | - Luisa Boldrin
- The Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, London, United Kingdom
| | - Jennifer Elizabeth Morgan
- The Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, London, United Kingdom
- * E-mail: (AN); (JEM)
| |
Collapse
|
27
|
Bartoszuk-Bruzzone U, Burdzińska A, Orzechowski A, Kłos Z. Protective effect of sodium ascorbate on efficacy of intramuscular transplantation of autologous muscle-derived cells. Muscle Nerve 2012; 45:32-8. [PMID: 22190303 DOI: 10.1002/mus.22248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION The possible reason for elimination of myogenic cells after transplantation is inflammation at the injection site associated with oxidative stress. The aim of this study was to determine whether preconditioning of muscle-derived cells with an antioxidant, sodium ascorbate, can influence the fate of transplanted cells. METHODS Autologous transplantation of muscle-derived cells was performed in rabbits. Isolated cells were identified, lipofected with β-galactosidase, preincubated or not with sodium ascorbate, and injected intramuscularly. RESULTS Two weeks after autologous transplantation in the edge of a previous muscle defect, donor cells formed multinucleated young myotubes. Pretreatment of cells with sodium ascorbate before injection resulted in a significant increase of donor cells at the injection site 2 weeks after transfer. CONCLUSIONS These results show that: (1) preincubation with antioxidant can increase the efficacy of myogenic cell transplantation; and (2) oxidative stress may play a role in elimination of cells after autologous transplantation.
Collapse
|
28
|
A new extensively characterised conditionally immortal muscle cell-line for investigating therapeutic strategies in muscular dystrophies. PLoS One 2011; 6:e24826. [PMID: 21935475 PMCID: PMC3173493 DOI: 10.1371/journal.pone.0024826] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 08/18/2011] [Indexed: 01/13/2023] Open
Abstract
A new conditionally immortal satellite cell-derived cell-line, H2K 2B4, was generated from the H2Kb-tsA58 immortomouse. Under permissive conditions H2K 2B4 cells terminally differentiate in vitro to form uniform myotubes with a myogenic protein profile comparable with freshly isolated satellite cells. Following engraftment into immunodeficient dystrophin-deficient mice, H2K 2B4 cells regenerated host muscle with donor derived myofibres that persisted for at least 24 weeks, without forming tumours. These cells were readily transfectable using both retrovirus and the non-viral transfection methods and importantly upon transplantation, were able to reconstitute the satellite cell niche with functional donor derived satellite cells. Finally using the Class II DNA transposon, Sleeping Beauty, we successfully integrated a reporter plasmid into the genome of H2K 2B4 cells without hindering the myogenic differentiation. Overall, these data suggest that H2K 2B4 cells represent a readily transfectable stable cell-line in which to investigate future stem cell based therapies for muscle disease.
Collapse
|
29
|
Delcour M, Russier M, Xin DL, Massicotte VS, Barbe MF, Coq J. Mild musculoskeletal and locomotor alterations in adult rats with white matter injury following prenatal ischemia. Int J Dev Neurosci 2011; 29:593-607. [DOI: 10.1016/j.ijdevneu.2011.02.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/25/2011] [Accepted: 02/27/2011] [Indexed: 11/25/2022] Open
Affiliation(s)
- Maxime Delcour
- UMR 6149 Neurosciences Intégratives et Adaptatives, CNRS, Aix‐Marseille Université, Centre Saint Charlescase B, 3 place Victor Hugo13331Marseille Cedex 03France
| | - Michael Russier
- UMR 6149 Neurosciences Intégratives et Adaptatives, CNRS, Aix‐Marseille Université, Centre Saint Charlescase B, 3 place Victor Hugo13331Marseille Cedex 03France
| | - Dong L. Xin
- Department of Physical TherapyTemple UniversityPhiladelphiaPA19140USA
| | - Vicky S. Massicotte
- Department of Anatomy and Cell BiologyTemple University School of MedicinePhiladelphiaPA19140USA
| | - Mary F. Barbe
- Department of Anatomy and Cell BiologyTemple University School of MedicinePhiladelphiaPA19140USA
| | - Jacques‐Olivier Coq
- UMR 6149 Neurosciences Intégratives et Adaptatives, CNRS, Aix‐Marseille Université, Centre Saint Charlescase B, 3 place Victor Hugo13331Marseille Cedex 03France
| |
Collapse
|
30
|
Meng J, Muntoni F, Morgan JE. Stem cells to treat muscular dystrophies – Where are we? Neuromuscul Disord 2011; 21:4-12. [DOI: 10.1016/j.nmd.2010.10.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/13/2010] [Accepted: 10/08/2010] [Indexed: 12/18/2022]
|
31
|
de la Garza-Rodea AS, van der Velde I, Boersma H, Gonçalves MAFV, van Bekkum DW, de Vries AAF, Knaän-Shanzer S. Long-term contribution of human bone marrow mesenchymal stromal cells to skeletal muscle regeneration in mice. Cell Transplant 2010; 20:217-31. [PMID: 20719081 DOI: 10.3727/096368910x522117] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are attractive for cellular therapy of muscular dystrophies as they are easy to procure, can be greatly expanded ex vivo, and contribute to skeletal muscle repair in vivo. However, detailed information about the contribution of bone marrow (BM)-derived human MSCs (BM-hMSCs) to skeletal muscle regeneration in vivo is very limited. Here, we present the results of a comprehensive study of the fate of LacZ-tagged BM-hMSCs following implantation in cardiotoxin (CTX)-injured tibialis anterior muscles (TAMs) of immunodeficient mice. β-Galactosidase-positive (β-gal(+)) human-mouse hybrid myofibers (HMs) were counted in serial cross sections over the full length of the treated TAMs of groups of mice at monthly intervals. The number of human cells was estimated using chemiluminescence assays. While the number of human cells declined gradually to about 10% of the injected cells at 60 days after transplantation, the number of HMs increased from day 10 onwards, reaching 104 ± 39.1 per TAM at 4 months postinjection. β-gal(+) cells and HMs were distributed over the entire muscle, indicating migration of the former from the central injection site to the ends of the TAMs. The identification of HMs that stained positive for human spectrin suggests myogenic reprogramming of hMSC nuclei. In summary, our findings reveal that BM-hMSCs continue to participate in the regeneration/remodeling of CTX-injured TAMs, resulting in ±5% HMs at 4 months after damage induction. Moreover, donor-derived cells were shown to express genetic information, both endogenous and transgenic, in recipient myofibers.
Collapse
Affiliation(s)
- Anabel S de la Garza-Rodea
- Virus and Stem Cell Biology Laboratory, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
32
|
Boldrin L, Muntoni F, Morgan JE. Are human and mouse satellite cells really the same? J Histochem Cytochem 2010; 58:941-55. [PMID: 20644208 DOI: 10.1369/jhc.2010.956201] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Satellite cells are quiescent cells located under the basal lamina of skeletal muscle fibers that contribute to muscle growth, maintenance, repair, and regeneration. Mouse satellite cells have been shown to be muscle stem cells that are able to regenerate muscle fibers and self-renew. As human skeletal muscle is also able to regenerate following injury, we assume that the human satellite cell is, like its murine equivalent, a muscle stem cell. In this review, we compare human and mouse satellite cells and highlight their similarities and differences. We discuss gaps in our knowledge of human satellite cells, compared with that of mouse satellite cells, and suggest ways in which we may advance studies on human satellite cells, particularly by finding new markers and attempting to re-create the human satellite cell niche in vitro.
Collapse
Affiliation(s)
- Luisa Boldrin
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, 30 Guilford Street, London WC1N1EH, United Kingdom.
| | | | | |
Collapse
|
33
|
Smith AS, Shah R, Hunt NP, Lewis MP. The Role of Connective Tissue and Extracellular Matrix Signaling in Controlling Muscle Development, Function, and Response to Mechanical Forces. Semin Orthod 2010. [DOI: 10.1053/j.sodo.2010.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Head SI. Branched fibres in old dystrophicmdxmuscle are associated with mechanical weakening of the sarcolemma, abnormal Ca2+transients and a breakdown of Ca2+homeostasis during fatigue. Exp Physiol 2010; 95:641-56. [DOI: 10.1113/expphysiol.2009.052019] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Kallestad KM, McLoon LK. Defining the heterogeneity of skeletal muscle-derived side and main population cells isolated immediately ex vivo. J Cell Physiol 2010; 222:676-84. [PMID: 20020527 DOI: 10.1002/jcp.21989] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Myoblast transfer therapy for Duchenne muscular dystrophy (DMD) largely fails due to cell death and inability of transplanted cells to engraft in diseased muscles. One method attempting to enrich for cell subpopulations is the Hoechst 33342 dye exclusion assay, yielding a side population (SP) thought to be progenitor enriched and a main population (MP). However, in vitro and transplant studies yielded inconsistent results relative to downstream progeny. Cell surface markers expressed by skeletal muscle-derived MP and SP cells have not been fully characterized directly ex vivo. Using flow cytometry, MP and SP cells were characterized based on their expression of several well-accepted progenitor cell antigens. Both the MP and SP populations are heterogeneous and overlapping in the cells they contain. The percentages of cells in each population vary with species and specific muscle examined. MP and SP populations contain both satellite and multipotent progenitor cells, based on expression of CD34, Sca-1, Pax7, and M-cadherin. Thus, isolation using this procedure cannot be used to predict downstream differentiation outcomes, and explains the conflicting literature on these cells. Hoechst dye also results in significant mortality of sorted cells. As defined subpopulations are easily obtained using flow cytometry, sorting immediately ex vivo based on accepted myogenic precursor cell markers will yield superior results in terms of cell homogeneity for transplantation therapy.
Collapse
Affiliation(s)
- Kristen M Kallestad
- Department of Ophthalmology and Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
36
|
Boldrin L, Zammit PS, Muntoni F, Morgan JE. Mature adult dystrophic mouse muscle environment does not impede efficient engrafted satellite cell regeneration and self-renewal. Stem Cells 2009; 27:2478-87. [PMID: 19575422 PMCID: PMC3836226 DOI: 10.1002/stem.162] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Changes that occur in the skeletal muscle environment with the progress of muscular dystrophies may affect stem cell function and result in impaired muscle regeneration. It has previously been suggested that the success of stem cell transplantation could therefore be dependent both on the properties of the cell itself and on the host muscle environment. Here we engrafted young and mature adult mdx-nude mice, which are the genetic homolog of Duchenne muscular dystrophy, with a small number of satellite cells freshly isolated from young, normal donor mice. We found that the donor satellite cells contributed to muscle regeneration and self-renewal as efficiently within mature adult, as in young, dystrophic host muscle. Donor-derived satellite cells also contributed to robust regeneration after further injury, showing that they were functional despite the more advanced dystrophic muscle environment. These findings provide evidence that muscle tissue in a later stage of dystrophy may be effectively treated by stem cells.
Collapse
MESH Headings
- Age Factors
- Animals
- Cell Communication/physiology
- Cell Survival/physiology
- Disease Models, Animal
- Graft Survival/physiology
- Mice
- Mice, Inbred mdx
- Mice, Transgenic
- Muscle Fibers, Skeletal/metabolism
- Muscle Proteins/metabolism
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiopathology
- Muscular Dystrophy, Animal/surgery
- Regeneration/physiology
- Satellite Cells, Skeletal Muscle/cytology
- Satellite Cells, Skeletal Muscle/physiology
- Satellite Cells, Skeletal Muscle/transplantation
- Stem Cell Transplantation/methods
- Treatment Outcome
Collapse
Affiliation(s)
- Luisa Boldrin
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, United Kingdom
| | - Peter Steven Zammit
- Randall Division of Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, United Kingdom
| | | |
Collapse
|
37
|
Rani S, Barbe MF, Barr AE, Litvin J. Induction of periostin-like factor and periostin in forearm muscle, tendon, and nerve in an animal model of work-related musculoskeletal disorder. J Histochem Cytochem 2009; 57:1061-73. [PMID: 19620321 DOI: 10.1369/jhc.2009.954081] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Work-related musculoskeletal disorders (WMSDs), also known as repetitive strain injuries of the upper extremity, frequently cause disability and impairment of the upper extremities. Histopathological changes including excess collagen deposition around myofibers, cell necrosis, inflammatory cell infiltration, and increased cytokine expression result from eccentric exercise, forced lengthening, exertion-induced injury, and repetitive strain-induced injury of muscles. Repetitive tasks have also been shown to result in tendon and neural injuries, with subsequent chronic inflammatory responses, followed by residual fibrosis. To identify mechanisms that regulate tissue repair in WMSDs, we investigated the induction of periostin-like factor (PLF) and periostin, proteins induced in other pathologies but not expressed in normal adult tissue. In this study, we examined the level of PLF and periostin in muscle, tendon, and nerve using immunohistochemistry and Western blot analysis. PLF increased with continued task performance, whereas periostin was constitutively expressed. PLF was located in satellite cells and/or myoblasts, which increased in number with continued task performance, supporting our hypothesis that PLF plays a role in muscle repair or regeneration. Periostin, on the other hand, was not present in satellite cells and/or myoblasts.
Collapse
Affiliation(s)
- Shobha Rani
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | |
Collapse
|
38
|
Lovering RM, Michaelson L, Ward CW. Malformed mdx myofibers have normal cytoskeletal architecture yet altered EC coupling and stress-induced Ca2+ signaling. Am J Physiol Cell Physiol 2009; 297:C571-80. [PMID: 19605736 DOI: 10.1152/ajpcell.00087.2009] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle function is dependent on its highly regular structure. In studies of dystrophic (dy/dy) mice, the proportion of malformed myofibers decreases after prolonged whole muscle stimulation, suggesting that the malformed myofibers are more prone to injury. The aim of this study was to assess morphology and to measure excitation-contraction (EC) coupling (Ca(2+) transients) and susceptibility to osmotic stress (Ca(2+) sparks) of enzymatically isolated muscle fibers of the extensor digitorum longus (EDL) and flexor digitorum brevis (FDB) muscles from young (2-3 mo) and old (8-9 mo) mdx and age-matched control mice (C57BL10). In young mdx EDL, 6% of the myofibers had visible malformations (i.e., interfiber splitting, branched ends, midfiber appendages). In contrast, 65% of myofibers in old mdx EDL contained visible malformations. In the mdx FDB, malformation occurred in only 5% of young myofibers and 11% of old myofibers. Age-matched control mice did not display the altered morphology of mdx muscles. The membrane-associated and cytoplasmic cytoskeletal structures appeared normal in the malformed mdx myofibers. In mdx FDBs with significantly branched ends, an assessment of global, electrically evoked Ca(2+) signals (indo-1PE-AM) revealed an EC coupling deficit in myofibers with significant branching. Interestingly, peak amplitude of electrically evoked Ca(2+) release in the branch of the bifurcated mdx myofiber was significantly decreased compared with the trunk of the same myofiber. No alteration in the basal myoplasmic Ca(2+) concentration (i.e., indo ratio) was seen in malformed vs. normal mdx myofibers. Finally, osmotic stress induced the occurrence of Ca(2+) sparks to a greater extent in the malformed portions of myofibers, which is consistent with deficits in EC coupling control. In summary, our data show that aging mdx myofibers develop morphological malformations. These malformations are not associated with gross disruptions in cytoskeletal or t-tubule structure; however, alterations in myofiber Ca(2+) signaling are evident.
Collapse
Affiliation(s)
- Richard M Lovering
- Univ. of Maryland School of Medicine, Dept. of Physiology, 685 W. Baltimore St., HSF-1, Rm, 580, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
39
|
Giacinti C, Musarò A, De Falco G, Jourdan I, Molinaro M, Bagella L, Simone C, Giordano A. Cdk9-55: a new player in muscle regeneration. J Cell Physiol 2008; 216:576-82. [PMID: 18546201 DOI: 10.1002/jcp.21361] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adult skeletal muscle contains a specialized population of myogenic quiescent stem cells, termed satellite cells, which contribute to repair myofibers after injury. During muscle regeneration, satellite cells exit their normal quiescent state, proliferate, activating MyoD and Myf-5 expression, and finally differentiate and fuse to reconstitute the injured muscle architecture. We have previously reported that cdk9 is required for myogenesis in vitro by activating MyoD-dependent transcription. In myoblasts induced to differentiate, MyoD recruits cdk9 on the chromatin of muscle-specific regulatory regions. This event correlates with chromatin-modifying enzyme recruitment and phosphorylation of cdk9-specific target residues at the carboxyl-terminal domain of RNA polymerase II. Here we report that a second cdk9 isoform, termed cdk9-55, plays a fundamental role in muscle regeneration and differentiation in vivo. This alternative form is specifically induced in injured myofibers and its activity is strictly required for the completion of muscle regeneration process.
Collapse
Affiliation(s)
- Cristina Giacinti
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Robey TE, Saiget MK, Reinecke H, Murry CE. Systems approaches to preventing transplanted cell death in cardiac repair. J Mol Cell Cardiol 2008; 45:567-81. [PMID: 18466917 DOI: 10.1016/j.yjmcc.2008.03.009] [Citation(s) in RCA: 302] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/20/2008] [Accepted: 03/06/2008] [Indexed: 12/26/2022]
Abstract
Stem cell transplantation may repair the injured heart, but tissue regeneration is limited by death of transplanted cells. Most cell death occurs in the first few days post-transplantation, likely from a combination of ischemia, anoikis and inflammation. Interventions known to enhance transplanted cell survival include heat shock, over-expressing anti-apoptotic proteins, free radical scavengers, anti-inflammatory therapy and co-delivery of extracellular matrix molecules. Combinatorial use of such interventions markedly enhances graft cell survival, but death still remains a significant problem. We review these challenges to cardiac cell transplantation and present an approach to systematically address them. Most anti-death studies use histology to assess engraftment, which is time- and labor-intensive. To increase throughput, we developed two biochemical approaches to follow graft viability in the mouse heart. The first relies on LacZ enzymatic activity to track genetically modified cells, and the second quantifies human genomic DNA content using repetitive Alu sequences. Both show linear relationships between input cell number and biochemical signal, but require correction for the time lag between cell death and loss of signal. Once optimized, they permit detection of as few as 1 graft cell in 40,000 host cells. Pro-survival effects measured biochemically at three days predict long-term histological engraftment benefits. These methods permitted identification of carbamylated erythropoietin (CEPO) as a pro-survival factor for human embryonic stem cell-derived cardiomyocyte grafts. CEPO's effects were additive to heat shock, implying independent survival pathways. This system should permit combinatorial approaches to enhance graft viability in a fraction of the time required for conventional histology.
Collapse
Affiliation(s)
- Thomas E Robey
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
41
|
Biérinx AS, Sebille A. Mouse sectioned muscle regenerates following auto-grafting with muscle fragments: a new muscle precursor cells transfer? Neurosci Lett 2007; 431:211-4. [PMID: 18178008 DOI: 10.1016/j.neulet.2007.11.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 11/02/2007] [Accepted: 11/21/2007] [Indexed: 10/22/2022]
Abstract
It was discovered fifty years ago that a minced skeletal muscle replaced in its bed is able to regenerate. This regeneration is due to the presence of quiescent muscle precursor cells so-called satellite cells in the adult muscle which proliferate and fuse to regenerate new centronucleated fibres when the muscle is damaged. These observations open therapeutic perspectives and, in this study, we attempted to test in the mouse whether fragments of minced muscle regenerate new fibres to fill the gap resulting from the trans-section and retraction of the extensor digitorum longus muscle (EDL). When untreated this gap never regenerates. In agreement with Studitsky, we observed that a minced EDL replaced in its bed regenerates fibres that are spatially disorganised. Minced fragments of abdominus rectus muscle placed in the gap resulting of the trans-section of the EDL regenerate muscle fibres in the gap with a better organisation that in the whole minced muscle. These results could have putative clinical applications, for instance in the prevention of incontinence following prostatectomy which implies removal excision of a large part of the striated urethral sphincter.
Collapse
Affiliation(s)
- Anne-Sophie Biérinx
- Université Pierre et Marie Curie-Paris 6, Faculté de Médecine, Atelier de régénération neuromusculaire, 27 rue Chaligny, 75012 Paris, France.
| | | |
Collapse
|
42
|
Sambasivan R, Tajbakhsh S. Skeletal muscle stem cell birth and properties. Semin Cell Dev Biol 2007; 18:870-82. [DOI: 10.1016/j.semcdb.2007.09.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 09/27/2007] [Indexed: 12/29/2022]
|
43
|
Grefte S, Kuijpers-Jagtman AM, Torensma R, Von den Hoff JW. Skeletal Muscle Development and Regeneration. Stem Cells Dev 2007; 16:857-68. [DOI: 10.1089/scd.2007.0058] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Sander Grefte
- Department of Orthodontics and Oral Biology, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Anne Marie Kuijpers-Jagtman
- Department of Orthodontics and Oral Biology, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Ruurd Torensma
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands
| | - Johannes W. Von den Hoff
- Department of Orthodontics and Oral Biology, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
44
|
Wong SHA, Lowes KN, Bertoncello I, Quigley AF, Simmons PJ, Cook MJ, Kornberg AJ, Kapsa RMI. Evaluation of Sca-1 and c-Kit As Selective Markers for Muscle Remodelling by Nonhemopoietic Bone Marrow Cells. Stem Cells 2007; 25:1364-74. [PMID: 17303817 DOI: 10.1634/stemcells.2006-0194] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Bone marrow (BM)-derived cells (BMCs) have demonstrated a myogenic tissue remodeling capacity. However, because the myoremodeling is limited to approximately 1%-3% of recipient muscle fibers in vivo, there is disagreement regarding the clinical relevance of BM for therapeutic application in myodegenerative conditions. This study sought to determine whether rare selectable cell surface markers (in particular, c-Kit) could be used to identify a BMC population with enhanced myoremodeling capacity. Dystrophic mdx muscle remodeling has been achieved using BMCs sorted by expression of stem cell antigen-1 (Sca-1). The inference that Sca-1 is also a selectable marker associated with myoremodeling capacity by muscle-derived cells prompted this study of relative myoremodeling contributions from BMCs (compared with muscle cells) on the basis of expression or absence of Sca-1. We show that myoremodeling activity does not differ in cells sorted solely on the basis of Sca-1 from either muscle or BM. In addition, further fractionation of BM to a more mesenchymal-like cell population with lineage markers and CD45 subsequently revealed a stronger selectability of myoremodeling capacity with c-Kit/Sca-1 (p < .005) than with Sca-1 alone. These results suggest that c-Kit may provide a useful selectable marker that facilitates selection of cells with an augmented myoremodeling capacity derived from BM and possibly from other nonmuscle tissues. In turn, this may provide a new methodology for rapid isolation of myoremodeling capacities from muscle and nonmuscle tissues. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Sharon H A Wong
- National Muscular Dystrophy Research Centre, Department of Clinical Neurosciences, St. Vincent's Hospital, 35 Victoria Parade, Fitzroy, Victoria, 3065, Australia
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Bouchentouf M, Benabdallah BF, Mills P, Tremblay JP. Exercise improves the success of myoblast transplantation in mdx mice. Neuromuscul Disord 2006; 16:518-29. [PMID: 16919954 DOI: 10.1016/j.nmd.2006.06.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 05/30/2006] [Accepted: 06/08/2006] [Indexed: 02/08/2023]
Abstract
Transplantation of normal muscle precursor cells is a potential approach to restore dystrophin expression within dystrophin [deficient] mdx mice, a model of Duchenne Muscular Dystrophy. This study aims to evaluate whether exercise could improve graft success and hybrid fiber distribution within mdx muscle. eGFP(+) Muscle precursor cells were transplanted into tibialis anterior muscles of mdx mice using a single injection trajectory. During the following weeks, muscle fiber breaks were induced by making mdx mice swim. To evaluate fiber damage, Evans blue solution was injected intraperitoneally to mice 16h before their sacrifice. Tibialis anterior muscles were then harvested and eGFP, dystrophin and Evans blue labeling were analyzed by fluorescent microscopy. Twenty minutes of exercise (i.e., swimming) were used to induce damage in about 30% of TA muscle fibers. Graft success, evaluated as the percentage of hybrid fibers which are eGFP(+), was improved by 1.9-fold after swimming 3 times per week during 4 weeks and by 1.8-fold after daily swimming. Hybrid muscle fiber transversal and longitudinal distribution were also increased after repeated physical efforts. Exercise induced fiber breaks, which improved MPC recruitment and fusion and increased long-term graft success and also transverse and longitudinal distribution of hybrid fibers.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cell Differentiation/physiology
- Cells, Cultured
- Disease Models, Animal
- Dystrophin/metabolism
- Elapid Venoms/pharmacology
- Evans Blue
- Graft Survival/physiology
- Green Fluorescent Proteins
- Male
- Mice
- Mice, Inbred mdx
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/physiology
- Muscle, Skeletal/surgery
- Muscular Dystrophy, Duchenne/therapy
- Myoblasts/cytology
- Myoblasts/physiology
- Myoblasts/transplantation
- Physical Conditioning, Animal/physiology
- Tissue Transplantation/methods
- Treatment Outcome
Collapse
Affiliation(s)
- Manaf Bouchentouf
- CHUQ-CHUL, Laval University, 2705 boulevard Laurier, Ste-Foy, G1V4G2 Canada
| | | | | | | |
Collapse
|
46
|
Anderson JE. The satellite cell as a companion in skeletal muscle plasticity: currency, conveyance, clue, connector and colander. ACTA ACUST UNITED AC 2006; 209:2276-92. [PMID: 16731804 DOI: 10.1242/jeb.02088] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Satellite cells are companions to voluntary muscle fibres, and are named for their intimate positional or ;satellite' relationship, as if revolving around fibres, like a satellite moon around the earth. Studies on the nature of at least some satellite cells, including their capabilities for self-renewal and for giving rise to multiple lineages in a stem cell-like function, are exploring the molecular basis of phenotypes described by markers of specialized function and gene expression in normal development, neuromuscular disease and aging. In adult skeletal muscle, the self-renewing capacity of satellite cells contributes to muscle growth, adaptation and regeneration. Muscle remodeling, such as demonstrated by changes in myofibre cross-sectional area and length, nerve and tendon junctions, and fibre-type distribution, occur in the absence of injury and provide broad functional and structural diversity among skeletal muscles. Those contributions to plasticity involve the satellite cell in at least five distinct roles, here described using metaphors for behaviour or the investigator's perspective. Satellite cells are the 'currency' of muscle; have a 'conveyance' role in adaptation by domains of cytoplasm along a myofibre; serve researchers, through a marker role, as 'clues' to various activities of muscle; are 'connectors' that physically, and through signalling and cell-fibre communications, bridge myofibres to the intra- and extra-muscular environment; and are equipped as metabolic and genetic filters or 'colanders' that can rectify or modulate particular signals. While all these roles are still under exploration, each contributes to the plasticity of skeletal muscle and thence to the overall biology and function of an organism. The use of metaphor for describing these roles helps to clarify and scrutinize the definitions that form the basis of our understanding of satellite cell biology: the metaphors provide the construct for various approaches to detect or test the nature of satellite cell functions in skeletal muscle plasticity.
Collapse
Affiliation(s)
- Judy E Anderson
- Department of Human Anatomy and Cell Science, Faculty of Medicine, University of Manitoba, Winnipeg, MB, R3E 0W3, Canada.
| |
Collapse
|
47
|
Zammit PS, Partridge TA, Yablonka-Reuveni Z. The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem 2006; 54:1177-91. [PMID: 16899758 DOI: 10.1369/jhc.6r6995.2006] [Citation(s) in RCA: 447] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The muscle satellite cell was first described and actually named on the basis of its anatomic location under the basement membrane surrounding each myofiber. For many years following its discovery, electron microscopy provided the only definitive method of identification. More recently, several molecular markers have been described that can be used to detect satellite cells, making them more accessible for study at the light microscope level. Satellite cells supply myonuclei to growing myofibers before becoming mitotically quiescent in muscle as it matures. They are then activated from this quiescent state to fulfill their roles in routine maintenance, hypertrophy, and repair of adult muscle. Because muscle is able to efficiently regenerate after repeated bouts of damage, systems must be in place to maintain a viable satellite cell pool, and it was proposed over 30 years ago that self-renewal was the primary mechanism. Self-renewal entails either a stochastic event or an asymmetrical cell division, where one daughter cell is committed to differentiation whereas the second continues to proliferate or becomes quiescent. This classic model of satellite cell self-renewal and the importance of satellite cells in muscle maintenance and repair have been challenged during the past few years as bone marrow-derived cells and various intramuscular populations were shown to be able to contribute myonuclei and occupy the satellite cell niche. This is a fast-moving and dynamic field, however, and in this review we discuss the evidence that we think puts this enigmatic cell firmly back at the center of adult myogenesis.
Collapse
Affiliation(s)
- Peter S Zammit
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL England.
| | | | | |
Collapse
|
48
|
Christiansen SP, McLoon LK. The effect of resection on satellite cell activity in rabbit extraocular muscle. Invest Ophthalmol Vis Sci 2006; 47:605-13. [PMID: 16431957 PMCID: PMC1780261 DOI: 10.1167/iovs.05-1069] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE A common treatment for motility disorders of the extraocular muscles (EOMs) is a resection procedure in which there is surgical shortening of the muscle. This procedure results in rotation of the globe toward the resected muscle, increased resting tension across the agonist-antagonist pair, and stretching of the elastic components of the muscles. In the rabbit, due to orbital constraints and limited rotation, resection results in more significant stretch of the surgically treated muscle than the antagonist. This surgical preparation allows for the examination of the effects of surgical shortening of one rectus muscle and passive stretch of its ipsilateral antagonist. METHODS The insertional 6 mm of the superior rectus muscles of adult rabbits were resected and reattached to the original insertion site. After 7 and 14 days, the animals were injected intraperitoneally with bromodeoxyuridine (BrdU) every 2 hours for 12 hours, followed by a 24-hour BrdU-free period. All superior and inferior rectus muscles from both globes were examined for BrdU incorporation, MyoD expression, neonatal and developmental myosin heavy chain (MyHC) isoform expression, and myofiber cross-sectional area alterations. RESULTS In the resected muscle and in the passively stretched antagonist muscle, there was a dramatic increase in the number of myofibers positive for neonatal MyHC and in the number of BrdU- and MyoD-positive satellite cells. The addition of BrdU-positive myonuclei increased from 1 per 1000 myofibers in cross sections of control muscles to 2 to 3 per 100 myofibers in the resected muscles. Single myofiber reconstructions showed that multiple BrdU-positive myonuclei were added to individual myofibers. Addition of new myonuclei occurred in random locations along the myofiber length of single fibers. There was no correlation between myofibers with BrdU-positive myonuclei and neonatal MyHC isoform expression. CONCLUSIONS Both active and passive stretch of the rectus muscles produced by strabismus surgery dramatically upregulated the processes of satellite cell activation, integration of new myonuclei into existing myofibers, and concomitant upregulation of immature myosin heavy chain isoforms. Understanding the effects of strabismus surgery on muscle cell biological reactions and myofiber remodeling may suggest new approaches for improving surgical outcomes.
Collapse
Affiliation(s)
| | - Linda K. McLoon
- From the Departments of Ophthalmology
- Neuroscience, University of Minnesota, Minneapolis, Minnesota
- Corresponding author: Linda K. McLoon, Department of Ophthalmology, University of Minnesota, Room 374 Lions Research Building, 2001 6th Street SE, Minneapolis, MN 55455;
| |
Collapse
|
49
|
Archer JD, Vargas CC, Anderson JE. Persistent and improved functional gain in mdx dystrophic mice after treatment with L-arginine and deflazacort. FASEB J 2006; 20:738-40. [PMID: 16464957 DOI: 10.1096/fj.05-4821fje] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although an increase in nitric oxide (NO) in muscle is reported to improve the outcome of deflazacort treatment for mdx mouse muscular dystrophy, the genetic homologue of Duchenne muscular dystrophy (DMD), the impact such treatment on the functional outcomes of the disease, including fiber susceptibility to exercise-induced injury, is not established. Experiments were designed to test whether treatment with deflazacort and L-arginine (a substrate for NO synthase, NOS) would change the extent of fiber injury induced by 24 h of voluntary exercise. The impact of exercise-related injury to induce a secondary regenerative response by muscle was also examined as corroborating evidence of muscle damage. Dystrophic mdx mice were treated for 3 wk with placebo, deflazacort, or deflazacort plus either L-arginine or N(G)-nitro-L-arginine methyl ester (a NOS inhibitor). Deflazacort, especially combined with L-arginine, spared quadriceps muscle from injury-induced regeneration (myf5 expression) compared with placebo treatment, despite an increase in membrane permeability immediately after exercise (assessed by Evans blue dye infiltration). Deflazacort alone prevented the typical progressive loss of function (measured as voluntary distance run over 24 h) that was observed 3 months later in placebo-treated mice. Therefore, combined deflazacort plus L-arginine treatment spared mdx dystrophic limb muscle from exercise-induced damage and the need for regeneration and induced a persistent functional improvement in distance run. Results suggest a potential new treatment option for improving the quality of life for boys with DMD.
Collapse
Affiliation(s)
- Jonathan D Archer
- Department of Human Anatomy and Cell Science, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
50
|
Wagers AJ, Conboy IM. Cellular and molecular signatures of muscle regeneration: current concepts and controversies in adult myogenesis. Cell 2005; 122:659-67. [PMID: 16143100 DOI: 10.1016/j.cell.2005.08.021] [Citation(s) in RCA: 298] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adult skeletal muscle generates force in a controlled and directed manner through the contraction of highly specialized, postmitotic, multinucleated myofibers. Life-long muscle function relies on maintenance and regeneration of myofibers through a highly regulated process beginning with activation of normally quiescent muscle precursor cells and proceeding with formation of proliferating progenitors that fuse to generate differentiated myofibers. In this review, we describe the historical basis and current evidence for the identification of satellite cells as adult muscle stem cells, critically evaluate contributions of other cells to adult myogenesis, and summarize existing data regarding the origins, genetic markers, and molecular regulation of satellite cells in normal, diseased, and aged muscle.
Collapse
Affiliation(s)
- Amy J Wagers
- Joslin Diabetes Center and Department of Pathology Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|