1
|
de Klerk DJ, de Keijzer MJ, Dias LM, Heemskerk J, de Haan LR, Kleijn TG, Franchi LP, Heger M. Strategies for Improving Photodynamic Therapy Through Pharmacological Modulation of the Immediate Early Stress Response. Methods Mol Biol 2022; 2451:405-480. [PMID: 35505025 DOI: 10.1007/978-1-0716-2099-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) is a minimally to noninvasive treatment modality that has emerged as a promising alternative to conventional cancer treatments. PDT induces hyperoxidative stress and disrupts cellular homeostasis in photosensitized cancer cells, resulting in cell death and ultimately removal of the tumor. However, various survival pathways can be activated in sublethally afflicted cancer cells following PDT. The acute stress response is one of the known survival pathways in PDT, which is activated by reactive oxygen species and signals via ASK-1 (directly) or via TNFR (indirectly). The acute stress response can activate various other survival pathways that may entail antioxidant, pro-inflammatory, angiogenic, and proteotoxic stress responses that culminate in the cancer cell's ability to cope with redox stress and oxidative damage. This review provides an overview of the immediate early stress response in the context of PDT, mechanisms of activation by PDT, and molecular intervention strategies aimed at inhibiting survival signaling and improving PDT outcome.
Collapse
Affiliation(s)
- Daniel J de Klerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Mark J de Keijzer
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Lionel M Dias
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Faculdade de Ciências da Saúde (FCS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - Jordi Heemskerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Tony G Kleijn
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Leonardo P Franchi
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas (ICB) 2, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
- Faculty of Philosophy, Department of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group, Sciences, and Letters of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China.
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands.
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Tseng HH, Huang WR, Cheng CY, Chiu HC, Liao TL, Nielsen BL, Liu HJ. Aspirin and 5-Aminoimidazole-4-carboxamide Riboside Attenuate Bovine Ephemeral Fever Virus Replication by Inhibiting BEFV-Induced Autophagy. Front Immunol 2020; 11:556838. [PMID: 33329515 PMCID: PMC7732683 DOI: 10.3389/fimmu.2020.556838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022] Open
Abstract
Recent study in our laboratory has demonstrated that BEFV-induced autophagy via activation of the PI3K/Akt/NF-κB and Src/JNK pathways and suppression of the PI3K-AKt-mTORC1 pathway is beneficial for virus replication. In the current study, we found that both aspirin and 5-aminoimidazole-4-carboxamide-1-β-riboside (AICAR) siginificantly attenuated virus replication by inhibiting BEFV-induced autophagy via suppressing the BEFV-activated PI3K/Akt/NF-κB and Src/JNK pathways as well as inducing reversion of the BEFV-suppressed PI3K-Akt-mTORC1 pathway. AICAR reversed the BEFV-activated PI3K/Akt/NF-κB and Src/JNK pathways at the early to late stages of infection and induced reversion of the BEFV-suppressed PI3K-AKt-mTORC1 pathway at the late stage of infection. Our findings reveal that inhibition of BEFV-induced autophagy by AICAR is independent of AMPK. Furthermore, we found that AICAR transcriptionally downregulates the ATG related genes ULK1, Beclin 1, and LC3 and enhances Atg7 degradation by the proteasome pathway. Aspirin suppresses virus replication by inhibiting BEFV-induced autophagy. It directly suppressed the NF-κB pathway and reversed the BEFV-activated Src/JNK pathway at the early stage of infection and reversed the BEFV-suppressed PI3K/Akt/mTOR pathway at the late stage of infection. The current study provides mechanistic insights into the effects of aspirin and AICAR on BEFV replication through suppression of BEFV-induced autophagy.
Collapse
Affiliation(s)
- Hsu-Hung Tseng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.,Division of General Surgery, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Wei-Ru Huang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Yuan Cheng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Hung-Chuan Chiu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Tsai-Ling Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.,Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Brent L Nielsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.,Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan.,Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
3
|
Terzi H, Altun A, Şencan M. In vitro comparison of the cytotoxic effects of statins on U266 myeloma cell line. Indian J Med Res 2020; 150:630-634. [PMID: 32048627 PMCID: PMC7038803 DOI: 10.4103/ijmr.ijmr_672_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background & objectives: Statins are one of the most widely used drugs and have antilipidemic effects as well as antioxidant, anti-inflammatory, anti-angiogenic and anti-tumorigenic effects. It has been shown that the synergistic combinations of statins which can provide better clinical benefit in the treatment of cancer and if administered with other anticancer agents, may be an alternative treatment modality. The aim of this study was to assess the efficacy of administrating statin in multiple myeloma (MM) cell line on cell proliferation. Methods: U266 myeloma cells were cultured in 25 or 75 cm2 flasks by using cell culture medium mixtures obtained with the supplementation of 10 per cent foetal bovine serum and one per cent of penicillin-streptomycin into RPMI 1640 medium. When the cells reached confluence (reached to the density of 70%), they were reproduced by passaging. Cytotoxicity was evaluated by using the XTT test. Results: Statins (atorvastatin and simvastatin), were administered to the U266 myeloma cell line at 100, 50, 25, 12.5, 6.25 and 3.12 μM concentrations. Inhibitor concentration 50 (IC50) values calculated for atorvastatin and simvastatin were determined as 94 and 38 μM, respectively. While 100, 50, 25, 12.5, 6.25 and 3.12 μM concentrations were used for bortezomib, the IC50 value calculated for this agent was 18.2 nM. When six concentrations of bortezomib used in the study were combined with 12.5 μM inactive concentrations of statins that did not cause inhibition in cell proliferation, both atorvastatin and simvastatin increased the effect of bortezomib at all the concentrations used, and simvastatin showed a stronger efficacy than atorvastatin. Interpretation & conclusions: Our in vitro results indicated that atorvastatin and simvastatin when used along with the conventional treatment in myeloma patients, may improve the effectiveness of the standard therapy and prevent the bortezomib-induced cytotoxic and neurotoxic side effects when used at a low dose. Further studies need to be done in MM patints to confirm these findings.
Collapse
Affiliation(s)
- Hatice Terzi
- Department of Hematology, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Ahmet Altun
- Department of Pharmacology, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Mehmet Şencan
- Department of Hematology, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
4
|
Collard TJ, Fallatah HM, Greenhough A, Paraskeva C, Williams AC. BCL‑3 promotes cyclooxygenase‑2/prostaglandin E2 signalling in colorectal cancer. Int J Oncol 2020; 56:1304-1313. [PMID: 32319612 DOI: 10.3892/ijo.2020.5013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/26/2020] [Indexed: 11/05/2022] Open
Abstract
First discovered as an oncogene in leukaemia, recent reports highlight an emerging role for the proto‑oncogene BCL‑3 in solid tumours. Importantly, BCL‑3 expression is upregulated in >30% of colorectal cancer cases and is reported to be associated with a poor prognosis. However, the mechanism by which BCL‑3 regulates tumorigenesis in the large intestine is yet to be fully elucidated. In the present study, it was shown for the first time that knocking down BCL‑3 expression suppressed cyclooxygenase‑2 (COX‑2)/prostaglandin E2 (PGE2) signalling in colorectal cancer cells, a pathway known to drive several of the hallmarks of cancer. RNAi‑mediated suppression of BCL‑3 expression decreased COX‑2 expression in colorectal cancer cells both at the mRNA and protein level. This reduction in COX‑2 expression resulted in a significant and functional reduction (30‑50%) in the quantity of pro‑tumorigenic PGE2 produced by the cancer cells, as shown by enzyme linked immunoassays and medium exchange experiments. In addition, inhibition of BCL‑3 expression also significantly suppressed cytokine‑induced (TNF‑α or IL‑1β) COX‑2 expression. Taken together, the results of the present study identified a novel role for BCL‑3 in colorectal cancer and suggested that expression of BCL‑3 may be a key determinant in the COX‑2‑meditated response to inflammatory cytokines in colorectal tumour cells. These results suggest that targeting BCL‑3 to suppress PGE2 synthesis may represent an alternative or complementary approach to using non‑steroidal anti‑inflammatory drugs [(NSAIDs), which inhibit cyclooxygenase activity and suppress the conversion of arachidonic acid to prostaglandin], for prevention and/or recurrence in PGE2‑driven tumorigenesis.
Collapse
Affiliation(s)
- Tracey Jane Collard
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Hafsah Mohammed Fallatah
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Alexander Greenhough
- Health and Applied Sciences, University of The West of England, Bristol BS16 1QY, United Kingdom
| | - Christos Paraskeva
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Ann Caroline Williams
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
5
|
Li XC, Song MF, Sun F, Tian FJ, Wang YM, Wang BY, Chen JH. Fragile X-related protein 1 (FXR1) regulates cyclooxygenase-2 (COX-2) expression at the maternal-fetal interface. Reprod Fertil Dev 2019; 30:1566-1574. [PMID: 29852926 DOI: 10.1071/rd18037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/25/2018] [Indexed: 01/11/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) is regulated post-transcriptionally by the AU-rich element (ARE) in the 3'-untranslated region (UTR) of its mRNA. However, the mechanism of COX-2 induction in infertility has not been thoroughly elucidated to date. The aim of this study was to examine the association between COX-2 and fragile X-related protein 1 (FXR1) in trophoblasts. Using quantitative reverse transcription polymerase chain reaction, our results showed that FXR1 mRNA expression levels were significantly decreased in trophoblasts from recurrent miscarriage patients compared with healthy controls; conversely, COX-2 mRNA expression levels were increased in patient samples. We also observed that FXR1 was highly expressed in human placental villi during early pregnancy. Furthermore, we used western blotting and immunofluorescence to analyse the expression levels of FXR1 and COX-2 in HTR-8 cells that were treated with tumour necrosis factor α; we observed that the expression of COX-2 was clearly increased in HTR-8 cells treated with FXR1 small interfering RNA, whereas the expression of COX-2 was effectively decreased in HTR-8 cells with FXR1 overexpressed via a plasmid. Importantly, bioinformatics analysis identified FXR1 binding sites in the 3'-UTR region of COX-2 and firefly luciferase reporter assay analysis verified that FXR1 binds directly to the 3'-UTR region of COX-2. ELISA assays showed that overexpression of FXR1 enhanced vascular endothelial growth factor-A and interleukin-8 expression in HTR-8 cells, whereas conversely, knockdown of FXR1 effectively repressed these effects. In conclusion, the results of this study indicate that FXR1 is a novel COX-2 regulatory factor.
Collapse
Affiliation(s)
- Xiao-Cui Li
- Department of Obstetrics and Gynaecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Meng-Fan Song
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Feng Sun
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Fu-Ju Tian
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yu-Mei Wang
- Department of Obstetrics and Gynaecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Bei-Ying Wang
- Department of Obstetrics and Gynaecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Jin-Hong Chen
- Department of Obstetrics and Gynaecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| |
Collapse
|
6
|
Olejniczak-Kęder A, Szaryńska M, Wrońska A, Siedlecka-Kroplewska K, Kmieć Z. Effects of 5-FU and anti-EGFR antibody in combination with ASA on the spherical culture system of HCT116 and HT29 colorectal cancer cell lines. Int J Oncol 2019; 55:223-242. [PMID: 31180528 DOI: 10.3892/ijo.2019.4809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/06/2019] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to examine the effects of 5‑fluorouracil (5‑FU), anti‑epidermal growth factor receptor (EGFR) antibody and aspirin (ASA) on the characteristics of two CRC cell lines, HCT116 and HT29, maintained in a spherical culture system. We observed that the morphology of both the HCT116 and HT29 cell‑derived spheres was significantly impaired and the size of the colonospheres was markedly reduced following treatment with the aforementioned three drugs. In contrast to adherent cultures, the spherical cultures were more resistant to the tested drugs, as was reflected by their capacity to re‑create the colonospheres when sustained in serum‑free medium. Flow cytometric analysis of the drug‑treated HCT116 cell‑derived spheres revealed changes in the fraction of cells expressing markers of cancer stem cells (CSCs), whereas the CSC phenotype of HT29 cell‑derived colonospheres was affected to a lesser extent. All reagents enhanced the percentage of non‑viable cells in the colonospheres despite the diminished fraction of active caspase‑3‑positive cells following treatment of the HT29 cell‑derived spheres with anti‑EGFR antibody. Increased autophagy, assessed by acridine orange staining, was noted following the incubation of the HT29‑colonospheres with ASA and 5‑FU in comparison to the control. Notably, the percentage of cyclooxygenase (COX)‑2‑positive cells was not affected by ASA, although its activity was markedly elevated in the colonospheres incubated with anti‑EGFR antibody. On the whole, the findings of this study indicate that all the tested drugs were involved in different cellular processes, which suggests that they should be considered for the combined therapeutic treatment of CRC, particularly for targeting the population of CSC‑like cells. Thus, cancer cell‑derived spheres may be used as a preferable model for in vitro anticancer drug testing.
Collapse
Affiliation(s)
| | - Magdalena Szaryńska
- Department of Histology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Agata Wrońska
- Department of Histology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | | | - Zbigniew Kmieć
- Department of Histology, Medical University of Gdansk, 80-211 Gdansk, Poland
| |
Collapse
|
7
|
Fu J, Yu L, Luo J, Huo R, Zhu B. Paeonol induces the apoptosis of the SGC‑7901 gastric cancer cell line by downregulating ERBB2 and inhibiting the NF‑κB signaling pathway. Int J Mol Med 2018; 42:1473-1483. [PMID: 29845222 PMCID: PMC6089764 DOI: 10.3892/ijmm.2018.3704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 05/11/2018] [Indexed: 12/28/2022] Open
Abstract
The purpose of the present study was to analyze the association between paeonol and the known genes related to gastric cancer (GC) using bioinformatics methods, and to investigate the role of paeonol in the potential impact on the nuclear factor‑κB (NF‑κB) signaling pathway, in order to provide a theoretical basis for further elucidating the effect of paeonol on cancer cells. Cell viability, morphology and apoptosis were detected using an MTT assay, an inverted microscope, and flow cytometry, respectively. The correlation between drugs and genes was analyzed using the Search Tool for Interactions of Chemicals (STITCH) gene‑drug interaction network. The expression levels of related mRNA and proteins were determined using reverse transcription‑quantitative polymerase chain reaction analysis and enzyme‑linked immunosorbent assay. The changes in protein expression were examined using western blot analysis. The correlation network between target genes directly affected by paeonol and known GC genes was determined by analyzing the association between the compounds and genes recorded in the STITCH database. The GC‑related epidermal growth factor receptor 2 (ERBB2) gene was at the core position of the paeonol interaction network and may be an important potential target gene for the effect of paeonol on cancer cells. The effect of paeonol on the viability of the SGC‑7901 GC cell line was detected using an MTT assay, which showed that the inhibitory effect occurred in a time‑ and dose‑dependent manner. The observations of cell morphology demonstrated that the cells were floating, abnormal in shape, had unclear boundaries and were sparse in arrangement following paeonol treatment. Flow cytometry indicated that paeonol significantly accelerated the apoptotic rate of the SGC‑7901 GC cells. The examination of clinical samples suggested that ERBB2 was expressed at a high level in GC samples, and was significantly downregulated following the addition of paeonol. The western blot analysis revealed that downregulating ERBB2 affected the activation of the NF‑κB signaling pathway, thereby upregulating the pro‑apoptotic factor B‑cell lymphoma‑associated X protein. Taken together, paeonol significantly downregulated ERBB2 and inhibited the activation of the NF‑κB signaling pathway, thereby inhibiting the proliferation of SGC‑7901 cells and inducing apoptosis.
Collapse
Affiliation(s)
- Jun Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Luhua Yu
- Department of Otolaryngology‑Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Jie Luo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Rui Huo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Bing Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| |
Collapse
|
8
|
Turanli B, Grøtli M, Boren J, Nielsen J, Uhlen M, Arga KY, Mardinoglu A. Drug Repositioning for Effective Prostate Cancer Treatment. Front Physiol 2018; 9:500. [PMID: 29867548 PMCID: PMC5962745 DOI: 10.3389/fphys.2018.00500] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 04/18/2018] [Indexed: 12/20/2022] Open
Abstract
Drug repositioning has gained attention from both academia and pharmaceutical companies as an auxiliary process to conventional drug discovery. Chemotherapeutic agents have notorious adverse effects that drastically reduce the life quality of cancer patients so drug repositioning is a promising strategy to identify non-cancer drugs which have anti-cancer activity as well as tolerable adverse effects for human health. There are various strategies for discovery and validation of repurposed drugs. In this review, 25 repurposed drug candidates are presented as result of different strategies, 15 of which are already under clinical investigation for treatment of prostate cancer (PCa). To date, zoledronic acid is the only repurposed, clinically used, and approved non-cancer drug for PCa. Anti-cancer activities of existing drugs presented in this review cover diverse and also known mechanisms such as inhibition of mTOR and VEGFR2 signaling, inhibition of PI3K/Akt signaling, COX and selective COX-2 inhibition, NF-κB inhibition, Wnt/β-Catenin pathway inhibition, DNMT1 inhibition, and GSK-3β inhibition. In addition to monotherapy option, combination therapy with current anti-cancer drugs may also increase drug efficacy and reduce adverse effects. Thus, drug repositioning may become a key approach for drug discovery in terms of time- and cost-efficiency comparing to conventional drug discovery and development process.
Collapse
Affiliation(s)
- Beste Turanli
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Bioengineering, Istanbul Medeniyet University, Istanbul, Turkey
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Jan Boren
- Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Mathias Uhlen
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Kazim Y. Arga
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
9
|
Development of Colorectal-Targeted Dietary Supplement Tablets Containing Natural Purple Rice Bran Oil as a Colorectal Chemopreventive. Nutrients 2018; 10:nu10040444. [PMID: 29617306 PMCID: PMC5946229 DOI: 10.3390/nu10040444] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/01/2018] [Accepted: 04/02/2018] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer occurs due to various factors. The important risks are dietary lifestyle and inflammatory bowel diseases, such as Crohn’s disease and ulcerative colitis. It has been found that the inhibitory enzyme cyclooxygenase-2 (COX-2) in the colorectal region can potentially reduce the risk of colorectal cancer. The present study investigated rice bran oil from natural purple rice bran, which exhibits antioxidant and anti-inflammatory activity. This study aimed to evaluate the bioactive compound content of natural purple rice bran oil (NPRBO) derived from native Thai purple rice and the anti-inflammatory activity of NPRBO in colorectal cancer cells, and to develop a colorectal delivery platform in the form of film-coated tablets. NPRBO from the rice bran of five different Thai purple rice cultivars, namely Khao’ Gam Leum-Phua (KGLP), Khao’ Gam Boung (KGB), Khao’ Gam Thor (KGT), Khao’ Gam Pah E-Kaw (KGPEK), and Khao’ Niaw Dam (KND), were extracted using the supercritical carbon dioxide extraction technique. The amount of γ-oryzanol (ORY), tocotrienols, and tocopherols present in NPRBOs and the in vitro anti-inflammatory activity of NPRBO were investigated. The highest anti-inflammatory NPRBO was transformed into a dry and free-flowing powder by liquisolid techniques. Then, it was compressed into core tablets and coated with Eudragit®L100 and Eudragit® NE30D. The in vitro release study of the film-coated NPRBO tablets was performed in three-phase simulated gastrointestinal media. The cultivar KGLP was superior to the other samples in terms of the ORY, tocotrienol and tocopherol contents and anti-inflammatory activity. Aerosil® was the most suitable absorbent for transforming NPRBO into a free-flowing powder and was used to prepare the NPRBO core tablets. The in vitro KGLP-NPRBO film-coated tablet release profile showed that no ORY was released at gastric pH while 85% of ORY was released at pH 7.4 after 6 h; this would be expected to occur in the colorectal area. Therefore, this study demonstrates the potential of KGLP-NPRBO to prevent colorectal cancer via a specific colorectal dietary supplement delivery system.
Collapse
|
10
|
Amanullah A, Upadhyay A, Chhangani D, Joshi V, Mishra R, Yamanaka K, Mishra A. Proteasomal Dysfunction Induced By Diclofenac Engenders Apoptosis Through Mitochondrial Pathway. J Cell Biochem 2017; 118:1014-1027. [DOI: 10.1002/jcb.25666] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/01/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Ayeman Amanullah
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan 342011 India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan 342011 India
| | - Deepak Chhangani
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan 342011 India
| | - Vibhuti Joshi
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan 342011 India
| | - Ribhav Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan 342011 India
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology Research Institute of Environmental Medicine; Nagoya University Furo-cho; Chikusa-ku Nagoya 464-8601 Japan
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan 342011 India
| |
Collapse
|
11
|
Smith KJ, Skelton H. Arachidonic Acid-Derived Bioactive Lipids: Their Role and the Role for Their Inhibitors in Dermatology. J Cutan Med Surg 2016. [DOI: 10.1177/120347540200600309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: In addition to corticosteroids, there are increasing numbers of anti-inflammatory agents that specifically target bioactive lipids generated from arachidonic acid. Knowledge of the diverse mechanisms of action of these different bioactive lipids holds promise in the therapy of a wide spectrum of cutaneous and systemic disorders. Objective: Therapeutic manipulations of these lipid molecules through inhibition, stimulation, or direct replacement have broad physiologic effects. These therapeutic strategies not only modulate inflammation, pain, and hemostatic parameters, they also play a role in cardiac, respiratory, renal, and gastrointestinal function and disease, as well as in angiogenesis and in factors that control cell growth and apoptosis important in carcinogenesis. Conclusion: Newer drug discovery methods, including combinatorial chemistry with molecular modeling, have made it possible to develop inhibitors and analogs with increasing specificity and bioactivity and decreasing toxicity. Although the application of these analogs and inhibitors for cutaneous disease is limited today, either as primary agents or adjuvant therapy, these drugs will have a place in our therapeutic regimes of the future. We present a review of the therapeutic agents now available from manipulation of these bioactive lipids, and their role and future in dermatology.
Collapse
Affiliation(s)
- Kathleen J. Smith
- The opinions and assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the Department of the Army, the Department of the Navy, or the Department of Defense
| | - Henry Skelton
- The opinions and assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the Department of the Army, the Department of the Navy, or the Department of Defense
| |
Collapse
|
12
|
Zhang P, Luo HS, Li M, Tan SY. Artesunate inhibits the growth and induces apoptosis of human gastric cancer cells by downregulating COX-2. Onco Targets Ther 2015; 8:845-54. [PMID: 25945055 PMCID: PMC4406257 DOI: 10.2147/ott.s81041] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Artesunate, a derivative of artemisinin isolated from Artemisia annua L., has been traditionally used to treat malaria, and artesunate has demonstrated cytotoxic effects against a variety of cancer cells. However, there is little available information about the antitumor effects of artesunate on human gastric cancer cells. In the present study, we investigated the antitumor effect of artesunate on human gastric cancer cells and whether its antitumor effect is associated with reduction in COX-2 expression. The effects of artesunate on the growth and apoptosis of gastric cancer cells were investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometric analysis of annexin V-fluorescein isothiocyanate/propidium iodide staining, rhodamine 123 staining, and Western blot analysis. Results indicate that artesunate exhibits antiproliferative effects and apoptosis-inducing activities. Artesunate markedly inhibited gastric cancer cell proliferation in a time- and dose-dependent manner and induced apoptosis in gastric cancer cells a dose-dependent manner, which was associated with a reduction in COX-2 expression. Treatment with the selective COX-2 inhibitor celecoxib, or transient transfection of gastric cancer cells with COX-2 siRNA, also inhibited cell proliferation and induced apoptosis. Furthermore, the treatment with artesunate promoted the expression of proapoptotic factor Bax and suppressed the expression of antiapoptotic factor Bcl-2. In addition, caspase-3 and caspase-9 were activated, and artesunate induced loss of mitochondrial membrane potential, suggesting that the apoptosis is mediated by mitochondrial pathways. These results demonstrate that artesunate has an effect on anti-gastric cancer cells. One of the antitumor mechanisms of artesunate may be that its inhibition of COX-2 led to reduced proliferation and induction of apoptosis, connected with mitochondrial dysfunction. Artesunate might be a potential therapeutic agent for gastric cancer.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - He-Sheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Ming Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Shi-Yun Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|
13
|
Liu JR, Wu WJ, Liu SX, Zuo LF, Wang Y, Yang JZ, Nan YM. Nimesulide inhibits the growth of human esophageal carcinoma cells by inactivating the JAK2/STAT3 pathway. Pathol Res Pract 2015; 211:426-34. [PMID: 25724470 DOI: 10.1016/j.prp.2015.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 01/02/2015] [Accepted: 01/19/2015] [Indexed: 01/15/2023]
Abstract
Although selective COX-2 inhibitors have cancer-preventive effects and induce apoptosis, the mechanisms underlying these effects are not fully understood. This study investigated the effects of nimesulide, a selective COX-2 inhibitor, on apoptosis and on the JAK/STAT signaling pathway in Eca-109 human esophageal squamous carcinoma cells. The effects and mechanisms of nimesulide on Eca-109 cell growth were studied in culture and in nude mice with Eca-109 xenografts. Cells were cultured with or without nimesulide and/or the JAK2 inhibitor AG490. Cell proliferation was evaluated using the MTT assay, and apoptosis was investigated. COX-2 mRNA expression was measured using reverse transcription polymerase chain reaction, and protein expression was detected by Western blot analysis, immunohistochemistry, and flow cytometry. Nimesulide significantly inhibited Eca-109 cell viability in vitro in a dose- and time-dependent manner (P<0.05). Nimesulide also induced apoptosis, which was accompanied by a significant decrease in the expression of COX-2 and survivin and an increase in caspase-3 expression. Nimesulide downregulated the phosphorylation levels of JAK2 and STAT3, and JAK2 inhibition by AG490 significantly augmented both nimesulide-induced apoptosis and the downregulation of COX-2 and survivin (P<0.05). In vivo, nimesulide inhibited the growth of Eca-109 tumors and the expression of p-JAK2 and p-STAT3. Thus, nimesulide downregulates COX-2 and survivin expression and upregulates caspase-3 expression in Eca-109 cells, by inactivating the JAK2/STAT3 pathway. These effects may mediate nimesulide-induced apoptosis and growth inhibition in Eca-109 cells in vitro and in vivo.
Collapse
Affiliation(s)
- Jun-Ru Liu
- Department of Pathology, The University of Hongkong-Shenzhen Hospital, Shenzhen, China.
| | - Wen-Juan Wu
- Department of Radiology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shu-Xia Liu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Lian-Fu Zuo
- Hebei Cancer Institute, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuan Wang
- Department of Endocrinology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jian-Zhu Yang
- Department of Pathology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yue-Min Nan
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
14
|
Cao C, Gao R, Zhang M, Amelio AL, Fallahi M, Chen Z, Gu Y, Hu C, Welsh EA, Engel BE, Haura EB, Cress WD, Wu L, Zajac-Kaye M, Kaye FJ. Role of LKB1-CRTC1 on glycosylated COX-2 and response to COX-2 inhibition in lung cancer. J Natl Cancer Inst 2014; 107:358. [PMID: 25465874 DOI: 10.1093/jnci/dju358] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cyclooxygenase-2 (COX-2) directs the synthesis of prostaglandins including PGE-2 linking inflammation with mitogenic signaling. COX-2 is also an anticancer target, however, treatment strategies have been limited by unreliable expression assays and by inconsistent tumor responses to COX-2 inhibition. METHODS We analyzed the TCGA and Director's Challenge lung cancer datasets (n = 188) and also generated an LKB1-null lung cancer gene signature (n = 53) to search the Broad Institute/Connectivity-MAP (C-MAP) dataset. We performed ChIP analyses, real-time polymerase chain reaction, immunoblotting, and drug testing of tumor cell lines (n = 8) and primary lung adenocarcinoma surgical resections (n = 13). RESULTS We show that COX-2 is a target of the cAMP/CREB coactivator CRTC1 signaling pathway. In addition, we detected a correlation between LKB1 status, CRTC1 activation, and presence of glycosylated, but not inactive hypoglycosylated COX-2 in primary lung adenocarcinoma. A search of the C-MAP drug database discovered that all high-ranking drugs positively associated with the LKB1-null signature are known CRTC1 activators, including forskolin and six different PGE-2 analogues. Somatic LKB1 mutations are present in 20.0% of lung adenocarcinomas, and we observed growth inhibition with COX-2 inhibitors in LKB1-null lung cancer cells with activated CRTC1 as compared with LKB1-wildtype cells (NS-398, P = .002 and Niflumic acid, P = .006; two-tailed t test). CONCLUSION CRTC1 activation is a key event that drives the LKB1-null mRNA signature in lung cancer. We also identified a positive feedback LKB1/CRTC1 signaling loop for COX-2/PGE2 regulation. These data suggest a role for LKB1 status and glycosylated COX-2 as specific biomarkers that provide a framework for selecting patients for COX-2 inhibition studies.
Collapse
Affiliation(s)
- Chunxia Cao
- Department of Medicine (CC, RG, MZ, FJK), Genetics Institute (RG, FJK), Genetics and Genomics Graduate Program (RG, FJK), and Molecular Genetics and Microbiology (ZC, YG, CH, LW), University of Florida, Gainesville, FL; Department of Cancer Biology and Informatics, the Scripps Research Institute, Jupiter, FL (ALA, MF); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC (ALA); Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL (CH); Cancer Informatics Core (EAW), Department of Molecular Oncology (BEE, WDC), and Department of Thoracic Oncology (EBH), Moffitt Cancer Center, Tampa, FL; Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL (MZK)
| | - Ruli Gao
- Department of Medicine (CC, RG, MZ, FJK), Genetics Institute (RG, FJK), Genetics and Genomics Graduate Program (RG, FJK), and Molecular Genetics and Microbiology (ZC, YG, CH, LW), University of Florida, Gainesville, FL; Department of Cancer Biology and Informatics, the Scripps Research Institute, Jupiter, FL (ALA, MF); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC (ALA); Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL (CH); Cancer Informatics Core (EAW), Department of Molecular Oncology (BEE, WDC), and Department of Thoracic Oncology (EBH), Moffitt Cancer Center, Tampa, FL; Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL (MZK)
| | - Min Zhang
- Department of Medicine (CC, RG, MZ, FJK), Genetics Institute (RG, FJK), Genetics and Genomics Graduate Program (RG, FJK), and Molecular Genetics and Microbiology (ZC, YG, CH, LW), University of Florida, Gainesville, FL; Department of Cancer Biology and Informatics, the Scripps Research Institute, Jupiter, FL (ALA, MF); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC (ALA); Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL (CH); Cancer Informatics Core (EAW), Department of Molecular Oncology (BEE, WDC), and Department of Thoracic Oncology (EBH), Moffitt Cancer Center, Tampa, FL; Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL (MZK)
| | - Antonio L Amelio
- Department of Medicine (CC, RG, MZ, FJK), Genetics Institute (RG, FJK), Genetics and Genomics Graduate Program (RG, FJK), and Molecular Genetics and Microbiology (ZC, YG, CH, LW), University of Florida, Gainesville, FL; Department of Cancer Biology and Informatics, the Scripps Research Institute, Jupiter, FL (ALA, MF); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC (ALA); Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL (CH); Cancer Informatics Core (EAW), Department of Molecular Oncology (BEE, WDC), and Department of Thoracic Oncology (EBH), Moffitt Cancer Center, Tampa, FL; Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL (MZK)
| | - Mohammad Fallahi
- Department of Medicine (CC, RG, MZ, FJK), Genetics Institute (RG, FJK), Genetics and Genomics Graduate Program (RG, FJK), and Molecular Genetics and Microbiology (ZC, YG, CH, LW), University of Florida, Gainesville, FL; Department of Cancer Biology and Informatics, the Scripps Research Institute, Jupiter, FL (ALA, MF); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC (ALA); Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL (CH); Cancer Informatics Core (EAW), Department of Molecular Oncology (BEE, WDC), and Department of Thoracic Oncology (EBH), Moffitt Cancer Center, Tampa, FL; Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL (MZK)
| | - Zirong Chen
- Department of Medicine (CC, RG, MZ, FJK), Genetics Institute (RG, FJK), Genetics and Genomics Graduate Program (RG, FJK), and Molecular Genetics and Microbiology (ZC, YG, CH, LW), University of Florida, Gainesville, FL; Department of Cancer Biology and Informatics, the Scripps Research Institute, Jupiter, FL (ALA, MF); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC (ALA); Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL (CH); Cancer Informatics Core (EAW), Department of Molecular Oncology (BEE, WDC), and Department of Thoracic Oncology (EBH), Moffitt Cancer Center, Tampa, FL; Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL (MZK)
| | - Yumei Gu
- Department of Medicine (CC, RG, MZ, FJK), Genetics Institute (RG, FJK), Genetics and Genomics Graduate Program (RG, FJK), and Molecular Genetics and Microbiology (ZC, YG, CH, LW), University of Florida, Gainesville, FL; Department of Cancer Biology and Informatics, the Scripps Research Institute, Jupiter, FL (ALA, MF); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC (ALA); Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL (CH); Cancer Informatics Core (EAW), Department of Molecular Oncology (BEE, WDC), and Department of Thoracic Oncology (EBH), Moffitt Cancer Center, Tampa, FL; Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL (MZK)
| | - Chengbin Hu
- Department of Medicine (CC, RG, MZ, FJK), Genetics Institute (RG, FJK), Genetics and Genomics Graduate Program (RG, FJK), and Molecular Genetics and Microbiology (ZC, YG, CH, LW), University of Florida, Gainesville, FL; Department of Cancer Biology and Informatics, the Scripps Research Institute, Jupiter, FL (ALA, MF); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC (ALA); Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL (CH); Cancer Informatics Core (EAW), Department of Molecular Oncology (BEE, WDC), and Department of Thoracic Oncology (EBH), Moffitt Cancer Center, Tampa, FL; Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL (MZK)
| | - Eric A Welsh
- Department of Medicine (CC, RG, MZ, FJK), Genetics Institute (RG, FJK), Genetics and Genomics Graduate Program (RG, FJK), and Molecular Genetics and Microbiology (ZC, YG, CH, LW), University of Florida, Gainesville, FL; Department of Cancer Biology and Informatics, the Scripps Research Institute, Jupiter, FL (ALA, MF); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC (ALA); Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL (CH); Cancer Informatics Core (EAW), Department of Molecular Oncology (BEE, WDC), and Department of Thoracic Oncology (EBH), Moffitt Cancer Center, Tampa, FL; Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL (MZK)
| | - Brienne E Engel
- Department of Medicine (CC, RG, MZ, FJK), Genetics Institute (RG, FJK), Genetics and Genomics Graduate Program (RG, FJK), and Molecular Genetics and Microbiology (ZC, YG, CH, LW), University of Florida, Gainesville, FL; Department of Cancer Biology and Informatics, the Scripps Research Institute, Jupiter, FL (ALA, MF); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC (ALA); Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL (CH); Cancer Informatics Core (EAW), Department of Molecular Oncology (BEE, WDC), and Department of Thoracic Oncology (EBH), Moffitt Cancer Center, Tampa, FL; Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL (MZK)
| | - Eric B Haura
- Department of Medicine (CC, RG, MZ, FJK), Genetics Institute (RG, FJK), Genetics and Genomics Graduate Program (RG, FJK), and Molecular Genetics and Microbiology (ZC, YG, CH, LW), University of Florida, Gainesville, FL; Department of Cancer Biology and Informatics, the Scripps Research Institute, Jupiter, FL (ALA, MF); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC (ALA); Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL (CH); Cancer Informatics Core (EAW), Department of Molecular Oncology (BEE, WDC), and Department of Thoracic Oncology (EBH), Moffitt Cancer Center, Tampa, FL; Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL (MZK)
| | - W Douglas Cress
- Department of Medicine (CC, RG, MZ, FJK), Genetics Institute (RG, FJK), Genetics and Genomics Graduate Program (RG, FJK), and Molecular Genetics and Microbiology (ZC, YG, CH, LW), University of Florida, Gainesville, FL; Department of Cancer Biology and Informatics, the Scripps Research Institute, Jupiter, FL (ALA, MF); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC (ALA); Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL (CH); Cancer Informatics Core (EAW), Department of Molecular Oncology (BEE, WDC), and Department of Thoracic Oncology (EBH), Moffitt Cancer Center, Tampa, FL; Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL (MZK)
| | - Lizi Wu
- Department of Medicine (CC, RG, MZ, FJK), Genetics Institute (RG, FJK), Genetics and Genomics Graduate Program (RG, FJK), and Molecular Genetics and Microbiology (ZC, YG, CH, LW), University of Florida, Gainesville, FL; Department of Cancer Biology and Informatics, the Scripps Research Institute, Jupiter, FL (ALA, MF); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC (ALA); Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL (CH); Cancer Informatics Core (EAW), Department of Molecular Oncology (BEE, WDC), and Department of Thoracic Oncology (EBH), Moffitt Cancer Center, Tampa, FL; Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL (MZK)
| | - Maria Zajac-Kaye
- Department of Medicine (CC, RG, MZ, FJK), Genetics Institute (RG, FJK), Genetics and Genomics Graduate Program (RG, FJK), and Molecular Genetics and Microbiology (ZC, YG, CH, LW), University of Florida, Gainesville, FL; Department of Cancer Biology and Informatics, the Scripps Research Institute, Jupiter, FL (ALA, MF); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC (ALA); Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL (CH); Cancer Informatics Core (EAW), Department of Molecular Oncology (BEE, WDC), and Department of Thoracic Oncology (EBH), Moffitt Cancer Center, Tampa, FL; Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL (MZK)
| | - Frederic J Kaye
- Department of Medicine (CC, RG, MZ, FJK), Genetics Institute (RG, FJK), Genetics and Genomics Graduate Program (RG, FJK), and Molecular Genetics and Microbiology (ZC, YG, CH, LW), University of Florida, Gainesville, FL; Department of Cancer Biology and Informatics, the Scripps Research Institute, Jupiter, FL (ALA, MF); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC (ALA); Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL (CH); Cancer Informatics Core (EAW), Department of Molecular Oncology (BEE, WDC), and Department of Thoracic Oncology (EBH), Moffitt Cancer Center, Tampa, FL; Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL (MZK).
| |
Collapse
|
15
|
LI MING, TAN SHIYUN, WANG XIAOFAN. Paeonol exerts an anticancer effect on human colorectal cancer cells through inhibition of PGE2 synthesis and COX-2 expression. Oncol Rep 2014; 32:2845-53. [DOI: 10.3892/or.2014.3543] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/01/2014] [Indexed: 11/05/2022] Open
|
16
|
Formulation of indomethacin colon targeted delivery systems using polysaccharides as carriers by applying liquisolid technique. BIOMED RESEARCH INTERNATIONAL 2014; 2014:704362. [PMID: 24971345 PMCID: PMC4058206 DOI: 10.1155/2014/704362] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/10/2014] [Accepted: 04/10/2014] [Indexed: 11/17/2022]
Abstract
The present study aimed at the formulation of matrix tablets for colon-specific drug delivery (CSDD) system of indomethacin (IDM) by applying liquisolid (LS) technique. A CSDD system based on time-dependent polymethacrylates and enzyme degradable polysaccharides was established. Eudragit RL 100 (E-RL 100) was employed as time-dependent polymer, whereas bacterial degradable polysaccharides were presented as LS systems loaded with the drug. Indomethacin-loaded LS systems were prepared using different polysaccharides, namely, guar gum (GG), pectin (PEC), and chitosan (CH), as carriers separately or in mixtures of different ratios of 1 : 3, 1 : 1, and 3 : 1. Liquisolid systems that displayed promising results concerning drug release rate in both pH 1.2 and pH 6.8 were compressed into tablets after the addition of the calculated amount of E-RL 100 and lubrication with magnesium stearate and talc in the ratio of 1 : 9. It was found that E-RL 100 improved the flowability and compressibility of all LS formulations. The release data revealed that all formulations succeeded to sustain drug release over a period of 24 hours. Stability study indicated that PEC-based LS system as well as its matrix tablets was stable over the period of storage (one year) and could provide a minimum shelf life of two years.
Collapse
|
17
|
Yusup G, Akutsu Y, Mutallip M, Qin W, Hu X, Komatsu-Akimoto A, Hoshino I, Hanari N, Mori M, Akanuma N, Isozaki Y, Matsubara H. A COX-2 inhibitor enhances the antitumor effects of chemotherapy and radiotherapy for esophageal squamous cell carcinoma. Int J Oncol 2014; 44:1146-52. [PMID: 24535229 DOI: 10.3892/ijo.2014.2300] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/21/2014] [Indexed: 11/05/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) is a key enzyme of prostaglandin (PG) synthesis that has been demonstrated to be overexpressed in several types of cancers. The function of COX-2 in tumor progression has been recently elucidated. In tumors in which COX-2 is overexpressed, the antitumor effects are suppressed. We examined the effects of celecoxib, a COX-2 inhibitor, in enhancing the antitumor effects of chemotherapy and radiotherapy for esophageal squamous cell carcinoma (ESCC) by reducing the COX-2 activity. We used the human esophageal squamous cell lines TE2 and T.Tn treated with celecoxib and 5-FU/radiation, after which cell viability assays were performed. Changes in the expressions of dihydropyrimidine dehydrogenase (DPD), orotate phosphoribosyl transferase (OPRT) mRNA and PGE2 were also measured. In addition, apoptotic changes, and the invasion and migration activity in both the celecoxib and 5-FU treated cells were evaluated. The experiments showed that T.Tn and TE2 proliferation was strongly inhibited by the combination of 5-FU/radiation and the COX-2 inhibitor. Inhibiting the COX-2 activity induced a reduction in PGE2 levels in TE2/T.Tn cells. Following treatment with the COX-2 inhibitor and 5-FU, the OPRT expression was upregulated and the DPD expression was downregulated in the resistant cells. In addition, the combination treatment with the COX-2 inhibitor and 5-FU markedly inhibited both the cell invasion and migration activity. Therefore, COX-2 inhibitors can be useful enhancers of antitumor drugs and radiotherapy for ESCC.
Collapse
Affiliation(s)
- Gulbostan Yusup
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yasunori Akutsu
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Muradil Mutallip
- Department of Otorhinolaryngology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Wei Qin
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Xin Hu
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Aki Komatsu-Akimoto
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Isamu Hoshino
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Naoyuki Hanari
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Mikito Mori
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Naoki Akanuma
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yuka Isozaki
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| |
Collapse
|
18
|
Cheng YL, Zhang GY, Li C, Lin J. Screening for novel protein targets of indomethacin in HCT116 human colon cancer cells using proteomics. Oncol Lett 2013; 6:1222-1228. [PMID: 24179499 PMCID: PMC3813814 DOI: 10.3892/ol.2013.1560] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 08/21/2013] [Indexed: 02/04/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs, such as indomethacin (IN), inhibit colorectal cancer (CRC) growth through cyclooxygenase (COX)-independent mechanisms, however, the precise biological mechanisms are not completely understood. The aim of the present study was to investigate new molecular factors potentially associated with IN in HCT116 human CRC cells, which do not express COX, using a proteomic approach. The total proteins from the IN-treated and untreated groups were separated by immobilized pH gradient-based two-dimensional gel electrophoresis. The differentially-expressed proteins were identified by peptide mass fingerprint (PMF) based on matrix-assisted laser desorption/ionization time of flight mass spectrometry. The PMF maps were searched in the SWISS-PROT/TrEMBL database using the PeptIdent software. Between the IN-treated and untreated groups, a total of 45 differential protein spots were detected and 15 differentially-expressed proteins were identified by PMF. IN downregulated Wnt1-inducible signaling pathway protein 1, Bcl-2-related protein A1 and mitogen-activated protein kinase, inhibited HCT116 cell growth and induced apoptosis. In conclusion, IN may exert its effects on CRC to induce HCT116 cell apoptosis and suppress growth through COX-independent pathways.
Collapse
Affiliation(s)
- Yan-Li Cheng
- Department of Gastroenterology, The First Hospital of Tsinghua University, Beijing 100016, P.R. China
| | | | | | | |
Collapse
|
19
|
Ramer R, Walther U, Borchert P, Laufer S, Linnebacher M, Hinz B. Induction but not inhibition of COX-2 confers human lung cancer cell apoptosis by celecoxib. J Lipid Res 2013; 54:3116-29. [PMID: 23943857 DOI: 10.1194/jlr.m042283] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antitumorigenic mechanism of the selective cyclooxygenase-2 (COX-2) inhibitor celecoxib is still a matter of debate. Among different structurally related COX-2 inhibitors, only celecoxib was found to cause apoptosis and cell death of human lung cancer cells (IC₅₀ values of 19.96 µM [A549], 12.48 µM [H460], and 41.39 µM [H358]) that was paralleled by a time- and concentration-dependent upregulation of COX-2 and peroxisome proliferator-activated receptor γ (PPARγ) at mRNA and protein levels. Apoptotic death of celecoxib-treated cancer cells was suppressed by the PPARγ antagonist GW9662 and by siRNA targeting PPARγ and, surprisingly, also by the selective COX-2 inhibitor NS-398 and siRNA targeting COX-2. NS-398 (1 µM) was shown to suppress celecoxib-induced COX-2 activity. Among the COX-2-dependent prostaglandins (PG) induced upon celecoxib treatment, PGD₂ and 15-deoxy-Δ¹²,¹⁴-PGJ₂ were found to induce a cytosol-to-nucleus translocation of PPARγ as well as a PPARγ-dependent apoptosis. Celecoxib-elicited PPARγ translocation was inhibited by NS-398. Finally, a COX-2- and PPARγ-dependent cytotoxic action of celecoxib was proven for primary human lung tumor cells. Together, our data demonstrate a proapoptotic mechanism of celecoxib involving initial upregulation of COX-2 and PPARγ and a subsequent nuclear translocation of PPARγ by COX-2-dependent PGs.
Collapse
Affiliation(s)
- Robert Ramer
- Institute of Toxicology and Pharmacology, University of Rostock, Schillingallee 70, D-18057 Rostock, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Que W, Li S, Chen J. NS-398 enhances the efficacy of bortezomib against RPMI8226 human multiple myeloma cells. Mol Med Rep 2013; 7:1641-5. [PMID: 23545701 DOI: 10.3892/mmr.2013.1394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/15/2013] [Indexed: 11/05/2022] Open
Abstract
Bortezomib is commonly used in treating multiple myeloma (MM). However, a number of patients develop resistance to bortezomib over time. Cox-2 is overexpressed in MM cells and contributes to apoptosis resistance and MM development. In the present study, RPMI8226 MM cells were treated with the Cox-2 inhibitor NS-398 to investigate whether it enhanced the effect of bortezomib on MM. The results showed that NS-398 and bortezomib acted synergistically to inhibit growth, arrest the cell cycle at the G1 phase and to induce the apoptosis of MM cells. NS-398 inhibited the NF-κB p65 protein levels and the expression of various NF-κB target genes, including cyclin D1, c-Myc, survivin and Bcl-2. In conclusion, NS-398 enhanced the efficacy of bortezomib against MM cells in vitro and this was associated with the inhibition of NF-κB signaling. These findings suggest that the combined use of NS-398 and bortezomib may constitute a promising novel treatment protocol for MM patients.
Collapse
Affiliation(s)
- Wenzhong Que
- Department of Hematology and Rheumatology, The Third Affiliated Hospital of Fujian Medical University, Fuzhou 350003, PR China
| | | | | |
Collapse
|
21
|
HO MEILING, CHANG JEKEN, TSAI HSIUTING, CHO MINGHSUANG, WANG GWOJAW. NONSTEROIDAL ANTI-INFLAMMATORY DRUGS ARREST CELL CYCLE IN G0/G1PHASE AND INDUCE CELL DEATH IN OSTEOBLAST-ENRICHED CULTURES. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s0218957701000623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nonsteroidal anti-inflammatory drugs have been widely prescribed for orthopaedic patients to relieve pain and chronic inflammation. However, it has been demonstrated that NSAIDs suppress bone repair and remodeling in vivo. We have reported that ketorolac inhibits bone repair in vivo and its critical effective timing is at the early stage of endochondral ossification. Our previous results showed that ketorolac and indomethacin inhibit osteoblast proliferation in vitro, suggesting that this effect may be one of the mechanisms contributing to the suppressive effect of NSAIDs on bone remodeling. Cell proliferation and death of osteoblasts should be well regulated through some relative apoptotic and mitotic factors during normal bone remodeling process. Accordingly, we proposed that the induction of osteoblastic cell death of NSAIDs might be one of the mechanisms involving their suppressive effect on bone remodeling in vivo. In this study, we investigated whether NSAIDs arrest osteoblastic cell cycle and/or induce cell death. Whether the mechanism was mediated through prostaglandin (PG) pathway. We tested the effects of ketorolac, indomethacin, diclofenac, piroxicam on cell cycle kinetics, cytotoxicity, and cell death pattern in osteoblast-enriched cultures derived from fetal rat calvaria. Our results showed that ketorolac and indomethacin arrested cell cycle at G0/G1phase. All the 4 NSAIDs had cytotoxic effects and these effects were concentration dependent. The sequence of the cytotoxic effects of these four NSAIDs at 10-4M were indomethacin > diclofenac > ketorolac > piroxicam. Both PGE1and PGE2(10-10-10-8M) also significantly elevated the LDH leakage of osteoblasts, while PGF2αhad no significant effect. These results revealed that the cytotoxic effects of NSAIDs on osteoblasts might not be through inhibiting prostaglandin synthesis. They may be through PG-independent pathways. The results from flow cytometry followed by AnnexinV-FITC and propidium iodide double staining showed that 24 hours treatment of all the 4 NSAIDs (10-6and 10-4M) significantly induced both apoptosis (p<0.01) and necrosis (p<0.01, or p<0.05) in osteoblast cultures. These effects of NSAIDs on cell cycle arrest and cell death induction in osteoblasts may be one of the important mechanisms contributing to their suppressive effect on bone repair and bone remodeling in vivo.
Collapse
Affiliation(s)
- MEI-LING HO
- Departments of Physiology, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, R.O.C
| | - JE-KEN CHANG
- Departments of Orthopaedics, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, R.O.C
| | - HSIU-TING TSAI
- Departments of Physiology, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, R.O.C
| | - MING-HSUANG CHO
- Departments of Physiology, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, R.O.C
| | - GWO-JAW WANG
- Departments of Orthopaedics, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, R.O.C
| |
Collapse
|
22
|
Olivares C, Ricci A, Bilotas M, Barañao RI, Meresman G. The inhibitory effect of celecoxib and rosiglitazone on experimental endometriosis. Fertil Steril 2011; 96:428-33. [PMID: 21683949 DOI: 10.1016/j.fertnstert.2011.05.063] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/18/2011] [Accepted: 05/19/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To evaluate the effects of celecoxib and rosiglitazone on the implantation and growth of endometriotic-like lesions in a murine model of endometriosis. DESIGN Prospective experimental study. SETTING Animal research and laboratory facility. ANIMAL(S) Two-month-old female BALB/c mice. INTERVENTION(S) Surgically induced endometriosis in female BALB/C mice; 28 days of treatment with celecoxib, rosiglitazone, or their combination; counting, measuring, excising, and fixing lesions. MAIN OUTCOME MEASURE(S) Immunohistochemical examination for proliferating cell nuclear antigen (PCNA), CD31, and CD34 to assess cell proliferation and vascularization, with the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) technique for apoptosis evaluation. RESULT(S) Celecoxib and the combined treatment (celecoxib and rosiglitazone) statistically significantly reduced the mean number of lesions established per mouse, and all treatments diminished the implant volume. In addition, cell proliferation within the implants was statistically significantly reduced, and apoptosis was statistically significantly enhanced by all treatments. Also, we found that all treatments diminished the vascularized area in the lesion. CONCLUSION(S) These results are promising and reveal that celecoxib and rosiglitazone, combined or separately, have a beneficial effect on overall endometriotic growth.
Collapse
Affiliation(s)
- Carla Olivares
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
23
|
Yang Q, Liu HY, Zhang YW, Wu WJ, Tang WX. Anandamide induces cell death through lipid rafts in hepatic stellate cells. J Gastroenterol Hepatol 2010; 25:991-1001. [PMID: 20059638 DOI: 10.1111/j.1440-1746.2009.06122.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS Anandamide (AEA), the most extensively studied endocannabinoid, and its putative cannabinoid receptors, CB1 and CB2, exert a variety of physiological and pharmacological effects in chronic liver diseases, such as hyperdynamic circulation. Anandamide selectively blocks proliferation and induces cell death in hepatic stellate cells (HSC), the key cell type of liver fibrogenesis. However, its precise molecular mechanism in rat HSC has not been fully elucidated. METHODS CB1 and CB2 mRNA transcriptions were evaluated by reverse transcription polymerase chain reaction; CB1, CB2, phosphoinositide 3-kinases (PI3K) and protein kinase B (PKB) protein expressions were investigated by western blot and/or immunofluorescence. Cell death was detected by Annexin V-PE/7AAD flow cytometry, lipid raft content by confocal microscopic analysis, cell viability by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, nuclear morphological changes by Hoechst 33258 fluorochrome, and inflammatory cytokines interleukin (IL)-2 and IL-6, and tumor necrosis factor-alpha (TNF-alpha) by enzyme-linked immunosorbent assay. RESULTS CB1 and CB2 receptors were detectable in HSC. AEA caused HSC growth inhibition in a concentration-dependent manner. Furthermore, a high concentration of AEA (20 micromol/L) triggered potent cell death-induced necrosis but not apoptosis. None of these effects were blocked by CB1 or CB2 receptor antagonist, but by methyl-beta-cyclodextrin (MCD; 10 mmol/L), a cholesterol depletory agent. AEA significantly inhibited PI3K/PKB activity, and increased IL-2, IL-6 and TNF-alpha release. CONCLUSION These results demonstrated that AEA induced HSC necrosis through lipid rafts: a possible role of PI3K/PKB signaling pathway downregulation and inflammatory factors production. Cholesterol depletion abolished the effects of AEA on HSC necrosis.
Collapse
Affiliation(s)
- Qiao Yang
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | |
Collapse
|
24
|
Abstract
AIM: To investigate the effect of paeonol on controlling the proliferation of colorectal cancer cell line HT-29 and to discuss its possible mechanism.
METHODS: The inhibitory effect of paeonol on proliferation of HT-29 cells was detected by MTT assay. The results of apoptosis were measured by flow cytometry. Immunocytochemical staining was performed to detect the expression of cyclooxygenase-2 (COX-2) and protein p27 in HT-29 cells treated with paeonol at different concentrations. Reverse transcription-polymerase chain reaction (RT-PCR) was used for mRNA analysis.
RESULTS: From the data of both MTT and flow cytometry, we observed that cell proliferation was inhibited by different concentrations of paeonol. By immunocytochemical staining, we found that HT-29 cells treated with paeonol (0.024-1.504 mmol/L) reflected reduced expression of COX-2 and increased expression of p27 in a dose-dependent manner. RT-PCR showed that paeonol down-regulated COX-2 and up-regulated p27 in a dose- and time-dependent manner in HT-29 cells.
CONCLUSION: One of the apoptotic mechanisms of paeonol is down-regulation of COX-2. p27 is up-regulated simultaneously and plays an important part in controlling cell proliferation and is a crucial factor in the Fas/FasL apoptosis pathway.
Collapse
|
25
|
Liu JF, Zhu GJ, Jamieson GG, Wu TC, Zhu TN, Shan BE, Drew PA. NS-398 induces apoptosis in human esophageal cancer cells through inhibition of NF-kappaB downstream regulation of cyclooxygenase-2. Cancer Invest 2009; 27:17-23. [PMID: 19160097 DOI: 10.1080/07357900801992913] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although non-steroidal anti-inflammatory drugs (NSAIDs) have been demonstrated to have cancer-preventive effects and induce apoptosis of cancer cells, the mechanism of their effects is not clearly known. We studied the mechanism in human esophageal cancer cell line TE13. The esophageal squamous cell carcinoma cell line TE-13 was cultured with NS-398 at different concentrations or for different times. Proliferation and apoptosis were measured by MTT reduction and flow cytometry. Prostaglandin F(1alpha) was determined with radioimmunoassay. Expression of COX-2 mRNA was measured by RT-PCR and COX-2 protein levels with Western blot analysis. Nuclear NF-kappaB and cytoplasmic IkappaB protein levels were determined by electrophoretic mobility shift assay and Western blot, respectively. NS-398 significantly inhibited cell proliferation and induced apoptosis at concentrations of 0.001, 0.01, 1, and 100 micromol/L. NS-398 dose-dependently decreased the levels of COX-2 mRNA, COX-2 protein, nuclear NF-kappaB protein and production of PGF(1alpha) and increased the cytoplasmic IkappaB protein. In conclusion, NS-398 inhibits the proliferation of, and induced apoptosis in, the cultured TE-13 SCC cell line. These changes correlate with a reduction in COX-2 mRNA and protein expression, prostaglandin synthesis, an inhibition of NF-kappaB nuclear translocation, and an increase in cytoplasmic IkappaB.
Collapse
Affiliation(s)
- Jun Feng Liu
- Department of Thoracic Surgery, Fourth Hospital, Hebei Medical University, Shiziazhuang, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Taniura S, Kamitani H, Watanabe T, Eling TE. Induction of cyclooxygenase-2 expression by interleukin-1beta in human glioma cell line, U87MG. Neurol Med Chir (Tokyo) 2009; 48:500-5; discussion 505. [PMID: 19029777 DOI: 10.2176/nmc.48.500] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) is up-regulated in most high-grade gliomas, and high COX-2 expression is associated with aggressive character and poor prognosis. However, the effect of COX-2 in human glioma cell lines is not well known. This study examined the effect of several stimuli, including interleukin-1beta (IL-1beta) and carcinogens, on COX-2 induction in normal astrocyte cells and human glioma cell lines U87MG, A172, and T98G. IL-1beta-induced COX-2 expression strongly at both protein and messenger ribonucleic acid levels in only the U87MG cells of the glioma cell lines. Furthermore, carcinogen induced COX-2 expression. Similar findings were also observed in normal human astrocyte cells. The U87MG glioma cell line is a good model for COX-2 induction in glioma cell lines.
Collapse
Affiliation(s)
- Seijiro Taniura
- Department of Neurosurgery, Institute of Neurological Sciences, Faculty of Medicine, Tottori University, Yonago, Japan.
| | | | | | | |
Collapse
|
27
|
Zhuang ZH, Tsao SW, Deng W, Wang JD, Xia HHX, He H, Feng HC, Wang LD, Gu Q, Lam SK, Lin MCM, Kung HF, Wong BCY. Early upregulation of cyclooxygenase-2 in human papillomavirus type 16 and telomerase-induced immortalization of human esophageal epithelial cells. J Gastroenterol Hepatol 2008; 23:1613-20. [PMID: 18717758 DOI: 10.1111/j.1440-1746.2008.05509.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIM Cyclooxygenase-2 (COX-2) plays an important role in the carcinogenesis of esophageal squamous cell carcinoma (ESCC). However, it is not clear whether COX-2 is involved in the early or late stage of the development of ESCC. The aim of this study was to investigate the role of COX-2 in the carcinogenesis of ESCC by an immortalized esophageal epithelial cell line. METHODS Human papillomavirus type 16 (HPV16)-E6/E7 and human telomerase reverse transcriptase (hTERT) transfection were used for immortalization of esophageal epithelial cells. COX-2-specific RNA interference was used for the inhibition of COX-2 expression. RESULTS An immortalized esophageal epithelial cell line, NE6-E6E7/hTERT, was established, which had high proliferation activity but failed to induce colony formation in soft agar. COX-2 expression was upregulated in the early process of immortalization, while COX-2 small interfering RNA (siRNA) decreased the Bcl-2 expression, increased the expression of Bax, and induced cell-cycle arrest at the G0/G1 phase in NE6-E6E7/hTERT cells. Expressions of p53, cyclinD1, and the ratio of hyperphosphorylated-RB/hypophosphorylated-RB were progressively increased after E6E7 and the subsequent hTERT transfections. These changes were accompanied by the alteration of COX-2 expression, but could be reversed by COX-2 siRNA (P < 0.05). P16 expression was significantly downregulated in NE6-E6E7 or NE6-E6E7/hTERT cells (P < 0.05), and was not affected by COX-2 siRNA. CONCLUSIONS Our results suggest that induction of cyclooxygenase-2 is essential in the human papillomavirus type 16 and hTERT-induced immortalization of human esophageal epithelial cells, and that COX-2 inhibition may be a potential target to block the carcinogenesis of ESCC at the precancerous stage.
Collapse
Affiliation(s)
- Ze-Hao Zhuang
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fujian, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Olivares C, Bilotas M, Buquet R, Borghi M, Sueldo C, Tesone M, Meresman G. Effects of a selective cyclooxygenase-2 inhibitor on endometrial epithelial cells from patients with endometriosis. Hum Reprod 2008; 23:2701-8. [DOI: 10.1093/humrep/den315] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
29
|
COX-2 (PTGS2) gene methylation in epithelial, subepithelial lymphocyte and stromal tissue compartments in a spectrum of esophageal squamous neoplasia. ACTA ACUST UNITED AC 2008; 32:135-9. [PMID: 18632220 DOI: 10.1016/j.cdp.2008.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2008] [Indexed: 11/24/2022]
Abstract
BACKGROUND Previous studies have shown important effects of stromal elements in carcinogenesis. To explore the tumor-stromal relationship in esophageal neoplasia, we examined methylation of COX-2 (PTGS2), a gene etiologically associated with the development of gastrointestinal cancers, in adjacent foci of epithelium, subepithelial lymphocytes and non-lymphocytic stromal cells found in sections of normal squamous epithelium, squamous dysplasia and invasive esophageal squamous cell carcinoma. METHODS Adjacent foci of epithelium, subepithelial lymphocytic aggregates and non-lymphocytic stromal tissues were laser microdissected from six fully embedded, ethanol fixed, esophagectomy samples from Shanxi, China, a high-risk region for esophageal cancer. Promoter CpG site-specific hypermethylation status of COX-2 was determined using real-time methylation-specific PCR (qMS-PCR) based on Taqman Chemistry. The methylation status of a subset of samples was confirmed by pyrosequencing. RESULTS Forty-nine microdissected foci were analyzed. COX-2 gene methylation was significantly more common in subepithelial lymphocytes (12/16 (75% of all foci)) than in epithelial foci (3/16 (19%)) or foci of non-lymphocytic stromal tissues (3/17 (18%)) (Fisher's exact p=0.05). Two of three epithelial samples and all three stromal samples that showed COX-2 methylation were adjacent to foci of methylated subepithelial lymphocytes. Pyrosequencing confirmed the methylation status in a subset of samples. CONCLUSIONS In these esophageal cancer patients, COX-2 gene methylation was more common in subepithelial lymphocytes than in adjacent epithelial or stromal cells in both grades of dysplasia and in foci of invasive cancer. These findings raise the possibility that methylation of subepithelial lymphocytes may be important for tumorigenesis. Future studies of gene methylation should consider separate evaluation of epithelial and non-epithelial cell populations.
Collapse
|
30
|
Gudis K, Tatsuguchi A, Wada K, Hiratsuka T, Futagami S, Fukuda Y, Kiyama T, Tajiri T, Miyake K, Sakamoto C. Clinical significance of prostaglandin E synthase expression in gastric cancer tissue. Hum Pathol 2007; 38:1826-35. [PMID: 17868774 DOI: 10.1016/j.humpath.2007.04.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 04/26/2007] [Accepted: 04/27/2007] [Indexed: 01/29/2023]
Abstract
Studies have linked microsomal prostaglandin E synthase (mPGES)-1 with gastric cancer. The purpose of this study was to determine mPGES-1, mPGES-2, and cytosolic PGES (cPGES) expression in gastric cancer and to evaluate the correlation between mPGES-1 and mPGES-2 expression and clinicopathological factors and cyclooxygenase-2 expression. PGES protein expression was examined by Western blot in gastric cancer cell lines and in biopsy samples from patients with gastric cancer. mPGES-1, mPGES-2, and cPGES protein localizations were examined immunohistochemically in 129 archival gastric cancer surgical resections. mPGES-1 protein expression was found in gastric cancer biopsies and cancer cell lines with differentiated or undifferentiated adenocarcinoma. There was no mPGES-1 expression in nonneoplastic biopsies. All cell lines and tissue samples expressed mPGES-2 and cPGES. Immunohistochemical analysis showed cancer cells expressed mPGES-1 in 47% of cases. mPGES-2 immunoreactivity was seen both in nonneoplastic glandular epithelium and cancer cells; however, cancer cell immunoreactivity was significantly more pronounced in 29% of cases. cPGES expression was constitutive both in nonneoplastic and neoplastic tissues, with no significant variation among cases. mPGES-1 and mPGES-2 expression correlated with cyclooxygenase-2 expression. mPGES-1 and mPGES-2 expression, and tumor-node-metastasis stage had independent prognostic significance under multivariate analysis in patients with gastric cancer overall and in patients with differentiated cancers. However, only tumor-node-metastasis stage and mPGES-2 expression retained independent prognostic significance in patients with poorly differentiated cancers. mPGES-1 and mPGES-2 correlate with clinicopathological factors and may be valuable prognostic factors in gastric cancer.
Collapse
Affiliation(s)
- Katya Gudis
- Division of Gastroenterology, Department of Medicine, Nippon Medical School, Graduate School of Medicine, Tokyo 113-8603, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Munkarah AR, Ali-Fehmi R, Jiang JZ, Elhammady E, Malone JM, Saed GM. The effects of combining docetaxel and cyclooxygenase-2 inhibitors on proliferation and apoptosis in epithelial ovarian cancer. Anticancer Drugs 2007; 18:889-96. [PMID: 17667594 DOI: 10.1097/cad.0b013e3280cc2b46] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In-vitro studies have shown that taxanes can upregulate cellular cyclooxygenase-2 expression. The purpose of this study is to evaluate the effects of the combination, cyclooxygenase-2 inhibitor and docetaxel, on epithelial ovarian cancer cells. Four epithelial ovarian cancer cell lines (MDAH-2774, SKOV3, OVCAR and CaOV-3) were treated with the specific cyclooxygenase-2 inhibitor NS398 (10 or 100 mumol/l) and docetaxel (0.1, 1 or 10 mumol/l) in various combinations. Apoptosis in the ovarian cancer cells was assessed using TUNEL assay. Multiplex reverse transcription-PCR was used to determine mRNA levels of cyclooxygenase-2, bcl-2 and bax. Treatment of all epithelial ovarian cancer cells with docetaxel resulted in significant apoptotic death. Concurrent treatment of MDAH-2774, SKOV3 and OVCAR cells with docetaxel and NS398 resulted in the reduction of the taxane-induced apoptosis. Similar reduction was seen when the cells were exposed to NS398 for 4 h before docetaxel treatment. Conversely, treating the MDAH-2774 and SKOV3 cells with docetaxel followed by NS398 resulted in a significant increase in apoptosis compared with treatment with the taxane alone. bax mRNA levels were significantly reduced in SKOV3 cells treated concurrently with NS398 and docetaxel; bcl-2 mRNA levels showed no change. When combining docetaxel and a cyclooxygenase-2 inhibitor in the treatment of ovarian cancer cells, the sequencing of the drugs seems to have an important influence on the overall outcome. Using the cyclooxygenase-2 inhibitor before or concurrently with the taxane will result in a reduction of cellular apoptotic death. This might be due to a reduction in the expression of the proapototic gene bax.
Collapse
Affiliation(s)
- Adnan R Munkarah
- Wayne State University School of Medicine, Detroit, Michigan, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Banu N, Buda A, Chell S, Elder D, Moorghen M, Paraskeva C, Qualtrough D, Pignatelli M. Inhibition of COX-2 with NS-398 decreases colon cancer cell motility through blocking epidermal growth factor receptor transactivation: possibilities for combination therapy. Cell Prolif 2007; 40:768-79. [PMID: 17877615 PMCID: PMC6496834 DOI: 10.1111/j.1365-2184.2007.00459.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED The use of non-steroidal anti-inflammatory drugs has proved of great interest in the prevention and treatment of colorectal cancer, although their precise mechanisms of action remain unclear. Overexpression of cyclooxygenase-2 (COX-2) and subsequent prostaglandin production promote metastasis and have been shown to increase cell motility in vitro. OBJECTIVE We have aimed to elucidate whether specific inhibition of COX-2 with NS-398 (NS-398 is a selective inhibitor of COX-2) would be able to inhibit motility of colorectal cancer cells and whether this was modulated through epidermal growth factor receptor (EGFR) transactivation. MATERIALS AND METHODS A transwell filter assay was used to study cell motility. Expression of COX-2, EGFR phosphorylation and prostaglandin E(2) (PGE(2)) receptors were assessed by Western blot analysis and reverse transcriptase-polymerase chain reaction. PGE(2) concentrations after NS-398 treatment were estimated by enzyme immunoassay. RESULTS Treatment with NS-398 significantly reduced PGE(2) levels and reduced cell migration in the HT29 and HCA7 colorectal carcinoma cell lines and this effect was rescued by addition of PGE(2). Furthermore, specific inhibition of COX-2 with NS-398 reduced EGFR phosphorylation in colorectal cancer cells. Direct inhibition of EGFR activity with AG1478 reduced PGE(2)-stimulated motility, clearly demonstrating that PGE(2 )acts via the EGFR-signalling pathway. The novel combination of NS-398 and AG1478 dramatically reduced migration of colorectal cancer cells. CONCLUSION The data presented indicate that the use of NS-398 in chemoprevention and adjuvant therapy for colorectal cancer may work in part, through the inhibition of cell motility. Furthermore, our data suggest that the combined use of non-steroidal anti-inflammatory drugs with EGFR antagonists could be explored further for future use in the clinic.
Collapse
Affiliation(s)
- N Banu
- Division of Histopathology, Department of Cellular and Molecular Medicine, School of Medical Sciences and Bristol Royal Infirmary, University of Bristol, Bristol, UK
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Deasy BM, O'Sullivan-Coyne G, O'Donovan TR, McKenna SL, O'Sullivan GC. Cyclooxygenase-2 inhibitors demonstrate anti-proliferative effects in oesophageal cancer cells by prostaglandin E(2)-independent mechanisms. Cancer Lett 2007; 256:246-58. [PMID: 17707579 DOI: 10.1016/j.canlet.2007.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 04/24/2007] [Accepted: 06/15/2007] [Indexed: 01/28/2023]
Abstract
The incidence of oesophageal cancer (OC) has risen in recent decades, with survival rates remaining poor despite surgical treatment and adjuvant chemotherapy. Studies have reported cyclooxygenase-2 (COX-2) overexpression in OC and current evidence suggests NSAIDs have major potential for chemoprevention through COX-2 inhibition. However, several reports have questioned the specificity of these inhibitors, suggesting they may act through mechanisms other than COX-2. We evaluated the effects of specific COX-2 inhibitors, NS-398 and nimesulide, on cell lines of both histological types of OC. COX-2 protein expression varied in the cell lines and corresponded with levels of prostaglandin E(2) (PGE(2)) production. Following treatment with low concentrations of NS-398 (0.1 microM), PGE(2) production was reduced dramatically, indicating inhibition of COX-2 activity. Examination of cellular morphology, caspase-3 activity and mitochondrial membrane integrity found no major induction of apoptotic cell death at concentrations below 100 microM. Tumour cell proliferation was significantly reduced at high concentrations (50-100 microM) of both inhibitors over 6 days. Cellular responses were more evident in NS-398-treated adenocarcinoma cells. However, concentrations required to inhibit proliferation were up to 1000-fold higher than those needed to inhibit enzyme activity. Addition of exogenous PGE(2) to NS-398-treated adenocarcinoma cells failed to reverse the inhibitory effects, indicating PG and COX-2 independence. It remains possible that in vivo COX-2 is the primary target, as enzyme inhibition can be achieved at low concentrations, however, inhibition of proliferation is not the primary mechanism of their anti-tumour activity.
Collapse
Affiliation(s)
- B M Deasy
- Leslie C. Quick Laboratory, Cork Cancer Research Centre, 5th Floor, BioSciences Institute, University College Cork and Mercy University Hospital, Grenville Place, Cork, Ireland
| | | | | | | | | |
Collapse
|
34
|
Hinz B, Woelkart K, Bauer R. Alkamides from Echinacea inhibit cyclooxygenase-2 activity in human neuroglioma cells. Biochem Biophys Res Commun 2007; 360:441-6. [PMID: 17599805 DOI: 10.1016/j.bbrc.2007.06.073] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 06/14/2007] [Indexed: 11/20/2022]
Abstract
During past years inhibition of the cyclooxygenase-2 (COX-2) enzyme has been proven as an effective strategy to suppress pain and inflammation. Based on this and other mechanistic findings, interest has also renewed in the molecular pathways underlying the anti-inflammatory effects of herbal drugs. The present study addressed this issue and investigated the impact of several polyunsaturated alkamides isolated from a CO2 extract of the roots of Echinacea angustifolia DC. on both activity and expression of COX-2. A 48-h treatment of H4 human neuroglioma cells with the CO2 extract led to a significant suppression of prostaglandin (PG) E2 formation. Analysis of eight different alkamides revealed a contribution of undeca-2Z-ene-8,10-diynoic acid isobutylamide (A5), dodeca-2E-ene-8,10-diynoic acid isobutylamide (A7), and dodeca-2E,4Z-diene-8,10-diynoic acid 2-methylbutylamide (A8) to this response. Using an established short-term COX-2 activity assay, all three alkamides were shown to interfere with COX-2 activity. In contrast, none of the COX-2-suppressing nor any other tested alkamide was found to inhibit COX-2 mRNA and protein expression. Instead, increased COX-2 mRNA and protein levels were registered in the presence of the CO2 extract and most of the analyzed alkamides which caused, however, no stimulation of PG formation. Overall, our results suggest that certain alkamides derived from E. angustifolia roots may contribute to the pharmacological action of the herbal extract by inhibiting COX-2-dependent PGE2 formation at sites of inflammation.
Collapse
Affiliation(s)
- Burkhard Hinz
- Institute of Toxicology and Pharmacology, University of Rostock, Schillingallee 70, D-18057 Rostock, Germany.
| | | | | |
Collapse
|
35
|
Dolmatova LS, Zaika OA. Apoptosis-modulating effect of prostaglandin E2 in coelomocytes of holothurian Eupentacta fraudatrix depends on the cell antioxidant enzyme status. BIOL BULL+ 2007. [DOI: 10.1134/s1062359007030028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Huang RH, Chai J, Tarnawski AS. Identification of specific genes and pathways involved in NSAIDs-induced apoptosis of human colon cancer cells. World J Gastroenterol 2006; 12:6446-52. [PMID: 17072976 PMCID: PMC4100633 DOI: 10.3748/wjg.v12.i40.6446] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To study whether indomethacin (IND), a nonselective cyclooxygenase (COX) inhibitor or NS-398 (NS), a COX-2-selective inhibitor, induces apoptosis in human colon cancer cells and which apoptosis-related genes and pathways are involved. METHODS Human colon cancer Caco-2 cells were treated with either: placebo, IND (0.05-0.5 mmol/L) or NS (0.01-0.2 mmol/L) for 1, 5 and 18 h. We then studied: (1) Cell death by the TUNEL method, (2) mRNA expression of 96 apoptosis-related genes using DNA microarray, (3) expression of selected apoptosis related proteins by Western blotting. RESULTS Both IND and NS induced apoptosis in 30%-50% of Caco-2 cells in a dose dependent manner. IND (0.1 mmol/L for 1 h) significantly up-regulated pro-apoptotic genes in four families: (1) TNF receptor and ligand, (2) Caspase, (3) Bcl-2 and (4) Caspase recruiting domain. NS treatment up-regulated similar pro-apoptotic genes as IND. In addition, IND also down-regulated anti-apoptotic genes of the IAP family. CONCLUSION (1) Both non-selective and COX-2-selective NSAIDs induce apoptosis in colon cancer cells in a dose dependent manner. (2) Both NSAIDs induce apoptosis by activating two main apoptotic pathways: the death receptor pathway (involving TNF-R) and the mitochondrial pathway. (3) IND induces apoptosis by up-regulating pro-apoptotic genes and down-regulating anti-apoptotic genes, while NS only up-regulates pro-apoptotic genes. (4) Induction of apoptosis in colon cancer cells by NSAIDs may explain in part, their inhibitory action on colon cancer growth.
Collapse
Affiliation(s)
- Richard-H Huang
- Department of Medicine, Division of Gastroenterology, University of California Irvine and VA Long Beach Healthcare System, California, United States
| | | | | |
Collapse
|
37
|
Piazuelo E, Jiménez P, Strunk M, Santander S, García A, Esteva F, Lanas A. Effects of selective PGE2 receptor antagonists in esophageal adenocarcinoma cells derived from Barrett's esophagus. Prostaglandins Other Lipid Mediat 2006; 81:150-61. [PMID: 17085323 DOI: 10.1016/j.prostaglandins.2006.09.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 06/09/2006] [Accepted: 09/04/2006] [Indexed: 11/20/2022]
Abstract
Accumulating evidence suggests that COX-2-derived prostaglandin E(2) (PGE(2)) plays an important role in esophageal adenocarcinogenesis. Recently, PGE(2) receptors (EP) have been shown to be involved in colon cancer development. Since it is not known which receptors regulate PGE(2) signals in esophageal adenocarcinoma, we investigated the role of EP receptors using a human Barrett's-derived esophageal adenocarcinoma cell line (OE33). OE33 cells expressed COX-1, COX-2, EP(1), EP(2) and EP(4) but not EP(3) receptors as determined by real time RT-PCR and Western-blot. Treatment with 5-aza-dC restored expression, suggesting that hypermethylation is involved in EP(3) downregulation. Endogenous PGE(2) production was mainly due to COX-2, since this was significantly suppressed with COX-2 inhibitors (NS-398 and SC-58125), but not COX-1 inhibitors (SC-560). Cell proliferation ((3)H-thymidine uptake) was significantly inhibited by NS-398 and SC-58125, the EP(1) antagonist SC-51322, AH6809 (EP(1)/EP(2) antagonist), and the EP(4) antagonist AH23848B, but was not affected by exogenous PGE(2). However, treatment with the selective EP(2) agonist Butaprost or 16,16-dimethylPGE(2) significantly inhibited butyrate-induced apoptosis and stimulated OE33 cell migration. The effect of exogenous PGE(2) on migration was attenuated when cells were first treated with EP(1) and EP(4) antagonists. These findings suggest a potential role for EP selective antagonists in the treatment of esophageal adenocarcinoma.
Collapse
Affiliation(s)
- Elena Piazuelo
- Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain.
| | | | | | | | | | | | | |
Collapse
|
38
|
Kaidi A, Qualtrough D, Williams AC, Paraskeva C. Direct transcriptional up-regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes colorectal tumor cell survival and enhances HIF-1 transcriptional activity during hypoxia. Cancer Res 2006; 66:6683-91. [PMID: 16818642 DOI: 10.1158/0008-5472.can-06-0425] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cyclooxygenase (COX)-2, the inducible key enzyme for prostanoid biosynthesis, is overexpressed in most colorectal carcinomas and a subset of colorectal adenomas. Genetic, biochemical, and clinical evidence indicates an important role for COX-2 in colorectal tumorigenesis. Although COX-2 can be induced by aberrant growth factor signaling and oncogene activation during colorectal tumorigenesis, the role of microenvironmental factors such as hypoxia in COX-2 regulation remains to be elucidated. For the first time, we report that under hypoxic conditions COX-2 protein levels increase in colorectal adenoma and carcinoma cells. Rigorous analyses reveal that COX-2 up-regulation is transcriptional and is associated with hypoxia-inducible factor (HIF)-1alpha induction. Oligonucleotide pull-down and chromatin immunoprecipitation assays reveal that HIF-1alpha binds a hypoxia-responsive element on the COX-2 promoter. COX-2 up-regulation during hypoxia is accompanied by increased levels of prostaglandin E(2) (PGE(2)), which promote tumor cell survival under hypoxic conditions. In addition, elevated levels of PGE(2) in hypoxic colorectal tumor cells enhance vascular endothelial growth factor expression and HIF-1 transcriptional activity by activating the mitogen-activated protein kinase pathway, showing a potential positive feedback loop that contributes to COX-2 up-regulation during hypoxia. This study identifies COX-2 as a direct target for HIF-1 in colorectal tumor cells. In addition, COX-2 up-regulation represents a pivotal cellular adaptive response to hypoxia with implication for colorectal tumor cell survival and angiogenesis. We propose that using modified COX-2-selective inhibitors, which are only activated under hypoxic conditions, could potentially be a novel more selective strategy for colorectal cancer prevention and treatment.
Collapse
Affiliation(s)
- Abderrahmane Kaidi
- Cancer Research UK Colorectal Tumour Biology Research Group, Department of Cellular and Molecular Medicine, Faculty of Medical and Veterinary Science, Bristol University, Bristol BS8 1TD, United Kingdom
| | | | | | | |
Collapse
|
39
|
Li Y, Mao Y, Brandt-Rauf PW, Williams AC, Fine RL. Selective induction of apoptosis in mutant p53 premalignant and malignant cancer cells by PRIMA-1 through the c-Jun-NH2-kinase pathway. Mol Cancer Ther 2005; 4:901-9. [PMID: 15956247 DOI: 10.1158/1535-7163.mct-04-0206] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PRIMA-1 (p53 reactivation and induction of massive apoptosis) is a chemical compound that was originally identified as a selective mutant p53-dependent growth suppressor by screening a library of low-molecular-weight compounds. However, its mechanism of action is unknown. In this study, we examined toxicity of PRIMA-1 to three premalignant human colorectal adenoma cell lines (RG/C2, BR/C1, and AA/C1) and four colorectal carcinoma cell lines (DLD-1, SW480, LOVO, and HCT116) and its mechanism of action. It selectively induced apoptosis only in the mutant p53 premalignant and malignant colon cell lines, but was not toxic to the wild-type p53 premalignant and malignant colon cell lines. Using stable transfectants of temperature-sensitive p53 mutant Ala(143) in null p53 H1299 lung cancer cells, we found that PRIMA-1 induced significantly more apoptosis in cells with mutant p53 conformation (37 degrees C) than the wild-type p53 conformation (32.5 degrees C). Cell cycle analysis indicated that its inhibition of cell growth was correlated with induction of G(2) arrest. Western blot analysis showed PRIMA-1 increased p21 and GADD45 expression selectively in the mutant p53 cells. However, Fas, Bcl-2 family proteins, and caspases were not involved in PRIMA-1-induced cell death. The c-Jun-NH(2)-kinase (JNK) inhibitor SP 600125, but not p38 mitogen-activated protein kinase inhibitor SB 203580 or extracellular signal-regulated kinase inhibitor PD 98059, blocked PRIMA-1-induced apoptosis. Transfection with a dominant-negative phosphorylation mutant JNK, but not a dominant-negative p38 or wild-type JNK, inhibited PRIMA-1-induced cell death, suggesting that the JNK pathway plays an important role in PRIMA-1-induced apoptosis. PRIMA-1 is a highly selective small molecule toxic to p53 mutant cells and may serve as a prototype for the development of new p53-targeting agents for therapy of premalignant and malignant cells.
Collapse
Affiliation(s)
- Yin Li
- Experimental Therapeutics Program, Division of Medical Oncology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
40
|
Cheng YL, Zhang GY, Xiao ZQ, Tang FQ. Two-dimensional polyacrylamide gel electrophoresis analysis of indomethacin-treated human colon cancer cells. World J Gastroenterol 2005; 11:2420-5. [PMID: 15832411 PMCID: PMC4305628 DOI: 10.3748/wjg.v11.i16.2420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To establish the two-dimensional gel electrophoresis (2-DE) profiles of indomethacin (IN)-treated human colon cancer cell line HCT116, and to provide a new way to study its anti-tumor molecular mechanism through analyzing a variety of protein maps.
METHODS: Two-DE profiles of HCT116 were established in IN-treated and untreated groups. Total proteins were separated by immobilized pH gradient-based 2-DE. The gels were stained by silver, scanned by ImageScanner, and analyzed with Image Master software.
RESULTS: Clear background, well-resolved and reproducible 2-DE patterns of HCT116 cells were acquired in IN-treated and untreated group. The average deviation of spot position was 0.896±0.177 mm in IEF direction and 1.106±0.289 mm in SDS-PAGE direction respectively. In IN-treated group, 1169±36 spots were detected and 1061±32 spots were matched, the average matching rate was 90.6% in three gels. In untreated group, 1256±50 spots were detected and 1168±46 spots were matched, the average matching rate was 93.0% in three gels. Forty-five differential protein spots were displayed between IN-treated and untreated groups. Of which, 34 protein spots decreased and 9 showed higher expression in IN-treated group, and only two protein spots showed an expression in untreated cells.
CONCLUSION: Two-DE profiles of IN-treated and untreated HCT116 cells were established. Apparent 45 different protein spots were detected in IN-treated and untreated HCT116 cells. The analysis on differential protein spots may serve as a new way to study the molecule mechanism of IN-treated colon cancer.
Collapse
Affiliation(s)
- Yan-Li Cheng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Xiangya Road, Changsha 410008, Hunan Province, China
| | | | | | | |
Collapse
|
41
|
Symowicz J, Adley BP, Woo MMM, Auersperg N, Hudson LG, Stack MS. Cyclooxygenase-2 functions as a downstream mediator of lysophosphatidic acid to promote aggressive behavior in ovarian carcinoma cells. Cancer Res 2005; 65:2234-42. [PMID: 15781636 DOI: 10.1158/0008.5472.can-04-2781] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Elevated levels of the bioactive lipid lysophosphatidic acid (LPA) are detectable in the majority of patients with both early- and late-stage ovarian cancer, suggesting that LPA promotes early events in ovarian carcinoma dissemination. LPA contributes to the development, progression, and metastasis of ovarian cancer in part by inducing the expression of genes that contribute to proliferation, survival, or invasion, including cyclooxgenase-2 (COX-2) and matrix metalloproteinase-2 (MMP-2). We have previously shown that LPA promotes proMMP-2 activation and MMP-2-dependent migration and invasion in ovarian cancer cells. The purpose of the current study was to determine whether the effect of LPA on acquisition of the metastatic phenotype in ovarian cancer cells is mediated via a COX-2-dependent mechanism. Immunohistochemical analysis of 173 ovarian tumors showed strong COX-2 immunoreactivity in 63% of tumor specimens, including 50% of borderline tumors. LPA increased COX-2 protein expression in a time- and concentration-dependent manner in two of three immortalized borderline ovarian epithelial cells as well as in four of six ovarian cancer cell lines. This was accomplished by both activation of the Edg/LPA receptor and LPA-mediated transactivation of the epidermal growth factor receptor, which increased COX-2 expression via the Ras/mitogen-activated protein kinase pathway. COX-2 also played a role in LPA-induced invasion and migration, as treatment with the COX-2 specific inhibitor NS-398 reduced LPA-induced proMMP-2 protein expression and activation and blocked MMP-dependent motility and invasive activity. These data show that COX-2 functions as a downstream mediator of LPA to potentiate aggressive cellular behavior.
Collapse
Affiliation(s)
- Jaime Symowicz
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
42
|
Basu GD, Pathangey LB, Tinder TL, Gendler SJ, Mukherjee P. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells. Breast Cancer Res 2005; 7:R422-35. [PMID: 15987447 PMCID: PMC1175053 DOI: 10.1186/bcr1019] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 03/01/2005] [Accepted: 03/04/2005] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Inhibitors of cyclo-oxygenase (COX)-2 are being extensively studied as anticancer agents. In the present study we evaluated the mechanisms by which a highly selective COX-2 inhibitor, celecoxib, affects tumor growth of two differentially invasive human breast cancer cell lines. METHODS MDA-MB-231 (highly invasive) and MDA-MB-468 (moderately invasive) cell lines were treated with varying concentrations of celecoxib in vitro, and the effects of this agent on cell growth and angiogenesis were monitored by evaluating cell proliferation, apoptosis, cell cycle arrest, and vasculogenic mimicry. The in vitro results of MDA-MB-231 cell line were further confirmed in vivo in a mouse xenograft model. RESULTS The highly invasive MDA-MB-231 cells express higher levels of COX-2 than do the less invasive MDA-MB-468 cells. Celecoxib treatment inhibited COX-2 activity, indicated by prostaglandin E2 secretion, and caused significant growth arrest in both breast cancer cell lines. In the highly invasive MDA-MB-231 cells, the mechanism of celecoxib-induced growth arrest was by induction of apoptosis, associated with reduced activation of protein kinase B/Akt, and subsequent activation of caspases 3 and 7. In the less invasive MDA-MB-468 cells, growth arrest was a consequence of cell cycle arrest at the G0/G1 checkpoint. Celecoxib-induced growth inhibition was reversed by addition of exogenous prostaglandin E2 in MDA-MB-468 cells but not in MDA-MB-231 cells. Furthermore, MDA-MB-468 cells formed significantly fewer extracellular matrix associated microvascular channels in vitro than did the high COX-2 expressing MDA-MB-231 cells. Celecoxib treatment not only inhibited cell growth and vascular channel formation but also reduced vascular endothelial growth factor levels. The in vitro findings corroborated in vivo data from a mouse xenograft model in which daily administration of celecoxib significantly reduced tumor growth of MDA-MB-231 cells, which was associated with reduced vascularization and increased necrosis in the tumor mass. CONCLUSION The disparate molecular mechanisms of celecoxib-induced growth inhibition in human breast cancer cells depends upon the level of COX-2 expression and the invasive potential of the cell lines examined. Data suggest a role for COX-2 not only in the growth of cancer cells but also in activating the angiogenic pathway through regulating levels of vascular endothelial growth factor.
Collapse
Affiliation(s)
- Gargi D Basu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Scottsdale, Arizona, USA
| | - Latha B Pathangey
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Scottsdale, Arizona, USA
| | - Teresa L Tinder
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Scottsdale, Arizona, USA
| | - Sandra J Gendler
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Scottsdale, Arizona, USA
| | - Pinku Mukherjee
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Scottsdale, Arizona, USA
| |
Collapse
|
43
|
Kajita S, Ruebel KH, Casey MB, Nakamura N, Lloyd RV. Role of COX-2, thromboxane A2 synthase, and prostaglandin I2 synthase in papillary thyroid carcinoma growth. Mod Pathol 2005; 18:221-7. [PMID: 15475935 DOI: 10.1038/modpathol.3800285] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development of papillary thyroid carcinoma is influenced by many factors including genetic alterations, growth factors, and physical agents such as radiation. Arachidonic acid and its derivatives including prostaglandins (PG) and thromboxane along with the enzymes involved in their synthesis have been shown to influence the growth of various tumors. We analyzed the immunoreactivity for cyclooxygenase-2 (COX-2) and mRNA expression levels of the enzymes COX-2, thromboxane A(2) (TXA(2)) synthase, and PGI(2) synthase by RT-PCR in papillary carcinomas and matching normal tissues to determine the role of these enzymes in the development of papillary thyroid carcinomas. A papillary thyroid carcinoma cell line TPC-1 was also studied in vitro to determine the role of the specific COX-2 inhibitor NS-398 on COX-2 and vascular endothelial growth factor-A, since COX-2 also has a role in regulating tumor angiogenesis. RT-PCR analysis showed significant increases in TXA(2) synthase mRNA levels in papillary thyroid carcinomas compared to normal thyroid tissues. Although COX-2 mRNA levels were generally increased in papillary carcinomas, the differences were not statistically significant. There were no significant differences in PGI(2) synthase mRNA levels. COX-2 protein expression was greater in papillary carcinoma compared to normal thyroid tissues; however, the levels were quite variable. In vitro studies with a COX-2 inhibitor, NS-398, showed inhibition of tumor growth along with increased levels of COX-2 and vascular endothelial growth factor-A mRNA expression. These results indicate that specific enzyme levels in the PG synthesis pathway such as TXA(2) synthase are increased in papillary thyroid carcinomas. COX-2 also has a role in papillary thyroid growth, since a specific inhibitor of COX-2 regulates papillary thyroid carcinoma cell proliferation. These results implicate several enzymes in the synthesis of prostanoids as regulators of thyroid papillary carcinoma proliferation and suggest that increased levels of expression of these enzymes may play a role in the pathogenesis of these tumors.
Collapse
Affiliation(s)
- Sabine Kajita
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
44
|
Wendum D, Masliah J, Trugnan G, Fléjou JF. Cyclooxygenase-2 and its role in colorectal cancer development. Virchows Arch 2004; 445:327-33. [PMID: 15340847 DOI: 10.1007/s00428-004-1105-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Accepted: 07/12/2004] [Indexed: 12/17/2022]
Abstract
Cyclooxygenase 2 (COX-2), also called prostaglandin endoperoxide synthase 2, is involved in colorectal tumor development. This review deals with particular questions raised in this field such as the mechanisms of COX-2 related tumor promotion, the role of the different types of cells (epithelial and interstitial) expressing COX-2, the factors that trigger COX-2 induction, and the clinical potential of selective COX-2 inhibitors to treat or prevent colorectal tumors. Several mechanisms of COX-2 related tumor promotion have been identified. Some are dependent on prostaglandin E(2) production (such as induction of cell proliferation, angiogenenis or local immunosuppression, inhibition of apoptosis, increase in cell motility) and others are not (such as carcinogen activation or malondialdehyde production). COX-2 expression has been demonstrated in epithelial cells of colorectal cancers and adenomas and also in interstitial cells. These cells correspond to macrophages and/or fibroblasts and endothelial cells. COX-2 expression in these interstitial cells participates in tumor development. Factors or events that trigger COX-2 expression include oncogene activation, antioncogene inactivation, cytokines, growth factors, some fatty acids, bile salts, and mucins. Finally, selective COX-2 inhibitors may be effective in preventing or treating colorectal adenomas or carcinomas. However, their real efficiency and the cost/benefit balance are currently evaluated, and no definite conclusion can be made at the moment.
Collapse
Affiliation(s)
- Dominique Wendum
- Service d'Anatomie Pathologique, Hôpital Saint-Antoine, AP-HP, 184 rue du Faubourg Saint-Antoine, 75571, Paris Cedex 12, France.
| | | | | | | |
Collapse
|
45
|
Johnson IT. New approaches to the role of diet in the prevention of cancers of the alimentary tract. Mutat Res 2004; 551:9-28. [PMID: 15225578 DOI: 10.1016/j.mrfmmm.2004.02.017] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2003] [Revised: 02/10/2004] [Accepted: 02/10/2004] [Indexed: 12/16/2022]
Abstract
Cancers of the alimentary tract are, collectively, amongst the major causes of morbidity and deaths from cancer across the world today. Of the 10 million new cases of cancer diagnosed in 2000, about 2.3 million were cancers of the pharynx, oesophagus, stomach or colorectum. Nevertheless, epidemiological studies indicate that cancers of the digestive organs are also amongst the most susceptible to modification by dietary factors. International variations in incidence suggest that round three quarters of all sporadic colorectal cancers are attributable to diet. Even within the relatively uniform environment of the European Union, there are variations in the incidence of colorectal and oesophageal cancers of about two- and six-fold, respectively. Carcinomas of the alimentary tract arise from epithelial cells via distinct sequences of neoplastic change, which require a large fraction of an individual's lifespan. The best characterised of these is the adenoma-carcinoma sequence of colorectal carcinogenesis, in which progressive loss of differentiation and normal morphology in a growing lesion is associated with the acquisition of somatic mutations, and of aberrant methylation of CpG-islands, leading to gene silencing. These molecular events are accompanied by functional changes, including increased mitosis and evasion of apoptosis. There is little evidence that diet exerts its effects primarily through food-borne carcinogens that can be identified and eliminated from the food-chain. It is far more probable that the adverse effects of diet are caused largely by over-consumption of energy, coupled with inadequate intakes of protective substances, including micronutrients, dietary fibre and a variety of phytochemicals. The latter are biologically active secondary plant metabolites, many of which modify cell proliferation and induce apoptosis in vitro. There is growing evidence that such effects also occur in vivo, and that they can suppress the progress of neoplasia. Carcinomas of the oesophagus, stomach and colon all appear to be partially preventable by diets rich in fruits and vegetables. Plant foods contain a variety of components including micronutrients, polyunsaturated fatty acids, and secondary metabolites such as glucosinolates and flavonoids, many of which can inhibit cell proliferation and induce apoptosis, and which may well act synergistically when combined in the human diet. The future challenge is to fully characterise and evaluate these effects at the cellular and molecular level, so at to exploit their full potential as protective mechanisms for the population as a whole.
Collapse
Affiliation(s)
- I T Johnson
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK.
| |
Collapse
|
46
|
Shen SC, Ko CH, Tseng SW, Tsai SH, Chen YC. Structurally related antitumor effects of flavanones in vitro and in vivo: involvement of caspase 3 activation, p21 gene expression, and reactive oxygen species production. Toxicol Appl Pharmacol 2004; 197:84-95. [PMID: 15163544 DOI: 10.1016/j.taap.2004.02.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Accepted: 02/05/2004] [Indexed: 12/21/2022]
Abstract
Flavonoids exist extensively in plants and Chinese herbs, and several biological effects of flavonoids have been demonstrated. The antitumor effects in colorectal carcinoma cells (HT29, COLO205, and COLO320HSR) of eight flavanones including flavanone, 2'-OH flavanone, 4'-OH flavanone, 6-OH flavanone, 7-OH flavanone, naringenin, nargin, and taxifolin were investigated. Results of the MTT assay indicate that 2'-OH flavanone showed the most potent cytotoxic effect on these three cells, and cell death induced by 2'-OH flavanone was via the occurrence of DNA ladders, apoptotic bodies, and hypodiploid cells, all characteristics of apoptosis. Induction of caspase 3 protein processing and enzyme activity associated with cleavage of poly(ADP-ribose) polymerase (PARP) was identified in 2'-OH flavanone-treated cells, and a peptidyl inhibitor (Ac-DEVD-FMK) of caspase 3 attenuated the cytotoxicity of 2'-OH flavanone in COLO205 and HT-29 cells. Elevation of p21 (but not p53) and a decrease in Mcl-1 protein were found in 2'-OH flavanone-treated COLO205 and HT-29 cells. Elevation of intracellular reactive oxygen species (ROS) was detected in 2'-OH flavanone-treated cells by the 2',7'-dichlorodihydrofluorescein diacetate (DCHF-DA) assay, and ROS scavengers including 4,5-dihydro-1,3-benzene disulfonic acid (tiron), catalase, superoxide dismutase (SOD), and pyrrolidine dithiocarbamate (PDTC) suppressed the 2'-OH flavanone-induced cytotoxic effect. Subcutaneous injection of COLO205 induced tumor formation in nude mice, and 2'-OH flavanone showed a significant inhibitory effect on tumor formation. The appearance of apoptotic cells with H&E staining, and an increase in p21, but not p53, protein by immunohistochemistry were observed in tumor tissues under 2'-OH flavanone treatment. Primary tumor cells (COLO205-X) derived from a tumor specimen elicited by COLO205 were established, and 2'-OH flavanone showed an significant apoptotic effect in COLO205-X cells in accordance with the appearance of DNA ladders, caspase 3 protein processing, PARP protein cleavage, and increasing p21 protein. These results revealed in vitro, ex vivo, and in vivo antitumor activities of 2'-OH flavanone via apoptosis induction, and indicates that 2'-OH flavanone is an active compound worthy of development for cancer chemotherapy.
Collapse
Affiliation(s)
- Shing-Chuan Shen
- Graduate Institute of Pharmacognosy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
47
|
Müller R. Crosstalk of oncogenic and prostanoid signaling pathways. J Cancer Res Clin Oncol 2004; 130:429-44. [PMID: 15205946 DOI: 10.1007/s00432-004-0570-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Accepted: 03/16/2004] [Indexed: 12/21/2022]
Affiliation(s)
- Rolf Müller
- Institute of Molecular Biology and Tumor Research (IMT), Philipps-University, Emil-Mannkopff-Strasse 2, 35033 Marburg, Germany.
| |
Collapse
|
48
|
Kinder DH, Aulthouse AL. MCF-7 breast cancer cell line grown in agarose culture for study of COX-2 inhibitors in three-dimensional growth system. Cancer Lett 2004; 205:49-53. [PMID: 15036660 DOI: 10.1016/j.canlet.2003.10.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2003] [Accepted: 10/13/2003] [Indexed: 11/21/2022]
Abstract
Herein we report a method for studying slow acting pharmaceutical COX-2 inhibitors in the MCF-7 breast cancer cell line where cells are grown in a three-dimensional format within an agarose matrix. The cancer cells are suspended in agarose and plated in a cell culture dish, where they will form small multicellular 'tumors' in the agarose. The time frame for conducting experiments is up to 2.5 weeks, and gives ample time for COX-2 inhibitors to induce cell death. Etodolac was used for these experiments, and was found to induce cell death in a time dependent manner over a 2.5-week period. This is in contrast to the cell line grown in monolayer and treated with the same concentrations of etodolac. This method is appropriate for determining mechanisms of cell death caused by COX-2 inhibition.
Collapse
Affiliation(s)
- David H Kinder
- Department of Pharmacological and Biomedical Sciences, College of Pharmacy, Ohio Northern University, Ada, OH 45810, USA.
| | | |
Collapse
|
49
|
Smartt HJM, Elder DJE, Hicks DJ, Williams NA, Paraskeva C. Increased NF-kappaB DNA binding but not transcriptional activity during apoptosis induced by the COX-2-selective inhibitor NS-398 in colorectal carcinoma cells. Br J Cancer 2003; 89:1358-65. [PMID: 14520472 PMCID: PMC2394298 DOI: 10.1038/sj.bjc.6601266] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit colorectal neoplasia, an effect that is associated with their ability to induce apoptosis. Although NSAIDs have been reported to inhibit NF-κB, more recent studies show activation of NF-κB by NSAIDs. NF-κB commonly shows antiapoptotic activity and is implicated in the therapeutic resistance of cancer cells. The effects of highly COX-2-selective NSAIDs such as NS-398 on NF-κB in colorectal tumour cells have not been reported. Therefore, we addressed whether NF-κB has a role in NS-398-induced apoptosis of colorectal cancer cells. Treatment of HT-29 colorectal carcinoma cells with doses of NS-398 (50–75 μM) known to induce apoptosis had no effect on NF-κB for up to 48 h. However after 72 and 96 h NF-κB DNA-binding activity was increased by NS-398, in parallel with apoptosis induction. NS-398-treated HT-29 cells showed increased p50 homodimer binding and an induction of p50/p65 heterodimers, as demonstrated by supershift assay. However, although NS-398 increased NF-κB DNA binding it did not increase NF-κB-dependent reporter activity and inhibition of NF-κB DNA binding did not enhance NS-398-induced apoptosis. This indicates that NF-κB activated by NS-398 is transcriptionally inactive and is an encouraging result for the use of COX-2-selective NSAIDs not only in chemoprevention but also as novel therapies for colon cancer.
Collapse
Affiliation(s)
- H J M Smartt
- Cancer Research UK Colorectal Tumour Biology Research Group, Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - D J E Elder
- Cancer Research UK Colorectal Tumour Biology Research Group, Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - D J Hicks
- Cancer Research UK Colorectal Tumour Biology Research Group, Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - N A Williams
- Department of Pathology and Microbiology, Division of Immunology, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - C Paraskeva
- Cancer Research UK Colorectal Tumour Biology Research Group, Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
- Cancer Research UK Colorectal Tumour Biology Research Group, Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK. E-mail:
| |
Collapse
|
50
|
Wen B, Deutsch E, Eschwege P, De Crevoisier R, Nasr E, Eschwege F, Bourhis J. Cyclooxygenase-2 inhibitor NS398 enhances antitumor effect of irradiation on hormone refractory human prostate carcinoma cells. J Urol 2003; 170:2036-9. [PMID: 14532848 DOI: 10.1097/01.ju.0000092239.98832.52] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE We examined the potential therapeutic effect of NS398, a selective cyclooxygenase-2 (COX-2) inhibitor, combined with irradiation on human prostate adenocarcinoma DU145 cells. MATERIALS AND METHODS The effect on tumor growth, proliferation testing and clonogenic survival was determined to evaluate its antitumor effect when exposed to NS398 or combined with irradiation. Immunoblotting analyses were done to detect the expression of COX-2, nuclear factor-kappaB p50 and Rel A p65 because evidence suggested a biological association of COX-2 with alterations in these markers. Reverse transcriptase-polymerase chain reaction was also performed to show its effect on the transcription level of COX-2. RESULTS Exposure of DU145 cells to NS398 alone suppressed proliferation in a dose and time dependent manner. Examination of the NS398 effect on the radiation response showed marked enhancement of radiosensitivity. Western blot indicated that NS398 down-regulated the expression of COX-2, nuclear factor-kappaB, p50 and Rel A p65, whereas the effect was more pronounced when combined with irradiation. Reverse transcriptase-polymerase chain reaction showed that the NS398 antitumor effect was associated with COX-2 transcription inhibition. Importantly COX-2 expression was enhanced by irradiation but this phenomenon was abolished when cells were exposed to NS398. Inhibition of tumor growth in animal model was observed when mice were treated with NS398 alone and irradiation alone, and this effect was maximal when treated with NS398 and irradiation. CONCLUSIONS These results suggest that NS398 could be used as a potential therapeutic agent combined with irradiation for prostate adenocarcinoma.
Collapse
Affiliation(s)
- Bixiu Wen
- UPRES EA No. 27-10, Radiosensibilité des tumeurs et des tissues sains, Institut Gustave Roussy, 94805 Villejuif Cedex, France
| | | | | | | | | | | | | |
Collapse
|