1
|
Klaubert SR, Chitwood DG, Dahodwala H, Williamson M, Kasper R, Lee KH, Harcum SW. Method to transfer Chinese hamster ovary (CHO) batch shake flask experiments to large-scale, computer-controlled fed-batch bioreactors. Methods Enzymol 2021; 660:297-320. [PMID: 34742394 DOI: 10.1016/bs.mie.2021.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chinese hamster ovary (CHO) cell cultures in industry are most commonly conducted as fed-batch cultures in computer-controlled bioreactors, though most preliminary studies are conducted in fed-batch shake flasks. To improve comparability between bioreactor studies and shake flask studies, shake flask studies should be conducted as fed-batch. However, the smaller volumes and reduced control in shake flasks can impact pH and aeration, which leads to performance differences. Planning and awareness of these vessel and control differences can assist with experimental design as well as troubleshooting. This method will highlight several of the configuration and control issues that should be considered during the transitions from batch to fed-batch and shake flasks to bioreactors, as well as approaches to mitigate the differences. Furthermore, if significant differences occur between bioreactor and shake flask studies, approaches will be presented to isolate the main contributors for these differences.
Collapse
Affiliation(s)
- Stephanie R Klaubert
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, United States
| | - Dylan G Chitwood
- Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC, United States
| | - Hussain Dahodwala
- National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL), Newark, DE, United States
| | - Madison Williamson
- Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC, United States
| | - Rachel Kasper
- Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC, United States
| | - Kelvin H Lee
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States; Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
| | - Sarah W Harcum
- Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC, United States.
| |
Collapse
|
2
|
Lee JH, Jeong YR, Kim YG, Lee GM. Understanding of decreased sialylation of Fc-fusion protein in hyperosmotic recombinant Chinese hamster ovary cell culture: N-glycosylation gene expression and N-linked glycan antennary profile. Biotechnol Bioeng 2017; 114:1721-1732. [PMID: 28266015 DOI: 10.1002/bit.26284] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 02/16/2017] [Accepted: 02/28/2017] [Indexed: 01/14/2023]
Abstract
To understand the effects of hyperosmolality on protein glycosylation, recombinant Chinese hamster ovary (rCHO) cells producing the Fc-fusion protein were cultivated in hyperosmolar medium resulting from adding NaCl (415 mOsm/kg). The hyperosmotic culture showed increased specific Fc-fusion protein productivity (qFc ) but a decreased proportion of acidic isoforms and sialic acid content of the Fc-fusion protein. The intracellular and extracellular sialidase activities in the hyperosmotic cultures were similar to those in the control culture (314 mOsm/kg), indicating that reduced sialylation of Fc-fusion protein at hyperosmolality was not due to elevated sialidase activity. Expression of 52 N-glycosylation-related genes was assessed by the NanoString nCounter system, which provides a direct digital readout using custom-designed color-coded probes. After 3 days of hyperosmotic culture, nine genes (ugp, slc35a3, slc35d2, gcs1, manea, mgat2, mgat5b, b4galt3, and b4galt4) were differentially expressed over 1.5-fold of the control, and all these genes were down-regulated. N-linked glycan analysis by anion exchange and hydrophilic interaction HPLC showed that the proportion of highly sialylated (di-, tri-, tetra-) and tetra-antennary N-linked glycans was significantly decreased upon hyperosmotic culture. Addition of betaine, an osmoprotectant, to the hyperosmotic culture significantly increased the proportion of highly sialylated and tetra-antennary N-linked glycans (P ≤ 0.05), while it increased the expression of the N-glycan branching/antennary genes (mgat2 and mgat4b). Thus, decreased expression of the genes with roles in the N-glycan biosynthesis pathway correlated with reduced sialic acid content of Fc-fusion protein caused by hyperosmolar conditions. Taken together, the results obtained in this study provide a better understanding of the detrimental effects of hyperosmolality on N-glycosylation, especially sialylation, in rCHO cells. Biotechnol. Bioeng. 2017;114: 1721-1732. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jong Hyun Lee
- Department of Biological Sciences, KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Yeong Ran Jeong
- Department of Biological Sciences, KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Yeon-Gu Kim
- Biotechnology Process Engineering Center, KRIBB, Ochang-eup, Cheongwon-gu, Cheongju, Republic of Korea.,Department of Bioprocess Engineering, Korea University of Science and Technology (UST), Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| |
Collapse
|
3
|
Chauhan G, Schmelzer AE. A novel cholesterol/lipid delivery system for murine myeloma cell lines. Biotechnol Prog 2017; 33:795-803. [DOI: 10.1002/btpr.2441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 12/09/2016] [Indexed: 01/24/2023]
Affiliation(s)
- Gaurav Chauhan
- Department of Cell Culture and Fermentation SciencesMedImmune, One Medimmune WayGaithersburg MD20878
| | - Albert E. Schmelzer
- Department of Cell Culture and Fermentation SciencesMedImmune, One Medimmune WayGaithersburg MD20878
| |
Collapse
|
4
|
Gupta P, Hourigan K, Jadhav S, Bellare J, Verma P. Effect of lactate and pH on mouse pluripotent stem cells: Importance of media analysis. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Reduction of ammonia and lactate through the coupling of glutamine synthetase selection and downregulation of lactate dehydrogenase-A in CHO cells. Appl Microbiol Biotechnol 2016; 101:1035-1045. [DOI: 10.1007/s00253-016-7876-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/06/2016] [Accepted: 09/16/2016] [Indexed: 01/17/2023]
|
6
|
Tolerability of hypertonic injectables. Int J Pharm 2015; 490:308-15. [DOI: 10.1016/j.ijpharm.2015.05.069] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 11/21/2022]
|
7
|
|
8
|
Paul AJ, Schwab K, Hesse F. Direct analysis of mAb aggregates in mammalian cell culture supernatant. BMC Biotechnol 2014; 14:99. [PMID: 25431119 PMCID: PMC4256052 DOI: 10.1186/s12896-014-0099-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 11/14/2014] [Indexed: 11/10/2022] Open
Abstract
Background Protein aggregation during monoclonal antibody (mAb) production can occur in upstream and downstream processing (DSP). Current methods to determine aggregate formation during cell culture include size exclusion chromatography (SEC) with a previous affinity chromatography step in order to remove disturbing cell culture components. The pre-purification step itself can already influence protein aggregation and therefore does not necessarily reflect the real aggregate content present in cell culture. To analyze mAb aggregate formation directly in the supernatant of Chinese hamster ovary (CHO) cell culture, we established a protocol, which allows aggregate quantification using SEC, without a falsifying pre-purification step. Results The use of a 3 μm silica SEC column or a SEC column tailored for mAb aggregate analysis allows the separation of mAb monomer and aggregates from disturbing cell culture components, which enables aggregate determination directly in the supernatant. Antibody aggregate analysis of a mAb-producing CHO DG44 cell line demonstrated the feasibility of the method. Astonishingly, the supernatant of the CHO cells consisted of over 75% mAb dimer and larger oligomers, representing a substantially higher aggregate content than reported in literature so far. Conclusion This study highlights that aggregate quantification directly in the cell culture supernatant using appropriate SEC columns with suitable mAb aggregate standards is feasible without falsification by previous affinity chromatography. Moreover, our results indicate that aggregate formation should be addressed directly in the cell culture and is not only a problem in DSP. Electronic supplementary material The online version of this article (doi:10.1186/s12896-014-0099-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Albert J Paul
- Institute of Applied Biotechnology (IAB), Biberach University of Applied Sciences, 88400, Biberach, Germany.
| | - Karen Schwab
- Institute of Applied Biotechnology (IAB), Biberach University of Applied Sciences, 88400, Biberach, Germany.
| | - Friedemann Hesse
- Institute of Applied Biotechnology (IAB), Biberach University of Applied Sciences, 88400, Biberach, Germany.
| |
Collapse
|
9
|
Brodsky AN, Caldwell M, Bae S, Harcum SW. Glycosylation-related genes in NS0 cells are insensitive to moderately elevated ammonium concentrations. J Biotechnol 2014; 187:78-86. [PMID: 25062658 PMCID: PMC4197068 DOI: 10.1016/j.jbiotec.2014.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/05/2014] [Accepted: 07/15/2014] [Indexed: 10/25/2022]
Abstract
NS0 and Chinese hamster ovary (CHO) cell lines are used to produce recombinant proteins for human therapeutics; however, ammonium accumulation can negatively impact cell growth, recombinant protein production, and protein glycosylation. To improve product quality and decrease costs, the relationship between ammonium and protein glycosylation needs to be elucidated. While ammonium has been shown to adversely affect glycosylation-related gene expression in CHO cells, NS0 studies have not been performed. Therefore, this study sought to determine if glycosylation in NS0 cells were ammonium-sensitive at the gene expression level. Using a DNA microarray that contained mouse glycosylation-related and housekeeping genes, these genes were analyzed in response to various culture conditions - elevated ammonium, elevated salt, and elevated ammonium with proline. Surprisingly, no significant differences in gene expression levels were observed between the control and these conditions. Further, the elevated ammonium cultures were analyzed using real-time quantitative reverse transcriptase PCR (qRT-PCR) for key glycosylation genes, and the qRT-PCR results corroborated the DNA microarray results, demonstrating that NS0 cells are ammonium-insensitive at the gene expression level. Since NS0 are known to have elevated nucleotide sugar pools under ammonium stress, and none of the genes directly responsible for these metabolic pools were changed, consequently cellular control at the translational or substrate-level must be responsible for the universally observed decreased glycosylation quality under elevated ammonium.
Collapse
Affiliation(s)
- Arthur Nathan Brodsky
- Department of Bioengineering, 301 Rhodes Research Center, Clemson University, Clemson, SC 29634-0905, USA.
| | - Mary Caldwell
- Department of Bioengineering, 301 Rhodes Research Center, Clemson University, Clemson, SC 29634-0905, USA.
| | - Sooneon Bae
- Department of Bioengineering, 301 Rhodes Research Center, Clemson University, Clemson, SC 29634-0905, USA.
| | - Sarah W Harcum
- Department of Bioengineering, 301 Rhodes Research Center, Clemson University, Clemson, SC 29634-0905, USA.
| |
Collapse
|
10
|
Nevarez JG, Acierno MJ, Angel M, Beaufrere H. Determination of Agreement between Measured and Calculated Plasma Osmolality Values in Captive-Reared American Alligators (Alligator mississippiensis). ACTA ACUST UNITED AC 2013. [DOI: 10.5818/1529-9651-22.1-2.36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Javier G. Nevarez
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70810, USA
| | - Mark J. Acierno
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70810, USA
| | - Martine Angel
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70810, USA
| | - Hugues Beaufrere
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70810, USA
| |
Collapse
|
11
|
Han YK, Ha TK, Kim YG, Lee GM. Bcl-xL overexpression delays the onset of autophagy and apoptosis in hyperosmotic recombinant Chinese hamster ovary cell cultures. J Biotechnol 2011; 156:52-5. [DOI: 10.1016/j.jbiotec.2011.07.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 07/22/2011] [Accepted: 07/27/2011] [Indexed: 02/09/2023]
|
12
|
Culture pH and osmolality influence proliferation and embryoid body yields of murine embryonic stem cells. Biochem Eng J 2009. [DOI: 10.1016/j.bej.2009.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Chaudhry MA, Vitalis TZ, Bowen BD, Piret JM. Basal medium composition and serum or serum replacement concentration influences on the maintenance of murine embryonic stem cells. Cytotechnology 2008; 58:173-9. [PMID: 19101815 DOI: 10.1007/s10616-008-9177-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 11/27/2008] [Indexed: 11/29/2022] Open
Abstract
The expansion of stem cell numbers while retaining their developmental properties is a bioprocess challenge. We compared the growth rates and embryoid body (EB) formation yields of R1 and EFC murine embryonic stem cells (mESC) cultured in two basal media (DMEM or DMEM:F12) with additions of 1.7-15% fetal bovine serum (FBS) or serum replacer (KOSR). Whereas the basal medium or KOSR dose did not have a significant effect on growth rate for either cell line, increasing doses of KOSR had a significant negative effect on the EB yield of EFC cells. Use of DMEM:F12 and increasing doses of FBS independently and significantly increased the growth rate for both cell lines. DMEM:F12 also significantly increased EB yields for both cell lines. The results show that use of DMEM:F12 and several-fold lower than conventional concentrations of KOSR can efficiently support maintenance of mESC and that KOSR should be dose as well as lot optimized.
Collapse
Affiliation(s)
- Muhammad A Chaudhry
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | | | | | | |
Collapse
|
14
|
Grattoni A, Canavese G, Montevecchi FM, Ferrari M. Fast membrane osmometer as alternative to freezing point and vapor pressure osmometry. Anal Chem 2008; 80:2617-22. [PMID: 18315010 DOI: 10.1021/ac7023987] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Osmometry is an essential technique for solution analysis and the investigation of chemical and biological phenomena. Commercially available osmometers rely on the measurements of freezing point, vapor pressure, and osmotic pressure of solutions. Although vapor pressure osmometry (VPO) and freezing point osmometry (FPO) can perform rapid and inexpensive measurements, they are indirect techniques, which rely on thermodynamic assumptions, which limit their applicability. While membrane osmometry (MO) provides a potentially unlimited direct measurement of osmotic pressure and solution osmolality, the conventional technique is often time-consuming and difficult to operate. In the present work, a novel membrane osmometer is presented. The instrument significantly reduces the conventional MO measurement time and is not subject to the limitations of VPO and FPO. For this paper, the osmotic pressure of aqueous sucrose solutions was collected in a molality range 0-5.5, by way of demonstration of the new instrument. When compared with data found in the literature, the experimental data were generally in good agreement. However, differences among results from the three techniques were observed.
Collapse
Affiliation(s)
- Alessandro Grattoni
- Dipartimento di Meccanica, Politecnico di Torino, C.so Duca degli Abruzzi, 24, 10129 Torino, Italy
| | | | | | | |
Collapse
|
15
|
Zhu MM, Goyal A, Rank DL, Gupta SK, Vanden Boom T, Lee SS. Effects of elevated pCO2 and osmolality on growth of CHO cells and production of antibody-fusion protein B1: a case study. Biotechnol Prog 2005; 21:70-7. [PMID: 15903242 DOI: 10.1021/bp049815s] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Partial pressure of CO2 (pCO2) and osmolality as high as 150 mmHg and 440 mOsm/kg, respectively, were observed in large-scale CHO cell culture producing an antibody-fusion protein, B1. pCO2 and osmolality, when elevated to high levels in bioreactors, can adversely affect cell culture and recombinant protein production. To understand the sole impact of pCO2 or osmolality on CHO cell growth, experiments were performed in bench-scale bioreactors allowing one variable to change while controlling the other. Elevating pCO2 from 50 to 150 mmHg under controlled osmolality (about 350 mOsm/kg) resulted in a 9% reduction in specific cell growth rate. In contrast, increasing osmolality resulted in a linear reduction in specific cell growth rate (0.008 h(-1)/100 mOsm/kg) and led to a 60% decrease at 450 mOsm/kg as compared to the control at 316 mOsm/kg. This osmolality shift from 316 to 445 mOsm/kg resulted in an increase in specific production rates of lactate and ammonia by 43% and 48%, respectively. To elucidate the effect of high osmolality and/or pCO2 on the production phase, experiments were conducted in bench-scale bioreactors to more closely reflect the pCO2 and osmolality levels observed at large scale. Increasing osmolality to 400-450 mOsm/kg did not result in an obvious change in viable cell density and product titer. However, a further increase in osmolality to 460-500 mOsm/kg led to a 5% reduction in viable cell density and a 8% decrease in cell viability as compared to the control. Final titer was not affected as a result of an apparent increase in specific production rate under this increased osmolality. Furthermore, the combined effects from high pCO2 (140-160 mmHg) and osmolality (400-450 mOsm/kg) caused a 20% drop in viable cell density, a more prominent decrease as compared to elevated osmolality alone. Results obtained here illustrate the sole effect of high pCO2 (or osmolality) on CHO cell growth and demonstrate a distinct impact of high osmolality and/or pCO2 on production phase as compared to that on growth phase. These results are useful to understand the response of the CHO cells to elevated pCO2 (and/or osmolality) at a different stage of cultivation in bioreactors and thus are valuable in guiding bioreactor optimization toward improving protein production.
Collapse
Affiliation(s)
- Marie M Zhu
- Biotechnology Development, Bristol-Myers Squibb Company, PO Box 4755, Syracuse, New York 13221-4755, USA
| | | | | | | | | | | |
Collapse
|
16
|
Abston LR, Miller WM. Effects of NHE1 expression level on CHO cell responses to environmental stress. Biotechnol Prog 2005; 21:562-7. [PMID: 15801799 DOI: 10.1021/bp049680q] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ammonia, lactate and CO(2) inhibit animal cell growth. Accumulation of these metabolic byproducts also causes a decrease in intracellular pH (pH(i)). Transport systems regulate pH(i) in eukaryotic cells. Ion transporters have been cloned and overexpressed in cells but have not been examined for protection against the buildup of ammonia, lactate or CO(2). The Na(+)/H(+) exchangers (NHE) transport H(+) ions from cells during acidification to increase pH(i). We examined whether overexpression of NHE1 would provide CHO cells with greater protection from elevated ammonia, lactate or CO(2). NHE1 CHO cells were compared to MT2-1-8 ("normal" levels of NHE) and AP-1 (devoid of any NHE activity) CHO cell lines. Expression of at least "normal" levels of NHE1 is necessary for CHO cell survival during exposure to 30 mM lactic acid without pH adjustment or to 20 mM NH(4)Cl with pH adjustment. Resistance to an acute acid-load increased when NHE1 was overexpressed in CHO cells. Surprisingly, the inhibitory effect on cell growth at 195 mmHg pCO(2)/435 mOsm/kg (normal levels are 40 mmHg pCO(2)/ 320 mOsm/kg) was not affected by the NHE1 level. Also, there was no further decrease in CHO cell growth in the absence of NHE1 expression during elevated osmolality alone (up to 575 mOsm/kg).
Collapse
Affiliation(s)
- Lisa R Abston
- Interdepartmental Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, USA
| | | |
Collapse
|
17
|
deZengotita VM, Abston LR, Schmelzer AE, Shaw S, Miller WM. Selected amino acids protect hybridoma and CHO cells from elevated carbon dioxide and osmolality. Biotechnol Bioeng 2002; 78:741-52. [PMID: 12001166 DOI: 10.1002/bit.10255] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Elevated pCO(2) inhibits cell growth. This growth inhibition is accompanied by a decrease in intracellular pH (pHi), as well as a decrease in glycolysis. Elevated concentrations (mM) of some amino acids have been shown by others to protect cells exposed to two very different environmental stresses: nutrient starvation and hyperosmolality. The fact that many of the amino acids shown to have protective effects against other stresses are transported into the cell through a pHi-sensitive transporter led us to study the possibility of using these amino acids as protective agents under elevated pCO(2). Screening experiments using 5, 15, and 25 mM of each amino acid showed that not all amino acids that protect cells from hyperosmolality protect them from elevated pCO(2). Glycine betaine and glycine were chosen for further characterization in both hybridoma and CHO cells. Asparagine and threonine were also tested in hybridoma and CHO cells, respectively. All amino acids tested under 195 mm Hg pCO(2)/435 mOsm/kg (50% growth inhibition) restored the specific growth rate (mu) in hybridoma cells to that observed under control conditions (40 mm Hg/320 mOsm/kg). Addition of each amino acid resulted in an increase in the consumption rate and intracellular accumulation of that amino acid. In CHO cells, glycine betaine also restored mu to control values, while glycine and threonine partially restored mu. In hybridoma cells, the higher specific antibody productivity obtained at elevated pCO(2) was maintained with the lowest amino acid concentration (5 mM). Productivity decreased toward control values with increasing amino acid concentrations. Elevated pCO(2) decreased the specific tPA productivity in the CHO cell line studied. Only glycine betaine resulted in a 20% increase in productivity at 195 mm Hg/435 mOsm/kg. With the exception of glycine betaine in hybridoma cells, amino acids did not mitigate the associated pHi decrease of at least 0.2 pH units at 195 mm Hg/435 mOsm/kg. pHi in hybridoma cells under elevated pCO(2) in the presence of glycine betaine was about 0.1 pH units below that of control. Amino acids had no effect on the cell size response of hybridoma cells, while they partially offset the increase in CHO cell size at elevated pCO(2). Glycine betaine, asparagine, and glycine increased the specific glucose consumption rate observed at 195 mm Hg/435 mOsm/kg (50% of control) to values greater than 70% of control in hybridoma cells. In CHO cells, only glycine betaine increased q(glc) (by 20%) under elevated pCO(2). All amino acids tested improved the cell yield from glutamine at 195 mm Hg/435 mOsm/kg in both cell lines.
Collapse
Affiliation(s)
- Vivian M deZengotita
- Chemical Engineering Department, Northwestern University, Evanston, Illinois 60208-3120, USA
| | | | | | | | | |
Collapse
|
18
|
Kim NS, Lee GM. Response of recombinant Chinese hamster ovary cells to hyperosmotic pressure: effect of Bcl-2 overexpression. J Biotechnol 2002; 95:237-48. [PMID: 12007864 DOI: 10.1016/s0168-1656(02)00011-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In an attempt to use the hyperosmotic pressure for improved foreign protein production in recombinant Chinese hamster ovary (rCHO) cells, the response of rCHO cells producing a humanized antibody (SH2-0.32-(Delta)bcl-2 cells) to hyperosmotic pressure was determined in regard to cell growth and death, and antibody production. Further, the feasibility of Bcl-2 overexpression in improving rCHO cell viability under hyperosmotic pressure was also determined by comparing control cells (SH2-0.32-(Delta)bcl-2) with Bcl-2 overexpressing cells (14C6-bcl-2). After 3 days of cultivation in the standard medium (294 mOsm x kg(-1)), the spent medium was exchanged with the fresh media with various osmolalities (294-640 mOsm x kg(-1)). The results obtained show that hyperosmotic pressure inhibited cell growth in a dose-dependent manner, though 14C6-bcl-2 cells were less susceptible to hyperosmotic pressure than SH2-0.32-(Delta)bcl-2 cells. At 522 mOsm x kg(-1), SH2-0.32-(Delta)bcl-2 cells underwent a gradual cell death mainly through apoptosis due to the cytotoxic effect of hyperosmotic pressure. In contrast, Bcl-2 overexpression in 14C6-bcl-2 cells could delay the apoptosis induced by 522 mOsm x kg(-1) by inhibiting caspase-3 activation. Bcl-2 overexpression could also improve the cellular membrane integrity of 14C6-bcl-2 cells. When subjected to hyperosmotic pressure, the specific antibody productivity of SH2-0.32-(Delta)bcl-2 cells and 14C6-bcl-2 cells was increased in a similar extent. As a result, the final antibody concentration achieved in 14C6-bcl-2 cells at 522 mOsm x kg(-1) was 2.5-fold higher than that at 294 mOsm x kg(-1). At 580 mOsm x kg(-1), acute hyperosmotic pressure induced the rapid loss of viability in both SH2-0.32-(Delta)bcl-2 and 14C6-bcl-2 cells through necrosis rather than through apoptosis. Taken together, Bcl-2 overexpression and optimized hyperosmotic pressure could improve the antibody production of rCHO cells.
Collapse
Affiliation(s)
- No Soo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1 Kusong-Dong, Yusong-Gu, 305-701, Taejon, Republic of Korea
| | | |
Collapse
|
19
|
deZengotita VM, Schmelzer AE, Miller WM. Characterization of hybridoma cell responses to elevated pCO(2) and osmolality: intracellular pH, cell size, apoptosis, and metabolism. Biotechnol Bioeng 2002; 77:369-80. [PMID: 11787010 DOI: 10.1002/bit.10176] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CO(2) partial pressure (pCO(2)) in industrial cell culture reactors may reach 150-200 mm Hg, which can significantly inhibit cell growth and recombinant protein production. The inhibitory effects of elevated pCO(2) at constant pH are due to a combination of the increases in pCO(2) and [HCO(-) (3)], per se, and the associated increase in osmolality. To decouple the effects of pCO(2) and osmolality, low-salt basal media have been used to compensate for this associated increase in osmolality. Under control conditions (40 mm Hg-320 mOsm/kg), hybridoma cell growth and metabolism was similar in DMEM:F12 with 2% fetal bovine serum and serum-free HB GRO. In both media, pCO(2) and osmolality made dose-dependent contributions to the inhibition of hybridoma cell growth and synergized to more extensively inhibit growth when combined. Elevated osmolality was associated with increased apoptosis. In contrast, elevated pCO(2) did not increase apoptotic cell death. Specific antibody production also increased with osmolality although not with pCO(2). In an effort to understand the mechanisms through which elevated pCO(2) and osmolality affect hybridoma cells, glucose metabolism, glutamine metabolism, intracellular pH (pHi), and cell size were monitored in batch cultures. Elevated pCO(2) (with or without osmolality compensation) inhibited glycolysis in a dose-dependent fashion in both media. Osmolality had little effect on glycolysis. On the other hand, elevated pCO(2) alone had no effect on glutamine metabolism, whereas elevated osmolality increased glutamine uptake. Hybridoma mean pHi was approximately 0.2 pH units lower than control at 140 mm Hg pCO(2) (with or without osmolality compensation) but further increases in pCO(2) did not further decrease pHi. Osmolality had little effect on pHi. Cell size was smaller than control at elevated pCO(2) at 320 mOsm/kg, and greater than control in hyperosmotic conditions at 40 mm Hg.
Collapse
Affiliation(s)
- Vivian M deZengotita
- Chemical Engineering Department, Northwestern University, Evanston, Illinios 60208-3120, USA
| | | | | |
Collapse
|
20
|
Schmelzer AE, Miller WM. Effects of osmoprotectant compounds on NCAM polysialylation under hyperosmotic stress and elevated pCO(2). Biotechnol Bioeng 2002; 77:359-68. [PMID: 11787009 DOI: 10.1002/bit.10175] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Elevated osmolality and pCO(2) have been shown to alter sialylation in a protein-specific manner. In Chinese hamster ovary (CHO)MT2-l-8 cells, tPA sialylation changed only slightly from 40 to 250 mm Hg pCO(2), whereas neural cell adhesion molecule polysialic acid (NCAM PSA) content decreased by up to 70% at 250 mm Hg pCO(2), pH 7.2. NCAM PSA content also decreased with increasing NaCl or NH(4)Cl concentration. This suggests that PSA content is a sensitive indicator of conditions that may alter glycosylation. Amino acids and their derivatives have been used to protect hybridoma and CHO cell growth under hyperosmotic stress. We examined the impact of osmoprotectants on NCAM PSA content in CHO MT2-1-8 cells under hyperosmolality (up to 545 mOsm/kg) and at 195 and 250 mm Hg pCO(2). NCAM PSA content at 545 mOsm/kg was at least two-fold greater in the presence of glycine betaine or L-proline compared to that without osmoprotectant. Surprisingly, in the presence of 20 mM glycine betaine, PSA levels were 50-60% of the control level for osmolalities ranging from 320 to 545 mOsm/kg. Thus, glycine betaine inhibits NCAM polysialylation at osmolalities below 435 mOsm/kg and is beneficial at higher osmolalities. In contrast to glycine betaine, L-proline increased PSA content by 25-120% relative to the unprotected culture at < or =545 mOsm/kg. The decrease in NCAM PSA levels of CHO MT2-1-8 cells cultured at 195 mm Hg pCO(2)-435 mOsm/kg was not mitigated by the presence of 25 mM glycine betaine, glycine, or L-threonine, even though all of these compounds enhanced cell growth. At 250 mm Hg pCO(2), all osmoprotectants tested (20 mM L-threonine, L-proline, glycine, or glycine betaine) increased NCAM polysialylation, with 20 mM glycine betaine restoring NCAM PSA to near control levels. Thus, osmoprotectants may (partially) offset changes in glycosylation, as well as the inhibition of growth, in cells under environmental stress. Supernatant beta-galactosidase levels, which increase upon alkalization of acidic organelles, did not differ significantly under elevated pCO(2) and hyperosmolality from that at control conditions.
Collapse
Affiliation(s)
- Albert E Schmelzer
- Chemical Engineering Department, Northwestern University, Evanston, Illinois 60208-3120, USA
| | | |
Collapse
|