1
|
Gupta MN, Uversky VN. Protein structure-function continuum model: Emerging nexuses between specificity, evolution, and structure. Protein Sci 2024; 33:e4968. [PMID: 38532700 DOI: 10.1002/pro.4968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
The rationale for replacing the old binary of structure-function with the trinity of structure, disorder, and function has gained considerable ground in recent years. A continuum model based on the expanded form of the existing paradigm can now subsume importance of both conformational flexibility and intrinsic disorder in protein function. The disorder is actually critical for understanding the protein-protein interactions in many regulatory processes, formation of membrane-less organelles, and our revised notions of specificity as amply illustrated by moonlighting proteins. While its importance in formation of amyloids and function of prions is often discussed, the roles of intrinsic disorder in infectious diseases and protein function under extreme conditions are also becoming clear. This review is an attempt to discuss how our current understanding of protein function, specificity, and evolution fit better with the continuum model. This integration of structure and disorder under a single model may bring greater clarity in our continuing quest for understanding proteins and molecular mechanisms of their functionality.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
2
|
Gupta MN, Uversky VN. Moonlighting enzymes: when cellular context defines specificity. Cell Mol Life Sci 2023; 80:130. [PMID: 37093283 PMCID: PMC11073002 DOI: 10.1007/s00018-023-04781-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 04/15/2023] [Indexed: 04/25/2023]
Abstract
It is not often realized that the absolute protein specificity is an exception rather than a rule. Two major kinds of protein multi-specificities are promiscuity and moonlighting. This review discusses the idea of enzyme specificity and then focusses on moonlighting. Some important examples of protein moonlighting, such as crystallins, ceruloplasmin, metallothioniens, macrophage migration inhibitory factor, and enzymes of carbohydrate metabolism are discussed. How protein plasticity and intrinsic disorder enable the removing the distinction between enzymes and other biologically active proteins are outlined. Finally, information on important roles of moonlighting in human diseases is updated.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL, 33612-4799, USA.
| |
Collapse
|
3
|
Wang TY, Rukundo JL, Le ATH, Ivanov NA, Le Blanc JCY, Gorin BI, Krylov SN. Transient Incomplete Separation of Species with Close Diffusivity to Study the Stability of Affinity Complexes. Anal Chem 2022; 94:15415-15422. [DOI: 10.1021/acs.analchem.2c03313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tong Ye Wang
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, OntarioM3J 1P3, Canada
| | - Jean-Luc Rukundo
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, OntarioM3J 1P3, Canada
| | - An T. H. Le
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, OntarioM3J 1P3, Canada
| | - Nikita A. Ivanov
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, OntarioM3J 1P3, Canada
| | | | - Boris I. Gorin
- Eurofins CDMO Alphora, 2395 Speakman Drive #2001, Mississauga, OntarioL5K 1B3, Canada
| | - Sergey N. Krylov
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, OntarioM3J 1P3, Canada
| |
Collapse
|
4
|
Affinity, Specificity, and Cooperativity of DNA Binding by Bacterial Gene Regulatory Proteins. Int J Mol Sci 2022; 23:ijms23010562. [PMID: 35008987 PMCID: PMC8745587 DOI: 10.3390/ijms23010562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 12/04/2022] Open
Abstract
Nearly all of biology depends on interactions between molecules: proteins with small molecules, proteins with other proteins, nucleic acids with small molecules, and nucleic acids with proteins that regulate gene expression, our concern in this Special Issue. All those kinds of interactions, and others, constitute the vast majority of biology at the molecular level. An understanding of those interactions requires that we quantify them to learn how they interact: How strongly? With which partners? How—and how well—are different partners distinguished? This review addresses the evolution of our current understanding of the molecular origins of affinity and specificity in regulatory protein–DNA interactions, and suggests that both these properties can be modulated by cooperativity.
Collapse
|
5
|
Pérez de la Lastra JM, Baca-González V, González-Acosta S, Asensio-Calavia P, Otazo-Pérez A, Morales-delaNuez A. Antibodies targeting enzyme inhibition as potential tools for research and drug development. Biomol Concepts 2021; 12:215-232. [PMID: 35104929 DOI: 10.1515/bmc-2021-0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/31/2021] [Indexed: 12/29/2022] Open
Abstract
Antibodies have transformed biomedical research and are now being used for different experimental applications. Generally, the interaction of enzymes with their specific antibodies can lead to a reduction in their enzymatic activity. The effect of the antibody is dependent on its narrow i.e. the regions of the enzyme to which it is directed. The mechanism of this inhibition is rarely a direct combination of the antibodies with the catalytic site, but is rather due to steric hindrance, barring the substrate access to the active site. In several systems, however, the interaction with the antibody induces conformational changes on the enzyme that can either inhibit or enhance its catalytic activity. The extent of enzyme inhibition or enhancement is, therefore, a reflection of the nature and distribution of the various antigenic determinants on the enzyme molecule. Currently, the mode of action of many enzymes has been elucidated at the molecular level. We here review the molecular mechanisms and recent trends by which antibodies inhibit the catalytic activity of enzymes and provide examples of how specific antibodies can be useful for the neutralization of biologically active molecules.
Collapse
Affiliation(s)
- José Manuel Pérez de la Lastra
- Biotechnology of macromolecules. Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de la Laguna, Tenerife, Spain
| | - Victoria Baca-González
- Biotechnology of macromolecules. Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de la Laguna, Tenerife, Spain.,Escuela Doctorado y Estudios de Posgrado. Universidad de La Laguna (ULL). C/ Pedro Zerolo, s/n. 38200. San Cristóbal de La Laguna. S/C de Tenerife, Spain
| | - Sergio González-Acosta
- Biotechnology of macromolecules. Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de la Laguna, Tenerife, Spain
| | - Patricia Asensio-Calavia
- Biotechnology of macromolecules. Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de la Laguna, Tenerife, Spain.,Escuela Doctorado y Estudios de Posgrado. Universidad de La Laguna (ULL). C/ Pedro Zerolo, s/n. 38200. San Cristóbal de La Laguna. S/C de Tenerife, Spain
| | - Andrea Otazo-Pérez
- Biotechnology of macromolecules. Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de la Laguna, Tenerife, Spain.,Escuela Doctorado y Estudios de Posgrado. Universidad de La Laguna (ULL). C/ Pedro Zerolo, s/n. 38200. San Cristóbal de La Laguna. S/C de Tenerife, Spain
| | - Antonio Morales-delaNuez
- Biotechnology of macromolecules. Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de la Laguna, Tenerife, Spain
| |
Collapse
|
6
|
Pandey SK, Melichercik M, Řeha D, Ettrich RH, Carey J. Conserved Dynamic Mechanism of Allosteric Response to L-arg in Divergent Bacterial Arginine Repressors. Molecules 2020; 25:molecules25092247. [PMID: 32397647 PMCID: PMC7248756 DOI: 10.3390/molecules25092247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 11/23/2022] Open
Abstract
Hexameric arginine repressor, ArgR, is the feedback regulator of bacterial L-arginine regulons, and sensor of L-arg that controls transcription of genes for its synthesis and catabolism. Although ArgR function, as well as its secondary, tertiary, and quaternary structures, is essentially the same in E. coli and B. subtilis, the two proteins differ significantly in sequence, including residues implicated in the response to L-arg. Molecular dynamics simulations are used here to evaluate the behavior of intact B. subtilis ArgR with and without L-arg, and are compared with prior MD results for a domain fragment of E. coli ArgR. Relative to its crystal structure, B. subtilis ArgR in absence of L-arg undergoes a large-scale rotational shift of its trimeric subassemblies that is very similar to that observed in the E. coli protein, but the residues driving rotation have distinct secondary and tertiary structural locations, and a key residue that drives rotation in E. coli is missing in B. subtilis. The similarity of trimer rotation despite different driving residues suggests that a rotational shift between trimers is integral to ArgR function. This conclusion is supported by phylogenetic analysis of distant ArgR homologs reported here that indicates at least three major groups characterized by distinct sequence motifs but predicted to undergo a common rotational transition. The dynamic consequences of L-arg binding for transcriptional activation of intact ArgR are evaluated here for the first time in two-microsecond simulations of B. subtilis ArgR. L-arg binding to intact B. subtilis ArgR causes a significant further shift in the angle of rotation between trimers that causes the N-terminal DNA-binding domains lose their interactions with the C-terminal domains, and is likely the first step toward adopting DNA-binding-competent conformations. The results aid interpretation of crystal structures of ArgR and ArgR-DNA complexes.
Collapse
Affiliation(s)
- Saurabh Kumar Pandey
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, 37333 Nove Hrady, Czechia; (S.K.P.); (M.M.); (D.Ř.)
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics, and Informatics, Comenius University in Bratislava, 84248 Bratislava, Slovakia
- Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czechia
| | - Milan Melichercik
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, 37333 Nove Hrady, Czechia; (S.K.P.); (M.M.); (D.Ř.)
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics, and Informatics, Comenius University in Bratislava, 84248 Bratislava, Slovakia
| | - David Řeha
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, 37333 Nove Hrady, Czechia; (S.K.P.); (M.M.); (D.Ř.)
- Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czechia
| | - Rüdiger H. Ettrich
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, 37333 Nove Hrady, Czechia; (S.K.P.); (M.M.); (D.Ř.)
- College of Biomedical Sciences, Larkin University, Miami, FL 33169, USA
- Department of Cellular Biology & Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Correspondence: (R.H.E.); (J.C.); Tel.: +1-954-682-8347 (R.H.E.); +1-609-258-1631 (J.C.)
| | - Jannette Carey
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, 37333 Nove Hrady, Czechia; (S.K.P.); (M.M.); (D.Ř.)
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Correspondence: (R.H.E.); (J.C.); Tel.: +1-954-682-8347 (R.H.E.); +1-609-258-1631 (J.C.)
| |
Collapse
|
7
|
Liu W, Bobbala S, Stern CL, Hornick JE, Liu Y, Enciso AE, Scott EA, Stoddart JF. XCage: A Tricyclic Octacationic Receptor for Perylene Diimide with Picomolar Affinity in Water. J Am Chem Soc 2020; 142:3165-3173. [DOI: 10.1021/jacs.9b12982] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wenqi Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Sharan Bobbala
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L. Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jessica E. Hornick
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Yugang Liu
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Alan E. Enciso
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Evan A. Scott
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Molecular Design and Synthesis, Tianjin University, Tianjin 300072, China
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
8
|
Arkadash V, Radisky ES, Papo N. Combinatorial engineering of N-TIMP2 variants that selectively inhibit MMP9 and MMP14 function in the cell. Oncotarget 2018; 9:32036-32053. [PMID: 30174795 PMCID: PMC6112833 DOI: 10.18632/oncotarget.25885] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/21/2018] [Indexed: 12/21/2022] Open
Abstract
Developing selective inhibitors for proteolytic enzymes that share high sequence homology and structural similarity is important for achieving high target affinity and functional specificity. Here, we used a combination of yeast surface display and dual-color selective library screening to obtain selective inhibitors for each of the matrix metalloproteinases (MMPs) MMP14 and MMP9 by modifying the non-specific N-terminal domain of the tissue inhibitor of metalloproteinase-2 (N-TIMP2). We generated inhibitor variants with 30- to 1175-fold improved specificity to each of the proteases, respectively, relative to wild type N-TIMP2. These biochemical results accurately predicted the selectivity and specificity obtained in cell-based assays. In U87MG cells, the activation of MMP2 by MMP14 was inhibited by MMP14-selective blockers but not MMP9-specific inhibitors. Target specificity was also demonstrated in MCF-7 cells stably expressing either MMP14 or MMP9, with only the MMP14-specific inhibitors preventing the mobility of MMP14-expressing cells. Similarly, the mobility of MMP9-expressing cells was inhibited by the MMP9-specific inhibitors, yet was not altered by the MMP14-specific inhibitors. The strategy developed in this study for improving the specificity of an otherwise broad-spectrum inhibitor will likely enhance our understanding of the basis for target specificity of inhibitors to proteolytic enzymes, in general, and to MMPs, in particular. We, moreover, envision that this study could serve as a platform for the development of next-generation, target-specific therapeutic agents. Finally, our methodology can be extended to other classes of proteolytic enzymes and other important target proteins.
Collapse
Affiliation(s)
- Valeria Arkadash
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA
| | - Niv Papo
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
9
|
Brown T, Brown N, Stollar EJ. Most yeast SH3 domains bind peptide targets with high intrinsic specificity. PLoS One 2018; 13:e0193128. [PMID: 29470497 PMCID: PMC5823434 DOI: 10.1371/journal.pone.0193128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/04/2018] [Indexed: 01/07/2023] Open
Abstract
A need exists to develop bioinformatics for predicting differences in protein function, especially for members of a domain family who share a common fold, yet are found in a diverse array of proteins. Many domain families have been conserved over large evolutionary spans and representative genomic data during these periods are now available. This allows a simple method for grouping domain sequences to reveal common and unique/specific binding residues. As such, we hypothesize that sequence alignment analysis of the yeast SH3 domain family across ancestral species in the fungal kingdom can determine whether each member encodes specific information to bind unique peptide targets. With this approach, we identify important specific residues for a given domain as those that show little conservation within an alignment of yeast domain family members (paralogs) but are conserved in an alignment of its direct relatives (orthologs). We find most of the yeast SH3 domain family members have maintained unique amino acid conservation patterns that suggest they bind peptide targets with high intrinsic specificity through varying degrees of non-canonical recognition. For a minority of domains, we predict a less diverse binding surface, likely requiring additional factors to bind targets specifically. We observe that our predictions are consistent with high throughput binding data, which suggests our approach can probe intrinsic binding specificity in any other interaction domain family that is maintained during evolution.
Collapse
Affiliation(s)
- Tom Brown
- Math and Computer Science Department, Eastern New Mexico University, Portales, NM, United States of America
| | - Nick Brown
- Portales High School, Portales, NM, United States of America
| | - Elliott J. Stollar
- Physical Sciences Department, Eastern New Mexico University, Portales, NM, United States of America
- * E-mail:
| |
Collapse
|
10
|
Kaur A, Banipal PK, Banipal TS. Local anesthetic-bovine serum albumin interactional behaviour: Characterization by volumetric, calorimetric, and spectroscopic methods. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Zhao W, Zhou C, Guan ZY, Yin P, Chen F, Tang YJ. Structural Insights into the Inhibition of Tubulin by the Antitumor Agent 4β-(1,2,4-triazol-3-ylthio)-4-deoxypodophyllotoxin. ACS Chem Biol 2017; 12:746-752. [PMID: 28035796 DOI: 10.1021/acschembio.6b00842] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The colchicine domain is widely recognized as the binding site of microtubule depolymerization agents for anticancer drug design. Almost all of the drugs targeting the colchicine domain have been confirmed to bind to the tubulin β-subunit. Here we studied a crystal structure (2.3 Å) of the complex between tubulin and 4β-(1,2,4-triazol-3-ylthio)-4-deoxypodophyllotoxin (compound 1S) with superior antitumor activity, which was designed on the basis of the colchicine domain and synthesized in our previous work. A distinct binding model of the colchicine domain was found in the complexes of tubulin with compound 1S. From a comparison of the crystal structures of tubulin-compound 1S and tubulin-colchicine complexes, the side chains of the T7 loop of β-tubulin flip outward and the T5 loop of α-tubulin changes its conformation. It has been shown that the β-subunit T7 loop reversibly participates in resistance to straightening that opposes microtubule assembly by flipping in and out. Together with the biochemical results from compound 1S, the structural data highlight the main contributors in the α-subunits and the colchicine domain β-subunits: the dual-target binding sites in the α-T7 loop and β-H7-T7 loop of tubulin. Compound 1S can synchronously bind to αβ-tubulin. The structures also highlight common features for the design and development of novel potent microtubule destabilizing agents.
Collapse
Affiliation(s)
- Wei Zhao
- National
Key Laboratory of Agromicrobiology, College of Food Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chen Zhou
- Key
Laboratory of Fermentation Engineering (Ministry of Education), Hubei
Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative
Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Ze-Yuan Guan
- National
Key Laboratory of Crop Genetic Improvement and National Centre of
Plant Gene Research, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Yin
- National
Key Laboratory of Crop Genetic Improvement and National Centre of
Plant Gene Research, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fusheng Chen
- National
Key Laboratory of Agromicrobiology, College of Food Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ya-Jie Tang
- Key
Laboratory of Fermentation Engineering (Ministry of Education), Hubei
Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative
Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
12
|
Bhojane P, Duff MR, Bafna K, Rimmer GP, Agarwal PK, Howell EE. Aspects of Weak Interactions between Folate and Glycine Betaine. Biochemistry 2016; 55:6282-6294. [PMID: 27768285 PMCID: PMC5198541 DOI: 10.1021/acs.biochem.6b00873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/19/2016] [Indexed: 01/22/2023]
Abstract
Folate, or vitamin B9, is an important compound in one-carbon metabolism. Previous studies have found weaker binding of dihydrofolate to dihydrofolate reductase in the presence of osmolytes. In other words, osmolytes are more difficult to remove from the dihydrofolate solvation shell than water; this shifts the equilibrium toward the free ligand and protein species. This study uses vapor-pressure osmometry to explore the interaction of folate with the model osmolyte, glycine betaine. This method yields a preferential interaction potential (μ23/RT value). This value is concentration-dependent as folate dimerizes. The μ23/RT value also tracks the deprotonation of folate's N3-O4 keto-enol group, yielding a pKa of 8.1. To determine which folate atoms interact most strongly with betaine, the interaction of heterocyclic aromatic compounds (as well as other small molecules) with betaine was monitored. Using an accessible surface area approach coupled with osmometry measurements, deconvolution of the μ23/RT values into α values for atom types was achieved. This allows prediction of μ23/RT values for larger molecules such as folate. Molecular dynamics simulations of folate show a variety of structures from extended to L-shaped. These conformers possess μ23/RT values from -0.18 to 0.09 m-1, where a negative value indicates a preference for solvation by betaine and a positive value indicates a preference for water. This range of values is consistent with values observed in osmometry and solubility experiments. As the average predicted folate μ23/RT value is near zero, this indicates folate interacts almost equally well with betaine and water. Specifically, the glutamate tail prefers to interact with water, while the aromatic rings prefer betaine. In general, the more protonated species in our small molecule survey interact better with betaine as they provide a source of hydrogens (betaine is not a hydrogen bond donor). Upon deprotonation of the small molecule, the preference swings toward water interaction because of its hydrogen bond donating capacities.
Collapse
Affiliation(s)
- Purva
P. Bhojane
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840, United States
| | - Michael R. Duff
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840, United States
| | - Khushboo Bafna
- Genome
Science and Technology Program, University
of Tennessee, Knoxville, Tennessee 37996-0840, United States
| | - Gabriella P. Rimmer
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840, United States
| | - Pratul K. Agarwal
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840, United States
- Genome
Science and Technology Program, University
of Tennessee, Knoxville, Tennessee 37996-0840, United States
- Computer
Science and Mathematics Division, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Elizabeth E. Howell
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840, United States
- Genome
Science and Technology Program, University
of Tennessee, Knoxville, Tennessee 37996-0840, United States
| |
Collapse
|
13
|
Pakulska MM, Miersch S, Shoichet MS. Designer protein delivery: From natural to engineered affinity-controlled release systems. Science 2016; 351:aac4750. [PMID: 26989257 DOI: 10.1126/science.aac4750] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exploiting binding affinities between molecules is an established practice in many fields, including biochemical separations, diagnostics, and drug development; however, using these affinities to control biomolecule release is a more recent strategy. Affinity-controlled release takes advantage of the reversible nature of noncovalent interactions between a therapeutic protein and a binding partner to slow the diffusive release of the protein from a vehicle. This process, in contrast to degradation-controlled sustained-release formulations such as poly(lactic-co-glycolic acid) microspheres, is controlled through the strength of the binding interaction, the binding kinetics, and the concentration of binding partners. In the context of affinity-controlled release--and specifically the discovery or design of binding partners--we review advances in in vitro selection and directed evolution of proteins, peptides, and oligonucleotides (aptamers), aided by computational design.
Collapse
Affiliation(s)
- Malgosia M Pakulska
- Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, and Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Shane Miersch
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Molly S Shoichet
- Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, and Donnelly Centre, University of Toronto, Toronto, Ontario, Canada. Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Kramer C, Fuchs JE, Liedl KR. Strong nonadditivity as a key structure-activity relationship feature: distinguishing structural changes from assay artifacts. J Chem Inf Model 2015; 55:483-94. [PMID: 25760829 PMCID: PMC4372821 DOI: 10.1021/acs.jcim.5b00018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Nonadditivity
in protein–ligand affinity data represents
highly instructive structure–activity relationship (SAR) features
that indicate structural changes and have the potential to guide rational
drug design. At the same time, nonadditivity is a challenge for both
basic SAR analysis as well as many ligand-based data analysis techniques
such as Free-Wilson Analysis and Matched Molecular Pair analysis,
since linear substituent contribution models inherently assume additivity
and thus do not work in such cases. While structural causes for nonadditivity
have been analyzed anecdotally, no systematic approaches to interpret
and use nonadditivity prospectively have been developed yet. In this
contribution, we lay the statistical framework for systematic analysis
of nonadditivity in a SAR series. First, we develop a general metric
to quantify nonadditivity. Then, we demonstrate the non-negligible
impact of experimental uncertainty that creates apparent nonadditivity,
and we introduce techniques to handle experimental uncertainty. Finally,
we analyze public SAR data sets for strong nonadditivity and use recourse
to the original publications and available X-ray structures to find
structural explanations for the nonadditivity observed. We find that
all cases of strong nonadditivity (ΔΔpKi and ΔΔpIC50 > 2.0 log units)
with sufficient structural information to generate reasonable hypothesis
involve changes in binding mode. With the appropriate statistical
basis, nonadditivity analysis offers a variety of new attempts for
various areas in computer-aided drug design, including the validation
of scoring functions and free energy perturbation approaches, binding
pocket classification, and novel features in SAR analysis tools.
Collapse
Affiliation(s)
- Christian Kramer
- †Department of Theoretical Chemistry, Faculty for Chemistry and Pharmacy, Center for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens University Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Julian E Fuchs
- †Department of Theoretical Chemistry, Faculty for Chemistry and Pharmacy, Center for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens University Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria.,‡Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Klaus R Liedl
- †Department of Theoretical Chemistry, Faculty for Chemistry and Pharmacy, Center for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens University Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| |
Collapse
|
15
|
Neutralization of Virus Infectivity by Antibodies: Old Problems in New Perspectives. ACTA ACUST UNITED AC 2014; 2014. [PMID: 27099867 DOI: 10.1155/2014/157895] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neutralizing antibodies (NAbs) can be both sufficient and necessary for protection against viral infections, although they sometimes act in concert with cellular immunity. Successful vaccines against viruses induce NAbs but vaccine candidates against some major viral pathogens, including HIV-1, have failed to induce potent and effective such responses. Theories of how antibodies neutralize virus infectivity have been formulated and experimentally tested since the 1930s; and controversies about the mechanistic and quantitative bases for neutralization have continually arisen. Soluble versions of native oligomeric viral proteins that mimic the functional targets of neutralizing antibodies now allow the measurement of the relevant affinities of NAbs. Thereby the neutralizing occupancies on virions can be estimated and related to the potency of the NAbs. Furthermore, the kinetics and stoichiometry of NAb binding can be compared with neutralizing efficacy. Recently, the fundamental discovery that the intracellular factor TRIM21 determines the degree of neutralization of adenovirus has provided new mechanistic and quantitative insights. Since TRIM21 resides in the cytoplasm, it would not affect the neutralization of enveloped viruses, but its range of activity against naked viruses will be important to uncover. These developments bring together the old problems of virus neutralization-mechanism, stoichiometry, kinetics, and efficacy-from surprising new angles.
Collapse
|
16
|
Computational medicinal chemistry in fragment-based drug discovery: what, how and when. Future Med Chem 2011; 3:95-134. [DOI: 10.4155/fmc.10.277] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The use of fragment-based drug discovery (FBDD) has increased in the last decade due to the encouraging results obtained to date. In this scenario, computational approaches, together with experimental information, play an important role to guide and speed up the process. By default, FBDD is generally considered as a constructive approach. However, such additive behavior is not always present, therefore, simple fragment maturation will not always deliver the expected results. In this review, computational approaches utilized in FBDD are reported together with real case studies, where applicability domains are exemplified, in order to analyze them, and then, maximize their performance and reliability. Thus, a proper use of these computational tools can minimize misleading conclusions, keeping the credit on FBDD strategy, as well as achieve higher impact in the drug-discovery process. FBDD goes one step beyond a simple constructive approach. A broad set of computational tools: docking, R group quantitative structure–activity relationship, fragmentation tools, fragments management tools, patents analysis and fragment-hopping, for example, can be utilized in FBDD, providing a clear positive impact if they are utilized in the proper scenario – what, how and when. An initial assessment of additive/non-additive behavior is a critical point to define the most convenient approach for fragments elaboration.
Collapse
|
17
|
Ferro N, Bredow T, Jacobsen HJ, Reinard T. Route to Novel Auxin: Auxin Chemical Space toward Biological Correlation Carriers. Chem Rev 2010; 110:4690-708. [DOI: 10.1021/cr800229s] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Noel Ferro
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegeler Strasse 12, Bonn, Germany 53115 and Institute for Plant Genetics, Leibniz University of Hannover, Germany
| | - Thomas Bredow
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegeler Strasse 12, Bonn, Germany 53115 and Institute for Plant Genetics, Leibniz University of Hannover, Germany
| | - Hans-Jorg Jacobsen
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegeler Strasse 12, Bonn, Germany 53115 and Institute for Plant Genetics, Leibniz University of Hannover, Germany
| | - Thomas Reinard
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegeler Strasse 12, Bonn, Germany 53115 and Institute for Plant Genetics, Leibniz University of Hannover, Germany
| |
Collapse
|
18
|
Strawn R, Melichercik M, Green M, Stockner T, Carey J, Ettrich R. Symmetric allosteric mechanism of hexameric Escherichia coli arginine repressor exploits competition between L-arginine ligands and resident arginine residues. PLoS Comput Biol 2010; 6:e1000801. [PMID: 20532206 PMCID: PMC2880562 DOI: 10.1371/journal.pcbi.1000801] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 04/29/2010] [Indexed: 12/20/2022] Open
Abstract
An elegantly simple and probably ancient molecular mechanism of allostery is described for the Escherichia coli arginine repressor ArgR, the master feedback regulator of transcription in L-arginine metabolism. Molecular dynamics simulations with ArgRC, the hexameric domain that binds L-arginine with negative cooperativity, reveal that conserved arginine and aspartate residues in each ligand-binding pocket promote rotational oscillation of apoArgRC trimers by engagement and release of hydrogen-bonded salt bridges. Binding of exogenous L-arginine displaces resident arginine residues and arrests oscillation, shifting the equilibrium quaternary ensemble and promoting motions that maintain the configurational entropy of the system. A single L-arg ligand is necessary and sufficient to arrest oscillation, and enables formation of a cooperative hydrogen-bond network at the subunit interface. The results are used to construct a free-energy reaction coordinate that accounts for the negative cooperativity and distinctive thermodynamic signature of L-arginine binding detected by calorimetry. The symmetry of the hexamer is maintained as each ligand binds, despite the conceptual asymmetry of partially-liganded states. The results thus offer the first opportunity to describe in structural and thermodynamic terms the symmetric relaxed state predicted by the concerted allostery model of Monod, Wyman, and Changeux, revealing that this state is achieved by exploiting the dynamics of the assembly and the distributed nature of its cohesive free energy. The ArgR example reveals that symmetry can be maintained even when binding sites fill sequentially due to negative cooperativity, which was not anticipated by the Monod, Wyman, and Changeux model. The molecular mechanism identified here neither specifies nor requires a pathway for transmission of the allosteric signal through the protein, and it suggests the possibility that binding of free amino acids was an early innovation in the evolution of allostery.
Collapse
Affiliation(s)
- Rebecca Strawn
- Chemistry Department, Princeton University, Princeton, New Jersey, United States of America
| | - Milan Melichercik
- Department of Structure and Function of Proteins, Institute of Systems Biology and Ecology, Academy of Sciences of the Czech Republic, and Institute of Physical Biology, University of South Bohemia, Nove Hrady, Czech Republic
| | - Michael Green
- Biology Department, The College of New Jersey, Ewing, New Jersey, United States of America
| | - Thomas Stockner
- Department of Medical Chemistry, Medical University of Vienna, Vienna, Austria
| | - Jannette Carey
- Chemistry Department, Princeton University, Princeton, New Jersey, United States of America
| | - Rüdiger Ettrich
- Department of Structure and Function of Proteins, Institute of Systems Biology and Ecology, Academy of Sciences of the Czech Republic, and Institute of Physical Biology, University of South Bohemia, Nove Hrady, Czech Republic
| |
Collapse
|
19
|
Greenspan NS. Cohen's Conjecture, Howard's Hypothesis, and Ptashne's Ptruth: an exploration of the relationship between affinity and specificity. Trends Immunol 2010; 31:138-43. [PMID: 20149744 DOI: 10.1016/j.it.2010.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/04/2010] [Accepted: 01/05/2010] [Indexed: 11/29/2022]
Abstract
Both affinity and specificity for ligands directly influence the functions of biological macromolecules. Some investigators assume that there is a consistent relationship between the affinity of a receptor molecule for its cognate ligand(s) and the specificity of that same receptor (affinity for cognate versus non-cognate ligands). However, analysis of the range of physical factors that account for changes in affinity, in any particular direction and to any particular degree, of a receptor for a cognate ligand suggests strongly that such factors can have disparate effects on the affinities of the receptor for different non-cognate ligands. Therefore, there can be no simple relationship between affinity and specificity as defined by relative binding of the receptor to cognate and non-cognate ligands.
Collapse
Affiliation(s)
- Neil S Greenspan
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.
| |
Collapse
|
20
|
Hall SS, Daugherty PS. Quantitative specificity-based display library screening identifies determinants of antibody-epitope binding specificity. Protein Sci 2009; 18:1926-34. [PMID: 19610073 DOI: 10.1002/pro.203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Despite the critical importance of molecular specificity in bimolecular systems, in vitro display technologies have been applied extensively for affinity maturation of peptides and antibodies without explicitly measuring the specificity of the desired interaction. We devised a general strategy to measure, screen, and evolve specificity of protein ligand interactions analogous to widely used affinity maturation strategies. The specificity of binding to target and nontarget antibodies labeled with spectrally distinct fluorophores was measured simultaneously in protein mixtures via multiparameter flow cytometry, thereby enabling screening for high target antibody specificity. Isolated antibody specific ligands exhibited varying specificity, revealing critical amino acid determinants for target recognition and nontarget avoidance in complex mixtures. Molecular specificity in the mixture was further enhanced by quantitative directed evolution, yielding a family of epitopes exhibiting improved specificities equivalent, or superior to, the native peptide antigen to which the antibody was raised. Specificity screening simultaneously favored affinity, yielding ligands with three-fold improved affinity relative to the parent epitope. Quantitative specificity screening will be useful to screen, evolve, and characterize the specificity of protein and peptide interactions for molecular recognition applications.
Collapse
Affiliation(s)
- Sejal S Hall
- The Institute for Energy Efficiency, University of California, Santa Barbara, California 93106, USA
| | | |
Collapse
|
21
|
Assessment of Additive/Nonadditive Effects in Structure−Activity Relationships: Implications for Iterative Drug Design. J Med Chem 2008; 51:7552-62. [DOI: 10.1021/jm801070q] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Carey J, Lindman S, Bauer M, Linse S. Protein reconstitution and three-dimensional domain swapping: benefits and constraints of covalency. Protein Sci 2007; 16:2317-33. [PMID: 17962398 PMCID: PMC2211703 DOI: 10.1110/ps.072985007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 07/30/2007] [Accepted: 08/01/2007] [Indexed: 10/22/2022]
Abstract
The phenomena of protein reconstitution and three-dimensional domain swapping reveal that highly similar structures can be obtained whether a protein is comprised of one or more polypeptide chains. In this review, we use protein reconstitution as a lens through which to examine the range of protein tolerance to chain interruptions and the roles of the primary structure in related features of protein structure and folding, including circular permutation, natively unfolded proteins, allostery, and amyloid fibril formation. The results imply that noncovalent interactions in a protein are sufficient to specify its structure under the constraints imposed by the covalent backbone.
Collapse
Affiliation(s)
- Jannette Carey
- Chemistry Department, Princeton University, NJ 08544-1009, USA.
| | | | | | | |
Collapse
|
23
|
Carothers JM, Oestreich SC, Szostak JW. Aptamers selected for higher-affinity binding are not more specific for the target ligand. J Am Chem Soc 2007; 128:7929-37. [PMID: 16771507 PMCID: PMC4287982 DOI: 10.1021/ja060952q] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous study of eleven different in vitro-selected RNA aptamers that bind guanosine triphosphate (GTP) with K(d)s ranging from 8 microM to 9 nM showed that more information is required to specify the structures of the higher-affinity aptamers. We are interested in understanding how the more complex aptamers achieve higher affinities for the ligand. In vitro selection produces structural solutions to a functional problem that are are as simple as possible in terms of the information content needed to define them. It has long been assumed that the simplest way to improve the affinity of an aptamer is to increase the shape and functional group complementarity of the RNA binding pocket for the ligand. This argument underlies the hypothesis that selection for higher-affinity aptamers automatically leads to structures that bind more specifically to the target molecule. Here, we examined the binding specificities of the eleven GTP aptamers by carrying out competition binding studies with sixteen different chemical analogues of GTP. The aptamers have distinct patterns of specificity, implying that each RNA is a structurally unique solution to the problem of GTP binding. However, these experiments failed to provide evidence that higher-affinity aptamers bind more specifically to GTP. We suggest that the simplest way to improve aptamer K(d)s may be to increase the stability of the RNA tertiary structure with additional intramolecular RNA-RNA interactions; increasingly specific ligand binding may emerge only in response to direct selection for specificity.
Collapse
Affiliation(s)
| | | | - Jack W. Szostak
- Corresponding author. Telephone: (617)726-5980 Fax: (617)726-6893.
| |
Collapse
|
24
|
Seyrek E, Dubin PL, Henriksen J. Nonspecific electrostatic binding characteristics of the heparin-antithrombin interaction. Biopolymers 2007; 86:249-59. [PMID: 17385667 DOI: 10.1002/bip.20731] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We evaluated the role of nonspecific electrostatic binding in the interaction of antithrombin (AT) with heparin (Hp), a paradigmatic protein-glycosaminoglycan (GAG) system. To do so, we obtained the ionic-strength dependence of the binding constant, since a common feature in protein-polyelectrolyte systems is a maximum in affinity in the ionic strength range 10 mM <I<30 mM (Seyrek et al, Biomacromolecules 2003, 4, 273-282). Because this feature is seen for both synthetic and biological polyelectrolytes, and because the value of I(max) correlates with protein size and charge asymmetry through the Debye length (Seyrek et al, Biomacromolecules 2003, 4, 273-282), this behavior appears to be a signature of non-specific electrostatic protein-polyelectrolyte binding. Binding of AT to both standard (14 kDa) Hp and partially degraded (5 kDa) low molecular weight heparin (LMWH) exhibited this same behavior. Capillary electrophoresis (CZE) of Hp and LMWH yielded electropherograms whose remarkable breadth revealed the enormous heterogeneity of average charge density among the innumerable molecular species of Hp and LMWH. These distributions were somewhat reduced after affinity chromatography (AC) fractionation, indicating that the high-affinity fraction was generally depleted of the lower-charge species. Size-exclusion chromatography coupled with Electrospray Mass Spectrometry confirmed lower levels of sulfation for the lower affinity fractions. Comparisons of LMWH with Dermatan sulfate (DS) by CZE and AC suggested a correlation between the relative absence of very highly charged components in DS and its weaker binding to AT. These findings point to a significant role of the charge density of GAG chains in their affinity for AT.
Collapse
Affiliation(s)
- Emek Seyrek
- Department of Chemistry, Indiana University Purdue University Indianapolis, 402 N. Blackford St. Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
25
|
Abstract
Metal complexation is a key mediator or modifier of enzyme structure and function. In addition to divalent and polyvalent metals, group IA metals Na+and K+play important and specific roles that assist function of biological macromolecules. We examine the diversity of monovalent cation (M+)-activated enzymes by first comparing coordination in small molecules followed by a discussion of theoretical and practical aspects. Select examples of enzymes that utilize M+as a cofactor (type I) or allosteric effector (type II) illustrate the structural basis of activation by Na+and K+, along with unexpected connections with ion transporters. Kinetic expressions are derived for the analysis of type I and type II activation. In conclusion, we address evolutionary implications of Na+binding in the trypsin-like proteases of vertebrate blood coagulation. From this analysis, M+complexation has the potential to be an efficient regulator of enzyme catalysis and stability and offers novel strategies for protein engineering to improve enzyme function.
Collapse
Affiliation(s)
- Michael J Page
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
26
|
Carothers JM, Davis JH, Chou JJ, Szostak JW. Solution structure of an informationally complex high-affinity RNA aptamer to GTP. RNA (NEW YORK, N.Y.) 2006; 12:567-79. [PMID: 16510427 PMCID: PMC1421093 DOI: 10.1261/rna.2251306] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Higher-affinity RNA aptamers to GTP are more informationally complex than lower-affinity aptamers. Analog binding studies have shown that the additional information needed to improve affinity does not specify more interactions with the ligand. In light of those observations, we would like to understand the structural characteristics that enable complex aptamers to bind their ligands with higher affinity. Here we present the solution structure of the 41-nt Class I GTP aptamer (K(d) = 75 nM) as determined by NMR. The backbone of the aptamer forms a reverse-S that shapes the binding pocket. The ligand nucleobase stacks between purine platforms and makes hydrogen bonds with the edge of another base. Interestingly, the local modes of interaction for the Class I aptamer and an RNA aptamer that binds ATP with a K(d) of 6 microM are very much alike. The aptamers exhibit nearly identical levels of binding specificity and fraction of ligand sequestered from the solvent (81%-85%). However, the GTP aptamer is more informationally complex (approximately 45 vs. 35 bits) and has a larger recognition bulge (15 vs. 12 nucleotides) with many more stabilizing base-base interactions. Because the aptamers have similar modes of ligand binding, we conclude that the stabilizing structural elements in the Class I aptamer are responsible for much of the difference in K(d). These results are consistent with the hypothesis that increasing the number of intra-RNA interactions, rather than adding specific contacts to the ligand, is the simplest way to improve binding affinity.
Collapse
Affiliation(s)
- James M Carothers
- Department of Molecular Biology and Center for Computational and Integrative Biology, Simches Research Center 7215, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
27
|
Qi S, Krogsgaard M, Davis MM, Chakraborty AK. Molecular flexibility can influence the stimulatory ability of receptor-ligand interactions at cell-cell junctions. Proc Natl Acad Sci U S A 2006; 103:4416-21. [PMID: 16537380 PMCID: PMC1450186 DOI: 10.1073/pnas.0510991103] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Direct cell-cell communication is crucial for many processes in biology, particularly embryogenesis, interactions between hematopoetic cells, and in the nervous system. This communication is often mediated by the binding of receptors to cognate ligands at a cell-cell junction. One such interaction that is very important for the development of many immune responses is the binding of the alphabeta T cell receptor for antigen (TCR) on T lymphocytes with peptide-MHC complexes on other cells. In general, the stability (e.g., half-life) of TCR-peptide-MHC binding measured in solution correlates with functional responses. Several anomalies have been reported, however. For example, for some anomalous ligands, large changes in heat capacity can apparently substitute for a lack of stability in TCR-ligand interactions. Here, we show that, when there are significant conformational changes during receptor-ligand binding and the receptor/ligand have relatively rigid molecular subdomains, the difference between the half-life of this receptor-ligand complex at a cell-cell junction and that measured using soluble molecules is large. Thus, receptors/ligands with these specific molecular features do not follow correlations between stimulatory potency in the cellular environment and half-lives measured with soluble molecules. Our "first-principles" prescription for correcting the half-life measured in solution to obtain the pertinent value at a cell-cell junction illuminates the origin of correlations of T cell response with thermodynamic properties. Application of our ideas to diverse systems where receptor-ligand interactions occur across juxtaposed cells may help avoid debates about "anomalies" that may simply arise from receptor/ligand-specific differences between half-lives in solution and in the cellular environment.
Collapse
Affiliation(s)
- Shuyan Qi
- *Department of Chemical Engineering, University of California, Berkeley, CA 94720
| | | | - Mark M. Davis
- Department of Microbiology and Immunology and
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305; and
- To whom correspondence may be addressed. E-mail: or
| | - Arup K. Chakraborty
- Departments of Chemical Engineering and Chemistry and Division of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
28
|
Goto K, Moore JS. Sequence-specific binding of m-phenylene ethynylene foldamers to a piperazinium dihydrochloride salt. Org Lett 2006; 7:1683-6. [PMID: 15844880 DOI: 10.1021/ol0500721] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
[reaction: see text] Binding properties of a series of isomeric m-phenylene ethynylene oligomers containing short amide sequences to a piperazinium dihydrochloride salt were investigated by using circular dichroism (CD) measurements. Although these isomeric oligomers exhibited similar helical conformations, high affinity was observed only for one oligomer. This behavior is presumably controlled by the orientation of amino groups of the amide sequence and the folded conformation of the oligomer.
Collapse
Affiliation(s)
- Kazuki Goto
- Roger Adams Laboratory, Department of Chemistry and Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
29
|
Jin L, Xue WF, Fukayama JW, Yetter J, Pickering M, Carey J. Asymmetric allosteric activation of the symmetric ArgR hexamer. J Mol Biol 2004; 346:43-56. [PMID: 15663926 DOI: 10.1016/j.jmb.2004.11.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 11/10/2004] [Accepted: 11/11/2004] [Indexed: 11/25/2022]
Abstract
Hexameric arginine repressor, ArgR, bound to L-arginine serves both as the master transcriptional repressor/activator at diverse regulons in a wide range of bacteria and as a required cofactor for resolution of ColE1 plasmid multimers. Multifunctional ArgR is thus unusual in possessing features of specific gene regulators, global regulators, and non-specific gene organizers; its closest functional analog is probably CAP, the cyclic AMP receptor/activator protein. Isothermal titration calorimetry, surface plasmon resonance, and proteolysis indicate that binding of a single L-argine [corrected] per ArgR hexamer triggers a global conformation [corrected] change and resets the affinities of the remaining five sites, making them 100-fold weaker. The analysis suggests a novel thermodynamic signature for this mechanism of activation.
Collapse
Affiliation(s)
- Lihua Jin
- Chemistry Department, DePaul University, Chicago, IL 60614, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Sidorova NY, Rau DC. Differences between EcoRI nonspecific and "star" sequence complexes revealed by osmotic stress. Biophys J 2004; 87:2564-76. [PMID: 15454451 PMCID: PMC1304675 DOI: 10.1529/biophysj.104.042390] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2004] [Accepted: 07/26/2004] [Indexed: 11/18/2022] Open
Abstract
The binding of the restriction endonuclease EcoRI to DNA is exceptionally specific. Even a single basepair change ("star" sequence) from the recognition sequence, GAATTC, decreases the binding free energy of EcoRI to values nearly indistinguishable from nonspecific binding. The difference in the number of waters sequestered by the protein-DNA complexes of the "star" sequences TAATTC and CAATTC and by the specific sequence complex determined from the dependence of binding free energy on water activity is also practically indistinguishable at low osmotic pressures from the 110 water molecules sequestered by nonspecific sequence complexes. Novel measurements of the dissociation rates of noncognate sequence complexes and competition equilibrium show that sequestered water can be removed from "star" sequence complexes by high osmotic pressure, but not from a nonspecific complex. By 5 Osm, the TAATTC "star" sequence complex has lost almost 90 of the approximately 110 waters initially present. It is more difficult to remove water from the CAATTC "star" sequence complex. The sequence dependence of water loss correlates with the known sequence dependence of "star" cleavage activity.
Collapse
Affiliation(s)
- Nina Y Sidorova
- Laboratory of Physical and Structural Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
31
|
Lawson CL, Benoff B, Berger T, Berman HM, Carey J. E. coli trp repressor forms a domain-swapped array in aqueous alcohol. Structure 2004; 12:1099-108. [PMID: 15274929 PMCID: PMC3228604 DOI: 10.1016/j.str.2004.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Accepted: 03/15/2004] [Indexed: 01/07/2023]
Abstract
The E. coli trp repressor (trpR) homodimer recognizes its palindromic DNA binding site through a pair of flexible helix-turn-helix (HTH) motifs displayed on an intertwined helical core. Flexible N-terminal arms mediate association between dimers bound to tandem DNA sites. The 2.5 A X-ray structure of trpR crystallized in 30% (v/v) isopropanol reveals a substantial conformational rearrangement of HTH motifs and N-terminal arms, with the protein appearing in the unusual form of an ordered 3D domain-swapped supramolecular array. Small angle X-ray scattering measurements show that the self-association properties of trpR in solution are fundamentally altered by isopropanol.
Collapse
Affiliation(s)
- Catherine L Lawson
- Rutgers University, Department of Chemistry and Chemical Biology, 610 Taylor Road, Piscataway, NJ 08854, USA.
| | | | | | | | | |
Collapse
|
32
|
Abstract
Structural and thermodynamic characterizations of a variety of intra- and intermolecular interactions stabilizing/destabilizing protein systems represent a major part of multidisciplinary efforts aimed at solving the problems of protein folding and binding. To this end, volumetric techniques have been successfully used to gain insights into protein hydration and intraglobular packing. Despite the fact that the use of volumetric measurements in protein-related studies dates back to the 1950s, such measurements still represent a relatively untapped yet potentially informative means for tackling the problems of protein folding and binding. This notion has been further emphasized by recent advances in the development of highly sensitive volumetric instrumentation that has led to intensifying volumetric investigations of protein systems. This paper reviews the volumetric properties of proteins and their low-molecular-weight analogs, in particular, discussing the recent progress in the use of volumetric data for studying conformational transitions of proteins as well as protein-ligand, protein-protein, and protein-nucleic acid interactions.
Collapse
Affiliation(s)
- Tigran V Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario Canada.
| |
Collapse
|
33
|
Cheng AC, Chen WW, Fuhrmann CN, Frankel AD. Recognition of nucleic acid bases and base-pairs by hydrogen bonding to amino acid side-chains. J Mol Biol 2003; 327:781-96. [PMID: 12654263 DOI: 10.1016/s0022-2836(03)00091-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sequence-specific protein-nucleic acid recognition is determined, in part, by hydrogen bonding interactions between amino acid side-chains and nucleotide bases. To examine the repertoire of possible interactions, we have calculated geometrically plausible arrangements in which amino acids hydrogen bond to unpaired bases, such as those found in RNA bulges and loops, or to the 53 possible RNA base-pairs. We find 32 possible interactions that involve two or more hydrogen bonds to the six unpaired bases (including protonated A and C), 17 of which have been observed. We find 186 "spanning" interactions to base-pairs in which the amino acid hydrogen bonds to both bases, in principle allowing particular base-pairs to be selectively targeted, and nine of these have been observed. Four calculated interactions span the Watson-Crick pairs and 15 span the G:U wobble pair, including two interesting arrangements with three hydrogen bonds to the Arg guanidinum group that have not yet been observed. The inherent donor-acceptor arrangements of the bases support many possible interactions to Asn (or Gln) and Ser (or Thr or Tyr), few interactions to Asp (or Glu) even though several already have been observed, and interactions to U (or T) only if the base is in an unpaired context, as also observed in several cases. This study highlights how complementary arrangements of donors and acceptors can contribute to base-specific recognition of RNA, predicts interactions not yet observed, and provides tools to analyze proposed contacts or design novel interactions.
Collapse
Affiliation(s)
- Alan C Cheng
- Department of Biochemistry and Biophysics, University of California, 513 Parnassus Avenue, San Francisco, CA 94143-0448, USA
| | | | | | | |
Collapse
|
34
|
Preston AJ, Fraenkel G, Chow A, Gallucci JC, Parquette JR. Dynamic helical chirality of an intramolecularly hydrogen-bonded bisoxazoline. J Org Chem 2003; 68:22-6. [PMID: 12515456 DOI: 10.1021/jo026496f] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis and conformational properties of 2,6-bis-[2-((4S)-4-methyl-4,5-dihydro-1,3-oxazol-2-yl)phenyl]carbam oylpyridines, 2, have been described. Bisoxazoline 2a was prepared in five steps from 2-nitrobenzoyl chloride in an overall yield of 71%. In contrast to related structures such as 1, bisoxazoline 2a exhibits a highly biased P-type helical conformation in solution and in the solid state. In the crystal lattice, 2a further assembles into a left-handed helical superstructure aligned along the crystallographic c axis. The barrier to helical interconversion, as measured by line-shape analysis of the temperature-dependent (1)H NMR spectra of thiobenzyl derivative 2b, was determined to be quite low ((Delta)G(++) = 12.3 kcal/mol), indicating the presence of a highly dynamic helical chirality.
Collapse
Affiliation(s)
- Adam J Preston
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
35
|
Tanatani A, Hughes TS, Moore JS. Foldamers as Dynamic Receptors: Probing the Mechanism of Molecular Association between Helical Oligomers and Rodlike Ligands. Angew Chem Int Ed Engl 2002. [DOI: 10.1002/1521-3757(20020118)114:2<335::aid-ange335>3.0.co;2-m] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Sidorova NY, Rau DC. Linkage of EcoRI dissociation from its specific DNA recognition site to water activity, salt concentration, and pH: separating their roles in specific and non-specific binding. J Mol Biol 2001; 310:801-16. [PMID: 11453689 DOI: 10.1006/jmbi.2001.4781] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have measured the dependencies of both the dissociation rate of specifically bound EcoRI endonuclease and the ratio of non-specific and specific association constants on water activity, salt concentration, and pH in order to distinguish the contributions of these solution components to specific and non-specific binding. For proteins such as EcoRI that locate their specific recognition site efficiently by diffusing along non-specific DNA, the specific site dissociation rate can be separated into two steps: an equilibrium between non-specific and specific binding of the enzyme to DNA, and the dissociation of non-specifically bound protein. We demonstrated previously that the osmotic dependence of the dissociation rate is dominated by the equilibrium between specific and non-specific binding that is independent of the osmolyte nature. The remaining osmotic sensitivity linked to the dissociation of non-specifically bound protein depends significantly on the particular osmolyte used, indicating a change in solute-accessible surface area. In contrast, the dissociation of non-specifically bound enzyme accounts for almost all the pH and salt-dependencies. We observed virtually no pH-dependence of the equilibrium between specific and non-specific binding measured by the competition assay. The observed weak salt-sensitivity of the ratio of specific and non-specific association constants is consistent with an osmotic, rather than electrostatic, action. The seeming lack of a dependence on viscosity suggests the rate-limiting step in dissociation of non-specifically bound protein is a discrete conformational change rather than a general diffusion of the protein away from the DNA.
Collapse
Affiliation(s)
- N Y Sidorova
- Laboratory of Physical and Structural Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
37
|
Affiliation(s)
- Ryan B. Prince
- Contribution from the School of Chemical Sciences and the Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801
| | - Stephanie A. Barnes
- Contribution from the School of Chemical Sciences and the Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801
| | - Jeffrey S. Moore
- Contribution from the School of Chemical Sciences and the Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
38
|
Dubins DN, Filfil R, Macgregor RB, Chalikian TV. Role of Water in Protein−Ligand Interactions: Volumetric Characterization of the Binding of 2‘-CMP and 3‘-CMP to Ribonuclease A. J Phys Chem B 1999. [DOI: 10.1021/jp992138d] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David N. Dubins
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, 19 Russell Street, Toronto, Ontario M5S 2S2, Canada
| | - Rana Filfil
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, 19 Russell Street, Toronto, Ontario M5S 2S2, Canada
| | - Robert B. Macgregor
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, 19 Russell Street, Toronto, Ontario M5S 2S2, Canada
| | - Tigran V. Chalikian
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, 19 Russell Street, Toronto, Ontario M5S 2S2, Canada
| |
Collapse
|
39
|
Jin L, Fukayama JW, Pelczer I, Carey J. Long-range effects on dynamics in a temperature-sensitive mutant of trp repressor. J Mol Biol 1999; 285:361-78. [PMID: 9878412 DOI: 10.1006/jmbi.1998.2311] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A mutant tryptophan repressor (TrpR) protein containing the substitution of phenylalanine for leucine 75 has been isolated following a genetic screen for temperature-sensitive mutations. Two-dimensional (2D) 1H NMR spectra indicate an overall very similar fold for the purified mutant and wild-type proteins. Circular dichroism spectropolarimetry indicates an increased helix content relative to the wild-type protein, and a slightly higher urea denaturation midpoint for the mutant protein, although there is no difference in thermal stability. Fluorescence spectra indicate a more buried environment for one or both tryptophan residues in the mutant protein. The rate of proton-deuterium exchange-out for the resolved indole ring protons of the two tryptophan residues was quantified from NMR spectra of mutant and wild-type proteins and found to be approximately 50% faster in the wild-type protein. The mutant protein binds the corepressor l-tryptophan (l-Trp) approximately ten times more weakly than does the wild-type protein, but in l-Trp excess its DNA-binding affinity is only two to fivefold weaker. Taken together the results imply that, despite its conservative chemical character and surface location at the C terminus of helix one in the helix-turn-helix DNA recognition motif, this mutational change confers long-range effects on the dynamics of the protein's secondary and tertiary structure without substantially altering its fold, and with relatively minor effects on protein function.
Collapse
Affiliation(s)
- L Jin
- Chemistry Department, Princeton University, Frick Laboratory, Washington Road & William Street, Princeton, NJ, 08544-1009, USA
| | | | | | | |
Collapse
|
40
|
Lo MC, Ha S, Pelczer I, Pal S, Walker S. The solution structure of the DNA-binding domain of Skn-1. Proc Natl Acad Sci U S A 1998; 95:8455-60. [PMID: 9671699 PMCID: PMC21097 DOI: 10.1073/pnas.95.15.8455] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Skn-1 is a maternally expressed transcription factor that specifies the fate of certain blastomeres early in the development of Caenorhabditis elegans. It has been reported that the DNA-binding domain is a molten globule and that the structure cannot be defined because there are no long-range nuclear Overhauser effects (NOEs). Working with short Skn domain fragments and using 13C-labeled proteins, we have been able to identify 28 long-range NOEs that establish a tertiary fold for the Skn domain. The internal region of the Skn domain consists of three stable helices and one conformationally labile helix organized into a nascent helix-turn-helix-turn-helix-turn-helix motif. The N and C termini of the Skn domain are unstructured and emerge from the same end of the folded domain. This structure is consistent with biochemical data on binding of the Skn domain to DNA, which shows that the N and C termini bind in the adjacent minor and major grooves from the same face of the DNA helix. The NMR solution structure of the Skn domain should be useful for developing a complete understanding of the DNA recognition event, including any conformational changes that take place upon binding.
Collapse
Affiliation(s)
- M C Lo
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|