1
|
Liao C, Wang Q, An J, Chen J, Li X, Long Q, Xiao L, Guan X, Liu J. CD44 Glycosylation as a Therapeutic Target in Oncology. Front Oncol 2022; 12:883831. [PMID: 35936713 PMCID: PMC9351704 DOI: 10.3389/fonc.2022.883831] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/10/2022] [Indexed: 11/27/2022] Open
Abstract
The interaction of non-kinase transmembrane glycoprotein CD44 with ligands including hyaluronic acid (HA) is closely related to the occurrence and development of tumors. Changes in CD44 glycosylation can regulate its binding to HA, Siglec-15, fibronectin, TM4SF5, PRG4, FGF2, collagen and podoplanin and activate or inhibit c-Src/STAT3/Twist1/Bmi1, PI3K/AKT/mTOR, ERK/NF-κB/NANOG and other signaling pathways, thereby having a profound impact on the tumor microenvironment and tumor cell fate. However, the glycosylation of CD44 is complex and largely unknown, and the current understanding of how CD44 glycosylation affects tumors is limited. These issues must be addressed before targeted CD44 glycosylation can be applied to treat human cancers.
Collapse
Affiliation(s)
- Chengcheng Liao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Qian Wang
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi, China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jie Chen
- Department of Urology, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiaolan Li
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi, China
| | - Qian Long
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Linlin Xiao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- *Correspondence: Linlin Xiao, ; Xiaoyan Guan, ; Jianguo Liu,
| | - Xiaoyan Guan
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- *Correspondence: Linlin Xiao, ; Xiaoyan Guan, ; Jianguo Liu,
| | - Jianguo Liu
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- *Correspondence: Linlin Xiao, ; Xiaoyan Guan, ; Jianguo Liu,
| |
Collapse
|
2
|
Barkeer S, Chugh S, Karmakar S, Kaushik G, Rauth S, Rachagani S, Batra SK, Ponnusamy MP. Novel role of O-glycosyltransferases GALNT3 and B3GNT3 in the self-renewal of pancreatic cancer stem cells. BMC Cancer 2018; 18:1157. [PMID: 30466404 PMCID: PMC6251200 DOI: 10.1186/s12885-018-5074-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/12/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Glycosylation plays a critical role in the aggressiveness of pancreatic cancer (PC). Emerging evidences indicate significant involvement of cancer stem cells (CSCs) in PC aggressiveness. However, the importance of glycosylation in pancreatic cancer stem cells (PCSCs) is yet to be addressed. Hence, we evaluated the potential role of glycosylation in maintenance of stemness of PCSCs. METHODS Effect of glycosylation specific inhibitors on growth and PCSCs of PC cells was assessed by MTT assay and Side Population (SP) analysis. Isolated PCSCs/SP were characterized using molecular and functional assays. Expression of tumor-associated carbohydrate antigens (TACAs) was analyzed in PCSCs by western blotting. Effect of tunicamycin on PCSCs was analyzed by tumorsphere, clonogenicity, migration assay and immunoblotting for CSCs markers. The differential expression of glycogenes in PCSCs compared to non-CSCs were determined by RT-qPCR, immunoblotting and immunofluorescence. Co-expression of GALNT3 and B3GNT3 with CD44v6 was assessed in progression stages of KrasG12D; Pdx-1-Cre (KC) and KrasG12D; p53R172H; Pdx-1-Cre (KPC) tumors by immunofluorescence. Transient and CRISPR/Cas9 silencing of GALNT3 and B3GNT3 was performed to examine their effect on CSCs maintenance. RESULTS Inhibition of glycosylation decreased growth and CSCs/SP in PC cells. PCSCs overexpressed CSC markers (CD44v6, ESA, SOX2, SOX9 and ABCG2), exhibited global expressional variation of TACAs and showed higher self-renewal potential. Specifically, N-glycosylation inhibition, significantly decreased tumorsphere formation, migration, and clonogenicity of PCSCs, as well as hypo-glycosylated CD44v6 and ESA. Of note, glycosyltransferases (GFs), GALNT3 and B3GNT3, were significantly overexpressed in PCSCs and co-expressed with CD44v6 at advanced PDAC stages in KC and KPC tumors. Further, GALNT3 and B3GNT3 knockdown led to a decrease in the expression of cell surface markers (CD44v6 and ESA) and self-renewal markers (SOX2 and OCT3/4) in PCSCs. Interestingly, CD44v6 was modified with sialyl Lewis a in PCSCs. Finally, CRISPR/Cas9-mediated GALNT3 KO significantly decreased self-renewal, clonogenicity, and migratory capacity in PCSCs. CONCLUSIONS Taken together, for the first time, our study showed the importance of glycosylation in mediating growth, stemness, and maintenance of PCSCs. These results indicate that elevated GALNT3 and B3GNT3 expression in PCSCs regulate stemness through modulating CSC markers.
Collapse
Affiliation(s)
- Srikanth Barkeer
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870 USA
| | - Seema Chugh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870 USA
| | - Saswati Karmakar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870 USA
| | - Garima Kaushik
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870 USA
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870 USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870 USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870 USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Moorthy P. Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870 USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198 USA
| |
Collapse
|
3
|
Barkeer S, Chugh S, Batra SK, Ponnusamy MP. Glycosylation of Cancer Stem Cells: Function in Stemness, Tumorigenesis, and Metastasis. Neoplasia 2018; 20:813-825. [PMID: 30015157 PMCID: PMC6037882 DOI: 10.1016/j.neo.2018.06.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/01/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023] Open
Abstract
Aberrant glycosylation plays a critical role in tumor aggressiveness, progression, and metastasis. Emerging evidence associates cancer initiation and metastasis to the enrichment of cancer stem cells (CSCs). Several universal markers have been identified for CSCs characterization; however, a specific marker has not yet been identified for different cancer types. Specific glycosylation variation plays a major role in the progression and metastasis of different cancers. Interestingly, many of the CSC markers are glycoproteins and undergo differential glycosylation. Given the importance of CSCs and altered glycosylation in tumorigenesis, the present review will discuss current knowledge of altered glycosylation of CSCs and its application in cancer research.
Collapse
Affiliation(s)
- Srikanth Barkeer
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE.
| | - Seema Chugh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
4
|
Keku TO, Dulal S, Deveaux A, Jovov B, Han X. The gastrointestinal microbiota and colorectal cancer. Am J Physiol Gastrointest Liver Physiol 2015; 308:G351-63. [PMID: 25540232 PMCID: PMC4346754 DOI: 10.1152/ajpgi.00360.2012] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human gut is home to a complex and diverse microbiota that contributes to the overall homeostasis of the host. Increasingly, the intestinal microbiota is recognized as an important player in human illness such as colorectal cancer (CRC), inflammatory bowel diseases, and obesity. CRC in itself is one of the major causes of cancer mortality in the Western world. The mechanisms by which bacteria contribute to CRC are complex and not fully understood, but increasing evidence suggests a link between the intestinal microbiota and CRC as well as diet and inflammation, which are believed to play a role in carcinogenesis. It is thought that the gut microbiota interact with dietary factors to promote chronic inflammation and CRC through direct influence on host cell physiology, cellular homeostasis, energy regulation, and/or metabolism of xenobiotics. This review provides an overview on the role of commensal gut microbiota in the development of human CRC and explores its association with diet and inflammation.
Collapse
Affiliation(s)
- Temitope O. Keku
- 1Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina; ,2Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, North Carolina; and
| | - Santosh Dulal
- 1Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina; ,2Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, North Carolina; and
| | - April Deveaux
- 1Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina; ,2Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, North Carolina; and
| | - Biljana Jovov
- 1Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina; ,2Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, North Carolina; and
| | - Xuesong Han
- 3Surveillance and Health Services Research, American Cancer Society, Atlanta, Georgia
| |
Collapse
|
5
|
Tsou PS, Ruth JH, Campbell PL, Isozaki T, Lee S, Marotte H, Domino SE, Koch AE, Amin MA. A novel role for inducible Fut2 in angiogenesis. Angiogenesis 2013; 16:195-205. [PMID: 23065099 PMCID: PMC4441274 DOI: 10.1007/s10456-012-9312-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 10/03/2012] [Indexed: 12/30/2022]
Abstract
RATIONALE Angiogenesis plays an important role in wound healing and tumor growth. Fucosyltransferases synthesize fucosylated glycans and may play a major role in vascular biology. OBJECTIVE To examine the role of an alpha(1,2) fucosyltransferase (Fut2) in angiogenesis. METHODS AND RESULTS We found that Fut2 mRNA and protein expression is inducible in human dermal microvascular endothelial cells (HMVECs). After finding that Fut2 is inducible in HMVECs, we examined if Fut2 contributes to angiogenesis. We found that Fut2 null endothelial cell (EC) migration and tube formation were significantly less compared to wild type (wt) ECs. Angiogenesis was impaired in Fut2 null compared to wt mice in the mouse Matrigel plug and the sponge granuloma angiogenesis assays. To assess the characteristics of Fut2 null ECs in vivo, we performed Matrigel plug angiogenesis assays in wt mice using Fut2 null and wt mouse ECs. We found a significant decrease in Fut2 null EC incorporation in neoangiogenesis compared to wt ECs. ERK1/2 activation, fibroblast growth factor receptor2, and vascular endothelial growth factor expression were less in Fut2 null ECs, suggesting a possible mechanism of impaired angiogenesis when Fut2 is lacking. CONCLUSIONS These data suggest a novel role for Fut2 as a regulator of angiogenesis.
Collapse
Affiliation(s)
- Pei-Suen Tsou
- Department of Medicine, University of Michigan Medical School, Ann Arbor, 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Weisbrod AB, Liewehr DJ, Steinberg SM, Patterson EE, Libutti SK, Linehan WM, Nilubol N, Kebebew E. Association of type O blood with pancreatic neuroendocrine tumors in Von Hippel-Lindau syndrome. Ann Surg Oncol 2012; 19:2054-9. [PMID: 22350603 DOI: 10.1245/s10434-012-2276-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Indexed: 01/10/2023]
Abstract
BACKGROUND ABO blood type antigens are expressed not only on human red blood cells, but also throughout the gastrointestinal tract and in normal pancreatic tissue. Previous studies have identified an association between ABO blood type and various malignancies. We analyzed the association of ABO blood type with pancreatic neuroendocrine tumors (PNETs) in a high-risk cohort of patients with Von Hippel-Lindau (VHL) syndrome. METHODS A retrospective review was performed of 798 patients with VHL syndrome. Blood type was confirmed for 181 patients. Fisher's exact test and Mehta's modification to Fisher's exact test were used to test for an association between ABO blood type and manifestations of VHL syndrome. RESULTS We found a strong trend for association between O blood type and pancreatic disease manifestation in patients with VHL syndrome (P = 0.047). More importantly, there was a significant association of O blood type with solid pancreatic lesions consistent with PNETs (P = 0.0084). Patients with solid pancreatic lesions who met criteria for surgical resection at the National Institutes of Health also had a higher rate of O blood type than those who did not require surgery (P = 0.051). CONCLUSIONS Our findings suggest an association between O blood type and pancreatic manifestation of disease in patients with VHL syndrome, especially for PNETs. Screening and surveillance approaches for pancreatic lesions in patients with VHL syndrome should also consider patient blood type. The possibility of A, B, H misexpression in PNETs should also be explored to determine whether the serologic association with disease translates into a relationship with tissue pathology.
Collapse
Affiliation(s)
- Allison B Weisbrod
- Endocrine Oncology Section, Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Muinelo-Romay L, Gil-Martín E, Fernández-Briera A. α(1,2)fucosylation in human colorectal carcinoma. Oncol Lett 2010; 1:361-366. [PMID: 22966309 DOI: 10.3892/ol_00000064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 10/29/2009] [Indexed: 11/06/2022] Open
Abstract
Lewis(b) and Lewis(y) (Le) antigens are known to be elevated in colorectal tumours. Alterations in the catalytic behaviour of GDP-L-fucose:β-D-galactoside α(1,2)fucosyltransferase [α(1,2)FT, EC: 2.4.1.69], the key enzyme in their synthesis, have been suggested as being responsible for these changes. In particular, an aberrant tumour-specific α(1,2)FT activity that converts Le(a) and Le(x) to Le(b) and Le(y) determinants, respectively, has been reported in colorectal cancer tissues. To clarify the catalytic function of this enzyme during colorectal tumorigenesis, we analyzed α(1,2)FT activity levels in healthy and tumour colon specimens using different acceptor substrates and determined the kinetic properties of the enzyme. To complete the study, the aberrant Le(a)/Le(x) α(1,2)fucosylation was determined in healthy and tumour colorectal tissues. A correlation analysis between the activity levels and various standard clinicopathological features, such as tumour stage, was also carried out to elucidate the role of these activities in tumour progression. The results obtained confirm the enhanced α(1,2)fucosylation in colorectal neoplastic tissues and the importance of the aberrant Le(a)/Le(x) α(1,2)FT activity in this increase. However, taking into account the high levels of Le(a)/Le(x) fucosylation observed in healthy control tissues, we must rule out the idea of a colorectal tumour-specific α(1,2)FT. On the other hand, no significant association was observed between α(1,2)FT activity levels and the clinicopathological characteristics. Overall, our results suggest that α(1,2)FT activity plays a critical role in the accumulation of Le(b) and Le(y) antigens in human colorectal carcinoma.
Collapse
Affiliation(s)
- L Muinelo-Romay
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain
| | | | | |
Collapse
|
8
|
Cheng Y, Li M, Wang S, Peng H, Reid S, Ni N, Fang H, Xu W, Wang B. Carbohydrate biomarkers for future disease detection and treatment. Sci China Chem 2010; 53:3-20. [PMID: 32214994 PMCID: PMC7089153 DOI: 10.1007/s11426-010-0021-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Accepted: 10/09/2009] [Indexed: 12/28/2022]
Abstract
Carbohydrates are considered as one of the most important classes of biomarkers for cell types, disease states, protein functions, and developmental states. Carbohydrate "binders" that can specifically recognize a carbohydrate biomarker can be used for developing novel types of site specific delivery methods and imaging agents. In this review, we present selected examples of important carbohydrate biomarkers and how they can be targeted for the development of therapeutic and diagnostic agents. Examples are arranged based on disease categories including (1) infectious diseases, (2) cancer, (3) inflammation and immune responses, (4) signal transduction, (5) stem cell transformation, (6) embryo development, and (7) cardiovascular diseases, though some issues cross therapeutic boundaries.
Collapse
Affiliation(s)
- YunFeng Cheng
- Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| | - MinYong Li
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Jinan, 250012 China
| | - ShaoRu Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| | - HanJing Peng
- Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| | - Suazette Reid
- Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| | - NanTing Ni
- Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| | - Hao Fang
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Jinan, 250012 China
| | - WenFang Xu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Jinan, 250012 China
| | - BingHe Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| |
Collapse
|
9
|
Tsuboi K, Asao T, Ide M, Hashimoto S, Noguchi K, Kominato Y, Saniabadi AR, Kuwano H, Yazawa S. Alpha1,2fucosylation is a superior predictor of postoperative prognosis for colorectal cancer compared with blood group A, B, or sialyl Lewis X antigen generated within colorectal tumor tissues. Ann Surg Oncol 2007; 14:1880-9. [PMID: 17375356 DOI: 10.1245/s10434-007-9363-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 01/09/2007] [Indexed: 11/18/2022]
Abstract
BACKGROUND We have previously demonstrated tumor-specific alpha1,2fucosylation, which is associated with resistance of tumor cells to anticancer treatment in human colorectal tumor tissues. By using the YB-2 monoclonal antibody, the resulting products have been identified as Y, Le(b), and H type 2 antigens in colorectal tumor tissues. METHODS Immunohistochemical analyses of colorectal cancer tissues (74 specimens) were performed with a newly established mouse monoclonal antibody, YB-3 specifically recognizing H disaccharide (Fucalpha1,2Galbeta) structures, and anti-A, anti-B, YB-2, and anti-sialyl Lewis X (SLX) antibodies, together with the analyses of glycosyltransferases involved in the synthesis of ABH antigens in the same tissues. RESULTS The YB-3 antibody enabled us to detect colorectal tumors, particularly tumors in the distal large intestine and the rectum, with high sensitivity (74.3%) and specificity (100%). From immunohistochemical and enzymatic analyses of colorectal tissues, we found that once alpha1,2fucosylation had proceeded in tumor tissues, blood group A or B antigen was also synthesized in approximately half of the tissues of A or B blood type, but not in their normal tissues. A correlation of survival rate with immunostaining of tissues was found only by YB-3 antibody and not by anti-A, anti-B, or anti-SLX antibody. CONCLUSIONS As a predictor of postoperative prognosis of patients with colorectal cancer, immunodetection of alpha1,2fucosylated antigens with the YB-3 antibody seemed to be superior to blood groups A, B, or SLX antigen in colorectal tumor tissues.
Collapse
Affiliation(s)
- Kaori Tsuboi
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Domino SE, Karnak DM, Hurd EA. Cell surface fucosylation does not affect development of colon tumors in mice with germline Smad3 mutation. Tumour Biol 2007; 28:77-83. [PMID: 17264540 PMCID: PMC1804094 DOI: 10.1159/000099153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 07/18/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Neoplasia-related alterations in cell surface alpha(1,2)fucosylated glycans have been reported in multiple tumors including colon, pancreas, endometrium, cervix, bladder, lung and choriocarcinoma. Spontaneous colorectal tumors from mice with a germline null mutation of transforming growth factor-beta signaling gene Smad3 (Madh3) were tested for alpha(1,2)fucosylated glycan expression. METHODS Ulex europaeus agglutinin-I (UEA-I) lectin staining, fucosyltransferase gene Northern blot analysis, and a cross of mutant mice with Fut2 and Smad3 germline mutations were performed. RESULTS Spontaneous colorectal tumors from Smad3 (-/-) homozygous null mice were found to express alpha(1,2)fucosylated glycans in an abnormal pattern compared to adjacent nonneoplastic colon. Northern blot analysis of alpha(1,2)fucosyltransferase genes Fut1 and Fut2 revealed that Fut2, but not Fut1, steady-state mRNA levels were significantly increased in tumors relative to adjacent normal colonic mucosa. Mutant mice with a Fut2-inactivating germline mutation were crossed with Smad3-targeted mice. In Smad3 (-/-)/Fut2 (-/-) double knockout mice, UEA-I lectin staining was eliminated from colon and colon tumors; however, the number and size of tumors present by 24 weeks of age did not vary regardless of the Fut2 genotype. CONCLUSIONS In this model of colorectal cancer, cell surface alpha(1,2)fucosylation does not affect development of colon tumors.
Collapse
Affiliation(s)
- Steven E Domino
- Department of Obstetrics and Gynecology, Cellular and Molecular Biology Program, University of Michigan Medical Center, Ann Arbor, Mich., USA.
| | | | | |
Collapse
|
11
|
Okamura A, Yazawa S, Morinaga N, Asao T, Kuwano H. Increased thermosensitivity of mouse colorectal carcinoma cells transfected with human FUT1 gene. Cancer Lett 2002; 180:203-10. [PMID: 12175553 DOI: 10.1016/s0304-3835(02)00011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The thermal responses of mouse colorectal carcinoma cells were investigated in the wild type cells and the transfected cells with human FUT1 gene which encodes alpha 1,2fucosyltransferase. The heat sensitivity was observed to increase in the FUT1 gene transfected cells and the effect of hyperthermia at 44 degrees C on these cells was demonstrated to be significant (P<0.001) to the wild type cells even though no remarkable difference in the expression of the heat shock protein, Hsp70 was found in these cells. Thus the expression of alpha 1,2fucosylated antigens seemed to increase the heat sensitivity in mouse colorectal carcinoma cells.
Collapse
Affiliation(s)
- Akihiko Okamura
- First Department of Surgery, Gunma University Faculty of Medicine, 3-39-15 Showa-machi, Maebashi 371-8511, Japan.
| | | | | | | | | |
Collapse
|
12
|
Abstract
Histo-blood group ABH (O) antigens are major alloantigens in humans. These antigens are widely distributed in human tissues and undergo changes in expression during cellular differentiation and malignant development. The ABH antigens have been characterized as terminal disaccharide determinants which represent secondary gene products. They are synthesized in a stepwise fashion from a precursor by the action of different glycosyltransferases. In non-keratinized oral mucosa, a sequential elongation of the carbohydrates is associated with differentiation of epithelial cells, resulting in expression of precursors on basal cells and A/B antigens on spinous cells. Reduction or complete deletion of A/B antigen expression in oral carcinomas has been reported, a phenotypic change that is correlated with invasive and metastatic potential of the tumours and with the mortality rates of the patients. Disappearance of the antigens is ascribed to the absence of A or B transferase gene expression. Several studies have shown that loss of A and B antigen expression is associated with increased cell motility, invasion in matrigel, and tumourigenecity in syngenic animals. In vivo studies of human oral wound healing show similarly decreased expression of A/B antigens on migrating epithelial cells. Some studies suggest that the relationship between expression of blood group antigens and cell motility can be explained by different degrees of glycosylation of integrins. Changes in ABO expression in tumours have, in some cases, been due to the A/B gene promoter, although little is known about the regulation of A, and B expression, in normal tissue.
Collapse
Affiliation(s)
- Erik Dabelsteen
- Department of Oral Diagnostics, School of Dentistry, Faculty of Health Sciences, Copenhagen, Denmark.
| |
Collapse
|
13
|
Bureau V, Marionneau S, Cailleau-Thomas A, Le Moullac-Vaidye B, Liehr T, Le Pendu J. Comparison of the three rat GDP-L-fucose:beta-D-galactoside 2-alpha-L-fucosyltransferases FTA, FTB and FTC. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:1006-19. [PMID: 11179967 DOI: 10.1046/j.1432-1327.2001.01962.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The complete coding sequences of three rat alpha1,2fucosyltransferase genes were obtained. Sequence analysis revealed that these genes, called FTA, FTB and FTC, were homologous to human FUT1, FUT2 and Sec1, respectively. A distance analysis between all alpha1,2fucosyltransferase sequences available showed that the two domains of the catalytic region evolved differently with little divergence between the FUT2 and Sec1 N-terminal domains, quite distant from that of FUT1. At variance, FUT1 and FUT2 C-terminal domains were less distant while a high evolutionary rate was noted for Sec1 C-terminal domain. Whereas FTA and FTB encode typical glycosyltransferases, FTC lacks the homologous start codon and encodes a protein devoid of intracellular and transmembrane domains. It is located on rat chromosome 1q34. Transfection experiments revealed that unlike FTA and FTB, FTC does not generate enzyme activity. Analysis by flow cytometry showed that H type 2 epitopes were synthesized in Chinese hamster ovary cells transfected by both FTA and FTB cDNA, but only FTB transfectants possessed H type 3 determinants. In REG rat carcinoma cells, both FTA and FTB allowed synthesis of H type 2 and H type 3 at the cell surface. Western blots showed that, in both cell types, FTA was able to synthesize H type 2 epitopes on a larger set of glycoproteins than FTB. Analysis of the kinetic parameters obtained using small oligosaccharides revealed only a slight preference of FTA for type 2 over other types of acceptor substrates, whereas FTB was barely able to fucosylate this substrate.
Collapse
Affiliation(s)
- V Bureau
- Inserm U419, Institut de Biologie, Nantes, France
| | | | | | | | | | | |
Collapse
|
14
|
Barreaud JP, Saunier K, Souchaire J, Delourme D, Oulmouden A, Oriol R, Levéziel H, Julien R, Petit JM. Three bovine alpha2-fucosyltransferase genes encode enzymes that preferentially transfer fucose on Galbeta1-3GalNAc acceptor substrates. Glycobiology 2000; 10:611-21. [PMID: 10814703 DOI: 10.1093/glycob/10.6.611] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To investigate the synthesis of alpha2-fucosylated epitopes in the bovine species, we have characterized cDNAs from various tissues. We found three distinct alpha2-fucosyltransferase genes, named bovine fut1, fut2, and sec1 which are homologous to human FUT1, FUT2, and Sec1 genes, respectively. Their open reading frames (ORF) encode polypeptides of 360 (bovine H), 344 (bovine Se), and 368 (bovine Sec1) amino acids, respectively. These enzymes transfer fucose in alpha1,2 linkage to ganglioside GM(1)and galacto- N -biose, but not to the phenyl-beta-D-galactoside, type 1 or type 2 acceptors, suggesting that their substrate specificity is different and more restricted than the other cloned mammalian alpha2-fucosyltransferases. Southern blot analyses detected four related alpha2-fucosyltransferase sequences in the bovine genome while only three have been described in other species. The supernumerary entity seems to be related to the alpha2-fucosyltransferase activity which can also use type 1 and phenyl-beta-D-galactoside substrate acceptors. It was exclusively found in bovine intestinal tract. Our results show that, at least in one mammalian species, four alpha2-fucosyltransferases are present, three adding a fucose on alpha1,2 linkage on type 3/4 acceptor (Galbeta1-3GalNAc) and another able to transfer also fucose on phenyl-beta-D-galactoside and type 1 (Galbeta1-3GlcNAc) acceptors. The phylogenetic tree of the enzymes homologous to those encoded by the bovine fut1, fut2, and sec1 genes revealed two main families, one containing all the H-like proteins and the second containing all the Se-like and Sec1-like proteins. The Sec1-like family had a higher evolutionary rate than the Se-like family.
Collapse
Affiliation(s)
- J P Barreaud
- Unité de Génétique Moléculaire Animale-UMR 1061 (INRA/Université de Limoges), France
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Marionneau S, Bureau V, Goupille C, Hallouin F, Rocher J, Vaydie B, Le Pendu J. Susceptibility of rat colon carcinoma cells to lymphokine activated killer-mediated cytotoxicity is decreased by alpha1,2-fucosylation. Int J Cancer 2000; 86:713-7. [PMID: 10797295 DOI: 10.1002/(sici)1097-0215(20000601)86:5<713::aid-ijc17>3.0.co;2-v] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The presence of alpha1,2-fucosylated glycans at the surface of rat colon carcinoma cells has been associated with an increased tumorigenicity and resistance to natural killer/lymphokine activated killer (NK/LAK) cytotoxicity. We now report that transfection of rat alpha1,2-fucosyltransferases cDNA (FTA and FTB) into REG cells, which are spontaneously devoid of this enzymatic activity, allows expression of histo-blood group H antigen and increases their resistance to LAK, but not NK cell lysis. Conversely, transfection of PRO cells, which spontaneously express alpha1, 2-fucosyltransferase activity, with the FTA cDNA in the antisense orientation decreases expression of the H antigen together with their resistance to LAK cell lysis, but again, not to NK cell lysis. Furthermore, REG cells that are rejected by immunocompetent syngeneic rats are similarly rejected by rats depleted of NK cells by antibody 3.2.3, directed against the NKR-P1 molecule. Thus, the rejection of REG cells by immunocompetent rats and their earlier reported increased tumorigenicity after transfection with an alpha1, 2-fucosyltransferase cDNA cannot be ascribed to NK cell sensitivity or resistance, respectively. The increased resistance to LAK cell lysis, however, may be relevant to tumor progression.
Collapse
Affiliation(s)
- S Marionneau
- INSERM U419, Institut de Biologie, Nantes, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Goupille C, Marionneau S, Bureau V, Hallouin F, Meichenin M, Rocher J, Le Pendu J. alpha1,2Fucosyltransferase increases resistance to apoptosis of rat colon carcinoma cells. Glycobiology 2000; 10:375-82. [PMID: 10764825 DOI: 10.1093/glycob/10.4.375] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Accumulation of histo-blood group antigens such as Lewis b, Lewis Y and H in colon cancer is indicative of poor prognosis. It is accompanied by increase in alpha1,2fucosyl-transferase activity, a key enzyme for synthesis of these antigens. Using a model of colon carcinoma, we previously showed that alpha1,2fucosylation increases tumorigenicity. We now show that tumorigenicity inversely correlates with the cells' sensitivity to apoptosis. In addition, poorly tumorigenic REG cells independently transfected with three different alpha1,2fucosyltransferase cDNAs, the human FUT1, the rat FTA and FTB were more resistant than control cells to apoptosis induced in vitro by serum deprivation. Inversely, PRO cells, spontaneously tumorigenic in immunocompetent syngeneic animals and able to synthesize alpha1,2fucosylated glycans, became more sensitive to apoptosis after transfection with a fragment of the FTA cDNA in the antisense orientation. Expression of alpha1,2fucosyl-transferase in poorly tumorigenic REG cells dramatically enhanced their tumorigenicity in syngeneic rats. However, in immunodeficient animals, both control and alpha1,2fuco-syltransferase transfected REG cells were fully tumorigenic and metastatic, indicating that the presence of alpha1,2fucosylated antigens allowed REG tumor cells to escape immune control. Taken together, the results show that increased tumorigenicity mediated by alpha1,2fucosyl-ation is associated to increased resistance to apoptosis and to escape from immune control.
Collapse
Affiliation(s)
- C Goupille
- INSERM U419, Institut de Biologie, 9 Quai Moncousu, 44035, Nantes, Cedex, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Rapoport E, Pendu JL. Glycosylation alterations of cells in late phase apoptosis from colon carcinomas. Glycobiology 1999; 9:1337-45. [PMID: 10561459 DOI: 10.1093/glycob/9.12.1337] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Comparisons of carbohydrate profiles between control and apoptotic colon carcinoma cells were performed by flow cytometry using a set of lectins and anti-carbohydrate antibodies. The six cell lines analyzed presented distinct carbohydrate profiles before induction of apoptosis. PHA-L and MAA binding decreased after induction of apoptosis by UV-treatment. In contrast an increase of PNA binding was observed after induction of apoptosis, except on SW-48 cells for which a decrease occurred. A decrease of SNA binding was observed after induction of apoptosis from strongly positive control cell lines, whereas it increased on weakly positive ones. All the blood group related antigens A, H, Lewis a, Lewis x, Lewis b, and Lewis y, had their expression strongly diminished on apoptotic cells. These changes occurred irrespective of the mode of apoptosis induction since similar results were obtained after UV, TNFalpha, or anti-Fas treatment. Fucosyltransferases activities were also decreased after apoptosis induction, except for alpha1,3fucosyltransferase in anti-Fas treated HT-29 cells, where it was strongly augmented. This could be attributed to the IFNgamma preteatment required to induce Fas expression on these cells. Fucosidase activity decreased after induction of apoptosis suggesting that it was not responsible for the loss of fucosylated structures. In the rat PRO cell line, H blood group antigens are mainly carried by a high molecular weight variant of CD44. It could be shown that the loss of H antigen after induction of apoptosis correlated with a loss of the carrier glycoprotein.
Collapse
Affiliation(s)
- E Rapoport
- INSERM U419, Institut de Biologie, 9 Quai Moncousu, 44035, Nantes, Cedex, France
| | | |
Collapse
|